The molecular duplication of non-nucleoside reverse transcriptase inhibitor (NNRTI) O-(2-phthalimidoethyl)-N-arylthiocarbamates (C-TCs) led to the identification of symmetric formimidoester disulfides (DSs) as a novel class of potent NNRTIs. The lead compound 1 [dimer of the isothiocarbamic form of TC O-(2-phthalimidoethyl)-N-phenylthiocarbamate] turned out to prevent the wild-type HIV-1 multiplication in MT-4 cell culture with an EC(50) value of 0.35 microM. In order to perform a structure-activity relationship (SAR) study, we prepared 40 analogues of 1 by an unprecedented one-pot method of solution-phase parallel synthesis. The SAR strategy was focused on the variation of the N-aryl portion (mono-, di- and trisubstitution of the phenyl ring and its replacement with a 1-naphthyl, cyclopropyl or benzyl group) and of the 2-phthalimidoethyl moiety (introduction of a methyl on the phthalimide substructure, replacement of the phthalimide moiety with a phenyl ring and elongation of the ethyl linker). Most DSs proved to inhibit the wild-type HIV-1 replication in cell-based assays and 15 of them were active at nanomolar concentrations. The most potent congeners (11, 15, 16, 17, 18, 19, 20 and 32, EC(50): 10-70 nM) shared the N-para-substituted phenyl moiety. Compound 17 tested in enzyme assay against recombinant wild-type reverse transcriptase displayed an IC(50) value of 0.74 microM. Compounds 19 and 33 were active at micromolar concentrations against the clinically relevant Y181C and/or K103R resistant mutants.

Parallel one-pot synthesis and structure-activity relationship study of symmetric formimidoester disulfides as a novel class of potent non-nucleoside HIV-1 reverse transcriptase inhibitors

COLLU, GABRIELLA;SANNA, GIUSEPPINA;LODDO, ROBERTA
2008-01-01

Abstract

The molecular duplication of non-nucleoside reverse transcriptase inhibitor (NNRTI) O-(2-phthalimidoethyl)-N-arylthiocarbamates (C-TCs) led to the identification of symmetric formimidoester disulfides (DSs) as a novel class of potent NNRTIs. The lead compound 1 [dimer of the isothiocarbamic form of TC O-(2-phthalimidoethyl)-N-phenylthiocarbamate] turned out to prevent the wild-type HIV-1 multiplication in MT-4 cell culture with an EC(50) value of 0.35 microM. In order to perform a structure-activity relationship (SAR) study, we prepared 40 analogues of 1 by an unprecedented one-pot method of solution-phase parallel synthesis. The SAR strategy was focused on the variation of the N-aryl portion (mono-, di- and trisubstitution of the phenyl ring and its replacement with a 1-naphthyl, cyclopropyl or benzyl group) and of the 2-phthalimidoethyl moiety (introduction of a methyl on the phthalimide substructure, replacement of the phthalimide moiety with a phenyl ring and elongation of the ethyl linker). Most DSs proved to inhibit the wild-type HIV-1 replication in cell-based assays and 15 of them were active at nanomolar concentrations. The most potent congeners (11, 15, 16, 17, 18, 19, 20 and 32, EC(50): 10-70 nM) shared the N-para-substituted phenyl moiety. Compound 17 tested in enzyme assay against recombinant wild-type reverse transcriptase displayed an IC(50) value of 0.74 microM. Compounds 19 and 33 were active at micromolar concentrations against the clinically relevant Y181C and/or K103R resistant mutants.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/96648
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact