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FEATURE SELECTION IN SVM VIA POLYHEDRAL K-NORM

M. GAUDIOSO∗, E. GORGONE † , AND J.-B. HIRIART URRUTY ‡

Abstract. We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an
optimization model based on use of the `0 pseudo–norm. The objective is to control the number of non-zero components
of normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the
polyhedral norm ‖.‖[k], intermediate between ‖.‖1 and ‖.‖∞, plays a significant role, allowing us to come out with a DC
(Difference of Convex) optimization problem that is tackled by means of DCA algorithm.

The results of several numerical experiments on benchmark classification datasets are reported.

Keywords. Sparse optimization, Cardinality constraint, k-norm, Support Vector Machine, DC
optimization.

1. Introduction. A relevant problem in binary classification is to design good quality classifiers by
resorting to a minimal number of sample parameters. One of the main motivations is to gather a more
clear interpretation of phenomena underlying the class membership distribution of the samples. In the
more general setting of Machine Learning, such problem falls in the area of Feature Selection (FS), which
has been the object of intensive research in recent decades (see, e.g., the survey [10]).

We focus, in particular, on the Support Vector Machine (SVM) framework [24], [4], where binary
classification is pursued by finding an “optimal” two–class separating hyperplane, either in the original
parameter (or “feature”) space or upon appropriate kernel transformation.

Numerical optimization algorithms play a relevant role in SVM area and, more specifically, in FS.
The problem is to guarantee a reasonable trade–off between classification accuracy and the number of
features actually used. Controlling the latter consists basically in minimizing the number of non–zero
components of the normal vector to the separating hyperplane.

The literature offers several contributions. In [1] NP-hardness of the problem has been assessed.

In [3] the model adopted is based on considering the step function for each component of the normal
vector; discontinuity is handled by introducing two different approximations, the standard sigmoid and a
concave exponential, respectively. In particular, by adopting the concave approximation, FS problem is
tackled by solving a finite sequence of linear programs. Different approximations are given in [26] and in
[21], where, in particular, the concave and separable objective functions, derived by the approximations,
are handled via variants of Frank-Wolfe method.

It is interesting to note that in [16] an approximation scheme of the step function is cast into a
DC (Difference of Convex) framework, providing thus the opportunity of resorting to the algorithmic
machinery for dealing with such class of nonconvex problems. An early survey on properties and relevance
of such class of functions is in [12] (see also [22]).

Parallel to treatment of FS via approximation methods, Mixed Integer Programming formulations
have been successfully adopted. The idea is to introduce binary variables, one for each component of the
normal vector to the supporting hyperplane, that are switched to “1” if and only if the corresponding
component is non-zero. From among the proposed approaches, we recall here [17], [2], [7].

In a more general setting, FS falls into the wide area of sparse optimization, where one is faced to
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the (regularized) problem:

min
x∈Rn

f(x) + ‖x‖0 (1.1)

where f : Rn → R is convex and ‖.‖0 is the `0 pseudo–norm, which counts the number of non-zero
component of any vector. Sometimes sparsity of the solution, instead of acting on the objective function,
is enforced by introducing a constraint on the `0 pseudo–norm of the solution, thus defining a cardinality–
constraint problem [20].

In many applications, the `0 pseudo–norm in (1.1) is replaced by the `1–norm, which is definitely
more tractable from the computational point of view, yet ensuring sparsity, to a certain extent (see [27]
for a discussion on a general regularization scheme).

In the seminal paper [25], a class of polyhedral norms (the k-norms), intermediate between ‖.‖1 and
‖.‖∞, is introduced to obtain sparse approximation solutions to systems of linear equations. The use of
other norms to recover sparsity is described in [6]. In more recent years the use of k-norms has received
much attention and has led to several proposals for dealing with `0 pseudo–norm cardinality constrained
problem [11], [28], [23], [9].

In this paper we cast the classic SVM approach into the sparse optimization framework (1.1). Our
work is inspired by [9], the main difference being in the explicit (and not parametric) minimization of
the `0 pseudo–norm. We formulate our SVM–`0 pseudo–norm problem (SVM0, for short) and we tackle
it by means of a penalization approach which allows us to put the problem in DC form. The algorithm
adopted is of DCA type [15].

The paper is organized as follows. In Section 2 we recall first the standard SVM model and introduce
the FS problem as a sparse optimization one. Then we discuss the use of the polyhedral k-norm in sparse
optimization, coming out with a DC formulation. On such basis we formulate in Section 3 the SVM0

problem. The results of several numerical experiments on benchmark datasets are in Section 4. Some
conclusions are finally drawn in Section 5.

2. Feature Selection and `0 norm minimization. The binary classification problem in the SVM

setting is usually put in the following form. Given two point-setsA 4= {a1, . . . , am1
} and B 4= {b1, . . . , bm2

}
in Rn, we look for linear separation of the two sets, that is for a hyperplane {x|x ∈ Rn, x>w′ = γ′},
(w′ ∈ Rn, γ′ ∈ R), strictly separating A and B, thus ensuring

a>i w
′ < γ′, i = 1, . . . ,m1 and b>l w

′ > γ′, l = 1, . . . ,m2.

It is easy to verify that such a hyperplane exists if and only if there exists a hyperplane {x|x ∈
Rn, x>w = γ}, (w ∈ Rn, γ ∈ R), such that

a>i w ≤ γ − 1, i = 1, . . . ,m1 and b>l w ≥ γ + 1, l = 1, . . . ,m2.

Gordan’s theorem of the alternative [18] guarantees linear separation if and only if convA ∩ convB = ∅,
a property which is not usually known in advance to hold.

Consequently, an error function of (w, γ), which is convex, piecewise linear and nonnegative, is
introduced. It assumes zero value if and only if (w, γ) actually defines a (strictly) separating hyperplane
and it has the form:

e(w, γ) =

m1∑
i=1

max{0, a>i w − γ + 1}+

m2∑
l=1

max{0,−b>l w + γ + 1} (2.1)
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The SVM approach consists in solving the following convex problem:

min
w,γ
‖w‖+ Ce(w, γ) (2.2)

where the addition of the norm of w to the error function is aimed at obtaining a maximum-margin
separation, C being a positive trade-off parameter [4].

In the standard approach `1 or `2 norms are usually adopted in the definition of problem (2.2), while
for feature selection purposes the `0 pseudo-norm, which counts the number of non-zero components of
any vector, is introduced.

The usual notation ‖.‖0 for indicating the `0 pseudo-norm is motivated by the observation

(‖.‖p)p → ‖.‖0 when p→ 0.

Relevant properties of function x 7→ ‖x‖0 are:
i) it is lower–semicontinuous, that is to say

lim inf
k→+∞

‖xk‖0 ≥ ‖x‖0 whenever xk → x,

a property which is fundamental in view of using descent algorithms;
ii) it is homogeneous of degree 0, (‖λx‖0 = ‖x‖0, for λ 6= 0); constancy along rays makes difficult

the design of minimization algorithms;
iii) the convex hull of ‖.‖0 on the ball {x| ‖x‖∞ ≤ r} is exactly the function 1

r‖‖1. This is a
mathematical justification for frequent substitution of ‖.‖0 by ‖.‖1, which in fact ensures, in
practical applications, attractive sparsity properties of the solution.

In our approach we fix ‖w‖0 in formulation (2.2), thus we consider a sparse optimization problem of the
type

f∗0 = min
x∈Rn

f(x) + ‖x‖0, (2.3)

where f : Rn → R, n ≥ 2, is convex, not necessarily differentiable. We observe, in passing, the significant
parallelism between sparse optimization and certain problems in matrix optimization [19], [13]. See, in
particular, the recent approach to the rank function minimization described in [9].

In the sequel, we resort to the use of ‖x‖[k], the vector k-norm of x, which is defined as the sum of
k largest components (in modulus) of x, k = 1, . . . , n. In fact ‖.‖[k] is a polyhedral norm, intermediate
between ‖.‖1 and ‖.‖∞.

The following properties hold:
i) ‖x‖∞ = ‖x‖[1] ≤ . . . ≤ ‖x‖[k] ≤ . . . ‖x‖[n] = ‖x‖1;
ii) ‖x‖0 ≤ k ⇒ ‖x‖1 − ‖x‖[s] = 0, k ≤ s ≤ n.

Moreover, it is easy to prove the equivalence, valid for 1 ≤ k ≤ n,

‖x‖0 ≤ k ⇔ ‖x‖1 − ‖x‖[k] = 0, (2.4)

which allows to replace any constraint of the type ‖x‖0 ≤ k with a difference of norms, that is a DC
constraint.

Taking any point x̄ ∈ Rn and letting I[k]
4
= {i1, . . . , ik} be the index set of k largest in modulus

components of x̄, a subgradient ḡ[k] of the vector k-norm at x̄ can be calculated by setting:

ḡ
[k]
i =


1 if i ∈ I[k] and x̄i ≥ 0

−1 if i ∈ I[k] and x̄i < 0

0 otherwise
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To tackle problem 2.3, we start from the observation (see [19], [28]):

‖x‖[k] = max
y∈ψk

y>x,

where ψk is the subdifferential of ‖.‖0 at point 0,

ψk = {y ∈ Rn | y = u− v, 0 ≤ u, v ≤ e, (u+ v)>e = k},

with e being the vector of n ones. Then we formulate the following problem:

f∗c = min
x,u,v,z

f(x) + z (2.5)

e>(u+ v) = z (2.6)

(u− v)>x ≥ ‖x‖1 (2.7)

0 ≤ u, v ≤ e, x ∈ Rn. (2.8)

Remark 2.1. At any feasible point constraint (2.7) is satisfied by equality.
Proposition 2.2. At any optimal (local) solution (x∗, u∗, v∗, z∗) of problem 2.5–2.8, the following

relations hold for j = 1, . . . , d: 
x∗j > 0 ⇔ u∗j = 1

x∗j < 0 ⇔ v∗j = 1

x∗j = 0 ⇔ u∗j = v∗j = 0

(2.9)

Proof. Note first that u∗j and v∗j cannot be both positive. In fact, in such case the solution obtained

by replacing u∗j and v∗j by u∗j − δj and v∗j − δj , with δj
4
= min{u∗j , v∗j } > 0, would be still feasible and

would reduce the objective function value.
Now observe that, while constraint 2.8 ensures

−|xj | ≤ xj(uj − vj) ≤ |xj |, j = 1, . . . , d,

satisfaction of constraint 2.7 guarantees xj(uj − vj) = |xj |, j = 1, . . . , d. Thus it is proved, in particular,
x∗j > 0⇒ u∗j = 1 (x∗j < 0⇒ v∗j = 1).

The implication x∗j = 0⇒ u∗j = v∗j = 0 can be proved by a simple contradiction argument, taking into
account optimality of the solution. The same contradiction argument guarantees that the implications
x∗j > 0 ⇐ u∗j = 1 (x∗j < 0 ⇐ v∗j = 1) hold true, while the last implication x∗j = 0 ⇐ u∗j = v∗j = 0 can be
proved by observing that u∗j = v∗j = 0 and x∗j 6= 0 would lead to violation of constraint 2.7.

Remark 2.3. Implications 2.9 ensure z∗ = ‖x∗‖0. Moreover, letting (x∗, u∗, v∗, z∗) be any local
minimum of problem 2.5–2.8, then x∗ is a local minimum for problem 2.3.

By eliminating the scalar variable z in problem 2.5–2.8 we come out with the reformulation

f∗c = min
x,u,v

f(x) + e>(u+ v) (2.10)

(u− v)>x ≥ ‖x‖1 (2.11)

0 ≤ u, v ≤ e, x ∈ Rn, (2.12)
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which we approach by penalizing the nonlinear nonconvex constraint 2.11 through the scalar penalty
parameter σ > 0. We obtain

fc(σ) = min
x,u,v

f(x) + e>(u+ v) + σ
(
‖x‖1 − (u− v)>x

)
(2.13)

0 ≤ u, v ≤ e, x ∈ Rn. (2.14)

The objective function 2.13 is suitable for a DC (Difference of Convex) decomposition.

Observe, in fact, that, letting p>
4
= (x>, u>, v>), the function

q(p)
4
= (v − u)>x,

can be written in DC form as

q(p) = p>Q1p− p>Q2p,

where the symmetric positive semidefinite matrices Q1 and Q2 of dimension (3n, 3n) are defined as follows:

Q1 =
1

4

 2I −I I

−I I 0

I 0 I

 (2.15)

and

Q2 =
1

4

 2I I −I
I I 0

−I 0 I

 , (2.16)

with I and 0 being, respectively, the identity matrix and the zero matrix of dimension (n, n).
Summing up, the objective function of problem 2.13–2.14 is decomposed as follows:

f(x) + e>(u+ v) + σ
(
‖x‖1 − (u− v)>x

)
= h1(p)− h2(p),

with

h1(p)
4
= f(x) + e>(u+ v) + σ

(
‖x‖1 + p>Q1p

)
,

and

h2(p)
4
= σp>Q2p.

Before concluding the Section, we state a property related to parametric normalization of a convex
function via the `1 norm. It will be useful in explaining the role of parameter σ in the numerical
experiments of Section 4.

Proposition 2.4. Let f : Rn → R be convex and define, for σ > 0, fσ(x) = f(x) + σ‖x‖1. If

σ > min
g∈∂f(0)

‖g‖∞,
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then x∗ = 0 is the unique minimum of fσ.

Proof. To prove the property it is sufficient to prove that, for an appropriate value of σ > 0 and for
some g ∈ ∂f(0), it is

gTx+ σ‖x‖1 > 0, ∀x ∈ Rn, x 6= 0, (2.17)

since, in such case, from subgradient inequality, it is

fσ(x) = f(x) + σ‖x‖1 ≥ f(0) + gTx+ σ‖x‖1 > f(0) = fσ(0), x ∈ Rn, x 6= 0.

To prove (2.17), observe that, for any g ∈ ∂f(0),

gTx+ σ‖x‖1 > 0,∀x ∈ Rn, x 6= 0 ⇔ gTx+ σ > 0,∀x : ‖x‖1 = 1. (2.18)

Taking into account that, for ‖x‖1 = 1, it is

gTx ≥ −‖g‖∞‖x‖1 = −‖g‖∞,

we conclude that the condition at the r.h.s. of (2.18), and, consequently, (2.17) hold true, provided
σ > ‖g‖∞. The thesis follows by observing that it is sufficient to take σ > ming∈∂f(0) ‖g‖∞.

3. The SVM0 problem. We rewrite first the SVM model (2.2), taking into account the definition
(2.1) of the classification error and adopting the `1 norm. We obtain problem SVM1.

z∗ = min
w,γ,ξ,ζ

‖w‖1 + C(

m1∑
i=1

ξi +

m2∑
l=1

ζl) (3.1)

subject to

a>i w − γ + 1 ≤ ξi, i = 1, . . . ,m1 (3.2)

− b>l w + γ + 1 ≤ ζl, l = 1, . . . ,m2 (3.3)

ξi ≥ 0, i = 1, . . . ,m1 (3.4)

ζl ≥ 0, l = 1, . . . ,m2, (3.5)

where the nonnegative auxiliary variables ξi, i = 1, . . . ,m1 and ζl, l = 1, . . . ,m2 have been introduced to
eliminate nonsmoothness in the definition (2.1).

Moreover, by letting

w = w+ − w−, w+, w− ≥ 0,

and indicating by e the vector of ones of dimension n, the above problem can be rewritten in a Linear
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Programming form as follows

z∗ = min
w+,w−,γ,ξ,ζ

e>(w+ + w−) + C(

m1∑
i=1

ξi +

m2∑
l=1

ζl) (3.6)

subject to

a>i (w+ − w−)− γ + 1 ≤ ξi, i = 1, . . . ,m1 (3.7)

− b>l (w+ − w−) + γ + 1 ≤ ζl, l = 1, . . . ,m2 (3.8)

ξi ≥ 0, i = 1, . . . ,m1 (3.9)

ζl ≥ 0, l = 1, . . . ,m2, (3.10)

w+ ≥ 0, w− ≥ 0 (3.11)

Of course 3.1-3.5 or 3.6-3.11 are equivalent formulations of SVM1.

We remark that choice of ‖.‖1 in (2.2), instead of ‖.‖2, has a beneficial effect in terms of feature
selection (see [3]).

To guarantee, however, a better control on the number of features actually entering the classification
process, we replace ‖.‖1 with ‖.‖0 and adapt to SVM the sparse optimization approach described in the
previous section. We obtain the SVM0 problem

z∗ = min
w+,w−,γ,ξ,ζ,u,v

C(

m1∑
i=1

ξi +

m2∑
l=1

ζl) + e>(u+ v) (3.12)

subject to

(u− v)>(w+ − w−) ≥ e>(w+ + w−) (3.13)

a>i (w+ − w−)− γ + 1 ≤ ξi, i = 1, . . . ,m1 (3.14)

− b>l (w+ − w−) + γ + 1 ≤ ζl, l = 1, . . . ,m2 (3.15)

ξi ≥ 0, i = 1, . . . ,m1 (3.16)

ζl ≥ 0, l = 1, . . . ,m2, (3.17)

w+ ≥ 0, w− ≥ 0 (3.18)

0 ≤ u, v ≤ e (3.19)
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Penalizing the (nonlinear) constraint (3.13) we obtain

z∗ = min
w+,w−,γ,ξ,ζ,u,v

e>(u+ v) + C(

m1∑
i=1

ξi +

m2∑
l=1

ζl) + σ
(
e>(w+ + w−)− (u− v)>(w+ − w−)

)
(3.20)

subject to

a>i (w+ − w−)− γ + 1 ≤ ξi, i = 1, . . . ,m1 (3.21)

− b>l (w+ − w−) + γ + 1 ≤ ζl, l = 1, . . . ,m2 (3.22)

ξi ≥ 0, i = 1, . . . ,m1 (3.23)

ζl ≥ 0, l = 1, . . . ,m2, (3.24)

w+ ≥ 0, w− ≥ 0 (3.25)

0 ≤ u, v ≤ e (3.26)

Remark 3.1. Definition of an exact nondifferentiable penalty function of the type described in [5]
would require the introduction into the objective function of the term

σmax
(
0, e>(w+ + w−)− (u− v)>(w+ − w−)

)
,

which in our case, according to remark (2.1), is simply replaced by

σ
(
e>(w+ + w−)− (u− v)>(w+ − w−)

)
,

giving rise to a differentiable exact penalty function

Problem (3.20)-(3.26) can be put in DC form. In fact, letting s>
4
= (w+T , w−T , u>, v>), the function

r(s)
4
= (v − u)>(w+ − w−)

can be rewritten as

r(s) = s>Q̂1s− s>Q̂2s,

where the symmetric positive semidefinite matrices Q̂1 and Q̂1 of dimension (4d, 4d) are defined as follows

Q̂1 =
1

4


2I −2I −I I

−2I +2I I −I
−I I I 0

I −I 0 I

 (3.27)

and

Q̂2 =
1

4


2I −2I I −I
−2I +2I −I I

I −I I 0

−I I 0 I

 , (3.28)
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with I and 0 being, respectively, the identity and the zero matrix of dimension (d, d).
The objective function is then decomposed in DC form f1(w+, w−, γ, ξ, ζ, u, v)−f2(w+, w−, u, v) with

f1(w+, w−, γ, ξ, ζ, u, v) = e>(u+ v) + C(

m1∑
i=1

ξi +

m2∑
l=1

ζl) + σ
(
e>(w+ + w−) + s>Q̂1s

)
,

and

f2(w+, w−, u, v) = σs>Q̂1s

We apply to problem above the DCA method [15], which tackles the unconstrained minimization of
a function q : Rn → R

q(x) = q1(x)− q2(x),

with q1 and q2 convex, by solving a sequence of linearized convex problems. In particular, letting x(k) be
the estimate of a (local) minimum of g at iteration k, the next iterate x(k+1) is calculated as

x(k+1) = arg min
x∈Rn
{q1(x)− [q2(x(k)) + g(k)>(x− x(k))]},

with g(k) ∈ ∂q2(x(k)). For other methods to solve DC problems see [14], [8] and the references therein.
We remark that, in applying the successive linearization method to our case, a convex quadratic

minimization problem is solved at each iteration.

4. Numerical experiments. We have performed our experiments on two groups of five datasets
each. They are the same datasets adopted as benchmark for the feature selection method described
in [7]. In particular in datasets 1–5 (Group 1), available at http://www.tech.plym.ac.uk/spmc/, the
number of samples is small with respect to the number of features. The opposite happens for Datasets 6–
10 (Group 2), which are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
Thus for the latter ones a certain class–overlap is expected.

The datasets are listed in Table 4.1, where m = m1 +m2 is the total number of samples.

Datasets of Group 1 m n Datasets of Group 2 m n
Carcinoma (CARC) 36 7457 Breast Cancer (BC) 683 10

DLBCL 77 7129 PIMA Indians Diabetes (PIMA) 768 8
Leukemia (LEK) 72 5327 HEART 270 13
Tumor1 (TUM1) 60 7129 Ionosphere (IONO) 351 34
Tumor2 (TUM2) 50 12625 Liver Disorders (LIVER) 145 5

Table 4.1
Description of the datasets

As a possible reference, we report first the results of the SVM1 problem provided by CPLEX solver.
A standard tenfold cross validation has been performed. The results are in Table 4.2, where the columns
“Test” and “Train” indicate the average testing and training correctness, respectively, expressed as per-
centage of samples correctly classified. Columns “‖w‖1” and“Time” report the average `1 norm of w
and the average execution time (in seconds). Finally columns “%ft(0)”–“%ft(-9)” report the average
percentage of components of w whose modulus is greater than or equal to 100–10−9, respectively. Note
that, assuming, conventionally, to be equal to “zero” any component wj of w such that |wj | < 10−9, the
percentage of zero-components is (100−%ft(−9)).
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C = 1
Dataset Test Train |w|1 Time %ft(0) %ft(−2) %ft(−4) %ft(−9)

CARC 97.50 100.00 2.63 0,27 0.00 0.26 0.28 0.28
DLBCL 94,29 100.00 5.07 0.54 0.00 0.42 0.44 0.44
LEUK 96.67 100.00 4.45 0.37 0.00 0.54 0.58 0.58
TUM1 76.67 100.00 7.09 0.52 0.00 0.53 0.55 0.55
TUM2 80.50 100.00 5.12 0.69 0.00 0.23 0.24 0.24

C = 10
BC 97.24 94.00 6.01 0,01 9.00 94.00 94.00 94.00

PIMA 77.62 100.00 8.30 0,02 26.25 100.00 100.00 100.00
HEART 86.83 100.00 7.27 0,01 12.31 100.00 100.00 100.00
IONO 95.46 95.59 43.43 0,01 50.59 95.00 95.59 95.59
LIVER 74.39 100.00 5.14 0,00 48.00 100.00 100.00 100.00

Table 4.2
SVM1 - Cplex implementation - Tenfold Cross Validation

Two different values of parameter C, obtained through the so called “Model selection” phase (see
[7]), have been adopted for the two dataset groups.

Before reporting the results of the implementation of our algorithm to solve SVM0, we illustrate in
Tables 4.3 and 4.4 the results provided by the following mixed binary programming problem MBP [7]
for feature selection, where `0 pseudo–norm minimization is pursued by introducing the set of binary
variables yj , j = 1, . . . , n.

z∗ = min
w,γ,ξ,ζ,y

‖w‖1 + C(

m1∑
i=1

ξi +

m2∑
l=1

ζl) +D

n∑
j=1

yj

subject to

a>i w + γ + 1 ≤ ξi, i = 1, . . . ,m1

− b>l w − γ + 1 ≤ ζl, l = 1, . . . ,m2

− ujyj ≤ wj ≤ ujyj , j = 1, . . . , n

ξi ≥ 0, i = 1, . . . ,m1

ζl ≥ 0, l = 1, . . . ,m2

yj ∈ {0, 1}, j = 1, . . . , n,

where uj > 0, j = 1, . . . , n, is a given bound on the modulus of the j-th component of w (see [7] for
a discussion on setting the uj ’s) . The binary variable yj , j = 1, . . . , n is equal to 1 at the optimum

if and only if wj 6= 0, j = 1, . . . , n. Consequently the term

n∑
j=1

yj in the objective function represents

the `0 pseudo–norm of w. The positive parameter D provides the tradeoff between the `0 pseudo–norm
objective and that of the SVM1 problem (3.6)–(3.11).

The results are those obtained by CPLEX, with maximum running time of 1000 seconds. Note that
on some test problems, the maximum running time has been achieved with no optimality certification.
The results we provide in such cases are related to the best solution found.

Some comments are in order. We observe first that the average computation time for solving the
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C = 1 , D = 0.01
Dataset Test Train |w|1 Time %ft(0) %ft(−2) %ft(−4) %ft(−9)
CARC 92.50 100 2.65 302.07 0.00 0.16 0.16 0.16
DLBCL 92.86 100 5.11 999.98 0.00 0.28 0.28 0.28
LEUK 93.57 100 4.48 999.74 0.00 0.35 0.35 0.35
TUM1 76.67 100 7.12 998.91 0.00 0.39 0.39 0.39
TUM2 83.00 100 5.16 999.89 0.00 0.16 0.16 0.16

Table 4.3
MBP - Cplex implementation - Tenfold cross validation - Group 1

C = 10 , D = 10
Dataset Test Train |w|1 Time %ft(0) %ft(−2) %ft(−4) %ft(−9)

BC 96.42 97.15 5.73 0.06 17.00 68.00 68.00 68.00
PIMA 75.87 77.26 7.75 0.06 26.25 78.75 78.75 78.75

HEART 83.95 86.97 5.16 0.07 9.23 58.46 58.46 58.46
IONO 88.29 94.62 27.06 2.03 36.18 45.29 45.29 45.29
LIVER 71.10 74.05 4.45 0.02 52.00 68.00 68.00 68.00

Table 4.4
MBP - Cplex implementation - Tenfold cross validation - Group 2

Linear Program SVM1 is negligible.

As for classification performance, comparison of Table 4.2 with Tables 4.3 and 4.4 highlights that
the use of an explicit feature selection mechanism results in a mild downgrading of the classification
correctness. Such phenomenon is compensated by the reduction in the percentage of the numerically
significant features (columns“ft(0)”–“ft(-9)”).

Coming now to our method (referred to, in the sequel, as the “SVM0 Algorithm”), we report in
Table 4.5 the results on the two groups of datasets.

We have added the two columns “%Viol.” and “e>(u+ v)”. In particular, column “%Viol.” reports
the percentage ratio between the average violation of the relaxed constraint 3.13 and the average norm
‖w‖1. Column “e>(u + v)” reports the average value of the scalar product e>(u + v), which, for small
values of the companion parameter “%Viol.”, reasonably approximates ‖w‖0. ‡

C = 1

Dataset σ Test Train |w|1 Time %Viol. e>(u+ v) %ft(0) %ft(−2) %ft(−4) %ft(−9)

CARC 4 97.50 100,00 6.90 39.40 3 2.10 0.03 0.05 0.06 0.06
DLBCL 4 91.43 98.57 12.83 260.48 0.5 3.51 0.05 0.06 0.06 0.06
LEUK 5 98.33 99.83 16.02 188.70 0.0 3.70 0.07 0.07 0.07 0.07

TUM1* 5 76.67 100.00 15.27 50.74 4.7 7.23 0.08 0.14 0.16 0.16
TUM2 4 81.00 96.03 7.40 69.68 7.29 3.05 0.02 0.05 0.06 0.06

C = 10

Dataset σ Test Train |w|1 Time %Viol. e>(u+ v) %ft(0) %ft(−2) %ft(−4) %ft(−9)

BC 63 93.17 92,48 1.36 0.59 0.29 1.32 2.00 34.00 34.00 34.00
PIMA 17 75.57 76.19 5.89 3.80 0.0 3.50 26.25 43.75 43.75 43.75

HEART** 17 83.95 86.92 7.28 0.1 29.35 6.95 13.85 99.23 100.00 100.00
IONO 17 86.35 89,31 3.14 0.27 0.47 2.56 5.88 13.82 13.82 13.82

LIVER** 6 74.89 74.39 5.77 0.02 10.19 3.93 64.00 100.00 100.00 100.00
Table 4.5

SVM0 Algorithm - Tenfold cross validation
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We have run the algorithm on each dataset for different values of the penalty parameter σ, and we
indicate in Table 4.5 the specific value of σ the results refer to.

Some comments follow.
• In terms of classification correctness, the results of the SVM0 Algorithm are comparable with

those of MBP .
• The SVM0 Algorithm provides better results in terms of number of zero-components of w. In

fact, the percentage of components conventionally assumed equal to zero, that is (100−%ft(−9)),
is significantly bigger, except that in two cases, in SVM0 Algorithm than in MBP .

• The computation time is, for both algorithms, negligible on the datasets of Group 2 while it is
remarkably smaller for SVM0 Algorithm as far as datasets of Group 1 are concerned.

In running the SVM0 Algorithm, the most relevant issue is the appropriate tuning of the penalty
parameter σ > 0, which is, of course, dataset-specific. Two aspects are to be taken into account.

• “Small” values of σ may lead to significant violation of the penalized constraint at the optimum
of problem 3.20–3.23. Note that in such case, variables u and v may loose their “marker” role
highlighted in Proposition 2.2.

• “Large” values of σ may result in trivial solutions (w = 0) to the penalized problem (see Propo-
sition 2.4). .

To illustrate in details the impact on the solution of parameter σ, we analyze the results for increasing
values of σ. In particular we focus on the datasets CARC and IONO, from the first and second group,
respectively. The results are reported in Tables 4.6 and 4.7.

Dataset : CARC;C = 1

σ Test Train |w|1 Time % Viol. e>(u+ v) %ft(0) %ft(−2) %ft(−4) %ft(−9)

1 95.00 100,00 2.62 14.45 100 0.00 0.00 0.23 0.25 0.25
2 94.17 100.00 3.50 73.13 44 0.87 0.01 0.14 0.15 0.15
4 97.50 100,00 6.90 39,40 3 2.10 0.03 0.05 0.06 0.06
5 91.67 100.00 6.26 41.41 1 2.07 0.02 0.03 0.03 0.03
6 85.00 98.33 7.23 68.53 0.1 2.18 0.03 0.03 0.03 0.03
7 75.83 96.99 6.08 93.80 0 2.20 0.03 0.03 0.03 0.03

12 65.83 81,40 2.32 81.04 0 0.80 0.01 0.01 0.01 0.01
16 58.33 57.59 0.0 1.81 0 0.0 0.0 0.0 0.0 0.0

Table 4.6
Results on dataset CARC for different values of σ

We observe that on both datasets increasing values of σ results, as expected, in deterioration of the
classification correctness (under such point of view, significant data are those obtained in the training
phase). On the other hand, the violation of the relaxed constraint gets smaller and smaller, until, for too
large values of σ, the results become meaningless, as w gets close to zero.

5. Conclusions. We have tackled the Feature Selection problem within SVM binary classification
by using the polyhedral k-norm, in the sparse optimization context. The numerical experiments show
that the approach is a promising alternative to continuous approximations of the `0 pseudo–norm and to
integer programming-based methods.
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Dataset : IONO;C = 10

σ Test Train |w|1 Time % Viol. e>(u+ v) %ft(0) %ft(−2) %ft(−4) %ft(−9)
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17 86.35 89.31 3.14 0.29 15 2.56 5.88 13.82 13.82 13.82
30 80.80 83.47 1.83 0.23 6 1.77 3.82 7.65 7.94 7.04
50 74.77 74.68 1.00 0.26 3 0.97 2.94 2.94 2.94 2.94
64 64.33 64.24 0.0001 1.84 0.0 0.0001 0.0 0.0 0.29 0.29
93 64.33 64.24 0.0 0.16 0 0.0 0.0 0.0 0.0 0.0

Table 4.7
Results on dataset IONO for different values of σ
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