Steady state polarization curves and electrode impedances were measured during the active/passive transition of type 304 stainless steel in dearated ethanolic solution containing hydrogen chloride and different amounts of water. The passivation potential and the critical current density for passivation strongly depend on the water content of the solution. The impedance measurements in the active/passive transition show the same sequence of diagrams independent of the water content of the solution. They indicate the onset of passivation before the maximum current density and show two time constants related to two different passivating species on the alloy surface. The experimental results were interpreted on the basis of a reaction model with parallel dissolution and passivation mechanism of the iron and the chromium compound of the alloy. The resulting total surface composition (related to the steady-state polarization curves) can be described with a reaction model of iron–the alloy behaviour is that of pure metal. The fundamental passivation reaction is described as a potential dependent equilibrium between adsorbed Me(II)- and passivating Me(III)-hydroxide, water molecules being directly involved in the formation of this primary passivating film. In the case of stainless steel this primary passivating film mainly consists of chromium (III) adsorbates. Finally, a general model for the passivation is proposed: The passivation of a pure metal or of an alloy can be understood as the coupling of the stepwise deprotonation of the water molecules at the interface metal/solution and the formation of a high cation charge density in this adsorbed hydroxide/oxide film to build up the passive layer. The effect of water content, pH, adding of passivating species to the solution or the alloying with chromium on the passivation potential and the critical current density thus can be explained.

Untersuchungen zum Aktiv/Passiv-Übergang von nichtrostenden Chromnickelstählen in organisch wäßrigen Medien. Teil 3. Resultate der Impedanzmessungen und Passivierungsmodell einer Legierung

ELSENER, BERNHARD;
1984-01-01

Abstract

Steady state polarization curves and electrode impedances were measured during the active/passive transition of type 304 stainless steel in dearated ethanolic solution containing hydrogen chloride and different amounts of water. The passivation potential and the critical current density for passivation strongly depend on the water content of the solution. The impedance measurements in the active/passive transition show the same sequence of diagrams independent of the water content of the solution. They indicate the onset of passivation before the maximum current density and show two time constants related to two different passivating species on the alloy surface. The experimental results were interpreted on the basis of a reaction model with parallel dissolution and passivation mechanism of the iron and the chromium compound of the alloy. The resulting total surface composition (related to the steady-state polarization curves) can be described with a reaction model of iron–the alloy behaviour is that of pure metal. The fundamental passivation reaction is described as a potential dependent equilibrium between adsorbed Me(II)- and passivating Me(III)-hydroxide, water molecules being directly involved in the formation of this primary passivating film. In the case of stainless steel this primary passivating film mainly consists of chromium (III) adsorbates. Finally, a general model for the passivation is proposed: The passivation of a pure metal or of an alloy can be understood as the coupling of the stepwise deprotonation of the water molecules at the interface metal/solution and the formation of a high cation charge density in this adsorbed hydroxide/oxide film to build up the passive layer. The effect of water content, pH, adding of passivating species to the solution or the alloying with chromium on the passivation potential and the critical current density thus can be explained.
1984
stainless steel; non-aqueous media; passivation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/44611
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact