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Abstract

Machine-learning models can be fooled by adversar-
ial examples, i.e., carefully-crafted input perturbations that
force models to output wrong predictions. While uncer-
tainty quantification has been recently proposed to detect
adversarial inputs, under the assumption that such attacks
exhibit a higher prediction uncertainty than pristine data,
it has been shown that adaptive attacks specifically aimed
at reducing also the uncertainty estimate can easily bypass
this defense mechanism. In this work, we focus on a differ-
ent adversarial scenario in which the attacker is still inter-
ested in manipulating the uncertainty estimate, but regard-
less of the correctness of the prediction; in particular, the
goal is to undermine the use of machine-learning models
when their outputs are consumed by a downstream mod-
ule or by a human operator. Following such direction, we:
(i) design a threat model for attacks targeting uncertainty
quantification; (ii) devise different attack strategies on con-
ceptually different UQ techniques spanning for both classi-
fication and semantic segmentation problems; (iii) conduct
a first complete and extensive analysis to compare the differ-
ences between some of the most employed UQ approaches
under attack. Our extensive experimental analysis shows
that our attacks are more effective in manipulating uncer-
tainty quantification measures than attacks aimed to also
induce misclassifications.

1. Introduction

Machine Learning (ML) covers nowadays multiple ap-

plications, including safety-critical domains such as med-

ical diagnosis, self-driving cars, and video surveillance.

Leaning towards ML-based systems tailored to cope with

such scenarios, the research community also focused on en-

hancing the trustworthiness of such systems. In this re-

gard, Uncertainty Quantification (UQ) methods have been

fostered throughout the years, establishing themselves as

methods capable of assessing the degree of uncertainty of

the predictions made by an ML-based system [12]. Unfor-

tunately, ML models have been found to be susceptible to

carefully-crafted input samples aimed at causing wrong pre-

dictions, known as adversarial examples [1, 24]. Several

defensive countermeasures have been developed, aiming to

build robust models, including adversarial training [21] and

also uncertainty quantification. In particular, UQ has been

proposed as a defense technique for adversarial attack de-
tection at test time, based on the rationale that attack sam-

ples aimed at causing wrong predictions are characterised

by high uncertainty. However, analogously to other defense

techniques, some works have shown that it is indeed possi-

ble to generate adaptive attacks capable of causing wrong

predictions and at the same time of evading detection, in

this case by reducing the corresponding uncertainty mea-

sure [4, 11].

In this work, we focus on a different adversarial scenario

in which the attacker is still interested in manipulating the

uncertainty estimate, but regardless of the correctness of the

prediction; in particular, the goal is to undermine the use of

UQ techniques for ML models when their outputs are con-

sumed by a downstream module or by a human operator.

For instance, in the medical domain, a doctor may avail of

uncertainty for distinguishing if an ML prediction (i.e., a

tumor segmentation) is reliable enough or requires more at-

tention from the doctor. Having an estimate about the reli-

ability of the system’s predictions would allow a healthcare

operator to accurately weigh its time, giving an additional

effort when interpreting more uncertain cases. Another ex-

ample is a crowd counting tool that processes in real-time

video streams coming from a video surveillance network

to support law enforcement agency officers in crowd mon-

itoring. Such a system may provide an estimate of the un-

certainty of the predicted crowd count (e.g., in terms of a

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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95% confidence interval) to make its users aware of the re-

liability of its predictions. This may allow detecting out-

of-distribution (OOD) frame sequences (e.g., due to ex-

treme lighting conditions) that are likely to be characterized

by high uncertainty, whose corresponding predicted count

would be disregarded by the users. We argue that, in appli-

cation scenarios like the ones described above, an attacker

may be interested in undermining only the UQ component,

regardless of the predictions. For the medical domain case,

e.g., an attacker may target an ML system to increase the

uncertainty associated with its predictions, resulting in an

unnecessary additional workload for the operator in charge

(e.g., evaluating a tumor diagnosis). On the crowd counting

side, lowering the level of uncertainty may lead the LEA

operator to think the count is always correct, even in the

presence of under-estimated predictions caused, e.g., by in-

adequate illumination or extreme weather conditions (and,

hence, increasing the odds of casualties).

We thus believe that focusing on attacks targeting the

sole uncertainty can be highly relevant for safety applica-

tions and that a proper understanding of such attacks, to the

best of our knowledge, is still missing. Consequently, the

state of the art lacks a practical implementation and empiri-

cal evaluation of UQ techniques under attack. In this work,

we move the first steps towards this direction by providing

the following contributions:

• We design a threat model for attacks targeting UQ and

yielding wrong uncertainty estimates;

• We develop and implement different attack strate-

gies on conceptually different UQ techniques span-

ning over both classification and semantic segmenta-

tion tasks;

• We conduct a first complete and extensive analysis to

compare the differences between some of the most em-

ployed UQ approaches under attack.

2. Background and Related Work
We summarize here the essential concepts of UQ tech-

niques, adversarial machine learning, and overview existing

work on attacks against UQ.

2.1. Uncertainty Quantification

In classification problems characterized by a d-

dimensional feature space X ⊆ R
d and a L-dimensional

output space Y ⊆ R
L being L the number of classes, an

ML-based predictor implements a decision function fθ :
X �→ Y mapping an input vector to an output categorical

distribution, where the parameters θ are obtained by mini-

mizing a given loss function on a training set D of (x,y)
pairs. Predictions are subject to two kinds of uncertainty:

aleatoric uncertainty (a.k.a. data uncertainty), due to the

inherent randomness of the class label (i.e., overlapping

class-conditional distributions), and epistemic uncertainty

(a.k.a. model uncertainty), due to a lack of knowledge on

the “correct” prediction model (such as the DNN’s weights),

which can be caused, e.g., by a training set that is not en-

tirely representative for a given task. UQ techniques aim

to associate with each prediction a numerical estimate of its

uncertainty [12].

Probabilistic approaches – Bayesian Neural Networks

(BNNs) are a well-known probabilistic model, which nat-

urally allow assessing the uncertainty of their predic-

tions [20]. They assume a prior p(θ) over the model’s pa-

rameters and marginalize over it to compute a predictive

distribution on a given training set D by Bayesian Model
Averaging (BMA):

fBMA = p(y|x,D) =

∫
θ

p(y|x, θ) · p(θ|D)dθ (1)

Since Eq. 1 is intractable in practice, an approximating dis-

tribution q(θ) is commonly used, minimizing its divergence

from the actual distribution. In this work we focus on two

common approximations: Monte-Carlo Dropout and Deep

Ensemble.

Monte-Carlo (MC) dropout approximation [8] consists

of activating dropout at test time, either in an ad hoc way [8]

(namely embedded dropout), using the dropout rate found

during training (where dropout is also used for regulariza-

tion), or in a post hoc way [19, 16] (namely dropout injec-

tion), i.e., on already trained networks. An alternative solu-

tion, which has been shown capable of outperforming MC

dropout, is based on Deep Ensembles [15], which trains

multiple DNNs starting from random weights and approxi-

mate BMA by combining the corresponding predictions ob-

tained from the different instances of θ. In both cases, for

a given sample x one can compute its corresponding un-

certainty U(x) by computing a statistic (e.g., the variance)

over the Monte-Carlo predictions.

In addition, we recall many other state-of-the-art

Bayesian methods. Among them, we can find Concrete

Dropout [9] (an improvement of MC-dropout for finding the

dropout rate during training), BayesByBackprop [3], and

the whole class of Laplace Approximations [20, 14] (which

are one of the most prominent post hoc UQ techniques).

Deterministic approaches – A drawback of Bayesian mod-

els is their computational cost due to the multiple forward

passes required to obtain a point-wise prediction. Sev-

eral deterministic approaches have been proposed to deal

with this issue, such as Deterministic Uncertainty Quantifi-

cation (DUQ) [25], Spectral-normalized Neural Gaussian

Process (SNGP) [17] and Deep Deterministic Uncertainty

(DDU) [22].

For instance, for L-class classification problems, DUQ

learns L centroids in the feature space X and, for any in-
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put x, it returns a L-dimensional vector with the distance

between the feature vector (defined as fθ(x) with abuse of

notation) and the centroids, computed using a Radial Basis

Function (RBF) kernel. The predicted class is the one as-

sociated to the closest centroid, and the corresponding dis-

tance is interpreted as the uncertainty measure U(x).
2.2. Adversarial Machine Learning

ML models have been found to be susceptible to adver-

sarial attacks [24], i.e., input samples carefully crafted to be

misclassified. Several attacks and defenses have been pro-

posed so far. Two seminal yet still widely used attack strate-

gies are the Fast-Gradient Sign Method attack (FGSM) [10]

and the Projected Gradient Descent attack (PGD) [21]. Un-

der a “standard” untargeted �∞ threat model with a pertur-

bation budget ε, FGSM crafts an adversarial example x∗

by adding to a given sample x an �∞ norm perturbation of

magnitude ε, pointing to the steepest ascent direction of the

loss L from the point x:

x∗ = x+ ε · sgn (∇xL (fθ(x),y)) , (2)

where ∇ denotes the gradient operator. The PGD attack

implements an iterative version of FGSM by projecting af-

ter each iteration the obtained perturbation to the feasible

domain Γ = {xt ∈ X : ||xt − x0||∞ < ε}:

xt+1 = ProjΓ(xt + α · sgn (∇xtL (fθ(xt),y))), (3)

On the defense side, the par excellence technique is Adver-

sarial Training [21]:

min
θ

E(x,y)∼D

[
max

δ∈B(x,ε)
L(θ,x+ δ,y)

]
, (4)

where B(x, ε) denotes the set of allowed adversarial pertur-

bations, bounded by ε. Eq. 4 amounts to solve a min-max

optimization problem, where the worst-case loss L (inner

problem) has to be minimized (outer problem). The goal is

to train the model to be robust to adversarial examples.

2.3. Evasion Attacks Involving Uncertainty

Previous work in the adversarial machine learning field

has considered UQ only as a defense strategy, as a means

for detecting adversarial samples crafted for evading a clas-

sifier, i.e., to cause wrong predictions. For instance, the au-

thors of [7] proposed to assess uncertainty as the variance

computed using embedded MC dropout (with a dropout

rate of 0.5 after each convolutional layer). Using a detec-

tion threshold τ = 0.02, such that samples whose variance

is below it are rejected as adversarial, 96% of adversar-

ial examples were correctly identified and rejected on the

CIFAR-10 dataset, with a false-positive rate of 1%. Follow-

ing the usual arms race approach, subsequent works devised

evasion attacks capable of bypassing uncertainty-based de-

fenses. The attack presented in [4] manipulates a given sam-

ple to reduce the corresponding MC sample variance below

the detection threshold and consequently induces a misclas-

sification. On the same CIFAR-10 dataset, it bypassed the

above defense with a success rate of 98%. However, this

result was attained at the expense of a notably large pertur-

bation size.

The authors of [11], proposed the “High-Confidence

Low-Uncertainty” attack. For a given sample x, the under-

lying idea is to craft an adversarial example x + δ pushing

the prediction confidence for the target (wrong) class over

95% and simultaneously keeping the corresponding uncer-

tainty not higher than the one of the original sample.

Previous work involving UQ considered only evasion
attacks aimed at causing wrong predictions, where uncer-

tainty measures were used and manipulated only as detec-

tion tools. In this work, we focus instead on a different at-

tack scenario where the goal is to manipulate uncertainty

measures per se, i.e., to produce wrong uncertainty esti-
mates, thus undermining their original purpose of provid-

ing an assessment of the reliability of ML-based systems

predictions, to be used by a downstream processing mod-

ule or by a human operator, regardless of the correctness of

the predictions. Additionally, we extensively test attacks to

diverse UQ techniques to assess how such attacks are sup-

posed to mutate depending on the given uncertainty-related

scenario.

3. Uncertainty Quantification Under Attack
In this section we formally present our threat model,

where the attacker’s goal is to produce wrong uncertainty
estimates regardless of the correctness of the prediction, de-

velop a possible implementation for classification tasks, and

show how it can be extended to other tasks using semantic

segmentation as a case study.

3.1. Threat Model

Evasion attacks aim at getting a given sample misclas-

sified, with respect to its ground-truth label. However, UQ

techniques do not have a ground truth, and thus it is not

straightforward to define what a “wrong” uncertainty esti-

mate is. Ideally, higher uncertainty values should be associ-

ated with higher misclassification probability. The stronger

such statistical correlation is, the more “correct” the uncer-

tainty measure will get. Accordingly, the considered attack

against UQ should result in breaking this statistical corre-
lation up.

Taxonomy of attacks to uncertainty quantification – Ac-

cording to the above threat model, two possible kinds of

attacks can be identified:

• Overconfidence Attack (O-attack): Its goal is to re-
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duce the uncertainty measure of a given predictor, thus

tricking an ML-based system into being overconfident.

This will impact in particular wrong predictions and

out-of-distribution (OOD) samples, resulting in under-

mining the UQ module integrity.

• Underconfidence Attack (U-attack): The goal of this

attack, conversely, is to increase the uncertainty mea-

sure, which would result in considering all the predic-

tions as unreliable, which in turn would lead the down-

stream modules or human operators to disregard the

outputs of an ML-based system. We, therefore, clas-

sify the U-attack as a threat undermining the availabil-
ity of an ML-based system.

Theoretically, one can formulate the problem as the

search for the perturbation δ, bounded by ε, minimizing (O-

attack) or maximizing (U-Attack) the uncertainty estimate

U(x+ δ):

argmin
δ

γ · U(x+ δ), s.t.‖δ‖p < ε , (5)

where γ ∈ {−1, 1} controls the attack objective: γ = −1
corresponds to the U-attack, whereas γ = 1 corresponds

to the O-attack. While the threat model encompasses both

attacks, in the rest of our work we focus on the O-Attack,

being the latter (just like “standard” evasion attacks [2]) a

violation of the integrity of the ML-based system. There-

fore, in the following section, we propose a possible imple-

mentation of the O-Attack.

3.2. Attacking Probabilistic Models

The attack strategy of Eq. 5 can be implemented both for

probabilistic and deterministic UQ models.

Minimum Variance Attack – In probabilistic models, the

prediction and uncertainty value for a given sample are ob-

tained by combining a set of predictions. Such models

commonly leverage uncertainty measures such as predic-

tive variance (epistemic), entropy (aleatoric) or, less fre-

quently, mutual information [23] (either epistemic or pre-

dictive). The intrinsic probabilistic nature of such methods

requires attacks to rely on expectations over a set of MC

samples. In this context, a first possible solution consists

of modifying a given input sample x in such a way that the

predictor’s probabilistic outcomes are as concordant as pos-

sible. This can be formulated as a direct minimization of

the predictive variance; accordingly, we refer to this attack

as Minimum Variance Attack (MVA):

argmin
δ

ES [(x + δ)2]− ES [(x + δ)]2, s.t.‖δ‖p < ε,

ES [(x + δ)2] :=
1

S

S∑
s=1

fθs(x + δ)ᵀ · fθs(x + δ),

ES [(x + δ)]2 :=ES(x + δ)ᵀ · ES(x + δ),

(6)

where δ denotes the perturbation, S the Monte-Carlo sam-

ple size, and fθs the predictor corresponding to the param-

eters θs obtained from the s-th Monte Carlo sample (see

Sect. 1). Finally, ES(x+δ) ≈ fBMA(x+δ) is the Monte-

Carlo approximation of the BMA using the set of size S.

Auto-Target Attack – Albeit the attack described above

aims at minimizing the uncertainty measure directly, there

are other ways to optimize Eq. (5). A simple yet effective

alternative idea has indeed been proposed in [4] to evade

the detection of adversarial examples (modeled as an un-

certainty threshold). To this aim, the authors proposed to

get the probabilistic model’s average prediction closer to the

most likely incorrect class; since it is equivalent to choosing

an automatic target, we refer to this attack as Auto-Target

Attack (ATA). A possible formulation can be obtained by

minimizing the Cross-Entropy (CE) loss [4]:

argmin
δ

− log(ES(x + δ)c) , s.t.‖δ‖p < ε , (7)

where c denotes the automatically chosen target class

and ES(x + δ) the expectation of the predictions over S
Monte-Carlo forward passes. Bringing the average of a pre-

diction’s set closer to a certain target corresponds to get-

ting all the predictions closer to a common target. Albeit

the above approach was originally formulated as a C&W

attack [5], we point out that it can be extended to several

attacks.

Auto-Target Attack – As mentioned in previous work [4],

the above attack required a particularly large perturbation to

be effective: such a relatively high perturbation was neces-

sary to evade the model’s predictions, besides reducing the

uncertainty measure. Indeed, using ATA with the primary

goal of evading the predictions does not result in a sudden

variance minimization but will instead take two stages: in

the first stage, after a warm-up phase, the variance starts

growing as long as the prediction flips from correct to incor-

rect; in the second stage, the probability of the class being

maximized overtakes the others, leading to a further stabi-

lization and, thus, to the variance minimization. Therefore,

an attacker interested in the efficacy of such an attack should

favor correctly classified clean samples over misclassified

adversarial examples with higher uncertainty estimates.

Stabilizing Attack – We further improve this simple idea

by taking the most likely class indiscriminately (instead of

the most likely incorrect one) since we are not interested

in the correctness of the prediction. The effect of our for-

mulation, which we name Stabilizing Attack (STAB), is to

get every MC prediction closer to the mean basin of attrac-

tion, thus stabilizing the predictions, which results in turn

to lower variance and average prediction’s entropy.

3.3. Attacking Deterministic Models

Due to the nature of deterministic models, an attacker

can evade their associated uncertainty measure by focusing
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on a single parameter configuration θ, without the need of

MC sampling. As an example, we show how our STAB

attack can be extended to the widely used DUQ tech-

nique [25] and other deterministic methods. For a deter-

ministic UQ model, it is sufficient to craft the adversarial

sample x∗ to make it approach a centroid ec associated to a

target class c:

argmin
δ

K(fθ(x), ec) , s.t.‖δ‖p < ε , (8)

where fθ(x) denotes the feature vector parameterized with

θ, and K the RBF kernel. As mentioned above about prob-

abilistic models, also the efficiency of attacks against deter-

ministic models is affected by the choice of a proper target.

In the case of DUQ, the attack can be crafted more eas-

ily by targeting the class nearest to the centroid. Due to

the deterministic nature of the considered models, we argue

that in the absence of an adversarial training technique, it is

quite easy for the attacker to craft the desired attack sam-

ple. Furthermore, the direct correspondence between the

uncertainty measure and the distance to the closest centroid

makes DUQ even less robust to attacks, since attacking the

prediction also results in minimizing the uncertainty, with

no additional perturbation required.

3.4. Case Study: Semantic Segmentation

We have shown how attacks targeting the uncertainty

measure can be formulated for standard classification prob-

lems. Here we show how they can be extended to complex

computer vision problems such as semantic segmentation,

which can be seen as a multivariate classification problem,

where a class label is assigned to each pixel. In this task, un-

certainty is computed in a pixel-wise manner. To this aim,

two commonly used metrics for aleatoric and epistemic un-

certainty are the average prediction entropy and the predic-

tion variance, respectively [13].

While recalling that it is common for segmented objects

to present high uncertainty along the edges, we directly ap-

ply our attack formulation of Eq. 6 to semantic segmen-

tation and, indeed, we find it challenging to decrease the

uncertainty measure around the edges of the segmented ob-

jects (see Sect. 4.2). We hypothesize this is due to the

fact that the network is “forced” to abruptly change predic-

tion around the edges, which are therefore inherently char-

acterised by high uncertainty. We, therefore, devised an

application-specific attack to semantic segmentation. The

underlying rationale is that a pixel closely surrounded by

several pixels from different classes exhibits a correlation to

each of such classes, whereas a pixel surrounded by a region

mostly belonging to a single class exhibits a high correlation

only with that specific class. Accordingly, we can force the

network to predict a single, identical class for all the image

pixels by minimizing the pixel-wise cross-entropy:

argmin
δ

−
∑
ω∈Ω

log(f(x + δ)ω,c) , s.t.‖δ‖p < ε , (9)

where c denotes the index of the target class, Ω the set of

pixels, and f(x + δ)ω the predicted probability vector for

the pixel ω. The target class c should be chosen as the one

that minimizes the uncertainty. To this aim, as a rule of

thumb, one can choose the most representative class, i.e.,

the class corresponding to the majority of pixels in the pre-

dicted segmentation map. The above criterion presents mul-

tiple advantages. First, the attacker will be trivially required

to flip the smallest number of pixels, as the majority of them

are already assigned to the target class. Secondly, consid-

ering the strong overall correlation induced by massive oc-

currences of pixels of the most representative class c on the

image, a pixel of a different class can be misled towards c
with much more ease compared to a different and less im-

pactful class. We refer to this attack with the name Uniform
Segmentation Target Attack (UST).

4. Experimental Analysis
We empirically evaluated the proposed O-Attack against

several UQ techniques both in classification and semantic

segmentation tasks, under two different operational scenar-

ios: the traditional setting of independent and identically
distributed (IID) data, which is practically implemented us-

ing training and testing data from the same data set, and

the case of out-of-distribution (OOD) data, which was sim-

ulated using different data sets for training and for testing.

4.1. Experimental Setup

Data sets – We used CIFAR-10 for IID experiments,

whereas for OOD experiments we used CIFAR-10 for train-

ing and CIFAR-100 for testing. To evaluate the perfor-

mance under the OOD setting, we used accuracy-rejection

curves evaluated on a mixed testing set made up of 600

CIFAR-10 samples and 900 CIFAR-100 samples.

We further assessed the O-Attack in a semantic segmen-

tation task, on the PASCAL VOC data set [6].

UQ techniques and models – We considered four differ-

ent UQ methods: MC dropout [8] (implemented both in

ad hoc and post hoc fashion), Deep Ensemble [15] and

DUQ [25]. We also considered three DNN architectures to

implement the models: ResNet18, ResNet34 and Resnet50.

We trained 9 different versions of ResNet34 and Resnet50

and 10 versions of ResNet18: one baseline version for the

post hoc dropout, 3 versions with ad hoc dropout (using a

dropout rate φ ∈ [0.1, 0.3, 0.5], and five classic ResNet’s

for constructing a deep ensemble. For models including MC

dropout-based architectures, we added the dropout rates af-

ter each convolutional and linear layer, thus obtaining a
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probability distribution over each weight. For ResNet18,

we trained an additional network used as a feature extractor

for DUQ. For the semantic segmentation task, we used the

pre-trained Torch implementation of a Fully Convolutional

Network (FCN) [18]. We then applied post hoc dropout

with a dropout rate of 0.1 after each block of four convolu-

tions, since a too high randomization may induce prediction

deterioration when using injected dropout [16].

Attack implementation – We based the implementation of

our attack (see Sect. 3) on the PGD attack with �∞ norm,

using 150 iterations, MC samples size of 30 and step size of

2 · 10−3 for the case of probabilistic UQ methods, and 10
iterations with a step size of 1 · 10−3 for the deterministic

method DUQ. For the MVA attack of Eq. 6, we minimize

the logarithm of the variance to attain better performances.

We implemented the attacks on CIFAR-10 with ε ranging

from 1/255 to 8/255. This allowed us to plot the associ-

ated security evaluation curves showing how the uncertainty

measure changes as a function of ε. For semantic segmenta-

tion, we still use the PGD attack with 100 iterations, a step

size of 1 · 10−3, set ε to 2/255 and MC sample size of 20.

Uncertainty measures – To attack probabilistic UQ meth-

ods, we use MC sample size of 100 (for both classification

and segmentation) to estimate the predictive variance and

the entropy as measures of epistemic and aleatoric uncer-

tainty, respectively. To attack DUQ, we use the distance

from the closest centroid to measure epistemic uncertainty.

4.2. Experimental Results

We first present and discuss the results attained by at-

tacking probabilistic UQ, for both IID and OOD data, then

the ones attained for the deterministic DUQ method, and

finally the results related to semantic segmentation.

Probabilistic UQ methods, IID setting – Fig. 1 shows the

results of the experiments conducted on CIFAR-10, in the

IID setup, for all the considered probabilistic UQ meth-

ods. The Minimum Variance Attack (MVA) and Stabiliz-

ing Attack (STAB) are conceived to minimize the uncer-

tainty measure. MVA focuses on minimizing epistemic un-

certainty, whereas STAB focuses on the predictive mea-

sure, thus minimizing both epistemic and aleatoric uncer-

tainty. Interestingly, although not surprisingly, we can see

that STAB turned out to be more effective in minimizing

aleatoric uncertainty. In fact, pushing towards more stable

predictions ultimately yields the double effect of increas-

ing the target class probability and minimizing the entropy.

However, for both attacks, the clean accuracy does not suf-

fer any decline.

Whereas ATA is initially less efficient than STAB (since

it attempts to induce misclassifications) both techniques sta-

bilize as the attack proceeds. Such ATA behavior is caused

by the initial warm-up phase described in Sect. 3.2, where

the predictions necessarily cross the boundary before being

Figure 1. Behaviour of classification accuracy, aleatoric and epis-

temic uncertainty on CIFAR-10 under an IID setup, using a

ResNet18 model with MC-dropout (with a dropout rate of 0.3) and

Deep Ensembles, under different attacks, as a function of ε. More

architectures and dropout rates are present in the supplementary

material.

uniformly pushed towards the same class. However, there

are still some differences between the two techniques, in-

dicating that ATA does not necessarily converge to STAB’s

performances for ε = 8/255 (e.g., on post hoc dropout).

For what concerns the comparison between UQ meth-

ods based on ad hoc and post hoc dropout, we did not ob-

serve any significant difference. From a broader perspec-

tive, MVA attacks appear to better fit post hoc dropout,

whereas ATA seems more effective for ad hoc dropout.

However, in both cases, STAB outperforms MVA and ATA

for both aleatoric and epistemic uncertainty. Overall, post

hoc dropout attains a higher starting variance, which results

in more difficulties in zeroing the uncertainty.

Besides being Deep Ensembles widely recognized as

highly accurate techniques, in our experiments, we notice

a conflicting trend. Starting from comparable uncertainty

levels with respect to ad hoc dropout, we notice a consid-

erable decline in both aleatoric and epistemic uncertainty.

In fact, all the attacks easily reduce variance to the order

of magnitude of 10−6 with a perturbation of ε = 8/255,

conversely to the ad hoc dropout, which attains an order of

magnitude of 10−4.

As shown in Fig. 1 and already stated in [4], a “stan-

dard” attack aiming to cause wrong predictions (denoted as

ATA (acc)) can also reduce uncertainty. However, by look-
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Figure 2. Accuracy-rejection curves of a ResNet18 model under

the STAB and MVA attacks against MC-dropout (with a dropout

rate of 0.3) and against Deep Ensembles, as a function of ε, in a

OOD setting simulated with a mixture of 600 CIFAR-10 images

and 900 CIFAR-100 testing images.

ing at Fig. 1, we find out that the criterion for choosing the

best adversarial example at each iteration is crucial. Indeed,

in a traditional set-up, when we find an adversarial exam-

ple fooling the prediction (i.e., misclassified by the model),

we consider it a “success” and then save it. Nevertheless,

this strategy is sub-optimal when an attacker is interested in

evading the uncertainty measure. Indeed, we observe a first

warm-up phase where the sample’s uncertainty increases

and then a stabilization where it consistently decreases (as

hypothesized in Sect 3.2). Conversely, when always saving

the sample with lower uncertainty, the uncertainty measures

decrease consistently, as expected in this setting.

Probabilistic UQ methods, OOD setting – We focused on

the STAB and MVA attacks applied to post hoc dropout,

ad hoc dropout and Deep Ensemble. Fig. 2 shows the cor-

responding accuracy–rejection curves. The green line, for

ε = 0, shows that all UQ methods exhibit an adequate ca-

pability of detecting OOD samples. However, as the per-

turbation ε for OOD samples increases, their effectiveness

decreases, up to a point where they start rejecting IID sam-

ples before OOD ones, which indicates that the estimated

uncertainty is higher for OOD than for IID samples: this is

just the opposite behaviour to the desired one (i.e., indicates

an attack success).

The above results clearly show that the considered UQ

methods, including Deep Ensembles, are vulnerable to ad-

versarial attacks, also in the presence of OOD samples.

We also point out that for ad hoc dropout, the MVA at-

tack turned out to be less effective than STAB, which, with

ε = 8/255, completely breaks the other techniques.

We finally argue that the robustness of Deep Ensembles

could be improved by increasing the ensemble size (which

Figure 3. Classification accuracy and uncertainty of a ResNet18 as

a feature extractor for the DUQ method on CIFAR10 in the IID

setting, under two different attacks, as a function of ε.

was set to 5 in our experiments), although at the expense of

an increase in processing cost.

Deterministic UQ methods – In Fig. 3 and Fig. 4 we

can see the results for IID and OOD (respectively) exper-

iments using DUQ. Since deterministic methods do not per-

form MC sampling, attacks against them can be designed

and implemented more easily. This leads to lower robust-

ness for attacks targeting both uncertainty and predictions

(where, as opposed to probabilistic attacks, no trade-off is

needed). Nevertheless, more interesting behaviors can be

observed when DUQ is used in the case of OOD samples, as

seen from Fig. 4. In this scenario, even small perturbations

quickly deteriorate the quality of the uncertainty measure.

Still, for larger perturbations, the accuracy does not drop to

zero: such behavior may indicate that deterministic meth-

ods assign larger uncertainty values to OOD samples, mak-

ing it challenging to get the perturbed samples very close to

Figure 4. Accuracy-rejection curves attained in a OOD setting (see

Sect. 4.1) by a ResNet18 model using the DUQ method, under the

STAB attack.
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Figure 5. Two examples of attacks against UQ in a semantic segmentation task. In each of the two groups of columns, from left to right:

(i) the original clean image, (ii) the predicted segmentation maps, and the corresponding epistemic (iii) and aleatoric (iv) uncertainty maps.

In the rows, from top to bottom: results obtained under normal operating conditions (with no attacks), and under the MVA, UST (Fb), and

UST (Bg) attacks.

a target centroid.

Semantic segmentation – We finally show in Fig. 5 the

results obtained when attacking UQ methods used for a se-

mantic segmentation task. Using a clean image as input, we

see that the considered model is not very accurate in cor-

rectly segmenting the whole object. Nevertheless, high un-

certainty values are correctly assigned to regions where seg-

mentation errors occur, corresponding to the object edges

and to missing objects. MVA, albeit reducing the overall

epistemic uncertainty, is less effective in reducing the un-

certainty on the edges. On the other hand, the attack aimed

at obtaining a uniform segmentation map whose target is the

most representative class (usually, the “background” class),

which we refer to as UST (Bg) for convenience, turns out to

be effective in reducing both the epistemic and the aleatoric

uncertainty for each pixel. However, attacks aimed at evad-

ing the predictions using a similar strategy, i.e., assigning a

wrong label (referred to as UST (Fb), i.e. “Full Break”), did

not achieve a similar reduction in uncertainty, despite they

evaded a large region of the image.

5. Conclusions and Future Work
In this work, we first proposed and modeled adversar-

ial attacks against UQ techniques used by ML predictors,

aimed at producing wrong uncertainty estimates, regardless

of the correctness of the prediction. We formally defined a

taxonomy and a threat model and implemented several pos-

sible attacks against different UQ techniques, both in clas-

sification and in semantic segmentation tasks.

From our preliminary results on classification tasks we

can draw the following conclusions: Generally speaking,

UQ techniques are not robust to adversarial attacks:

they can be easily manipulated using attacks specifically

crafted to evade the uncertainty measure. Surprisingly,

Deep Ensemble turned out to be the less robust UQ tech-

nique against adversarial attacks targeting uncertainty. On

the other hand, MC dropout tends to be the most robust

among the analyzed methods (as we can see from the exper-

iments on OOD data). Our preliminary example on seman-

tic segmentation shows that attacks against UQ methods can

be effective also in other, more complex CV tasks.

We finally point out the following directions for future

work: (i) implementing and investigating under-confidence

attacks (U-attacks); (ii) exploring the proposed attacks

against a wider range of UQ methods; (iii) analyzing black-

box attacks; and (iv) exploring the attack transferability be-

tween different UQ methods; (v) investigating adversarial

training and other robust defense techniques to counter at-

tacks against UQ.
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P. Laskov, G. Giacinto, and F. Roli. Evasion attacks against

machine learning at test time. In H. Blockeel, K. Kersting,
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