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Abstract: In this paper, we consider partially observable timed discrete event systems (DES)
endowed with a single clock that is reset at each event occurrence. A time interval with integer
bounds is associated with each transition specifying at which clock values it may occur. This
work deals with the fault diagnosis problem of such timed DES, assuming that faulty behaviours
are described by means of timed transitions. We present a zone automaton that provides a purely
discrete event description of the behaviour of the timed DES with faults and construct a fault
recognizer as the parallel composition of the zone automaton with a fault monitor that recognizes
the occurrence of faults. The diagnosis approach allows one to compute the diagnosis state for
each timed observation, which consists in a timed sequence of observed events.
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1. INTRODUCTION

In the context of discrete event systems (DES), associating
a timing structure to a purely logical model allows one
to characterize its performance and solve related opti-
mization problems (Cassandras et al. (2009)). This paper
considers timed DES, where a timing structure is treated
as a set of additional constraints that the system’s evolu-
tion needs to satisfy. We also assume that only a subset
of the events is observable, while the other events are
unobservable since no sensors are deployed in the system to
reveal their occurrences. Our main interest is determining
if certain events (faults) could have occurred or must have
occurred given an observation executed by a timed DES.

Timed automata, introduced by Alur et al. (1994), pro-
vides a standard model for real-time systems (Henzinger
(2000)). The diagnosis problem of timed automata is ex-
plored by Lunze et al. (2002), Supavatanakul et al. (2006),
Tripakis (2002), Bouyer et al. (2018) and Bouyer et al.
(2021), where online diagnosers are proposed by checking
the consistency of fault system and faultless system. To
the best of our knowledge, no general offline approach
concerning the construction of an observer/diagnoser for
timed automata has been proposed.

In the area of DES, plenty of works address the problem
of inferring the evolution of a plant monitored through
different observation structures (Hadjicostis (2020)). A
variety of timed DES models are available (Brave et al.
(1988); Ostroff (1990); Brandin et al. (1994)). Pandalai et
al. (2000) introduce a new framework for modeling discrete
event processes, which is capable of fault monitoring man-
ufacturing systems with multiple subsystems. In addition,

verifiers can be used to check the occurrence of a large
variety of timed patterns for DES (Lefebvre et. al. (2022)).
To the best of our knowledge, a general approach for the
inference of timed DES is still missing.

This motivates us to explore the state estimation/diagnosis
of timed automata under partial observation. We consider
a class of timed automata characterized by a single clock
reset to zero after each event occurrence. Each transition
is associated with a time interval to specify when it may
occur. In a preliminary work (Gao et al. (2020)), we ad-
dressed a very restrictive scenario where no observation
was received by the plant, and we showed how in this
particular case, the state estimate could be updated as
time elapses. In this work, we extend the approach in Gao
et al. (2020) by considering the information from observing
new events at certain time instants, and aims to determine
if a fault behaviour has occurred. The solution proposed in
this paper is based on a purely discrete event description
of the behaviour of the timed DES, associating a finite
state automaton called zone automaton. Each state of the
zone automaton is associated with a state of the timed
automaton and a time interval, called zone, which spec-
ifies how long the timed automaton may sojourn in that
state. When time elapses the state of the zone automaton
may change either because of the occurrence of an event
or because a certain amount of time has elapsed with
no observation. The fault recognizer can be constructed
making the parallel composition of the zone automaton
and a fault monitor that always marks the fault behaviour
after it occurs. The fault diagnosis approach is based on
analysing the reachability of the fault recognizer.

The rest of the paper is organized as follows. Section 2
introduces the background of DES, timed finite automata
and time semantics used throughout the paper. Section
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tion needs to satisfy. We also assume that only a subset
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ufacturing systems with multiple subsystems. In addition,

verifiers can be used to check the occurrence of a large
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To the best of our knowledge, a general approach for the
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of timed automata under partial observation. We consider
a class of timed automata characterized by a single clock
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is associated with a time interval to specify when it may
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was received by the plant, and we showed how in this
particular case, the state estimate could be updated as
time elapses. In this work, we extend the approach in Gao
et al. (2020) by considering the information from observing
new events at certain time instants, and aims to determine
if a fault behaviour has occurred. The solution proposed in
this paper is based on a purely discrete event description
of the behaviour of the timed DES, associating a finite
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or because a certain amount of time has elapsed with
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as a set of additional constraints that the system’s evolu-
tion needs to satisfy. We also assume that only a subset
of the events is observable, while the other events are
unobservable since no sensors are deployed in the system to
reveal their occurrences. Our main interest is determining
if certain events (faults) could have occurred or must have
occurred given an observation executed by a timed DES.
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the best of our knowledge, no general offline approach
concerning the construction of an observer/diagnoser for
timed automata has been proposed.

In the area of DES, plenty of works address the problem
of inferring the evolution of a plant monitored through
different observation structures (Hadjicostis (2020)). A
variety of timed DES models are available (Brave et al.
(1988); Ostroff (1990); Brandin et al. (1994)). Pandalai et
al. (2000) introduce a new framework for modeling discrete
event processes, which is capable of fault monitoring man-
ufacturing systems with multiple subsystems. In addition,

verifiers can be used to check the occurrence of a large
variety of timed patterns for DES (Lefebvre et. al. (2022)).
To the best of our knowledge, a general approach for the
inference of timed DES is still missing.

This motivates us to explore the state estimation/diagnosis
of timed automata under partial observation. We consider
a class of timed automata characterized by a single clock
reset to zero after each event occurrence. Each transition
is associated with a time interval to specify when it may
occur. In a preliminary work (Gao et al. (2020)), we ad-
dressed a very restrictive scenario where no observation
was received by the plant, and we showed how in this
particular case, the state estimate could be updated as
time elapses. In this work, we extend the approach in Gao
et al. (2020) by considering the information from observing
new events at certain time instants, and aims to determine
if a fault behaviour has occurred. The solution proposed in
this paper is based on a purely discrete event description
of the behaviour of the timed DES, associating a finite
state automaton called zone automaton. Each state of the
zone automaton is associated with a state of the timed
automaton and a time interval, called zone, which spec-
ifies how long the timed automaton may sojourn in that
state. When time elapses the state of the zone automaton
may change either because of the occurrence of an event
or because a certain amount of time has elapsed with
no observation. The fault recognizer can be constructed
making the parallel composition of the zone automaton
and a fault monitor that always marks the fault behaviour
after it occurs. The fault diagnosis approach is based on
analysing the reachability of the fault recognizer.

The rest of the paper is organized as follows. Section 2
introduces the background of DES, timed finite automata
and time semantics used throughout the paper. Section

3 formally sets the problem of diagnosis of a partially
observed timed automaton. Section 4 introduces the no-
tion of zone automaton and provides an algorithm for its
computation. Section 5 constructs a fault recognizer and
investigates the dynamics of a timed DES with faults. Sec-
tion 6 deals with the diagnosis problem of timed DES by
analysing the reachability of the fault recognizer. Finally,
Section 7 concludes the paper.

2. PRELIMINARIES

A nondeterministic finite automaton (NFA) is a four-tuple
G = (X,E,∆, X0), where X is a finite set of states,
E is the alphabet, ∆ ⊆ X × E × X is a transition
relation and X0 ⊆ X is a set of initial states. The set
of events E can be partitioned as E = Eo ∪ Euo, where
Eo is the set of observable events, and Euo is the set of
unobservable events. Note that Euo and Eo are two disjoint
subsets. We denote by E∗ the set of all finite strings on
E, including the empty word ε. The concatenation s1 · s2
of two strings s1 ∈ E∗ and s2 ∈ E∗ is a string consisting
of s1 immediately followed by s2. The empty string ε is
an identity element of concatenation, i.e., for any string
s ∈ E∗, it holds that ε · s = s = s · ε. The number of
occurrences of e ∈ E in s is denoted by |s|e.
We denote the sets of non-negative real numbers and
natural numbers as R≥0 and N, respectively. The set of
real numbers lying between a lower bound Il ∈ N and
an upper bound Iu ∈ N ∪ {+∞} is said to be a time
interval. A closed time interval is denoted by [Il, Iu]. An
open segment (Il, Iu) and semi-open segments [Il, Iu) and
(Il, Iu] can also be time intervals. We denote the sets of
all time intervals and all closed time intervals as I and
Ic, respectively, where Ic ⊆ I. We define the addition
operation on two time intervals I1, I2 ∈ I as I1

⊕
I2 =

{t1 + t2 ∈ R≥0 | t1 ∈ I1, t2 ∈ I2}. The addition operation
can be extended to n (n > 1) time intervals in a set
{I1, · · · , In}, i.e., I1

⊕
· · ·

⊕
In = ((I1

⊕
I2)

⊕
· · · )

⊕
In,

denoted as
n⊕

i=1

Ii.

A timed finite automaton (TFA)(Gao et al. (2020) is a
five-tuple G = (X,E,∆,Γ, X0), where X is a finite set of
states, E is an alphabet, ∆ ⊆ X × E ×X is a transition
relation, Γ : ∆ → Ic is a timing function and X0 ⊆ X
is a set of initial states. We assume that a TFA operates
under a single clock, which is reset upon the occurrence of
any event in E. The transition relation and the timing
function specify the dynamics of the TFA. The timing
function Γ maps the transition (x, e, x′) to a time interval,
which specifies a range of clock values at which the event
e may occur. We further define Γu : ∆ → N ∪ {+∞} as
the upper timing function associating a transition in ∆ to
the right bound of the time interval associated with it.

The behaviour of a TFA is described via its timed runs.
Given G = (X,E,∆,Γ, X0), a timed run ρ of length
k ≥ 0 from 0 to tk ∈ R≥0 is a sequence of k + 1 states
x(i) ∈ X (i ∈ {0, · · · , k}), and k pairs (ei, ti) ∈ E ×
R≥0 (i ∈ {1, · · · , k}), represented as

ρ : x(0)
(e1,t1)−−−−→x(1) · · ·

(ek−1,tk−1)−−−−−−−→x(k−1)
(ek,tk)−−−−→x(k)

such that the following two conditions are satisfied for all
i ∈ {1, · · · , k} by letting t0 = 0:

(x(i−1), ei, x(i)) ∈ ∆, (1)

ti − ti−1 ∈ Γ((x(i−1), ei, x(i))). (2)

We define the timed word generated by ρ as σ(ρ) =
(e1, t1)(e2, t2) · · · (ek, tk) ∈ (E × R≥0)

∗, and the logical

word generated by ρ as S(σ(ρ)) = e1e2 · · · ek via a function
defined as S : (E × R≥0)

∗ → E∗. Given a timed run ρ of
length 0 that only contains the starting state x(0) and no
transition, we denote σ(ρ) = λ and S(σ(ρ)) = S(λ) = ε,
where λ as the empty timed word in E × R≥0. For the
timed word σ(ρ) generated from an arbitrary timed run
ρ, it is λ · σ(ρ) = σ(ρ) = σ(ρ) · λ. The starting state
and the ending state of a timed run ρ are denoted by
xst(ρ) = x(0) and xen(ρ) = x(k), respectively. The starting
time and the ending time of ρ are denoted by tst(ρ) = 0
and ten(ρ) = tk, respectively. In addition, the duration
of ρ is denoted as T (ρ) = tk. Note that Eq. (2) clearly

implies T (ρ) ∈
k−1⊕
i=0

Γ(x(i), ei+1, x(i+1)). The set of timed

runs generated by G is denoted as R(G).

In this paper we consider a type of time semantics that
specifies the maximal dwell time at a state. The maximal
dwell time at state x ∈ X is defined as dmax(x) =
max{Γu((x, e, x

′))|(x, e, x′) ∈ ∆} if there exist x′ ∈ X and
e ∈ E such that (x, e, x′) ∈ ∆; otherwise dmax(x) = ∞,
implying thatG can stay at x indefinitely. The TFA cannot
stay in x ∈ X if the clock takes a value larger than the
maximal dwell time at x, i.e., dmax(x).

Example 1. Consider the TFAG = (X,E,∆,Γ, X0) with
X = {x0, x1, x2, x3}, E = {a, b, c} and X0 = {x0} in
Fig. 1. A state x ∈ X corresponds to a node, and each
initial state in X0 is marked by an input arrow. For each
transition (x, e, x′) ∈ ∆ with Γ((x, e, x′)) = I, the edge
from x to x′ is labeled with the symbol e and the time

interval I. Consider a timed run from 0 to 2 as ρ : x0
(c,1)−→

x2
(b,2)−→ x1

(d,2)−→ x3. The timed word σ(ρ) = (c, 1)(b, 2)(d, 2)
corresponds to events c, b, and d occurring at time instants
t1 = 1, t2 = 2, and t3 = 2, respectively. The logical
word generated by ρ is S(σ(ρ)) = cbd. It involves three
transitions, namely (x0, c, x2), (x2, b, x1), and (x1, d, x3).
In addition, we have t1 ∈ Γ(x0, c, x2), t2− t1 ∈ Γ(x2, b, x1)
and t3 − t2 ∈ Γ(x1, d, x3). For x0, it is dmax(x0) = 2. �

Fig. 1. A TFA G, where fault transitions are shown in red.

Given a TFA G = (X,E,∆,Γ, X0), a timed run ρ of length
k ≥ 0 and a time instant t ∈ R≥0, a timed evolution
of G from 0 to t is defined by a pair (σ(ρ), t) ∈ (E ×
R≥0)

∗×R≥0, where time semantics constrains that 0 ≤ t−
ten(ρ) ≤ dmax(xen(ρ)).

3. PROBLEM STATEMENT

In this work we model a partially observed timed DES as a
TFA G = (X,E,∆,Γ, X0) with a partition E = Eo ∪Euo.
We assume that the timed system may be affected by a set
of faults described by observable fault transitions labeled
with a symbol in Eo and unobservable fault transitions
labeled with a symbol in Euo. The set of transitions
modeling a regular behaviour is denoted as ∆reg, while the
set of transitions modeling a fault behaviour is denoted
as ∆fault. Clearly, it is ∆ = ∆reg ∪ ∆fault. Next we
preliminarily define a projection function on timed words.
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observed timed automaton. Section 4 introduces the no-
tion of zone automaton and provides an algorithm for its
computation. Section 5 constructs a fault recognizer and
investigates the dynamics of a timed DES with faults. Sec-
tion 6 deals with the diagnosis problem of timed DES by
analysing the reachability of the fault recognizer. Finally,
Section 7 concludes the paper.
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stay in x ∈ X if the clock takes a value larger than the
maximal dwell time at x, i.e., dmax(x).

Example 1. Consider the TFAG = (X,E,∆,Γ, X0) with
X = {x0, x1, x2, x3}, E = {a, b, c} and X0 = {x0} in
Fig. 1. A state x ∈ X corresponds to a node, and each
initial state in X0 is marked by an input arrow. For each
transition (x, e, x′) ∈ ∆ with Γ((x, e, x′)) = I, the edge
from x to x′ is labeled with the symbol e and the time

interval I. Consider a timed run from 0 to 2 as ρ : x0
(c,1)−→

x2
(b,2)−→ x1

(d,2)−→ x3. The timed word σ(ρ) = (c, 1)(b, 2)(d, 2)
corresponds to events c, b, and d occurring at time instants
t1 = 1, t2 = 2, and t3 = 2, respectively. The logical
word generated by ρ is S(σ(ρ)) = cbd. It involves three
transitions, namely (x0, c, x2), (x2, b, x1), and (x1, d, x3).
In addition, we have t1 ∈ Γ(x0, c, x2), t2− t1 ∈ Γ(x2, b, x1)
and t3 − t2 ∈ Γ(x1, d, x3). For x0, it is dmax(x0) = 2. �

Fig. 1. A TFA G, where fault transitions are shown in red.

Given a TFA G = (X,E,∆,Γ, X0), a timed run ρ of length
k ≥ 0 and a time instant t ∈ R≥0, a timed evolution
of G from 0 to t is defined by a pair (σ(ρ), t) ∈ (E ×
R≥0)

∗×R≥0, where time semantics constrains that 0 ≤ t−
ten(ρ) ≤ dmax(xen(ρ)).

3. PROBLEM STATEMENT

In this work we model a partially observed timed DES as a
TFA G = (X,E,∆,Γ, X0) with a partition E = Eo ∪Euo.
We assume that the timed system may be affected by a set
of faults described by observable fault transitions labeled
with a symbol in Eo and unobservable fault transitions
labeled with a symbol in Euo. The set of transitions
modeling a regular behaviour is denoted as ∆reg, while the
set of transitions modeling a fault behaviour is denoted
as ∆fault. Clearly, it is ∆ = ∆reg ∪ ∆fault. Next we
preliminarily define a projection function on timed words.
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Definition 1. Given a TFA G with E = Eo ∪ Euo, a
projection function P : (E × R≥0)

∗ −→ (Eo × R≥0)
∗ is

defined as P (λ) = λ, and

P (σ(ρ) · (e, t)) =
{

P (σ(ρ)) if e ∈ Euo

P (σ(ρ)) · (e, t) if e ∈ Eo

for the timed word σ(ρ) ∈ (E×R≥0)
∗ generated from any

timed run ρ ∈ R(G) and for all (e, t) ∈ E × R≥0. �

In other words, the projection function P always maps the
timed word σ(ρ) to an observed word σo ∈ (Eo × R≥0)

∗

by deleting the pairs associated with unobservable events
from σ(ρ). The pair (σo, t) = (P (σ(ρ)), t) is the timed
observation related to (σ(ρ), t). We define a diagnosis
function for a set of fault transitions ∆fault as φ :
(Eo × R≥0)

∗ × R≥0 → {F,N,U} associated to each
timed observation (σo, t) a diagnosis state φ((σo, t)), where
φ((σo, t)) = F (resp., φ((σo, t)) = N) denotes that a fault
transition in ∆fault has (resp., not) been executed while
producing (σo, t), and φ((σo, t)) = U denotes that a fault
transition may or may not have been executed. This paper
aims at diagnosing a fault behaviour based on a timed
observation (σo, t), namely computing φ((σo, t)). Note that
this implies that we are not distinguishing among different
fault transitions. According to the notation used in most of
the literature on fault diagnosis of discrete event systems
(Sampath et al. (1996); Sampath et al. (1995)), this means
that we assume that all faults belong to the same class.

4. ZONE AUTOMATON

In this section, we introduce the notion of zone automaton
that is a finite state automaton providing a purely discrete
event description of the behaviour of a TFA of interest.

Definition 2. Given a TFA G, an extended state is defined
as a pair (x, θ), where x is a state of G and θ ∈ [0, dmax(x)]
is the current value of the clock. �

In other words 1 , an extended state (x, θ) keeps track of
the current clock assignment θ while G dwells at state x.

Definition 3. Given a TFA G = (X,E,∆,Γ, X0), the set
of active transitions at an extended state (x, θ) ∈ X×R≥0

is defined as A(x, θ) = {(x, e, x′) ∈ ∆ | (∃e ∈ E)(∃x′ ∈
X) θ ∈ Γ((x, e, x′))}. �

The set of active transitions at an extended state (x, θ)
includes all the transitions that may fire from x with a
clock value θ. This leads to the definition of clock zones
associated with a given state x ∈ X.

Definition 4. Given a TFA G = (X,E,∆,Γ, X0), the set
of zones of x ∈ X is defined as Z(x) = {[0,+∞)} if
dmax(x) = ∞; otherwise it is defined as a set of disjoint
time intervals Z(x) = {z0, · · · zn} ⊆ I, n ≥ 0, where the
following conditions hold:

• z0 = [0, 0] and
n⋃

i=0

zi = [0, dmax(x)];

• θ < θ′ holds for all θ ∈ zi−1, θ
′ ∈ zi, i ∈ {1, · · · , n};

• A(x, θ) = A(x, θ′) holds for all θ, θ′ ∈ zi, i ∈
{0, · · · , n};

• A(x, θ) �= A(x, θ′) holds for all θ ∈ zi−1, θ′ ∈ zi,
i ∈ {2, · · · , n}.

1 According to the usual terminology in hybrid systems community,
the extended state (x, θ) is the hybrid state of the timed automaton,
while x and θ are the discrete and the continuous states of the timed
automaton, respectively.

In addition, succ(zi) = zi+1 is said to be the succeeding
zone of zi ∈ Z(x), where i ∈ {0, · · · , n− 1}. �

If there exists no transition originating from x, G stays at
x indefinitely: in such a case Z(x) is a singleton {[0,+∞)}.
Otherwise, Z(x) follows from the partitioning of the dwell
time at x into several time intervals to which the clock may
belong. The union of all zones in Z(x) covers the interval
[0, dmax(x)]. Each zone zi corresponds to a timed interval
where the active transitions of (x, θ) remain constant for
θ ∈ zi. Furthermore, according to the reset rule for the
clock, the zone z0 = [0, 0] implies the single value of the
clock whenever G reaches a state in X, except in the case
of dmax(x) = +∞.The clock evolves discretely from a
time instant θ ∈ zi−1 to another time instant θ′ ∈ zi,
i ∈ {1, · · · , n}.
Given a state x and two zones z, succ(z) ∈ Z(x), a new
event τ denotes that in a state x the clock value may evolve
from any θ ∈ z to any θ′ ∈ succ(z) as time elapses. We
now formalize the definition of zone automaton.
Definition 5. Given a TFA G = (X,E,∆,Γ, X0), the zone
automaton ofG is an NFA ZA(G) = (V,Eτ ,∆z, V0), where

• V ⊆ X ×
⋃

x∈X

Z(x) is the finite set of states,

• Eτ ⊆ E ∪ {τ} is the alphabet,
• ∆z ⊆ V ×Eτ ×V is the transition relation, where the
transitions in ∆z are defined by the following rules:

· ((x, z), τ, (x, succ(z))) ∈ ∆z if z, succ(z) ∈ Z(x);
· ((x, z), e, (x′, z0)) ∈ ∆z if z ∈ Z(x), z0 ∈ Z(x′),
(x, e, x′) ∈ A(x, θ) for all θ ∈ z,

• V0 = {(x, z0) | x ∈ X0} ⊆ V is the set of initial
states. �

We use the zone automaton ZA(G) to describe the
time-driven and event-driven evolution of a TFA G =
(X,E,∆,Γ, X0). Each state in ZA(G) is a pair (x, z)
with x ∈ X and z ∈ Z(x). The alphabet is com-
posed of the events in E and event τ . The transi-
tion relation specifies the dynamics of ZA(G): a transi-
tion ((x, z), τ, (x, succ(z))) ∈ ∆z corresponds to a time-
driven evolution of G from a clock value in z to anoth-
er clock value in succ(z) while G is at x; a transition
((x, z), e, (x′, z0)) ∈ ∆z indicates that the occurrence of
event e yields state x′ when the current state of the system
is x and the current clock is in z. The set of initial states
is the set of pairs of a state x ∈ X0 and z0 = [0, 0].

Given a TFA G, the zone automaton ZA(G) can be
constructed by Algorithm 1. A temporary set of states
Vnew is introduced, containing all states that still need to
be explored in order to compute their output transitions.
A while loop is repeated until Vnew = ∅. A transition
((x, z), τ, (x, succ(z))) is set in ∆z if succ(z) is a zone
at x. For each transition (x, e, x′) ∈ ∆ satisfying z ⊆
Γ((x, e, x′)), a transition labeled with e is set from v =
(x, z). Note that if the maximal dwell time of x′ is +∞
(resp., if it is not), the transition labeled with e would
lead to state (x′, [0,+∞)) (resp., state (x′, z0)). To avoid
redundant repetitions of the while loop, the state v′ is
included in Vnew if v′ is neither in V nor in Vnew. The while
loop stops once all states in Vnew have been explored. A
numerical example to illustrate the zone automaton will
be given in Section 5.

5. FAULT RECOGNIZER

In this section, we construct a fault recognizer that rec-
ognizes the occurrence of faults. We first transform the

Algorithm 1: Construction of the zone automaton of a
TFA
Input: A TFA G = (X,E,∆,Γ, X0) with E = Eo ∪ Euo

Output: A zone automaton ZA(G) = (V,Eτ ,∆z, V0)
let V = ∅, Eτ = E ∪ {τ}, ∆z = ∅, V0 = {(x, z0) | x ∈ X0},
and Vnew = V0
while Vnew �= ∅ do

select a v = (x, z) ∈ Vnew

if succ(z) ∈ Z(x) then
let v̄ = (x, succ(z)), ∆z = ∆z ∪ {(v, τ, v̄)}, and
Vnew = Vnew ∪ {v̄}

for each (x, e, x′) ∈ ∆ do
if z ⊆ Γ((x, e, x′)) then

if dmax(x
′) �= +∞ then

let v′ = (x′, z0)

else
let v′ = (x′, [0,+∞))

let ∆z = ∆z ∪ {(v, e, v′)}
if v′ /∈ V ∪ Vnew then

let Vnew = Vnew ∪ {v′}

let V = V ∪ {v} and Vnew = Vnew \ {v}
return ZA(G) = (V,Eτ ,∆z, V0)

model G of the plant with faults into a canonical plant Gf

with faults as follows.

Definition 6. Consider a partially observed TFA G =
(X,E,∆,Γ, X0) with E = Eo ∪ Euo. The canonical plant
is modeled as a TFA Gf = (X ∪Xf , E ∪{f},∆f ,Γf , X0),
where f is an additional unobservable event modelling the
occurrence of a fault transition. The set of additional states
Xf , the transition relation ∆f , and the timing function Γf

are defined according to each δ = (x, e, x′′) ∈ ∆ as follows:

• if δ ∈ ∆fault and e ∈ Euo, we define δf = (x, f, x′′) ∈
∆f and Γf (δf ) = Γ(δ);

• if δ ∈ ∆fault and e ∈ Eo, we define {δ1, δ2} ⊆ ∆f ,
Γf (δ1) = Γ(δ), and Γf (δ2) = [0, 0], where δ1 =
(x, f, x′), δ2 = (x′, e, x′′), and x′ ∈ Xf ;

• if δ ∈ ∆reg, we define δ ∈ ∆f and Γf (δ) = Γ(δ). �

Given a transition δ = (x, e, x′′) ∈ ∆, G can generate

a timed run from initial time 0 ending with x
(e,t)−−−→x′′,

where t ∈ Γ(δ). If e is associated with an observable
fault transition, Gf keeps track of both the occurrence
of the fault f and the observation of e. In details, Gf

can generate a timed run involving x
(f,t)−−−→x′ (e,t)−−−→x′′, where

δ1 = (x, f, x′) satisfies Γf (δ1) = Γ(δ) and δ2 = (x′, e, x′′)
that occurs immediately after δ1 satisfies Γf (δ2) = [0, 0].
On the contrary, it is not necessary to keep track of the
occurrence of the unobservable event. If e is associated
with an unobservable fault transition, a new unobservable
symbol f is labeled with the transition δ = (x, f, x′′) ∈ ∆f

of Gf . If δ ∈ ∆reg, we let δ ∈ ∆f and Γf (δ) = Γ(δ). The
set of unobservable events is extended to Euo ∪{f} in Gf .

We introduce a deterministic untimed automaton called
fault monitor and denote it as M = ({N ,F},{f},
{(N ,f ,F ),(F ,f ,F )},N) shown in Fig. 2, where state N (re-
sp., F ) denotes that no fault (resp., a fault) has occurred,
and the state always evolves from N and F to F upon each
occurrence of f . To deal with fault diagnosis, we construct
a fault recognizer Rec(Gf ) by composing ZA(Gf ) with M
as follows. In the canonical plant Gf , introducing the new

fault event f allows one to construct the fault recognizer
by composing ZA(Gf ) with the fault monitor M . Labels
N and F are attached to states of Rec(Gf ) to recognize
the occurrence of faults.

Fig. 2. Fault monitor M for diagnosing event f .

Definition 7. Consider a timed DES with faults modeled
by a TFA Gf = (X∪Xf , E∪{f},∆f ,Γf , X0). Given zone
automaton ZA(Gf ) = (V,E ∪ {f, τ},∆z, v0) and a fault
monitor M = ({N,F}, {f}, {(N, f, F ), (F, f, F )}, N), the
fault recognizer is the automaton Rec(Gf ) = (Xrec,Erec,
∆rec,Xrec0), where Xrec ⊆ V ×{N,F}, Erec = E∪{f, τ},
Xrec0 = V0 × {N}, and a transition δrec ∈ ∆rec satisfies
the following conditions:

• if e = f , {((v,N), f, (v′, F )), ((v, F ), f, (v′, F ))} ⊆
∆rec holds for each (v, f, v′) ∈ ∆z;

• if e ∈ E ∪ {τ}, ((v,N), e, (v′, N)) ∈ ∆rec holds for
each (v, e, v′) ∈ ∆z. �

Example 2. Consider the TFA G in Fig. 1 with Eo =
{a, b, c} and ∆fault = {(x0, c, x2), (x1, d, x3)}. A canonical
plant Gf = (X ∪ {xf}, E ∪ {f},∆f ,Γf , X0) is depicted
in Fig. 4, where fault transitions are shown in red. For
x0, the set of zones is Z(x0) = {[0, 0], (0, 1), [1, 1], (1, 2]}.
The set of active transitions at (x0, θ), where θ is
a time instant in z ∈ Z(x0), are reported in Ta-
ble 1. As for the set of zones of other states of
Gf , we have Z(x1) = {[0, 0], (0, 1), [1, 2]}, Z(x2) =
{[0, 0], (0, 1), [1, 1], (1, 2]}, Z(x3) = {[0, 0], (0, 1), [1, 2]} and
Z(xf ) = {[0, 0]}. The zone automaton ZA(Gf ) is shown
in Fig. 3. The initial state is (x0, [0, 0]), implying that G
starts from x0 at clock value 0. For instance, a transition
((x0, [0, 0]), τ, (x0, (0, 1))) implies that the clock may evolve
from the value in [0, 0] to any value in (0, 1) if G is at x0,
a transition ((x0, [1, 1]), c, (x2, [0, 0])) represents an event-
driven evolution from x0 to x2 under the occurrence of an
event c, upon which the clock is reset. The fault recognizer
Rec(Gf ) is depicted in Fig. 5. �

Table 1. Sets of active transitions at (x0, θ) for
the TFA G in Fig. 1, where θ ∈ [0, dmax(x0)].

i zi A(x0, θ), θ ∈ zi
0 [0, 0] {(x0, c, x1)}
1 (0, 1) {(x0, c, x1)}
2 [1, 1] {(x0, c, x1), (x0, c, x2)}
3 (1, 2] {(x0, c, x2)}

Fig. 3. Zone automaton ZA(Gf ) of Gf in Fig. 4.
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Algorithm 1: Construction of the zone automaton of a
TFA
Input: A TFA G = (X,E,∆,Γ, X0) with E = Eo ∪ Euo

Output: A zone automaton ZA(G) = (V,Eτ ,∆z, V0)
let V = ∅, Eτ = E ∪ {τ}, ∆z = ∅, V0 = {(x, z0) | x ∈ X0},
and Vnew = V0
while Vnew �= ∅ do

select a v = (x, z) ∈ Vnew

if succ(z) ∈ Z(x) then
let v̄ = (x, succ(z)), ∆z = ∆z ∪ {(v, τ, v̄)}, and
Vnew = Vnew ∪ {v̄}

for each (x, e, x′) ∈ ∆ do
if z ⊆ Γ((x, e, x′)) then

if dmax(x
′) �= +∞ then

let v′ = (x′, z0)

else
let v′ = (x′, [0,+∞))

let ∆z = ∆z ∪ {(v, e, v′)}
if v′ /∈ V ∪ Vnew then

let Vnew = Vnew ∪ {v′}

let V = V ∪ {v} and Vnew = Vnew \ {v}
return ZA(G) = (V,Eτ ,∆z, V0)

model G of the plant with faults into a canonical plant Gf

with faults as follows.

Definition 6. Consider a partially observed TFA G =
(X,E,∆,Γ, X0) with E = Eo ∪ Euo. The canonical plant
is modeled as a TFA Gf = (X ∪Xf , E ∪{f},∆f ,Γf , X0),
where f is an additional unobservable event modelling the
occurrence of a fault transition. The set of additional states
Xf , the transition relation ∆f , and the timing function Γf

are defined according to each δ = (x, e, x′′) ∈ ∆ as follows:

• if δ ∈ ∆fault and e ∈ Euo, we define δf = (x, f, x′′) ∈
∆f and Γf (δf ) = Γ(δ);

• if δ ∈ ∆fault and e ∈ Eo, we define {δ1, δ2} ⊆ ∆f ,
Γf (δ1) = Γ(δ), and Γf (δ2) = [0, 0], where δ1 =
(x, f, x′), δ2 = (x′, e, x′′), and x′ ∈ Xf ;

• if δ ∈ ∆reg, we define δ ∈ ∆f and Γf (δ) = Γ(δ). �

Given a transition δ = (x, e, x′′) ∈ ∆, G can generate

a timed run from initial time 0 ending with x
(e,t)−−−→x′′,

where t ∈ Γ(δ). If e is associated with an observable
fault transition, Gf keeps track of both the occurrence
of the fault f and the observation of e. In details, Gf

can generate a timed run involving x
(f,t)−−−→x′ (e,t)−−−→x′′, where

δ1 = (x, f, x′) satisfies Γf (δ1) = Γ(δ) and δ2 = (x′, e, x′′)
that occurs immediately after δ1 satisfies Γf (δ2) = [0, 0].
On the contrary, it is not necessary to keep track of the
occurrence of the unobservable event. If e is associated
with an unobservable fault transition, a new unobservable
symbol f is labeled with the transition δ = (x, f, x′′) ∈ ∆f

of Gf . If δ ∈ ∆reg, we let δ ∈ ∆f and Γf (δ) = Γ(δ). The
set of unobservable events is extended to Euo ∪{f} in Gf .

We introduce a deterministic untimed automaton called
fault monitor and denote it as M = ({N ,F},{f},
{(N ,f ,F ),(F ,f ,F )},N) shown in Fig. 2, where state N (re-
sp., F ) denotes that no fault (resp., a fault) has occurred,
and the state always evolves from N and F to F upon each
occurrence of f . To deal with fault diagnosis, we construct
a fault recognizer Rec(Gf ) by composing ZA(Gf ) with M
as follows. In the canonical plant Gf , introducing the new

fault event f allows one to construct the fault recognizer
by composing ZA(Gf ) with the fault monitor M . Labels
N and F are attached to states of Rec(Gf ) to recognize
the occurrence of faults.

Fig. 2. Fault monitor M for diagnosing event f .

Definition 7. Consider a timed DES with faults modeled
by a TFA Gf = (X∪Xf , E∪{f},∆f ,Γf , X0). Given zone
automaton ZA(Gf ) = (V,E ∪ {f, τ},∆z, v0) and a fault
monitor M = ({N,F}, {f}, {(N, f, F ), (F, f, F )}, N), the
fault recognizer is the automaton Rec(Gf ) = (Xrec,Erec,
∆rec,Xrec0), where Xrec ⊆ V ×{N,F}, Erec = E∪{f, τ},
Xrec0 = V0 × {N}, and a transition δrec ∈ ∆rec satisfies
the following conditions:

• if e = f , {((v,N), f, (v′, F )), ((v, F ), f, (v′, F ))} ⊆
∆rec holds for each (v, f, v′) ∈ ∆z;

• if e ∈ E ∪ {τ}, ((v,N), e, (v′, N)) ∈ ∆rec holds for
each (v, e, v′) ∈ ∆z. �

Example 2. Consider the TFA G in Fig. 1 with Eo =
{a, b, c} and ∆fault = {(x0, c, x2), (x1, d, x3)}. A canonical
plant Gf = (X ∪ {xf}, E ∪ {f},∆f ,Γf , X0) is depicted
in Fig. 4, where fault transitions are shown in red. For
x0, the set of zones is Z(x0) = {[0, 0], (0, 1), [1, 1], (1, 2]}.
The set of active transitions at (x0, θ), where θ is
a time instant in z ∈ Z(x0), are reported in Ta-
ble 1. As for the set of zones of other states of
Gf , we have Z(x1) = {[0, 0], (0, 1), [1, 2]}, Z(x2) =
{[0, 0], (0, 1), [1, 1], (1, 2]}, Z(x3) = {[0, 0], (0, 1), [1, 2]} and
Z(xf ) = {[0, 0]}. The zone automaton ZA(Gf ) is shown
in Fig. 3. The initial state is (x0, [0, 0]), implying that G
starts from x0 at clock value 0. For instance, a transition
((x0, [0, 0]), τ, (x0, (0, 1))) implies that the clock may evolve
from the value in [0, 0] to any value in (0, 1) if G is at x0,
a transition ((x0, [1, 1]), c, (x2, [0, 0])) represents an event-
driven evolution from x0 to x2 under the occurrence of an
event c, upon which the clock is reset. The fault recognizer
Rec(Gf ) is depicted in Fig. 5. �

Table 1. Sets of active transitions at (x0, θ) for
the TFA G in Fig. 1, where θ ∈ [0, dmax(x0)].

i zi A(x0, θ), θ ∈ zi
0 [0, 0] {(x0, c, x1)}
1 (0, 1) {(x0, c, x1)}
2 [1, 1] {(x0, c, x1), (x0, c, x2)}
3 (1, 2] {(x0, c, x2)}

Fig. 3. Zone automaton ZA(Gf ) of Gf in Fig. 4.
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Fig. 4. The canonical plant Gf associated with the TFA
G in Fig. 1.

Fig. 5. Fault recognizer Rec(Gf ) of Gf in Fig. 4.

6. FAULT DIAGNOSIS OF TIMED DES

In this section, we deal with fault diagnosis of timed DES
with faults modeled by a TFA Gf . We first study the
dynamics of its fault recognizer Rec(Gf ) via the following
definitions.
Definition 8. A τ -run in Rec(Gf ) = (Xrec,Erec, ∆rec,
Xrec0) at x ∈ X is defined as a sequence of states
(x, zi, sfault) ∈ Xrec (0 ≤ i ≤ k) and the event τ , repre-

sented as ρτ (x) : (x, z0, sfault)
τ−→ · · · τ−→ (x, zk, sfault),

such that ((x, zi−1, sfault), τ, (x, zi, sfault)) ∈ ∆rec holds
for i ∈ {1, · · · , k}. We denote the starting state (resp., the
ending state) of ρτ (x) as qst(ρτ (x)) = (x, z0, sfault) (resp.,
qen(ρτ (x)) = (x, zk, sfault)). The duration range of ρτ (x)
is denoted as d(ρτ (x)) = zk. The fault label of ρτ (x) is
denoted as flabel(ρτ (x)) = sfault. �

Definition 9. A run in Rec(Gf ) is defined as a sequence
of τ -runs ρτ (x(i)) (i ∈ {0, · · · , k}) at x(i) ∈ X, and
k ≥ 1 events ei ∈ E (i ∈ {1, · · · , k}), represented as

ρ̄ : ρτ (x(0))
e1−→ ρτ (x(1)) · · ·

ek−→ ρτ (x(k)), such that
(qen(ρτ (x(i−1))), ei, qst(ρτ (x(i)))) ∈ ∆rec holds for i ∈
{1, · · · , k}. In addition, it is flabel(ρτ (x(j))) = F if ei = f
for i ≤ j ≤ k. The set of runs generated by Gz is defined
as R(Rec(Gf )). �

We denote the starting state (resp., the ending state) of
ρ̄ as qst(ρ̄) = qst(ρτ (x(0))) (resp., qen(ρ̄) = qen(ρτ (x(k)))).
The fault label of ρ̄ is denoted as flabel(ρ̄) = flabel(ρτ (xk)).

The duration range of ρ̄ is denoted as d(ρ̄) =
k⊕

i=0

d(ρτ (x(i))).

The logical word generated by ρ̄ is denoted as s(ρ̄) =
e1 · · · ek via a function defined as s : E∗

τ → E∗.

The τ -runs involving an elapsed time τ with no executed
events essentially represent the time elapsing discretely.

A run in Rec(Gf ) represents the evolutions of Gf that
involve both time elapsing and events occurrence. After an
event ei, i ∈ {1, · · · , k} is executed, the state of Gf evolves
from x(i−1) to x(i). The fault label is ρ̄ = F once a fault has
occurred. The logical word of ρ̄ is the sequence of events in
E ∪ {f} that have been involved in ρ̄. The duration range
of ρ̄ is evaluated by summing up the duration of each τ -run
at x(i), i ∈ {0, · · · , k}.
Theorem 1. Consider a TFA G = (X,E,∆,Γ, X0) with
a set of fault transitions, its canonical plant Gf =
(X ∪ Xf , E ∪ {f},∆f ,Γf , X0), and its fault recognizer
Rec(Gf ) = (Xrec,Erec,∆rec,Xrec0). Given a timed ob-
servation (σo, t) ∈ (Eo × R≥0)

∗ × R≥0, where σo =
(eo1, t1) · · · (eon, tn), n ≥ 1, and 0 = t0 ≤ t1 ≤ · · · ≤ tn ≤ t,
there exists a timed run ρ̄ ∈ R(Rec(Gf )), defined as

ρ̄ : ρ̄(0)
eo1−→ ρ̄(1) · · ·

eon−→ ρ̄(n), such that the following
conditions are satisfied:

(a) t ∈ d(ρ̄), t− tn ∈ d(ρ̄(n)) and ti − ti−1 ∈ d(ρ̄(i−1)) for
i ∈ {1, · · · , n};

(b) Pl(s(ρ̄)) = eo1 · · · eon, Pl(s(ρ̄(i))) = ε for i ∈
{1, · · · , n}, where Pl : (E ∪ {f})∗ → E∗

o ;
(c) flabel(ρ̄) = N if |s(ρ̄)|f = 0; else, flabel(ρ̄) = F . �

Proof. Given a timed observation (σo, t) ∈ (Eo×R≥0)
∗×

R≥0, there exists a timed run of G defined as ρ : ρ0
(eo1,t1)−→

· · · (eon,tn)−→ ρn, such that S(σ(ρi)) = ε for i ∈ {0, · · · , n},
(xen(ρi−1), ei, xst(ρi)) ∈ ∆, T (ρi−1) = ti − ti−1 for i ∈
{1, · · · , n}, and T (ρn) = t− tn.

If a fault transition labeled with an observable event has
been executed, there exists an associated timed run of Gf

defined as ρf : ρ0
(eo1,t1)−→ · · · (eoi−1,ti−1)−→ ρi−1

(f,ti)−→ xf
(eoi,ti)−→

· · · (eon,tn)−→ ρn. Based on that, there exists a run of Rec(Gf )

defined as ρ̄ : ρ̄0
eo1−→ · · · eoi−1−→ ρ̄i−1

f−→ (xf , [0, 0], F )
eoi−→

ρ̄i · · ·
eon−→ ρ̄n such that (qen(ρ̄p−1), eop, qst(ρ̄p)) ∈ ∆rec and

tp − tp−1 ∈ d(ρ̄p−1) hold for 1 ≤ p ≤ n. Conditions (a),
(b), and (c) can be inferred accordingly.

If a fault transition labeled with an unobservable event
has been executed, we have a timed run of Gf defined

as ρf : ρ0
(eo1,t1)−→ · · · (eoi,ti)−→ ρi · · ·

(eon,tn)−→ ρn, where ρi :

x(i0)
(ei1,ti1)−→ · · · (f,tij)−→ x(ij)

(eij+1,tij+1)−→ x(ij+1) · · ·
(eim,tim)−→

x(im) for m ≥ 1 and 0 ≤ i ≤ n, and eij = f for
1 ≤ j ≤ m. Accordingly, there exists an associated run of

Rec(Gf ) defined as ρ̄ : ρ̄0
eo1−→ · · · eoi−→ ρ̄i · · ·

eon−→ ρ̄n, where

ρ̄i : ρτ (x(i0))
ei1−→ · · · f−→ ρτ (x(ij)) · · ·

eim−→ ρτ (x(im)). Thus,
conditions (a), (b), and (c) can be inferred. �

In other words, taking into account the information coming
from the observation of new events at certain time instants,
the occurrence of faults can be analysed by exploring all
the runs in Rec(Gf ) consistent with the given observation.
The fault label flabel(ρ̄) associated with ρ̄ denotes whether
the run contains a fault (flabel(ρ̄) = F ) or not (flabel(ρ̄) =
N). Recall the diagnosis function φ : (Eo × R≥0)

∗ ×
R≥0 → {F,N,U} defined in Section 3. By denoting the
set of runs consistent with (σo, t) as R(Rec(Gf ), (σo, t)),
an approach for fault diagnosis can be generated as follows:

• φ((σo, t)) = N (resp., φ((σo, t)) = F ) if flabel(ρ̄) =
N (resp., flabel(ρ̄) = F ) holds for each ρ̄ ∈

Table 2. Diagnosis of the TFA G in Fig. 1 with Ef = {c, d} and (σo, t), t ∈ [0, 4].

σo Time instant t
⋃

ρ̄∈R(Rec(Gf ),(σo,t))

qen(ρ̄) φ((σo, t))

λ
[0,0] {(x0, [0, 0], N)} N
(0,1) {(x0, (0, 1), N)} N
[1,1] {(x0, [1, 1], N), (xf , [0, 0], F )} U

(c, 1)
[1,1] {(x1, [0, 0], N), (x2, [0, 0], F ), (x3, [0, 0], F )} U
(1,2) {(x1, (0, 1), N), (x2, (0, 1), F ), (x3, (0, 1), F )} U
[2,2] {(x1, [1, 2], N), (x2, [1, 1], F ), (x3, [1, 2], F )} U

(c, 1)(b, 2)

[2,2] {(x0, [0, 0], N), (x1, [0, 0], F ), (x3, [0, 0], F )} U
(2,3) {(x0, (0, 1), N), (x1, (0, 1), F ), (x3, (0, 1), F )} U
[3,3] {(x0, [1, 1], N), (xf , [0, 0], F ), (x1, [1, 2], F ), (x3, [1, 2], F )} U
(3,4) {(x0, (1, 2], N), (xf , [0, 0], F ), (x1, [1, 2], F ), (x3, [1, 2], F )} U

(c, 1)(b, 2)(c, 3.5)
(3,4) {(x2, [0, 0], F ), (x2, (0, 1), F )} F
[4,4] {(x2, (0, 1), F )} F

R(Rec(Gf ), (σo, t)), i.e., f has not (resp., has) been
occurred for sure;

• otherwise, it is φ((σo, t)) = U , i.e., f may or may not
have been occurred.

Example 3. Given Example 2 and a timed observation
(σo, 4), where σo = (c, 1)(b, 2)(c, 3.5), the computation of
the diagnosis function from t = 0 to t = 4 is summarized
in Table 2. We explain the process of diagnosis while the
observation (σo, t) is progressively updated over time as
follows.

• If (σo, t) = (λ, t) for t ∈ [1, 1], the ending states of
runs in R(Rec(λ, 1)) is {(x0, [1, 1], N), (xf , [0, 0], F )}.
Thus φ(λ, 1) = U .

• If (σo, t) = ((c, 1), t) for t ∈ (2, 3), the ending
states of runs in R(Rec((c, 1), 2)) is {(x1, [1, 2], N),
(x2, [1, 1], F ), (x3, [1, 2], F )}. Thus φ(((c, 1), 2)) = U .

• If (σo, t) = ((c, 1)(b, 2), t) for t ∈ (3, 4). The
ending states of runs in R(Rec((c, 1)(b, 2), 3.5)) is
{(x0, (1, 2], N), (xf , [0, 0], F ), (x1, [1, 2], F ), (x3, [1, 2],
F )}. Thus φ(((c, 1)(b, 2), 3.5)) = U .

• If (σo, t) = ((c, 1)(b, 2)(c, 3.5), 4), the ending states
of all runs in R(Rec(Gf ), (σo, t)) is {(x2, (0, 1), F )}.
Thus φ(((c, 1)(b, 2)(c, 3.5), 4)) = F . �

7. CONCLUSIONS

This paper considers timed automata with a single clock,
that is reset when an event occurs. Each transition is
associated with a time interval specifying the clock values
at which it can occur. We consider a time semantics that
constrains the dwell time spent in each state of a TFA.
Assuming that faulty behaviour is described by timed
transitions, we address the problem of fault diagnosis by
constructing a fault recognizer that detects the occurrence
of faults. The fault diagnosis approach allows one to
compute the diagnostic state for each timed observation,
which consists of a sequence of pairs (event, time at which
the event occurs). It is worth investigating whether one
can reliably detect a fault in a given time interval, which
could be of great interest for real-time systems.

REFERENCES

R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

C. G. Cassandras and S. Lafortune. Introduction to
discrete event systems. Springer, 2009.

C. Gao, D. Lefebvre, C. Seatzu, Z. Li, and A. Giua.
A region-based approach for state estimation of timed
automata under no event observation. In Proceedings of
IEEE International Conference on Emerging Technolo-
gies and Factory Automation, volume 1, pages 799–804.
IEEE, 2020.

C. Hadjicostis. Estimation and Inference in Discrete Event
Systems. Springer, 2020.

T. Henzinger. The theory of hybrid automata. In
Verification of Digital and Hybrid Systems, pages 265–
292. Springer, 2000.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamo-
hideen, and D. Teneketzis. Diagnosability of discrete-
event systems. IEEE Transactions on Automatic Con-
trol, 40(9):1555–1575, 1995.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamo-
hideen, and D. Teneketzis. Failure diagnosis using
discrete-event models. IEEE Transactions on Control
Systems Technology, 4(2):105–124, 1996.

S. Tripakis. Fault diagnosis for timed automata. In Pro-
ceedings of the 7th International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems:
Co-sponsored by IFIP WG 2.2, pages 205–224, 2002.

P. Bouyer, S. Jaziri, and N. Markey. Efficient timed
diagnosis using automata with timed domains. In Pro-
ceedings of the 18th Workshop on Runtime Verification
(RV’18), 11237: 205–221, 2018.

P. Bouyer, L. Henry, S. Jaziri, T. Jéron and N. Markey.
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σo Time instant t
⋃
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[0,0] {(x0, [0, 0], N)} N
(0,1) {(x0, (0, 1), N)} N
[1,1] {(x0, [1, 1], N), (xf , [0, 0], F )} U

(c, 1)
[1,1] {(x1, [0, 0], N), (x2, [0, 0], F ), (x3, [0, 0], F )} U
(1,2) {(x1, (0, 1), N), (x2, (0, 1), F ), (x3, (0, 1), F )} U
[2,2] {(x1, [1, 2], N), (x2, [1, 1], F ), (x3, [1, 2], F )} U

(c, 1)(b, 2)

[2,2] {(x0, [0, 0], N), (x1, [0, 0], F ), (x3, [0, 0], F )} U
(2,3) {(x0, (0, 1), N), (x1, (0, 1), F ), (x3, (0, 1), F )} U
[3,3] {(x0, [1, 1], N), (xf , [0, 0], F ), (x1, [1, 2], F ), (x3, [1, 2], F )} U
(3,4) {(x0, (1, 2], N), (xf , [0, 0], F ), (x1, [1, 2], F ), (x3, [1, 2], F )} U

(c, 1)(b, 2)(c, 3.5)
(3,4) {(x2, [0, 0], F ), (x2, (0, 1), F )} F
[4,4] {(x2, (0, 1), F )} F

R(Rec(Gf ), (σo, t)), i.e., f has not (resp., has) been
occurred for sure;

• otherwise, it is φ((σo, t)) = U , i.e., f may or may not
have been occurred.

Example 3. Given Example 2 and a timed observation
(σo, 4), where σo = (c, 1)(b, 2)(c, 3.5), the computation of
the diagnosis function from t = 0 to t = 4 is summarized
in Table 2. We explain the process of diagnosis while the
observation (σo, t) is progressively updated over time as
follows.

• If (σo, t) = (λ, t) for t ∈ [1, 1], the ending states of
runs in R(Rec(λ, 1)) is {(x0, [1, 1], N), (xf , [0, 0], F )}.
Thus φ(λ, 1) = U .

• If (σo, t) = ((c, 1), t) for t ∈ (2, 3), the ending
states of runs in R(Rec((c, 1), 2)) is {(x1, [1, 2], N),
(x2, [1, 1], F ), (x3, [1, 2], F )}. Thus φ(((c, 1), 2)) = U .

• If (σo, t) = ((c, 1)(b, 2), t) for t ∈ (3, 4). The
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F )}. Thus φ(((c, 1)(b, 2), 3.5)) = U .

• If (σo, t) = ((c, 1)(b, 2)(c, 3.5), 4), the ending states
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Thus φ(((c, 1)(b, 2)(c, 3.5), 4)) = F . �

7. CONCLUSIONS

This paper considers timed automata with a single clock,
that is reset when an event occurs. Each transition is
associated with a time interval specifying the clock values
at which it can occur. We consider a time semantics that
constrains the dwell time spent in each state of a TFA.
Assuming that faulty behaviour is described by timed
transitions, we address the problem of fault diagnosis by
constructing a fault recognizer that detects the occurrence
of faults. The fault diagnosis approach allows one to
compute the diagnostic state for each timed observation,
which consists of a sequence of pairs (event, time at which
the event occurs). It is worth investigating whether one
can reliably detect a fault in a given time interval, which
could be of great interest for real-time systems.
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