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Explainable AI-powered Graph Neural Networks for
HD EMG-based Gesture Intention Recognition

Silvia Maria Massa, Daniele Riboni, Kianoush Nazarpour

Abstract—The ability to recognize fine-grained gestures en-
ables several applications in different domains, including health-
care, robotics, remote control, and human-computer interaction.
Traditional gesture recognition systems rely on data acquired
from cameras, depth sensors, or smart gloves. More recently,
techniques for recognizing gestures based on signals acquired by
high-density (HD) EMG electrodes worn on the forearm have
been proposed. An advantage of these techniques is that they do
not rely on the use of external devices, and they are feasible also to
people who underwent amputation. Unfortunately, the extraction
of complex features from raw HD EMG signals may introduce
delays that deter the real-time requirements of the system. To
address this issue, in a preliminary investigation we proposed
to use graph neural networks for gesture recognition from raw
HD EMG data. In this paper, we extend our previous work by
exploiting Explainable AI algorithms to automatically refine the
graph topology based on the data in order to improve recognition
rates and reduce the computational cost. We performed extensive
experiments with a large dataset collected from 20 volunteers
regarding the execution of 65 fine-grained gestures, comparing
our technique with state-of-the-art methods based on handcrafted
features and different machine learning algorithms. Experimental
results show that our technique outperforms the state of the art
in terms of recognition performance while incurring significantly
lower computational cost at run-time.

Index Terms—Pervasive healthcare; gesture recognition; pros-
thetic arm control; HD EMG sensor data; GNN; deep learning.

I. INTRODUCTION

The use of EMG sensors worn on the forearm has several
advantages with respect to other gesture recognition tech-
nologies. As regards cameras and depth sensor methods [1],
EMG sensors are not susceptible to external factors like
ambient light, and they do not require a direct line of sight
to the hand. Differently from smart gloves, EMG sensors
do not interfere with hand movements. Moreover, EMG sen-
sors typically have low latency, enabling real-time gesture
recognition. This characteristic is crucial in applications that
require real-time interactions, such as virtual reality gaming or
robotic control. However, data acquired from standard EMG
electrodes may be insufficient to recognize gestures at a fine-
grained level. Indeed, most surface EMG readers include a
limited number of electrodes; hence, they provide limited
spatio-temporal information [2]. Li et al. state that gestures that
include a large number of degrees of freedom are more easily
recognized increasing the number of channels for muscular
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data acquisition [3]. Smith et al. [4] observed in their research
that spatial and temporal information (i.e., the number of
electrode channels used, the length of the analysis window,
and the degree of window overlap) are directly related. Hence,
in order to enhance the recognition of fine-grained gestures,
a few researchers investigated the use of high-density EMG
(HD EMG) electrodes [5]. The electrodes of these devices are
arranged in a dense two-dimensional array and can acquire
extensive spatio-temporal muscular data [6].

Most existing works for EMG-based gesture intention
recognition rely on the application of supervised machine
learning algorithms to statistical features extracted from mus-
cular signals [7]. To improve recognition rates, several features
are extracted from raw signals in the time, frequency, and
time-frequency domains. Of course, the extraction of several
complex features at run-time introduces delays that may deter
the real-time response of the recognition algorithms, negatively
impacting the usability of the system [8]. This problem is
particularly evident in HD EMG-based solutions, given the
large number of channels from which statistical features are
extracted. Indeed, the time taken by feature extraction and
classification must not exceed the length of the sliding window
used for processing the HD EMG signals [9]. On the other
hand, longer sliding windows may negatively impact the
response time of the system for real-time applications.

In order to address this challenging issue, we propose the
use of graph neural networks (GNNs) for recognizing gesture
intentions from raw signals. GNNs are deep learning archi-
tectures composed of several propagation modules. Relational
spatio-temporal information is propagated between nodes of
the GNN, capturing both feature-based and topological infor-
mation [10]. This solution has different advantages. Indeed,
the GNN may be fed with raw signal data, without the need
of extracting features that may introduce delays in the recog-
nition process. Moreover, GNNs are an appealing solution for
handling HD EMG data, since they proved to be effective in
classification tasks where abundant information with strong
spatio-temporal correlations is available [11]. Previous studies
investigated different machine learning methods to exploit HD
EMG data for gesture recognition [12]. However, to the best
of our knowledge, no previous study, except our preliminary
investigation reported in [13], used a graph neural network
(GNN) in conjunction with HD EMG signals to identify the
gesture intention of an amputee.

Our preliminary investigation showed the potential of ap-
plying GNNs to HD EMG signals for gesture recognition,
obtaining promising results. In particular, we performed an
experiment about the recognition of 65 gestures executed by 20
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volunteers wearing two HD EMG electrodes on the forearm.
We obtained an average classification error rate of 8.75%
with a standard deviation of 4.92. However, 20 gestures out
of 65 were detected with an average error rate larger than
10%, where the latter is considered a threshold value for the
practical usability of upper limb prostheses [14]. Moreover, the
computational cost should be reduced to improve the real-time
performance of the system. A standard method for reducing
the computational cost and improving recognition rates in
machine learning systems is feature selection [15]. However, in
our case, GNN nodes are not associated with feature vectors.
Instead, each node is associated with a vector containing raw
data regarding the electrical activity of the muscle. Therefore,
feature selection is not applicable in our case.

For this reason, in this paper, we extend our previous work
with an eXplainable AI (xAI)-based technique to improve
recognition rates and reduce the computational cost of GNN
training and classification. Our objective is to refine the GNN
topology, keeping only those edges (i.e., logical connections
among nodes corresponding to EMG data channels) having
high prediction capabilities. The advantage of our approach
is twofold. On the one hand, we can increase recognition
rates and reduce overfitting by pruning those edges that do not
provide useful information for the prediction task. On the other
hand, a smaller graph structure can reduce training and clas-
sification times. Given the high computational cost of GNN
training, a reduction of training time is fundamental for exten-
sively experimenting and refining the algorithm. Moreover, a
reduced graph topology corresponds to a smaller model, which
determines clear advantages in terms of computational cost and
power consumption.

Specifically, we use the GNN explainer algorithm presented
in [16]. Indeed, to the best of our knowledge, it is the only
deep learning explainer that exploits the relational information
provided by the graph. In fact, relational information plays a
crucial role in the prediction capabilities of GNNs, in addition
to the characteristics of the nodes. That algorithm provides a
log probability for each edge, which reflects its contribution to
the classification outcome. Hence, we keep only those edges
that contribute most to the classification task. We performed
several experiments to compare our method with the state of
the art and to evaluate the impact of our xAI-based technique
considering different thresholds for edge pruning. With the
used dataset, our technique clearly outperformed state-of-
the-art methods based on handcrafted features and different
machine learning algorithms in terms of both recognition per-
formance and run-time computational costs. The best results
of the xAI-base technique were achieved by keeping the 50%
edges that give more contribution. With this setup, we were
able to reduce computational times by 53%. Moreover, the
number of gestures that were detected with an average error
rate larger than 10% was reduced by 60%.

Summarizing, the main contributions of our work with
respect to the preliminary investigation presented in [13] are
the following:

• In order to reduce delays that may deter the real-time
requirements of the system, we introduce a novel xAI-
based technique to improve the topology of the GNN’s

graph;
• We experimentally evaluate our xAI-based technique with

a large real-world dataset, obtaining a reduction of com-
putational times and an improvement of recognition rates;

• We experimentally compare our methods with state-of-
the-art techniques based on handcrafted features and
different machine learning algorithms, showing that our
methods outperform the state of the art in terms of
both recognition performance and run-time computational
cost.

The rest of the paper is structured as follows. Section II
describes the dataset used in our work and our methods.
Section III presents our experimental evaluation. Section IV
discusses the results and the limitations of our work. Section V
concludes the paper.

II. MATERIAL AND METHODS

In this section, we report materials and methods used in our
work.

A. HD EMG Dataset

We have evaluated our methods with a large real-world
dataset [17] of HD EMG data that was recently released1.
The dataset is public for research; hence, it can be used to
replicate our experiments or for experimentally comparing
other techniques. The data collection was performed by 20
able-bodied volunteers (14 men and 6 women) aged between
25 and 57 (mean age 35). The volunteers wore two HD
EMG devices on the forearm while executing 65 gestures
different fine-grained gestures. Figure 1 shows the device
and its placement on the arm. Each participant repeated each
gesture five times with a rest period of 5 seconds between each
repetition. Table I describes the gestures and their complexity
through degrees of freedom (DoF) [18]. The higher the DoF,
the more complex the gesture.

Muscular data during the execution of gestures was acquired
by two HD EMG surface electrodes. Each device was instru-
mented with 64 channels arranged in an 8 × 8 matrix with
an inter-electrode spacing of 10 mm. Each channel provides
a continuous stream of EMG readings sampled at 2048 Hz.
Specific techniques were adopted to reduce noise in acquired
EMG signals. Additional details about the device placement
and data acquisition methodology can be found in [17].

B. Graph-based modeling of HD EMG data

In order to exploit GNN reasoning, it is necessary to model
the relevant information as a graph structure. In our model, we
create a node for each HD EMD channel providing muscular
data. In GNN frameworks, each node is associated with a
feature vector. In our case, we extract the feature vector from
the data stream of the node’s channel using a sliding window
approach. The window’s duration is 32 ms, and windows
are non-overlapping. Each window contains 65 scaled data
samples (i.e., the value distribution is scaled to obtain mean 0
and standard deviation 1).

1https://tinyurl.com/ycxtrtym
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Fig. 1. HD EMG electrodes and their placement for the dataset [17]

TABLE I
AN EXCERPT OF THE 65 CLASSIFIED GESTURES WITH THEIR RESPECTIVE
CLASS LABEL, THEIR DESCRIPTION, AND THEIR COMPLEXITY EXPRESSED

IN DOF. THE FULL LIST CAN BE FOUND IN [17].

Class Gesture DoF
1 Little finger: bend

1

2 Little finger: stretch
3 Ring finger: bend
4 Ring finger: stretch
5 Middle finger: bend

. . . . . .
15 Wrist: rotate anti-clockwise
16 Wrist: rotate clockwise
17 Little finger: bend + Ring finger: bend

2

18 Little finger: bend + Thumb: down
19 Little finger: bend + Thumb: left
20 Little finger: bend + Thumb: right
21 Little finger: bend + Wrist: bend
. . . . . .
56 Wrist: stretch + Wrist: rotate anti-clockwise
57 Wrist: stretch + Wrist: rotate clockwise
58 Extend all fingers (without thumb)

≥3

59 All fingers: bend (without thumb)
60 Palmar grasp
61 Wrist: rotate anti-clockwise with the Palmar grasp
62 Pointing (index: stretch, all other: bend)
63 3-digit pinch
64 3-digit pinch with Wrist: anti-clockwise rotation
65 Key grasp with Wrist: anti-clockwise rotation

While the choice of representing each channel as a node
is straightforward, deciding which couples of nodes should
be connected by an edge is challenging and strongly impacts
the performance of the GNN [19]. On the one hand, the
presence of edges that do not convey information useful for
the classification may confuse the classifier and determine
overfitting. On the other hand, the lack of edges with high
discriminative power may negatively impact the recognition
performance. For this reason, we adopt a two-step procedure.

• At first, we connect each node to all its surrounding nodes
in the electrode channels matrix. The resulting network
topology is illustrated in Figure 2. Each internal node is
connected to other 8 nodes; each border node is connected
to 5 other nodes; each corner node is connected to 3
other nodes. This setup is intended to replicate the spatial
characteristics of the electrodes’ placement. In order to
simultaneously consider the data acquired from the two
electrodes, we added edges from the nodes of the first
electrode’s last row to the nearest nodes of the second
electrode’s first row.

• Then, we refine the graph topology based on an xAI
algorithm in order to prune edges with low discriminative
power for the classification task. Our xAI-based solution
is explained in Section II-D.

C. EMG-GNN structure

Our GNN structure is shown in Fig. 3, and it consists of:
• graph convolutional layers and ReLU non-linearity ap-

plied to the signals mapped onto the graph structure
to embed each node by performing multiple rounds of
message passing;

• a READOUT function to learn the representation vector
of the entire graph through the aggregation of the node
representations from the final graph convolutional layer;

• a multi-layer perceptron (MLP) to classify the graph
representation vector.

SAGEConv implements the GraphSAGE operator proposed
in [20]. GraphSAGE is a general inductive framework that
leverages node feature information to efficiently generate node
embeddings for previously unseen data. This framework is
designed for large graphs with a high number of nodes.
GraphSAGE learns a function that generates embeddings by
sampling and aggregating the local neighborhood features of
a node, unlike most existing approaches that require all nodes
in the graph to be considered during embedding training.

We used the Adam Optimizer with a starting Learning
Rate (LR) of 0.001. We also used ReduceLROnPlateau, which
reduces the LR when a metric has stopped improving for a

Fig. 2. The graph consists of 128 nodes and 884 edges. The structure of its
channels is analogous to the organization of pixels in an image.
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Fig. 3. Schema of the EMG-GNN structure

“patience” number of epochs. In our case, we monitor the
Validation Loss, and if its value does not decrease for 10
epochs, the learning rate is reduced by 0.1.

We applied Cross-Entropy Loss and monitored the Valida-
tion Loss to decide when to stop training. Early Stopping
allows us to speed up learning and avoid overfitting. If the
Validation Loss value does not decrease for 30 epochs, model
training is stopped; otherwise, the model is trained until the
100th epoch is executed. We batched the graphs, setting the
size to 32, before putting them into the GNN to ensure full
GPU utilization.

D. xAI-based graph topology refinement

In order to refine the graph topology, we need to identify
which edges provide more utility for the gesture classification
task. To solve this problem, we rely on a recently proposed
algorithm (named GNN Explainer) for the explainability of
GNN, presented in [16]. The GNN Explainer algorithm pro-
vides interpretable explanations of the predictions of any
GNN-based model in any graph-based deep learning task, such
as node classification, link prediction, and graph classification.
Its aim is to maximize the mutual information between the
prediction of the model trained with full graphs and the
prediction of the explanatory model trained with simplified
graphs. Given an instance, it identifies a compact subgraph
structure and a small subset of node features having a crucial
role in the GNN prediction [16].

More precisely, for each edge, GNN Explainer computes a
log probability reflecting its contribution to the classification
result. Considering the log probability edges, we simplify the
graph topology keeping only those edges that contribute most
to the classification. Our technique is flexible since we can
decide the number E of edges to be kept. In our experimental
evaluation, reported in Section III, we evaluate the impact of
E on the performance of our system.

In our experiments, we used the Pytorch Geometric (PyG)
library’s class GNNExplainer that implements the GNNEx-
plainer algorithm. In particular, we employed the method
explainer.explain_graph, since the task of our model
is graph classification. In GNNExplainer, we set the number
of epochs to 100 and the LR to 0.001.

III. EXPERIMENTAL EVALUATION

In this section, we illustrate the experimental evaluation of
our technique. After explaining the experimental setup (Sec-
tion III-A), we illustrate the results achieved with a state-of-
the-art method based on handcrafted features and supervised
machine learning (Section III-B). Then (Section III-C), we
report the results obtained with the full (i.e., non-refined)
graph topology and raw signal data. Finally, in Section III-D
we report the results obtained with our xAI-based graph
refinement method.

A. Experimental setup

We conducted all the experiments on a workstation with
AMD Ryzen 5 5600X 6-Core 3.70 GHz Processor, 32 GB
RAM, and NVIDIA GeForce RTX 2060 GPU. All the algo-
rithms have been developed in Python. For each subject, we
randomly divided the dataset into 80% instances (i.e., sliding
windows data) for the training set and the remaining 20%
instances for the test set, and we evaluated each subject’s
dataset separately. Since we needed to fine-tune the hyper-
parameters of the GNN, in the GNN experiments we further
divided the training set into 75% instances for training and
25% instances for validation. We used the same test instances
in all the experiments.

B. Machine learning & handcrafted features

In order to compare our method with the state of the art,
we implemented a baseline technique for recognizing gesture
intentions based on muscular signals. According to the recent
literature, most state-of-the-art solutions in this field rely on
the extraction of handcrafted features from raw signals, and
on classical machine learning algorithms for classification.
In order to choose which features to extract, we relied on
the review reported in [21]. We selected the most widely
adopted features in the temporal and frequency domains. Given
〈x1, . . . , xN 〉, which is the temporal sequence of raw signals
acquired from a channel during an N -length sliding window,
we extract the following features:

• Waveform length WL =

N−1∑
n=1

|xn+1 − xn|, which is the

cumulative length of the waveform over the temporal
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window. This feature proved to be the most effective in
different studies in this field [22].

• Root mean square RMS =

√√√√ 1

N

N∑
n=1

x2
n, which is fre-

quently used in conjunction with WL.
• Power spectral density (PSD) coefficients, which are

standard frequency-domain features used in several signal
processing applications [23]. We compute those features
using the Welchs method based on the fast Fourier trans-
form [24]. Since we consider sliding windows having 65
signal samples each, the Welchs method extracts 33 PSD
coefficients.

Since we acquire muscular signals from 128 channels and
we extract 35 features per channel, in total we extract 4,480
features from each sliding window’s data. In our experiments,
we evaluated five of the machine learning algorithms that are
most frequently adopted for this task [21], i.e.: Linear Dis-
criminant Analysis (LDA), Support Vector Machines (SVM),
k-Nearest Neighbour (kNN), Linear Regression (LR), and
Random Forests (RF).

Experimental results of the different machine learning algo-
rithms with handcrafted features are reported in the first five
rows of Table II. In our case, the feature extraction process
is independent by the adopted machine learning algorithm.
On average, the feature extraction process takes 62.878 ms
for extracting a sliding window’s features. Unfortunately, the
feature extraction time largely exceeds the sliding windows
duration (i.e., 32 ms in our setup), making the handcrafted
features approach unfeasible for real-time applications. As
anticipated before, this result is determined by the large
number of channels available in HD EMG devices.

Among the evaluated algorithms, the one achieving the best
results in terms of accuracy, precision, recall, and F1 score is
LR, which is also the algorithm with shortest classification
time. Indeed, with LR, the feature vector extracted from a
sliding window is classified in 0.027 ms on average. LDA,
RF, and SVM achieve similar classification results. However,
while LDA and RF provide very fast classification times, SVM
classification is significantly slower. The algorithm achieving
the worst classification results is kNN, which provides rela-
tively fast classification times with this setup. LR is also the
algorithm providing the best results in terms of the number of
gestures with low recognition performance (i.e., 34 gestures
out of 65 with an error rate greater than 10%). Indeed, a
prosthetic system to be usable should have an error rate smaller
than 10% [14].

Figures 4a and 4b show the confusion matrices of the two
machine learning algorithms achieving the best performance.
As can be observed, the classifiers tend to confuse neighboring
gestures. The reason is due to the ordering of gestures in the
dataset (see Table I). According to the ordering, consecutive
gestures are often very similar to each other. For instance,
gestures identified with numbers from 37 to 40 involve the
movement of the middle finger and wrist.

C. Full graph GNN & raw signals

Results achieved by the Full graph GNN & raw signals are
reported in the last row of Table II. This method outperforms
the Machine learning & handcrafted features approach in most
regards. In terms of computational time, the GNN takes in
input the raw HD EMG signals; hence, it does not consume
time to extract features from raw data. The average classifi-
cation time for a sliding window’s instance is very fast (i.e.,
2.224 ms). Consequently, the execution of the GNN approach
is feasible for real-time applications even considering short-
length time windows as in this work.

In terms of classification results, the GNN technique clearly
outperforms the Machine learning & handcrafted features
approach. Indeed, the GNN technique achieves accuracy, pre-
cision, recall, and F1 score values larger than 0.91, improving
by 0.09 the best results achieved by the other methods. The
GNN technique also provides the best results in terms of the
number of gestures with low recognition performance (i.e., 20
gestures vs ≥ 34 gestures obtained by the other methods).
Among the 20 poorly recognized gestures, only one gesture
has DoF=1, while sixteen gestures have DoF=2, and three
gestures have DoF=3. As expected, the larger the DoF of a
gesture, the more difficult its recognition.

Figure 4c shows the full graph GNN confusion matrix. Also
in this case, the classifier tends to confuse neighboring classes.
For instance, class 59 in which all fingers are bent (without
the thumb) is often confused with class 60 in which a palmar
grip is performed; and vice-versa.

D. Refined GNN graph topology & raw signals

We have performed experiments to evaluate our xAI-based
pruning method presented in Section II-D, varying the number
E of edges to be kept. For deciding which edges to prune, we
used the validation set of the first subject’s dataset, consisting
of 9745 graphs, in which the classes were equally distributed.
For each of these graphs, the explainer returns the log prob-
ability for each edge and node feature. The main purpose of
this study is to simplify the structure of the graph. For this
reason, we analyzed the results regarding edges. Furthermore,
since node features are equivalent to raw signal sections, the
results concerning node features are not usable.

During the analysis of the results returned by the explainer,
for each edge we computed a single representative value of
its importance in the predictions of the different classes. That
value is computed as the average of the log probabilities
obtained for each edge by testing the different graphs. Then,
the edges are sorted according to the values obtained in
ascending order. Once we sorted the edges by importance,
we trained, validated, and tested the model as illustrated in
Section III-C, using graphs containing different number E of
edges ranging from 884 to 55.

Results are shown in Table III. In terms of accuracy,
precision, recall, and F1 score, the best results are achieved
with E = 663 and E = 442, where the value of those metrics is
around 0.95. Inspecting the trend of recognition performance
metrics, we can observe that the performance tends to improve
when pruning nodes until a 50% rate. By pruning more nodes,
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TABLE II
MACHINE LEARNING & HANDCRAFTED FEATURES VS FULL GRAPH GNN & RAW SIGNALS. BEST RESULTS AMONG MACHINE LEARNING &

HANDCRAFTED FEATURES TECHNIQUES ONLY ARE REPORTED IN italic. OVERALL BEST RESULTS ARE REPORTED IN BOLD.

Method Acc. Prec. Rec. F1 score
Feat. extract. Classific.

Total time
Gestures with

time (ms) time (ms) error rate > 10%
LDA & handcrafted features 0.810 0.813 0.809 0.809 62.878 0.030 62.908 36
SVM & handcrafted features 0.802 0.807 0.801 0.803 62.878 90.702 153.580 43
kNN & handcrafted features 0.796 0.797 0.796 0.795 62.878 3.280 66.158 44
LR & handcrafted features 0.820 0.820 0.820 0.820 62.878 0.027 62.905 34
RF & handcrafted features 0.805 0.806 0.804 0.804 62.878 0.090 62.968 38
Full graph GNN & raw signals 0.912 0.913 0.912 0.912 0 2.224 2.224 20

(a) LDA confusion matrix (b) LR confusion matrix (c) Full graph GNN confusion matrix
Fig. 4. Confusion matrices of machine learning & handcrafted features

TABLE III
REFINED GNN GRAPH TOPOLOGY & RAW SIGNALS. THE BEST RESULTS ARE REPORTED IN BOLD. E IS THE NUMBER OF EDGES KEPT IN THE GNN

GRAPH FOR THE CORRESPONDING EXPERIMENT.

Method Acc. Prec. Rec. F1 score
Feat. extract. Classific.

Total time
Gestures with

time (ms) time (ms) error rate > 10%
Refined GNN (E = 884) 0.941 0.942 0.941 0.941 0 2.560 2.560 10
Refined GNN (E = 663) 0.951 0.951 0.950 0.950 0 1.819 1.819 8
Refined GNN (E = 552) 0.946 0.946 0.946 0.946 0 1.505 1.505 6
Refined GNN (E = 442) 0.951 0.950 0.950 0.950 0 1.213 1.213 4
Refined GNN (E = 332) 0.946 0.946 0.945 0.945 0 1.112 1.112 6
Refined GNN (E = 221) 0.936 0.936 0.935 0.935 0 0.910 0.910 15
Refined GNN (E = 110) 0.915 0.915 0.914 0.914 0 0.809 0.809 22
Refined GNN (E = 55) 0.906 0.906 0.905 0.905 0 0.707 0.707 24

the recognition performance starts decreasing. With E = 55,
the values of those metrics is below 0.91. The confusion
matrix obtained using E = 442 is shown in Figure 5. It can
be observed that most errors are concentrated on neighboring
gestures, which are rather similar, while errors among more
different gestures (i.e., red points far from the diagonal of the
matrix) are uncommon.

Considering the number of gestures with low recognition
performance (i.e., gestures with error rates > 10%), the best
result is achieved with E = 442. With this value, only 4
gestures are poorly recognized: two of them have DoF=2 (i.e.,
‘Ring finger: bend + Thumb: down’ and ‘Index finger: bend
+ Thumb: left’), while the remaining ones have DoF=3 (i.e.,
‘Extend all fingers (without thumb)’, and ‘All fingers: bend
(without thumb)’). Also in this case, there is a prevalence
of difficulties in recognizing gestures with large DoF values.
With smaller or larger values of E , the number of poorly
recognized gestures increases; i.e., 6 gestures with E = 552 or
E = 332, and 8 gestures with E = 663. The largest number of
poorly recognized gesture is achieved with E = 55. With that

Fig. 5. Confusion matrix of Refined GNN (E = 442)
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TABLE IV
ALGORITHMS, SLIDING-WINDOW SIZE, STEP SIZE, AND ACCURACY ACHIEVED BY DEEP LEARNING APPROACHES USING THE HD EMG DATASET [17]

Model Sliding-window size (ms) Step size (ms) Acc. (%) Reference paper
MLP 200 10 49.87 [25]
CNN 200 10 59.56 [25]
LSTM, Heterogeneous Dilation, Middle Focus 100 10 80.40 [25]
LSTM, Heterogeneous Dilation, Middle Focus 200 10 83.30 [25]
LSTM, Heterogeneous Dilation, Middle Focus 300 10 82.40 [25]
ViT-HGR, MLP size 384, Embedding Dimension 192 31.25 15.62 84.62 [26]
ViT-HGR, MLP size 96, Embedding Dimension 96 31.25 15.62 84.24 [26]
ViT-HGR, MLP size 48, Embedding Dimension 48 31.25 15.62 83.46 [26]
Stand-alone Macro Model 250 125 89.34 [27]
Stand-alone Micro Model 250 125 86.64 [27]
HYDRA-HGR 250 125 94.86 [27]

value, 24 gestures are poorly recognized: one gesture with
DoF=1, twenty-one gestures with DoF=2, and two gestures
with DoF=3. Based on these results, we can conclude that the
best recognition results are achieved with E = 442.

Considering the computational cost, we notice that the
classification time tends to linearly grow with the number
E of kept edges. As expected, the lowest classification time
(i.e., 0.707 ms) is achieved with the smallest value of E .
Using the value that achieved the best recognition results (i.e.,
E = 442), the computational time is 1.213 ms, while the
computational cost using the full graph topology is 2.560
ms. Hence, by pruning 50% of edges, our technique can
halve the computational cost while significantly improving the
recognition performance.

IV. DISCUSSION AND LIMITATIONS

In order to enhance the comprehensiveness of our analysis,
we performed a thorough bibliographic research to find all the
research works which apply neural network-based methods to
the same dataset used in our work. We queried different scien-
tific search engines: Web of Science, ScienceDirect, PubMed,
Google Scholar, and SCOPUS, to retrieve all the papers that
cited the reference paper of the dataset [17]. Among the
19 retrieved papers, eight papers reported an experimental
evaluation with that dataset, and three of them used a neu-
ral network-based method; i.e.: [25]–[27]. Table IV reports
the algorithms, sliding-window size, step size, and accuracy
achieved by the neural network-based approaches. From the
comparison, we can observe that our method outperforms most
of the other deep learning approaches in terms of accuracy. The
only previous work achieving an accuracy value close to the
one of our method is the HYDRA-HGR technique presented
in [27]. However, in the reported experiments, HYDRA-HGR
used a step size of 125 ms, meaning that the current gesture
is recognized at 8 Hz. Instead, in our experiments, we used
a step size of 32 ms, which means that the current gesture is
recognized at about 32 Hz. Of course, a higher frequency of
gesture recognition enables the system to detect and respond
to gestures more quickly. This results in a more immediate
and seamless interaction with the user, providing a smoother
and more natural user experience, especially when fine-grained
gestures are considered.

While our method can be applied to robotic arm control, we
point out that the application of our system to amputees may be

problematic due to the reduced residual muscle capacity from
disabled people. Hence, in order to evaluate the feasibility of
our method for robotic prosthesis control systems, our results
should be confirmed through experiments with additional
datasets acquired from amputees. Unfortunately, at the time
of writing, to the best of our knowledge there is no public
dataset of HD EMG signals acquired from amputees during
the execution of hand gestures. Indeed, the scarcity of well-
maintained public benchmarks is a serious problem in this
research field [28].

Our technique strongly relies on the number E of edges to
be kept in the GNN graph. Hence, the choice of E is critical to
the performance of our method. The best choice of E depends
on the data acquisition device. For instance, using an HD EMG
device with a larger number of channels, we expect to obtain
the best results by pruning a larger number of edges. The
number and kind of edges to be pruned may also be influenced
by the kind of gestures to be recognized. Hence, the most
appropriate value of E should be experimentally chosen.

While we believe that this work provides an important
contribution to HD EMG-based gesture recognition, several
challenges remain open for future research. In our experi-
mental evaluation, we noticed that the majority of gestures
achieving low recognition rates were associated to a DoF
larger than one. However, some simple gestures with DoF
equal to one, such as ‘thumb up’, had an unexpectedly low
recognition rate. We conjecture that this result may be due to
the lack of information about some muscular activity strongly
related to those gestures. This problem may be addressed by
using a more comprehensive HD EMG device capable of
acquiring additional muscular signals. Future work also in-
cludes the investigation of multi-modal approaches integrating
other kinds of sensors (e.g., inertial sensors) to improve the
recognition rates.

Finally, an inherent limitation of EMG-based solutions is
that they cannot give neural feedback to the individual, nega-
tively impacting the user experience of amputees. To address
this issue, hybrid solutions using also electroneurogram (ENG)
devices may be investigated. Indeed, ENG instruments may
provide tactile feedback to the amputee, allowing to mitigate
the symptoms of phantom limb syndrome and restoring the
sense of touch [29].
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V. CONCLUSION

In this paper, we tackled the challenging issue of recogniz-
ing gesture intentions based on HD EMG data. We presented
a technique based on GNN for recognizing gestures at a
fine-grained level, and a xAI-based algorithm for refining the
GNN graph topology. Extensive experiments with a large real-
world dataset showed that our xAI-based method improves
the system accuracy while reducing the computational cost.
Comparison with different machine learning methods based
on handcrafted features and deep learning approaches show
that our methods outperform the state of the art.
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