Background: Epithelial sodium channel (ENaC) hyperactivity has been implicated in the pathogenesis of cystic fibrosis (CF) by dysregulation of fluid and electrolytes in the airways. In the present study, we show proof-of-principle for ENaC inhibition by lentiviral-mediated RNA interference. Methods: Immortalized normal (H441) and CF mutant (CFBE) airway cells, and differentiated human bronchial epithelial cells in air liquid interface culture (HBEC-ALI) were transduced with a vesicular stomatitis virus G glycoprotein pseudotyped lentiviral (LV) vector expressing a short hairpin RNA (shRNA) targeting the α subunit of ENaC (ENaCα), and a marker gene. Efficacy of ENaCα down-regulation was assayed by the real-time polymerase chain reaction (PCR), membrane potential assay, western blotting, short-circuit currents and fluid absorption. Off-target effects were investigated by a lab-on-a-chip quantitative PCR array. Results: Transduction to near one hundred percentage efficiency of H441, CFBE and HBEC-ALI was achieved by the addition of the LV vector before differentiation and polarization. Transduction resulted in the inhibition of ENaCα mRNA and antigen expression, and a proportional decrease in ENaC-dependent short circuit current and fluid transport. No effect on transepithelial resistance or cAMP-induced secretion responses was observed in HBEC-ALI. The production of interferon α and pro-inflammatory cytokine mRNA, indicating Toll-like receptor 3 or RNA-induced silencing complex mediated off-target effects, was not observed in HBEC-ALI transduced with this vector. Conclusions: We have established a generic method for studying the effect of RNA interference in HBEC-ALI using standard lentiviral vectors. Down-regulation of ENaCα by lentiviral shRNA expression vectors as shown in the absence off-target effects has potential therapeutic value in the treatment of cystic fibrosis.

Lentiviral small hairpin RNA delivery reduces apical sodium channel activity in differentiated human airway epithelial cells

CASTELLANI, STEFANO;CARBONE, ANNALUCIA;
2012-01-01

Abstract

Background: Epithelial sodium channel (ENaC) hyperactivity has been implicated in the pathogenesis of cystic fibrosis (CF) by dysregulation of fluid and electrolytes in the airways. In the present study, we show proof-of-principle for ENaC inhibition by lentiviral-mediated RNA interference. Methods: Immortalized normal (H441) and CF mutant (CFBE) airway cells, and differentiated human bronchial epithelial cells in air liquid interface culture (HBEC-ALI) were transduced with a vesicular stomatitis virus G glycoprotein pseudotyped lentiviral (LV) vector expressing a short hairpin RNA (shRNA) targeting the α subunit of ENaC (ENaCα), and a marker gene. Efficacy of ENaCα down-regulation was assayed by the real-time polymerase chain reaction (PCR), membrane potential assay, western blotting, short-circuit currents and fluid absorption. Off-target effects were investigated by a lab-on-a-chip quantitative PCR array. Results: Transduction to near one hundred percentage efficiency of H441, CFBE and HBEC-ALI was achieved by the addition of the LV vector before differentiation and polarization. Transduction resulted in the inhibition of ENaCα mRNA and antigen expression, and a proportional decrease in ENaC-dependent short circuit current and fluid transport. No effect on transepithelial resistance or cAMP-induced secretion responses was observed in HBEC-ALI. The production of interferon α and pro-inflammatory cytokine mRNA, indicating Toll-like receptor 3 or RNA-induced silencing complex mediated off-target effects, was not observed in HBEC-ALI transduced with this vector. Conclusions: We have established a generic method for studying the effect of RNA interference in HBEC-ALI using standard lentiviral vectors. Down-regulation of ENaCα by lentiviral shRNA expression vectors as shown in the absence off-target effects has potential therapeutic value in the treatment of cystic fibrosis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/85444
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact