Abstract Complex polyphenols present in extravirgin olive oil are not directly absorbed, but undergo gastrointestinal biotransformation, increasing the relative amount of tyrosol (TYR) and hydroxytyrosol (HT) entering the small and large intestine. We investigated the capacity of TYR and HT to inhibit the insult of dietary lipid hydroperoxydes on the intestinal mucosa, using cultures of Caco-2, a cell line with enterocyte-like features, and studying the effect of tert-butyl hydroperoxide (TBH) treatment on specific cell membrane lipid targets. The effect of homovanillic alcohol (HVA), metabolite of HT in humans and detected as metabolite of HT in Caco-2 cells, was also evaluated. Exposure to TBH induced a significant increase of the level of MDA, the formation of fatty acid hydroperoxides and 7-ketocholesterol and the loss of α-tocopherol. Pretreatment with both HT and HVA protected Caco-2 cells from oxidative damage: there was no significant detection of oxidation products and the level of α-tocopherol was preserved. Noteworthy, TYR also exerted a protective action against fatty acids degradation. In vitro trials, where the simple phenols were tested during linoleic acid and cholesterol oxidation, gave evidence of a direct scavenging of peroxyl radicals and suggested a hydrogen atom-donating activity.

Protective effect of simple phenols from extravirgin olive oil against lipid peroxidation in intestinal Caco-2 cells

DEIANA, MONICA;INCANI, ALESSANDRA;ROSA, ANTONELLA;ATZERI, ANGELA;Melis MP;
2010-01-01

Abstract

Abstract Complex polyphenols present in extravirgin olive oil are not directly absorbed, but undergo gastrointestinal biotransformation, increasing the relative amount of tyrosol (TYR) and hydroxytyrosol (HT) entering the small and large intestine. We investigated the capacity of TYR and HT to inhibit the insult of dietary lipid hydroperoxydes on the intestinal mucosa, using cultures of Caco-2, a cell line with enterocyte-like features, and studying the effect of tert-butyl hydroperoxide (TBH) treatment on specific cell membrane lipid targets. The effect of homovanillic alcohol (HVA), metabolite of HT in humans and detected as metabolite of HT in Caco-2 cells, was also evaluated. Exposure to TBH induced a significant increase of the level of MDA, the formation of fatty acid hydroperoxides and 7-ketocholesterol and the loss of α-tocopherol. Pretreatment with both HT and HVA protected Caco-2 cells from oxidative damage: there was no significant detection of oxidation products and the level of α-tocopherol was preserved. Noteworthy, TYR also exerted a protective action against fatty acids degradation. In vitro trials, where the simple phenols were tested during linoleic acid and cholesterol oxidation, gave evidence of a direct scavenging of peroxyl radicals and suggested a hydrogen atom-donating activity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/99469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 60
social impact