A modified Poisson-Boltzmann analysis is made of the double layer interaction between two silica surfaces and two alumina surfaces in chloride electrolyte. The analysis incorporates nonelectrostatic ion-surface dispersion interactions based on ab initio ionic excess polarizabilities with finite ion sizes. A hydration model for the tightly held hydration shell of kosmotropic ions is introduced. A direct Hofmeister series (K > Na > Li) is found at the silica surface while the reversed series (Li > Na > K) is found at alumina, bringing theory in line with experiment for the first time. Calculations with unhydrated ions also suggest that surface-induced dehydration may be occurring at the alumina surface.

Why Direct or Reversed Hofmeister Series? Interplay of Hydration, Non-electrostatic Potentials, and Ion Size

PARSONS DF;SALIS, ANDREA;
2010-01-01

Abstract

A modified Poisson-Boltzmann analysis is made of the double layer interaction between two silica surfaces and two alumina surfaces in chloride electrolyte. The analysis incorporates nonelectrostatic ion-surface dispersion interactions based on ab initio ionic excess polarizabilities with finite ion sizes. A hydration model for the tightly held hydration shell of kosmotropic ions is introduced. A direct Hofmeister series (K > Na > Li) is found at the silica surface while the reversed series (Li > Na > K) is found at alumina, bringing theory in line with experiment for the first time. Calculations with unhydrated ions also suggest that surface-induced dehydration may be occurring at the alumina surface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/70544
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 112
  • ???jsp.display-item.citation.isi??? 106
social impact