A stochastic approach to describe the crystal size distribution dynamics in antisolvent based crystal growth processes is here introduced. Fluctuations in the process dynamics are taken into account by embedding a deterministic model into a Fokker-Planck equation, which describes the evolution in time of the particle size distribution. The deterministic model used in this application is based on the logistic model, which shows to be adequate to suit the dynamics characteristic of the growth process. Validations against experimental data are presented for the NaCl-water-ethanol antisolvent crystallization system in a bench-scale fed-batch crystallization unit.

A stochastic formulation for the description of the crystal size distribution in antisolvent crystallization processes

GROSSO, MASSIMILIANO;BARATTI, ROBERTO;
2010-01-01

Abstract

A stochastic approach to describe the crystal size distribution dynamics in antisolvent based crystal growth processes is here introduced. Fluctuations in the process dynamics are taken into account by embedding a deterministic model into a Fokker-Planck equation, which describes the evolution in time of the particle size distribution. The deterministic model used in this application is based on the logistic model, which shows to be adequate to suit the dynamics characteristic of the growth process. Validations against experimental data are presented for the NaCl-water-ethanol antisolvent crystallization system in a bench-scale fed-batch crystallization unit.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/91675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact