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Abstract We show that Minkowskian non-local quantum
field theories are not unitary. We consider a simple one loop
diagram for a scalar non-local field and show that the imag-
inary part of the corresponding complex amplitude is not
given by Cutkosky rules, indeed this diagram violates the
unitarity condition. We compare this result with the case of
an Euclidean non-local scalar field, that has been shown to
satisfy the Cutkosky rules, and we clearly identify the reason
of the breaking of unitarity of the Minkowskian theory.

1 Introduction

The study of non-local quantum field theory has began a long
time ago in the contexts of the Standard Model of particles
[1–13] and stochastic quantization [14,15]; and it has been
revived recently, as it has been realized that non-locality plays
an important role at the interplay of quantum field theory and
gravitation.

First attempts to achieve a renormalizable theory of grav-
itation introducing higher derivatives in the Einstein–Hilbert
action by Stelle [16,17], Krasnikov [18,19], and Kuz’min
[20,21] date back more than thirty years; see also [22–27].
However, it was suddenly realized that, in spite of the fact that
such models are renormalizable, they contain unavoidable
ghosts. Indeed, higher-derivative models were abandoned
until it become clear that the occurrence of ghosts could be
avoided introducing derivatives of infinite order in a proper
manner (or, equivalently, considering non-local interactions)
when the quantum theory is defined in Euclidean signature.
This has led to the formulation of the so called non-local
quantum gravity (NLQG) [28–71].

This theory has nice properties both at classical and quan-
tum level. It can be formulated in such a way that all the
classical solutions of general relativity are also solutions

1 We also mention Lee-Wick quantum gravity as an alternative attempt
to remove ghosts in higher derivative theories [72–81].
a e-mail: briscese.phys@gmail.com (corresponding author)

of NLQG [28], and they are as stabile in NLQG as in
Einstein–Hilbert gravity [29–31]. For instance, in NLQG the
Minkowski spacetime is stable under any Strongly Asymp-
totically Flat (SAF) initial data set satisfying a Global Small-
ness Assumption (GSA) [31]. Of course, NLQG has more
solutions than general relativity. In facts, it has been shown
that the model has a satisfactory Starobinsky-like inflation
[32,33]. The spectrum of scalar perturbations generated dur-
ing inflation is the same as in the local R2 inflation [82],
while tensor perturbations are affected by the non-locality
[34–36]; indeed, NLQG is predictive.

At quantum level, the theory is super-renormalizable or
even finite [37–39], while it is tree-level indistinguishable
from general relativity. Indeed, all the tree-level scattering
amplitudes are the same as in the Einstein’s theory [40],
and this implies that the macroscopic causality based on
the Shapiro’s time delay is satisfied [41]. Furthermore, in
[42] it has been pointed out that relevant NLQG models are
asymptotically free in the ultraviolet regime, above the non-
locality energy scale ENL . This fact has interesting conse-
quences. First, it is impossible to accelerate particles in parti-
cle accelerators at energies above ENL, so that, provided that
ENL ≤ EP , where EP is the Planck-energy, trans-Planckian
energies are unattainable in laboratory experiments. This is
due to the fact that, at energies above ENL all interactions
are suppressed and particles decouple from any device that
could accelerate them. This fact, in turns, implies that it is
impossible to detect causality violations that occur in non-
local theories at small time-scales �t ∼ � ∼ E−1

NL . In fact,
in order to measure such effects, one should be able to test
the space-time at scales below �, and this requires the use of
wave-packets tighter than �, corresponding to particles with
energy above ENL . Since such energies are unattainable in
experiments, causality violations cannot be detected. Finally,
the ultraviolet asymptotic freedom solves the cosmological
trans-Planckian problem [83–91]. In facts, NLQG is Lorentz
invariant and it does not contain extra particles. Moreover, all
the fields are asymptotically free above ENL , so that quan-
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tum gravity corrections are naturally suppressed during all
the stages of inflation.

We stress that non-locality is ubiquitous in quantum grav-
ity. In string theory, non-local vertexes of the form exp[� �2]
appears in interactions [92–97]. Furthermore, emergent non-
locality at the Planck scale comes from non-commutative the-
ories [98,99], loop quantum gravity [100], asymptotic safety
[101], and causal sets [102]. Moreover, the trace anomaly
induced by quantum corrections due to conformal fields
induces non-local terms in the effective action [103,104].
Finally, arguments based on black holes production in scatter-
ing processes show that one should expect that non-locality
must be hidden in any quantum gravity model [105].

As we mentioned above, it has been shown that, intro-
ducing non-local interactions, it is possible to construct uni-
tary non-local quantum fields when the theory is defined in
Euclidean signature [67–69], see also [70] for further dis-
cussions. For Euclidean signature we mean that scattering
amplitudes are calculated integrating in d4ki for momenta
ki ∈ I×R

3, where I is the imaginary axis of the k0 complex
plane, assuming that all external energies Ei are purely imag-
inary. Then, such complex amplitudes are extended by ana-
lytic continuation to real energies Ei , so that this prescription
gives physical scattering amplitudes. We remand the reader
to [67–69] for details, but in Sect. 4 we will give an explicit
example calculation of a simple diagram in Euclidean signa-
ture for a non-local scalar field.

In this paper we show that, when the theory is defined
in Minkowski signature, unitarity is lost. Of course, in
Minkowski signature complex amplitudes are calculated
integrating in d4ki for momenta ki ∈ R

4 and assuming that
all the external energies Ei are real. As a paradigmatic exam-
ple, we consider the simple case of a non-local scalar field
theory with a Lagrangian

Lφ = 1

2
∂μϕ ∂μϕ − 1

2
m2ϕ2 − λ

4! (e
− 1

2 H [−σ(�+m2)]ϕ)4 . (1)

where exp[H ] is the non-local form factor, and σ ∈ R is
a parameter with energy dimensions [σ ] = −2 that fixes
the non-locality length-scale as �	 = √

σ . Without loss of
generality, we set H [0] = 0, corresponding to a rescaling of
the coupling constant λ → exp (H [0]).

In Sect. 3 we will calculate the scattering amplitude corre-
sponding to the simple one-loop diagram in Fig. 1, showing
that its imaginary part of is not given by the Cutkosky rules.
Since such rules are essential for the unitarity, we conclude
that the theory in the Minkowskian space is not unitary. For
completeness, in Sect. 4 we will calculate the same amplitude
when the theory is defined in Euclidean signature, showing
that in this case Cutkosky rules give the correct result, indeed
the theory is unitary (we remand the reader to [67–69] for a
complete discussion of the Euclidean case). Finally, we con-
clude in Sect. 5. Before entering the details of the calcula-

Fig. 1 Four-particle scattering amplitude in λφ4/4! theory at one-loop
order

tions, in Sect. 2 we will review briefly the unitarity conditions
for scattering amplitudes and their relation with Cutkosky
rules.

2 Unitarity condition and Cutkosky rules

We remind that the unitarity condition S†S = 1 for the scat-
tering matrix S ≡ 1+ iT is usually expressed in terms of the
T matrix as T − T † = i T †T [106,107]. Taking the expec-
tation value of this relation between an initial incoming state
|a〉 and a final outgoing state 〈b| for a given process a → b,
one has

Tba − T ∗
ab = i

∑

c

T ∗
cbTca (2)

Recasting the matrix elements of T in terms of those of the
invariant scattering amplitude M as

Tab = (2π)4 Mab δ(4)(
∑

i pi − ∑
f p f ), where pi and

p f are the initial an final external momenta, the unitarity
condition can be expressed as

−i
(Mba − M∗

ab

) = 2i Im {Mba}
=

∑

c

M∗
cb Mca (2π)4 δ(4)(pc − pa) , (3)

where Mba = 〈b|M|a〉 is the sum of all the connected
amputated diagrams for the process a → b ( see [106,107]
for a review), and Im {Mba} is its immaginary part. Note that
we have neglected a global δ(4)(

∑
i pi−

∑
f p f ) multiplying

both sides of Eq. (3). The sum in c is made on all possible
physically admissible intermediate states, i.e., on those states
that give nonzero amplitudes Mbc = 〈b|M|c〉 and Mac =
〈a|M|c〉. Of course, such sum becomes an integral when
intermediate states c form a continuum set.

The interpretation of (3) is that when the energy of the
initial state a reaches the threshold of production of inter-
mediate real states c, the imaginary part of amplitude Mba

has a discontinuity corresponding to a branch-cut singu-
larity. In the case of local quantum fields, the singularities
of the amplitude are given by the Landau equations [108],
which are obtained imposing that two or more propaga-
tors in the scattering amplitude go on-shell simultaneously;
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see [107] for a review of the Landau equations. In [67–69]
it has been shown that in non-local theories the scattering
amplitudes have the same singularities of the correspond-
ing local theories. This is due to the fact that the propaga-
tors have the same poles as in the local case. Therefore, the
non-locality does not change the singularity structure of the
amplitudes.

A crucial step to prove unitarity is to establish the valid-
ity of Cutkosky rules [109], that state that the l. h. s.
of (3) is obtained replacing each on-shell propagator in
the integral expression of the complex amplitude Mba

with a delta-function, according to the following prescrip-
tion:

1

p2
i − m2 + iε

−→ (−2π i)δ
(
p2
i − m2

)
. (4)

The expression obtained in this way is usually referred
as a cut diagram, since it is graphically represented by
the same diagram as M in which the lines correspond-
ing to the on shell propagators are cut (see [106–109] for
review).

Unitarity can be proved showing that Cutkosky rules apply
to all normal thresholds, that are those singularities such
that, cutting the diagram along on-shell propagators, the dia-
gram is divided in two parts. Moreover, one has to show
that only singularities corresponding to normal thresholds
contribute to the imaginary part of M. This is necessary,
as some Landau poles are such that, cutting the on shell
propagators, the diagram is not divided in two, and the
imaginary part of the amplitude cannot be recast as in (3).
Such Landau poles are usually referred as anomalous thresh-
olds.

In the case of non-local field theories defined in Euclidean
signature, it has been proved [67–69] that Cutkosky rules
give the correct prescription for the imaginary part of com-
plex amplitudes in correspondence of normal thresholds,
while anomalous thresholds do not contribute to (3). How-
ever, it remained an open issue to state whether the the-
ories defined in the Minkowskian space are unitary as
well. Note that, since the theory is non-local, integrals per-
formed in Euclidean and Minkowskian domains are not
the same, since they are not simply related by a Wick
rotation, see [67–70]. This is due to the fact that non-
locality introduces a form factor in the complex ampli-
tudes that has an essential singularity at infinity in the
k0
i plane, indeed integrals on the infinite arcs cannot be

neglected.1

In the next section, analysing a simple one loop diagram,
we will show that Cutkosky rules are violated when the theory
is defined in Minkowski signature.

1 See also the discussion in section 2 of [70].

3 One-loop diagram in the Minkowskian non-local
theory

In order to prove the loss of unitarity in the non-local
Minkowskian theory, in this section we consider diagram in
Fig. 1 and show that the Cutkosky rules do not give the cor-
rect prescription for the imaginary part of the corresponding
complex amplitude. In Minkowski signature, this is given by

M(σ, p,m, ε)

= − iλ2

2

∫
R4

d4k
(2π)4

e
−H

[
σ2(k2−m2)

2
]

k2−m2+iε
e
−H

[
σ2((k−p)2−m2)

2
]

(k−p)2−m2+iε ,
(5)

where p = p1 + p2 = p3 + p4, and p1, p2, p3, p4 are the
external momenta.

The convergence of the integral (5) requires that H must
be a function of σ 2

(
k2 − m2

)2
, corresponding to the replace-

ment H [−σ(� + m2)] → H [σ 2(� + m2)2] in (1). H [z] is
such that zγ exp (−H [z]) → 0 when z → +∞, for some
γ > 02. In analogy with the Euclidean case [67–69], we
assume that exp (H [z]) is an entire function (analytic with
no poles except for |z| = ∞) without zeros at finite z. Also,
thanks to Lorentz invariance, we can set p = 0 in (5) without
loss of generality.

Since the form factor exp (H [z]) has no zeros in the finite
complex z plane, the poles of the integrand in (5) are only
those of the two propagators. Therefore, the singularities of
the amplitude (5) are given by the same Landau poles as
in the local theory, corresponding to the case in which the
two propagators are on-shell simultaneously or, equivalently,
two of the poles of the propagators merge for some value
of the momentum k. Thus, the amplitude (5) has the same
singularity structure of the local theory. For the Euclidean
theory, this is sufficient to ensure the unitarity, while we will
se that this is not the case for the Minkowskian theory.

The poles of the first propagator are

k̄0
1,2 = ±

√
k2 + m2 − iε ≡ ±ω(k, ε) . (6)

and they do not depend on the external energy p0. The poles
of the second propagator are

k̄0
3,4 = p0 ± ω(k, ε). (7)

2 A simple power counting shows that, under these hypothesis, the
non-local propagator converge to zero faster than k−(4γ+2) (in this case
z ∼ (�+m2)2 ∼ k4), and the superficial degree of divergence δ for an

interaction term (e− 1
2 H [−σ�]ϕ)n is such that δ < d + V [−d + n(d −

4γ −2)/2)]−[(d−4γ −2)/2]N , for a diagram with V vertices and N
external lines in d dimensions. In the case of the Lagrangian (1) one has
n = d = 4 and δ < 4−N−4γ I , where I = (nV −N )/2 is the number
of internal lines of the diagram. Therefore, the diagram corresponding
to N = 4 external lines is convergent, while the amplitude with N = 2
is convergent for γ > 1/6.
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Fig. 2 We plot the poles k̄0
1 , k̄0

2 , k̄0
3 , k̄0

4 in the complex k0 plane. When
ε → 0, such poles become real, and the integration contour is obtained
deforming the real axis around them. The resulting integration contour
C is depicted in red, and the integral in the k0 variable is given by the
principal part plus the contributions of the arcs

It is easy to see that, in the limit ε → 0, the poles k̄0
1 and

k̄0
4 merge for |k| = √

(p0/2)2 − m2, provided tat p0 ≥ 2m,
pinching the integration contour in te k0 variable, that is the
real axis of the complex k0 plane. In analogy with the case
of a local scalar theory, this implies that the amplitude has a
branch-cut singularity at p0 = 2m.

When ε → 0, the poles k̄0
1, k̄0

2, k̄0
3, k̄0

4 become real, and
the integral in the k0 variable in (5) is performed on the path
C obtained deforming the real axis around such poles, as
depicted in in Fig. 2. Therefore, the integral in k0 is splitted
into two contributions: one given by the principal part, the
other given by the infinitesimal arcs. Each arc gives a term
±π i times the residue at the corresponding pole, so that

M(σ, p,m) ≡ limε→0 M(σ, p,m, ε)

= λ2

2

⎡

⎣−iP
⎧
⎨

⎩
∫
R4

d4k
(2π)4

e
−H

[
σ2(k2−m2)

2
]

k2−m2
e
−H

[
σ2((k−p)2−m2)

2
]

(k−p)2−m2

⎫
⎬

⎭

+π lim
ε→0

∫
R3

d3k
(2π)4

(
Res[k̄0

2 ] + Res[k̄0
4 ] − Res[k̄0

1 ] − Res[k̄0
3 ])

]
,

(8)

where

Res[k̄0
1] = 1

2ω
e
−H

[
σ2((k−p)2−m2)

2
]

(
(k−p)2−m2+iε

)2

∣∣∣∣
k0=k̄0

1

,

Res[k̄0
2] = − 1

2ω
e
−H

[
σ2((k−p)2−m2)

2
]

(
(k−p)2−m2+iε

)2

∣∣∣∣
k0=k̄0

2

Res[k̄0
3] = 1

2ω
e
−H

[
σ2(k2−m2)

2
]

(k2−m2+iε)
2

∣∣∣∣
k0=k̄0

3

,

Res[k̄0
4] = − 1

2ω
e
−H

[
σ2(k2−m2)

2
]

(k2−m2+iε)
2

∣∣∣∣
k0=k̄0

4

.

Note that for k0 = k̄0
2 = −ω one has (k − p)2 − m2 = 0

for any k ∈ R
3. In facts, the pole k̄0

2 is always far from k̄0
3 and

k̄0
4. That implies that Res[k̄0

2] has no poles in the integration
volume for ε → 0. In the same way, for k0 = k̄0

3 = p0 + ω

one has k2 − m2 = 0, and Res[k̄0
3] has no poles for k ∈ R

3

for ε → 0.
On the contrary, since k̄0

1 and k̄0
4 coincide in the limit iε →

0 for |k| =
√(

p0/2
) − m2 ≡ kp when p0 ≥ 2m, Res[k̄0

1]
and Res[k̄0

4] are singular on the 3-sphere |k| = kp. For such
terms we use the formula

limε→0
1

(k−p)2−m2+iε
= P

{
1

(k−p)2−m2

}
− π i δ((k − p)2 − m2) ,

(9)

where P f (x) is the principal part, and this means that∫ P f (x) dx ≡ P ∫
f (x) dx . Using (9) and the properties

of δ functions we obtain

M(σ, p,m)

= λ2

2

[
πP

{∫
R3

d3k
(2π)4

[
Res[k̄0

2 ]+Res[k̄0
4 ]−Res[k̄0

1 ]−Res[k̄0
3 ]|ε=0

}

−iP
⎧
⎨

⎩
∫
R4

d4k
(2π)4

e
−H

[
σ2(k2−m2)

2
]

k2−m2
e
−H

[
σ2((k−p)2−m2)

2
]

(k−p)2−m2

⎫
⎬

⎭

+ i(2π)2

2

∫
R4

d4k
(2π)4 δ

(
(k − p)2 − m2

)
δ(k2 − m2)

]
.

(10)

The first term in (10) is real, while the last two terms
contribute only to the imaginary part of the amplitude. Note
that, in the case of the amplitude (5) the Cutkosky rules would
give, through the prescription (4),

2 i Im {M}

= − iλ2

2 (−2π i)2 ∫
R4

d4k
(2π)4 δ

(
(k−p)2 − m2

)
δ(k2−m2) .

(11)

A simple comparison between (10) and (11) shows that
Cutkosky rules would be valid if and only if the integral
in the second line of (10) is identically zero for any σ , p
and m. As we will show below, this is not the case, indeed
the Cutkosky rules are no longer valid and the theory is not
unitary.

Let us recast such integral by means of the translation
k → k − p/2, so that it will be given by the function
I (σ, (p0)2,m2) defined as

I (σ, (p0)2,m2)

≡ P

⎧
⎪⎨

⎪⎩

∫
R4

d4k
(2π)4

e
−H

[
σ2

(
(k+ p

2 )
2−m2

)2
]

(k+ p
2 )2−m2

e
−H

[
σ2

(
(k− p

2 )
2−m2

)2
]

(k− p
2 )2−m2

⎫
⎪⎬

⎪⎭
,
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(12)

and the condition for the validity of Cutkosky rules reads
I (σ, (p0)2,m2) ≡ 0 for any σ , p0 andm2. Note that the inte-
grand in (12) is even in p, so that I must be a function of the
scalar p2 = (p0)2, as it must in virtue of the Lorentz invari-
ance. Furthermore, I (σ, (p0)2,m2) is also even in σ . We
stress that the integrand in (12) is also even in k0, but this fact
does not determine any specific property of I (σ, (p0)2,m2).

Let us derive some general features of this integral. First,
note that for a local theory, corresponding to σ = 0, this
integral is zero. In facts, in this case, the exponential functions
in (12) are one, and the integrand reduces to the product of
the two propagators. By means of elementary partial fraction
decomposition, such a product can be recast as

1
(k+ p

2 )2−m2
1

(k− p
2 )2−m2

= 1
4ω2

[(
1
p0 − 1

p0+2ω

)(
1

k0− p0
2 −ω

− 1

k0+ p0
2 +ω

)

+
(

1
p0 − 1

p0−2ω

)(
1

k0− p0
2 +ω

− 1

k0+ p0
2 −ω

)]
,

(13)

where ω = ω(k, ε = 0) ≡ ω(k), indeed, the integration in
the k0 variable in (12) reduces to a sum of integrals of the
type

P
⎧
⎨

⎩

∫

R

dk0 1

k0 ±
(
p0

2 ± ω(k)
)

⎫
⎬

⎭ = 0 , (14)

that are all null, because the principal part is taken integrating
in an interval symmetric with respect to the pole. Indeed, in
the local case, I (σ = 0, p0,m2) = 0 by symmetry. This
implies that the second term in (10) is zero for σ = 0, and
the imaginary part of the amplitude coincides with the last
term, so that Cutkosky rules are valid and the local theory is
unitary.

In conclusion, the local limit implies that I (σ, (p0)2,m2)

must be such that

lim
σ→0

I (σ, (p0)2,m2) = 0 , σ ∈ R,∀ (p0)2,m2 ∈ R . (15)

Moreover, by means of the change of variables k → k/
√|σ |

in the defining expression (12) it is easy to show that

I (σ, (p0)2,m2) = I (σ = 1, |σ |(p0)2, |σ |m2)

= φ(|σ | (p0
)2

, |σ |m2)),

(16)

so that I depends on σ through the variables |σ | (p0
)2

and
|σ |m2.3 From (16) we already see that I is not analytic in

3 This is a consequence of the fact that I is dimensionless.

σ = 0, since it depends on |σ |, which is not an analytic
function of σ . Form (12) it is also easy to see that

I (σ, (ap0)2,m2) = I (a2σ, (p0)2,m2/a2) , (17)

so that, using (15) one has

lim
a→0

I (σ, (ap0)2,m2)

= lim
a→0

I (a2σ, (p0)2,m2/a2) = 0 ∀ m , (18)

which means that

I (σ, (p0)2=0,m2)=φ(|σ |(p0)2=0, |σ |m2)=0 ∀ m .

(19)

These relations implies that I must have the form

I (σ, (p0)2,m2) = f (|σ |(p0)2) × ψ(|σ |(p0)2, |σ |m2),

with f (0) = 0, ψ(0, 0) = 0.

(20)

In the Appendix A we will give an example of an integral
function with properties similar to those of I (σ, (p0)2,m2)

that can be calculated explicitly.
Regardless the details of the functions f (|σ |(p0)2) and

ψ(|σ |(p0)2), |σ |m2), we can prove that I (σ, (p0)2,m2) ≡
0. Let us express I as a function of α = σ 2 ∈ R

+
0 , so that

Ĩ (α, (p0)2,m2) ≡ I (
√

α, (p0)2,m2) = φ
(√

α(p0)2,
√

αm2
)

= P
⎧
⎨

⎩
∫
R4

d4k
(2π)4

e
−H

[
α
(
(k+p/2)2−m2

)2
]
−H

[
α
(
(k−p/2)2−m2

)2
]

((k−p/2)2−m2+iε)((k+p/2)2−m2+iε)

⎫
⎬

⎭ .

(21)

Since H [0] = 0 (see the discussion below (1)), it must be
H [z] = z

(∑∞
n=0 cnz

n
)
, which gives H ′[0] = c0 ≡ H ′

0. In
order to show that Ĩ (α, (p0)2,m2) ≡ 0 it is sufficient to show
that its first derivative is not identically zero. One has

∂α Ĩ (α, (p0)2,m2)

= −P
⎧
⎨

⎩
∫
R4

d4k
(2π)4

e
−H

[
α((k+p/2)2−m2)

2
]
−H

[
α((k−p/2)2−m2)

2
]

((k−p/2)2−m2+iε)((k+p/2)2−m2+iε)

×
[
H ′

[
α
((
k + p

2

)2 − m2
)2

] ((
k + p

2

)2 − m2
)2

+ H ′
[
α
((
k − p

2

)2 − m2
)2

] ((
k − p

2

)2 − m2
)2

]}
,

(22)

123
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so that

lim
α→0+ |∂α Ĩ (α, (p0)2,m2)|

=
∣∣∣∣H

′
0P

{∫
R4

d4k
(2π)4

(
(k+p/2)2−m2

)2+((k−p/2)2−m2
)2

((k−p/2)2−m2+iε)((k+p/2)2−m2+iε)

} ∣∣∣∣=+∞,

(23)

as the last integral is infinite, since its integrand goes to 1
when k2 → ±∞.

Indeed, (23) implies that I (σ, (p0)2,m2) = Ĩ (α, (p0)2,

m2) ≡ 0, therefore the second term in (10) is not identically
zero, and the imaginary part of the complex amplitude (5) is
not given by the Cutkosky rules as in (11). This concludes our
proof of the unitarity breaking of the Minkowskian non-local
field theory.

We just mention that this proof generalizes straightfor-
wardly to the case H [z] = zm

(∑∞
n=0 cnz

n
)
, as one can

define α = σ 2m and proceed in the same way to show
that |∂α I ((α)1/2m, (p0)2,m2)| → +∞ for α → 0+.
Indeed, unless H ≡ 0, that corresponds to the local theory,
I (σ, (p0)2,m2) cannot be identically zero.

4 One-loop diagram in the Euclidean non-local theory

In order to clarify the differences between the Minkowskian
and Euclidean theories, in this section we consider the same
diagram in Fig. 1 in the Euclidean case, and show that the
Cutkosky rules give the right result (11) for the imaginary part
of the complex amplitude. However, we remand the reader
to the references [67–69] for more details.

The amputated amplitude for the one-loop diagram in
Fig. 1 in the Euclidean theory is

M(σ, p,m, ε)

= − iλ2

2

∫
I×R3

d4k
(2π)4

e
−H

[
σ(k2−m2)

]

k2−m2+iε
e
−H

[
σ((k−p)2−m2)

]

(k−p)2−m2+iε
,

(24)

where p = p1 + p2 = p3 + p4, and p1, p2, p3, p4 are the
external momenta. The external energy p0 in (24) is assumed
to be purely imaginary, and the k0 integration is performed
along the imaginary axis I of the complex k0 plane for k0

going from −i∞ to +i∞. The physical amplitude is then
obtained by analytic continuation of (24) to real energies
p0 ∈ R

+
0 .

When the theory is defined in Euclidean signature, unitar-
ity is ensured assuming that exp (H [z]) is an entire function
(analytic with no poles except for |z| = ∞) without zeros
at finite z [67–69]. Moreover, to enforce the convergence
of scattering amplitudes and achieve the renormalizability

Fig. 3 (Left) We plot the poles k̄0
1 , k̄0

2 , k̄0
3 , k̄0

4 on the complex k0 plane,
when p0 is purely imaginary. (Right) We plot the same poles for p0 real
and positive. Since k̄0

1 and k̄0
2 do not depend on p0, their positions do

not change when p0 becomes real. On the contrary, k̄0
3 and k̄0

4 move to
the right, and k̄0

4 passes through the imaginary axis I for some values
of k. We also plot the contour C, which is obtained deforming I around
k̄0

4

of NLQG, it is assumed that zγ exp (−H [z]) → 0 when
z → −∞ for some γ > 0. Again, we assume that H [0] = 0
and we set p = 0 without loss of generality.

Before explaining how this analytic continuation is obtai-
ned, let us clarify some detail. In the Euclidean case, the con-
vergence of the integral requires that H [z] must be a function
of σ

(
k2 − m2

)
such that H [z] → +∞ for z → −∞, so that

the exponential form factor goes to zero for k → ∞ in any
direction of I×R

3. For instance, in the Euclidean theory both
the functions H = −σ

(
k2 − m2

)
and H = (

σ
(
k2 − m2

))2

are admissible, while the first would give a divergent ampli-
tude in the Minkowskian theory. However, even though the
second form factor is admitted in both the Euclidean and
Minkowskian theories, the latter is not unitary, as we have
shown in Sect. 3. It is worth to stress that the integrals in
the Euclidean and Minkowskian theories are not connected
by a Wick rotation, since the exponential form factors in (5)
and (24) have an essential singularity at infinity in the com-
plex k0 plane, indeed the integration on the infinite arcs, that
would connect the integration paths in the two theories (the
imaginary and real axis in the Euclidean and Minkowskian
cases respectively), are not zero.

Again, a key feature to ensure the unitarity of the
Euclidean theory is that the form factor exp (H [z]) has no
poles in the finite complex z plane. Indeed, the poles of
the integrand in (24) are only those of the two propagators
given in (6, 7), which are the same of both the local and the
Minkowskian non-local theories, so the singularity structure
of the amplitudes is the same in all such theories.

Let us now describe how to obtain the analytic contin-
uation of (24) to real external energies. When p0 is purely
imaginary, the two poles k̄0

2 and k̄0
4 are at the left ofI, while k̄0

1
and k̄0

3 are at the right ofI, see Fig. 3 (left). When p0 is moved
to real and positive values, the two poles k̄0

3 and k̄0
4 move to

the right, and k̄0
4 passes through the imaginary axis for values

of the loop momenta k such that |k|2 < �{p0}2 − m2 for
� {

p0
}

> m, see Fig. 3 (right). Indeed, the analytic continu-
ation of (24) to real p0 is obtained deforming the integration

123
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contourn I around the pole k̄0
4, obtaining the contour C, so

that

M(σ, p,m, ε)

= − iλ2

2

∫
C×R3

d4k
(2π)4

e
−H

[
σ(k2−m2)

]

k2−m2+iε
e
−H

[
σ((k−p)2−m2)

]

(k−p)2−m2+iε
,

(25)

for p0 ∈ R
+
0 . Finally, using the residue theorem and sending

ε → 0 one has

M(σ, p,m) ≡ limε→0 M(σ, p,m, ε)

= λ2

2

⎡

⎣−i
∫
I×R3

d4k
(2π)4

e
−H

[
σ(k2−m2)

]

k2−m2
e
−H

[
σ((k−p)−m2)

2
]

(k−p)2−m2

+2π limε→0
∫
R3

d3k
(2π)4 Res[k̄0

4]
⎤

⎦ ,

(26)

where Res[k̄0
4] is given by the last of (26) with the replace-

ment H [σ 2
(
k2 − m2

)2] → H [σ (
k2 − m2

)]. Using (9) and
the properties of the δ function, one finally has

M(σ, p,m) = λ2

2

[
P

{∫

R3

d3k

(2π)3 Res[k̄0
4]|ε=0

}

+ − i
∫

I×R3

d4k

(2π)4

e−H
[
σ
(
k2−m2

)]

k2 − m2

e
−H

[
σ
(
(k−p)−m2

)2
]

(k − p)2 − m2

+ i (2π)2

2

∫

R4

d4k

(2π)4 δ
(
(k − p)2 − m2

)
δ(k2 − m2)

]
.

(27)

Since the first two terms in (27) are real, only the last term
contributes to the imaginary part of the amplitude, so that the
Cutcosky rule will give the correct result (11) for Im {M},
according to the fact that the Euclidean theory is unitary [67–
69].

Comparing (27) with (10) we note that the key difference
between the Minkowskian and the Euclidean cases is that the
second term in (10) and (27) is respectively purely imaginary
and real, so in the first case it gives an extra contribution to
the imaginary part of M that brakes the Cutkosky rules and
spoils the unitarity of the theory.

5 Conclusions

Considering the case of the simple one-loop diagram in Fig.
1, in this paper we have shown that, when the field theory (1)
is defined in Minkowskian signature, the imaginary part of
the complex amplitudes is no longer given by the Cutkosky
cutting rules, but it contain extra terms as in the second line

of (10). Since Cutkosky rules are at the basis of the unitarity
of a quantum field theory, we conclude that the Minkowskian
field theories are not unitary.
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Appendix

As an example of what we stated in Sect. 3 about
I (σ, (p0)2,m2), we consider the following one-dimensional
model integral, that has the same symmetries of (12):

A(σ, p)

= P
{∫

R
dx 1

1+σ 2(x−p)2
1

1+σ 2(x+p)2

(
1

x−p − 1
x+p

)
S(p)

}
,

(28)

for σ ∈ R, where S(p) is the sign of p, so that one has
the symmetries A(σ, p) = A(σ,−p) = A(−σ, p). Such
symmetries, together with the fact that A(σ = 0, p) = 0
and that A(σ, p) is dimensionless, implies that it must be
A(σ, p) ∝ |σ p|γ with γ > 0. An explicit calculation gives

A(σ, p)

= −3π |σ p| [1 − 5(|σ p|)2 + 21(|σ p|)4) + O(|σ p|)6
] = 0 ,

(29)

In analogy to (21), if we define α = σ 2 ∈ R
+
0 , so that

A(
√

α, p)

= −3π
√

α|p| [1 − 5α(p)2 + 21α2(p)4) + O(
√

α p)6
] = 0

(30)

we get

∂αA(
√

α, p) = −3π

2

|p|√
α

+ O(|p|) → −∞, for α → 0+,

(31)
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that is the analogue of (23).
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