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Abstract: We explore the Hawking evaporation of two-dimensional anti-de Sitter (AdS2), dilatonic
black hole coupled with conformal matter, and derive the Page curve for the entanglement entropy
of radiation. We first work in a semiclassical approximation with backreaction. We show that the
end-point of the evaporation process is AdS2 with a vanishing dilaton, i.e., a regular, singularity-free,
zero-entropy state. We explicitly compute the entanglement entropies of the black hole and the
radiation as functions of the horizon radius, using the conformal field theory (CFT) dual to AdS2

gravity. We use a simplified toy model, in which evaporation is described by the forming and growing
of a negative mass configuration in the positive-mass black hole interior. This is similar to the “islands”
proposal, recently put forward to explain the Page curve for evaporating black holes. The resulting
Page curve for AdS2 black holes is in agreement with unitary evolution. The entanglement entropy
of the radiation initially grows, closely following a thermal behavior, reaches a maximum at half-way
of the evaporation process, and then goes down to zero, following the Bekenstein–Hawking entropy
of the black hole. Consistency of our simplified model requires a non-trivial identification of the
central charge of the CFT describing AdS2 gravity with the number of species of fields describing
Hawking radiation.

Keywords: black hole evaporation; Page curve; two-dimensional gravity models

1. Introduction

Since the discovery of Hawking radiation [1,2], the information paradox for an evapo-
rating black hole has been one of the most intriguing puzzles of fundamental theoretical
physics. At the semiclassical level, unitarity of quantum mechanics seems to be lost when a
black hole is formed from a collapsing pure quantum state and then completely evaporates,
leaving behind only thermal Hawking radiation [3], described by a mixed quantum state
(see, e.g., refs. [4–6] for reviews).

Over the years, several possibilities of addressing the problem have been put for-
ward. Either information may be lost forever [7,8]—as firstly advocated by Hawking [3],
whose argument, however, conflicted with energy conservation [9]—or one could have
remnants [10] at the end of the evaporation, fuzzy structures at the horizon (fuzzball) [11]
or, finally, information leaks out and is somehow encoded in the Hawking radiation.

In more recent times, the holographic principle [12], its explicit realization through
the AdS/CFT correspondence [13–16] and the discussions triggered by the firewall argu-
ment [17,18] supported a solution of the information puzzle, which preserves the unitarity
of quantum mechanics. In fact, the AdS/CFT correspondence implies that any gravitational
bulk process in D-dimensions, such as black hole evaporation, can be holographically de-
scribed in terms of a (D− 1)-dimensional conformal field theory on the boundary, for which
the evolution of quantum states is unitary. This suggests that the relevant gravitational
degrees of freedom may be encoded on the boundary of a volume of the space-time rather
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than inside its bulk. This, in turn, allows for a microscopic explanation of the Bekenstein–
Hawking black hole entropy (see, e.g., [16,19–21]), the backbone on which the “Central
Dogma” (for an external observer, black hole quantum dynamics can be described as the
unitary time evolution of N ∼ SBH quantum states, where SBH is the Bekenstein–Hawking
black hole entropy [22]) of black hole information is based.

It is worth mentioning that several alternative solutions to the paradox have been
proposed, which do not explicitly rely on holography. Some of them introduce non-local
effects in standard quantum field theory in a gravitational background [23–26]. Alterna-
tively, they are based on more conservative approaches, such as the recovery of information
through the reconstruction of the quantum correlations among Hawking particles (see,
e.g., [27]), or on a Bohr-like quantum description of the black hole, inspired by the spectrum
of quasi-normal modes (see [28] and references therein).

From a purely bulk perspective, one possible way to preserve unitarity of quantum
mechanics during the evaporation is to assume that information leaks out from the black
hole, encoded in Hawking radiation. Using quite general arguments of information theory,
Don Page has shown this can only happen at late times, after the so-called Page time, when
roughly half of the black hole has evaporated away. This process is characterized by a
well defined pattern for the entanglement entropy (EE) of the radiation—the famous Page
curve [29,30].

Very recent developments give further support to information conservation during
the black hole evaporation process. They are based on a semiclassical approach to compute
the entropy of Hawking radiation which consists in extremizing an entropy functional,
expressed as the sum of the contribution of the entropy of bulk fields and that of several,
disconnected regions, inside and outside the black hole, called “islands” [22,31,32]. The
formula is manifestly a generalization of the holographic Ryu–Takayanagi formula [33,34]
and is based on the idea of the “entanglement wedge reconstruction” [35–38], which allows
computing the Page curve semiclassically by correctly keeping track of the entanglement
structure of both the black hole and the radiation subsystems. At early times, before
the Page time, the entanglement wedge of the black hole includes all the interior, with a
neat separation between radiation and black hole degrees of freedom. The entropy of the
radiation will, therefore, increase as Hawking quanta start leaking out. At late times, after
the Page time, a contribution given by the islands, forming just behind the horizon, starts
dominating. This determines the consequent decrease of the Page curve, signalizing the
purification of the final state of the radiation.

The new generalized entropy formula, however, does not tell where the information
is encoded and how it manages to escape from the horizon. This is mainly due to the
fact that the formula is built in terms of the low-energy gravitational theory and makes
no reference to the underlying microscopic theory and to the would-be unitary dynamics
of the N ∼ SBH quantum states building up the black hole. Another drawback of the
generalized entropy formula is that computations are in general quite difficult to perform.

In view of this state of the art, it is quite important to consider gravitational systems,
for which we have at least an effective description of the underlying microscopic dynamics
and in which the semiclassical black hole dynamics is simple enough to allow for an
explicit analysis.

The most natural candidates are the two-dimensional (2D) AdS (AdS2) black holes of
Jackiw–Teitelboim (JT) dilaton gravity [39–41]. The latter represents one of the most studied
2D gravity models, as it allows describing, otherwise more difficult to capture, features
of four-dimensional gravitational black holes [41,42] and has several features that make
it suitable for the before-mentioned purposes. Owing to the fact that Hawking radiation
has a purely topological origin in these models [43], the semiclassical dynamics of black
hole solutions can be solved in closed analytical form. For small values of the 2D Newton
constant 1/φ0, they allow for an effective description in terms of a dual CFT with central
charge c = 12φ0. This enables a microscopic derivation of the BH entropy [21], so that the
Central Dogma is based on solid ground. The black hole spectrum of the JT theory contains
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an energetically preferred, regular, ground state (the AdS2 space-time), a state with zero
temperature and zero entropy [21,44], which is the perfect candidate for the end point of
the evaporation process. Last but not least, the dual CFT description of JT black holes
allows for an explicit computation of the black hole EE [45].

These nice features allow describing analytically the behavior of the entropy of both
the black hole and the radiation and, consequently, to reconstruct the Page curve. In [37],
for example, this is done by using the holographic entropy formula [33,46,47] and the entan-
glement wedge reconstruction idea, for a JT black hole coupled with a CFT2 matter sector
with a higher-dimensional holographic dual. In particular, the latter allows connecting
the interior of the black hole with the radiation subsystem, in the spirit of the “Einstein–
Podolsky = Einstein–Podolsky–Rosen” (ER = EPR) conjecture [48–50]. The same technique
is applied in [51] to derive the Page curve in the 2D Callan–Giddings–Harvey–Strominger
(CGHS) model [52,53]. Finally, in [54], the Page curve for JT black holes is derived by
considering the 2D gravitational model as the dimensional reduction of the 3D AdS gravity.

In this paper, we tackle the information problem for the JT black hole using an alter-
native approach. We investigate the semiclassical dynamics of JT black holes, coupled to
conformal matter in the form of N massless scalar fields, including the backreaction of the
geometry, and derive the Page curve for their EE in a closed form. We will do so without
using either higher-dimensional theories or the generalized holographic entropy formula.
We show that, working in the semiclassical approximation with backreaction, the end-point
of the evaporation is the AdS2 space-time, endowed with a vanishing dilaton, i.e., a regular,
singularity free, zero entropy space-time. This suggests unitary evolution and information
conservation.

We proceed by computing the entanglement entropies of the black hole and the radia-
tion as functions of the horizon radius. This is done using the effective description of AdS2
quantum gravity in terms of the dual CFT, i.e., in the large central charge regime, c � 1,
of the CFT. The computation of the EE of the radiation is performed using a simplified
toy model, in which black hole evaporation is described by the formation and growth
of a negative mass configuration in the positive-mass black hole interior. This setup rep-
resents a rough, simplified version of the earlier-mentioned “islands” conjecture, which
has been recently proposed to explain the Page curve for evaporating black holes (see,
e.g., [22,31,32,51,54–60]). Unlike the semiclassical entropy formula used in the aforemen-
tioned papers, the EE formula used in this paper allows us to capture also contributions of
purely quantum mechanical correlations between the interior and the exterior of the black
hole, in line with the ER=EPR spirit as well. Moreover, these correlations arise in a natural
and simple way in our model, without resorting to higher-dimensional duals.

In the final part of our paper, we compare the curve of the EE for Hawking radiation
with those pertaining to the thermal entropy of the radiation and the Bekenstein–Hawking
entropy of the black hole. The resulting Page curve for JT black holes is in agreement
with unitary evolution. The entanglement entropy of the radiation initially grows, closely
following a thermal behavior, reaches a maximum at the half-way point, and then goes
down to zero, closely following the Bekenstein–Hawking entropy of the black hole during
the final stages of the evaporation process. Basic principles of thermodynamics, together
with the existence of a dual CFT description, imply a non-trivial identification of the central
charge of the CFT describing AdS2 gravity with the number N of massless fields describing
Hawking radiation.

The structure of this paper is as follows. In Section 2, we briefly review the classical
and semiclassical properties of JT black holes coupled with conformal matter, focusing
on the conformal anomaly and backreaction effects of the geometry. We investigate the
semiclassical dynamics of the model in Section 3, by considering the evaporation process,
both in static coordinates and in terms of boundary dynamics. The calculation of the EE
associated with the JT black hole in [45] is reviewed in Section 4. In Section 5, we discuss
the information flow during the black hole evaporation and present the main results of
this paper concerning the Page curve for the JT black hole. We compare the EE of the
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radiation with the thermal entropies of the radiation and of the black hole. We also derive
the relationship between the central charge of the CFT dual to AdS2 gravity and the number
of species of matter fields in the Hawking radiation. Finally, in Section 6, we state our
conclusions.

2. 2D AdS Black Holes

In this paper, we consider 2D AdS black holes. The simplest gravity model allowing
for this kind of solutions is JT gravity, described by the action

SJT =
1

2π

∫
d2x
√
−g φ

(
R + 2Λ2

)
+ Smatter, (1)

where φ is a scalar field (the dilaton), playing the role of the inverse coordinate-dependent
2D Newton constant, R is the 2D Ricci scalar, Λ2 the cosmological constant and Smatter is
the action for matter fields. A slight generalization of this model has been proposed by
Almheiri and Polchinski (AP) [61], by adding a constant term α to the dilaton potential:

V(φ) = 2Λ2(α− φ). (2)

Thus, the JT model can be considered as a particular case (α = 0) of the AP model. We will
make use of this feature in the following section.

2.1. Classical Solutions in Absence of Matter

In absence of matter, JT gravity admits asymptotically AdS2 black holes as solu-
tions [43]. In the Schwarzschild gauge, the metric and the dilaton read

ds2 = −
(

Λ2r2 − a2
)

dt2 +
(

Λ2r2 − a2
)−1

dr2, φ(r) = φ0Λr, (3)

where φ0 and a2 are integration constants related to the Arnowitt–Deser–Misner (ADM)
mass of the solution:

M =
1
2

φ0a2Λ =
1
2

φ0Λ3r2
h. (4)

a2 > 0, a2 = 0 and a2 < 0 represent, respectively, a space-time with a positive ADM
mass, with Killing horizon at r = rh = a/Λ, the AdS vacuum (zero ADM mass) and
a space-time with a negative ADM mass. Adopting the nomenclature of [43], we will
refer to these as AdS+ (a2 > 0), AdS0 (a2 = 0) and AdS− (a2 < 0). These three solutions
represent different parameterizations, covering different regions of the same manifold, as
they are connected with each other by coordinate transformations. This means that the
local properties of the space-time described by the metric (3) are the same, independently
from the value of a2. Therefore, the three space-times can be maximally extended to obtain
full AdS2, which has no horizon and is geodesically complete. Nevertheless, AdS+ can be
interpreted as a 2D black hole with an event horizon at r = rh, if one takes into account the
physical meaning of the dilaton as the (coordinate-dependent) inverse 2D Newton constant,
demanding φ > 0. This requirement implies the existence of a space-time singularity at
r = 0, where the 2D Newton constant diverges. The φ = 0 line has to be considered as an
inner boundary of the space-time, whose existence allows one to consider AdS+ as a black
hole, AdS− as a space-time containing naked singularities and AdS0 as the ground state,
zero mass solution [43] (a similar conclusion can be reached if one considers the JT model
as originated from spherical dimensional reduction of 3D Bañados–Teitelboim–Zanelli
(BTZ) [62] or higher dimensional [43] black holes. In this case, the positivity condition
φ > 0 is required by the identification of φ with the radius of the compactified sphere).
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Once we interpret AdS+ as a black hole space-time, it is natural to associate thermody-
namic properties to it, i.e., a temperature TH and an entropy SBH :

TH =
aΛ
2π

=
rhΛ2

2π
=

1
2π

√
2MΛ

φ0
; (5)

SBH = 2πΛφ0rh = 4π

√
φ0M
2Λ

= 2πφ(rh). (6)

The AdS0 vacuum solution with a linear dilaton, given by Equation (3) with a =
0, termed linear dilaton vacuum (LDV) in [44], is not the only M = 0 vacuum of the
model. The theory allows also for full AdS2 space-time solution endowed with a constant,
identically vanishing, dilaton,

φ = 0, (7)

which has been called the constant dilaton vacuum (CDV) solution in [44] (similarly, the
AP model admits both AdS black hole solutions with a linear varying and a constant
non-vanishing dilaton [61]).

At first sight, the CDV and the LDV seem degenerate in energy (they both have
zero ADM mass), but closer inspection reveals that they are separated by a mass gap
Mgap = Λ/(2π2φ0) [44,61]. Indeed the CDV, being full AdS2 space-time, does not admit
finite energy excitation [63]. The issue can be better understood if we consider the JT
model as a particular case of the AP model, where the two vacua are connected by an
interpolating solution φ = α2 + φ0Λr. Following [44], we can now remove the apparent
degeneracy between the CDV and the LDV and study the thermodynamic behavior of
the two vacua by looking at the free energy difference ∆F = FLDV − FCDV. At TH 6= 0,

∆F = − 2π2φ0
Λ T2

H < 0 [44], which tells us that the LDV is thermodynamically favored.

However, at T = 0, for the CDV (φ0 → 0), Mgap diverges and one has ∆F = α4Λ
2φ0
→ ∞ [44].

The LDV is therefore not thermodynamically stable at zero temperature: a phase transition
occurs, which drives the system down to the CDV.

Let us now describe the black hole solution in the conformal gauge, using light-cone
coordinates x±,

ds2 = −e2ρ(x+ ,x−)dx+dx−, x± = x0 ± x1, (8)

which will be also used to describe the coupling of our model to matter fields. The field
equations and constraints, stemming from the action (1), in absence of matter, read now

∂+∂−ρ = −Λ2

4
e2ρ; (9)

∂+∂−φ = −Λ2

2
φe2ρ; (10)

∂2
+φ−−− 2∂+φ∂+ρ = 0; (11)

∂2
−φ−−− 2∂−φ∂−ρ = 0. (12)

They are solved by

e2ρ =
4

Λ2

(
x− − x+

)−2; (13)

φ =
b + c(x+ + x−) + dx+x−

x− − x+
, (14)
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where a, b, c are constants. The metric part of the solution (13) has an SL(2,R) isometry, i.e.,
it is invariant under the transformations:

x± → αx± + β

γx± + δ
, with αδ− βγ = 1. (15)

By exploiting this invariance, the dilaton (14) can be recast as [43]:

φ =
2φ0

Λ
1− a2Λ2

4 x+x−

x− − x+
. (16)

The coordinate transformations relating the solutions written in the Schwarzschild gauge (3)
to those written in the the conformal gauge (13) and (14) are:

x+ = 2
aΛ tanh

{
aΛ
2 t− 1

2 arcsinh
[(

Λ2r2

a2 − 1
)−1/2

]}
,

x− = 2
aΛ tanh

{
aΛ
2 t + 1

2 arcsinh
[(

Λ2r2

a2 − 1
)−1/2

]}
.

(17)

The AdS0 solution is easily obtained by taking the zero mass limit, a→ 0, of Equation (16)

φ =
2φ0

Λ
(
x− − x+

)−1, (18)

while the metric conformal factor (13) remains unchanged. This is the consequence of a
general and peculiar feature of the JT theory, which is easily seen from Equation (9): the
classical dynamics of the conformal factor is independent from the dilaton. This implies that
the dynamics of the model is fully encoded in the scalar field, which determines the global
properties of the space-time through the evolution of the φ = 0 space-time singularity. As
we will show in the next section, this feature remains true also when we couple the gravity
model to conformal matter both at the classical and semiclassical level.

Let us briefly discuss the Penrose diagram of our space-time. In light-cone coordinates,
full AdS2 space-time has two disconnected parts, which are represented by two wedges in
the Penrose diagram. The asymptotic conformal boundary x+ = x− of the space-time is
timelike. AdS+ is half of AdS2, which in this paper is taken as the left wedge, following the
convention of [43] (see Figure 1). This means that we are considering the region x− > x+

of AdS2. The event horizon, r = rh = a/Λ in Schwarzschild coordinates, in light-cone
coordinates corresponds to:

x+H = − 2
aΛ

; x−H =
2

aΛ
. (19)

Considering the solution (16), the space-time singularity occurs at 1− a2Λ2

4 x+x− = 0. The
singularity is always shielded by the event horizons (19). The black hole interior corre-
sponds to the region x− > 2/aΛ and x+ 6 −2/aΛ. If one uses light-cone coordinates, so
that the scalar φ takes the form (14), the singularity is visible for an asymptotic timelike
observer sitting on the conformal asymptotic space-time boundary. He/she will hit the sin-
gularity at finite time, x− = −2/aΛ (past singularity) and x− = 2/aΛ (future singularity),
at least for a finite non-vanishing value of M. However, φ is not form-invariant under the
isometric SL(2, R) transformation (15) and the presence of the future timelike singularity
in the asymptotic boundary can be avoided by choosing an appropriate light-cone frame,
which removes the x+x− term in the dilaton solution (14). In fact, using an appropriate
SL(2, R) transformation, the dilaton solution (14) may be written as follows,

φ =
2φ0

Λ
1 + aΛ

2 (x− + x+)
x− − x+

. (20)
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In this new light-cone frame, the singularity trajectory φ = 0 is

x− = − 2
aΛ
− x+, (21)

which gives only a past singularity x− = − 1
aΛ , once evaluated on the timelike asymptotic

boundary x− = x+. In Section 3.2, we will show that the SL(2, R) isometry of the metric can
also be used to remove the asymptotic, future timelike singularity in presence of Hawking
radiation and related backreaction of the geometry.

x+x−

x+ = x− = 2/aΛ

x+ = x− = −2/aΛ

x
− =

2/
aΛ

x+ = x−

x +
=
−2/aΛ

Figure 1. Penrose diagram of 2D AdS+. The future and past asymptotic singularities are highlighted,
corresponding to the two vertices on the line x+ = x− of the diagram. The two tilted lines correspond
to the future x−H = 2/aΛ and past x+H = −2/aΛ event horizons.

2.2. Coupling to Matter, Conformal Anomaly and Evaporation

Let us now couple our gravity model to matter fields, quantize the latter in the
semiclassical approximation and include the backreaction of the geometry.
We consider the matter sector in the form of N massless scalar fields fi, minimally coupled
to gravity, described by the classical, conformally invariant action:

Smatter = −
1

4π

∫
d2x
√

g
N

∑
i=1

(∇ fi)
2. (22)

Quantization of the matter fields and backreaction of the geometry is studied at the semi-
classical level by considering the quantization of the CFT matter on the curved, classical
2D gravitational background. This implies a non-zero trace of the (classically traceless)
stress-energy tensor for the matter fields (conformal anomaly) [64]. For N massless fields
fi in two space-time dimensions, the conformal anomaly reads 〈Tµ

µ 〉 = N
12 R, which can be

accounted for by adding a non-local Polyakov–Liouville term in the JT action (1)

Sanomaly = − N
96π

∫
d2x
√

g R�−1R, (23)
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where �−1 is the inverse of the Laplacian. The field equations and the constraints, in
light-cone coordinates become local and are given by

∂+∂−ρ = −Λ2

4
e2ρ; (24)

∂+∂−φ = −Λ2

2

(
φ− N

24

)
e2ρ; (25)

∂2
+φ−−− 2∂+φ∂+ρ = −1

2

N

∑
i=1

∂+ fi∂+ fi +
N
12

[
(∂+ρ)2 − ∂2

+ρ + t+(x+)
]
; (26)

∂2
−φ−−− 2∂−φ∂−ρ = −1

2

N

∑
i=1

∂− fi∂− fi +
N
12

[
(∂−ρ)2 − ∂2

−ρ + t−(x−)
]
; (27)

∂+∂− fi = 0, (28)

where t±(x±) are integration functions, which have to be determined by imposing appro-
priate boundary conditions.

As anticipated in the previous section, we see that, also in the semiclassical treatment,
the conformal factor of the metric ρ is insensitive to the presence of matter, the dilaton and
backreaction effects. All dynamical information on the evolution of the semiclassical system
is completely encoded in the solution for the dilaton, which determines the evolution of
the space-time boundary at φ = 0.

Another striking feature of Equations (24)–(28) is the fact that, at the level of the field
equations, the conformal anomaly, i.e., semiclassical quantum effects, can be reabsorbed by
means of a translation of the dilaton. In fact, by performing the translation

φ = ϕ +
N
24

, (29)

and using the solution of Equation (24), Equations (24)–(28) reduce to

∂+∂−ρ = −Λ2

4
e2ρ; (30)

∂+∂−ϕ = −Λ2

2
ϕe2ρ; (31)

∂2
+ϕ−−− 2∂+ϕ∂+ρ = −1

2

N

∑
i=1

∂+ fi∂+ fi +
N
12

t+; (32)

∂2
−ϕ−−− 2∂−ϕ∂−ρ = −1

2

N

∑
i=1

∂− fi∂− fi +
N
12

t−; (33)

∂+∂− fi = 0, (34)

which coincides with the classical one (10), apart from the dilaton translation and the
presence of the functions t±. The effect of the conformal anomaly is just a translation of
the space-time boundary, which now is located at φ = N/24 and the appearance of the
functions t± in the field equations.

These functions t± play an important role. Their presence is a consequence of the
anomalous transformation law of T±±, which is given in terms of the Schwarzian derivative
of light-cone transformation function (see Equation (17)). Usually, the t± are fixed by
imposing boundary conditions on Hawking radiation at past infinity (see, e.g., [52]).

Let us conclude by noticing that the backreaction effects can be reabsorbed by the
translation (29) also at the level of the action. This can be done by including a purely
topological term Φ0R into the action (1), with Φ0 constant, and performing the shift
Φ0 = Φ̂0 +

N
24 together with the translation (29).
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3. Black Hole Evaporation

In the previous section, we showed that the classical and semiclassical dynamics of
our model is independent from the metric, but is fully encoded in the solution for the
dilaton. We have therefore only two options to describe the evaporation process: (1) we
use a static coordinate patch covering the black hole exterior and we model the evaporation
as a succession of states of decreasing mass, or (2) we use light-cone coordinates, in
which the ϕ = 0 singularity is visible and describe the evaporation process in terms of
boundary dynamics.

Using the results of [43,44] as a guide, we will find that in both cases, the end point
of the black hole evaporation process is a full, regular AdS2 space-time endowed with a
constant (vanishing) dilaton, i.e., a singularity-free state with zero mass and zero entropy.

3.1. Black Hole Evaporation in the Static Patch

We consider for simplicity the evaporation of an initially static black hole of a given
mass M. We model the evaporation process as a sequence of static states of decreasing mass,
without considering matter fluxes for now, i.e., ∂+ fi = ∂− fi = 0, as in [43]. Following [43],
if one neglects the backreaction, black hole evaporation can be described as a generalized
Unruh effect [65]. Similarly to what happens in quantizing scalar fields in Rindler space-
time, an AdS0 observer will detect the AdS+ vacuum as filled with a thermal flux of
particles, with a Planckian spectrum at a temperature given by Equation (5). The main
difference between Minkowski/Rindler and AdS0/AdS+ space-times is that, in the latter
case, thermal effects are not related to a physical relative accelerated motion of different
observers, but have purely topological origin [43].
The relevant equations are 

ρ′′ = Λ2

4 e2ρ;

ϕ′′ = Λ2

2 e2ρ ϕ;

ϕ′′ − 2ρ′ϕ′ = N
12

[
(ρ′)2 − ρ′′

]
,

(35)

where primes here stand for derivation with respect to the static coordinate

σ ≡ 2
aΛ arcsinh

[(
Λ2r2

a2 − 1
)−1/2

]
.

It is important to notice that the new coordinate −∞ < σ 6 0 covers only the outside
horizon region. In particular, the space-time singularity at ϕ = 0 is not visible. Thus, in this
coordinate system, the backreaction of the geometry cannot be described by the boundary
dynamics and is encoded instead in the change of the parameter a (the black hole mass).
A set of solutions of Equation (35) is given by

e2ρ =
a2

sinh2
(

aΛ
2 σ
) ; ϕ =

φ0a
2

coth
(

aΛ
2

σ

)
+

N
24

[
aΛσ

2
coth

(
aΛ
2

σ

)
− 1
]

, (36)

describing the AdS+ space-time, while

e2ρ =
4

Λ2σ2 ; ϕ =
φ0

Λσ
, (37)

corresponds to the AdS0 LDV written in terms of the coordinate σ.
One can easily check that when the black hole evaporates and M (hence the tempera-

ture (5)) decreases, the black hole interior region shrinks. When we take the zero mass limit,
a→ 0, Equation (36) becomes Equation (37). At first glance, this seems to imply that the
AdS+ black hole will settle down to the AdS0 vacuum at the end of evaporation. However,
this is not actually true, being the CDV energetically preferred, according to the discussion
of Section 2.1. A phase transition will bring the AdS0 LDV to the AdS2 CDV, with ϕ = 0
(corresponding to φ = N/24). The end point of the black hole evaporation is therefore full
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AdS2, i.e., a regular space-time with zero mass and entropy. This strongly suggests that the
evaporation of 2D AdS black holes is a unitary process.

3.2. Boundary Dynamics

In the previous subsection, we have used a coordinate system covering only the
black hole exterior, in which the inner space-time boundary, i.e., the singularity, is not
visible. Here, we use light-cone coordinates, which also cover the black hole interior and
allow us to describe black hole evaporation in terms of boundary dynamics. We solve the
field equations and the constraints, taking into account the contributions of the Hawking
flux and the backreaction of the geometry. In the most general case, one should solve
Equations (30)–(34) by considering a given profile of incoming matter, characterized by
T++, and impose appropriate boundary conditions to fix the functions t±. Being the
conformal factor of the metric fixed, this should allow finding the solution for ϕ(x+, x−),
which gives the boundary equation when equated to zero. However, for our purposes, we
do not need to solve the equations in such cumbersome detail.

To keep the discussion as simple as possible, we do not consider the initial phase of
black hole formation from incoming matter, but only the evaporation phase of an initially
static black hole configuration of given mass M. Flux of Hawking radiation is switched
on at time t = 0 in a non-adiabatic way. This allows us to set ∂+ fi = 0 and t+ = 0 in
Equations (30)–(34) for t > 0. Obviously, the form of the stress-energy tensor component
T−−, which contains also information on the incoming matter, will be not determined in this
way. We will therefore consider a general form for the stress-energy tensor T−− of Hawking
radiation, which will be described by a generic function of x− only, T−− = τ−−(x−). We
will then show, using quite general conditions on τ−−(x−) that the SL(2, R) isometry of
the metric can always be used to remove the future asymptotic timelike singularity of the
space-time. We will then provide an explicit description of the whole evaporation process
by choosing a particularly simple form for τ−−(x−).

In order to solve the system (30)–(34) and provide a simple analysis of the dynamics of
the boundary, it is convenient to introduce a functionM(x−, x+) parameterizing the field
ϕ [61],

ϕ =
M(x−, x+)

x− − x+
. (38)

This allows us to rewrite Equations (30)–(34) as follows

e2ρ =
4

Λ2

(
x− − x+

)−2; (39)

(
x− − x+

)
∂+∂−M+ ∂−M−−− ∂+M = 0; (40)

∂2
+M = 0; (41)

∂2
−M(x−, x+) = −

(
x− − x+

)
τ−− (42)

where τ−− is the stress-energy tensor. As usual, the dynamics for the conformal factor
decouples, so that we can solve the system (39)–(42) forM with ρ given by Equation (39).
We obtain

M(x−, x+) = c1 + c2
(
x+ + x−

)
−
(

x− − x+
) ∫∫

τ−−dx− + 2
∫∫∫

τ−−dx− (43)
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where c1,2 are integration constants. They can be fixed by requiring the solution for ϕ, given
by Equation (38), to match the vacuum solution (20), when the Hawking flux is turned off
(τ−− = 0). This gives c1 = 2φ0/Λ, c2 = φ0a and the final form of the solution for ϕ is

ϕ =
1

(x− − x+)

[
2φ0

Λ
+ φ0a

(
x+ + x−

)
−
(
x− − x+

) ∫∫
τ−−dx− + 2

∫∫∫
τ−−dx−

]
. (44)

At the end of Section 2.1, we have seen that the SL(2, R) isometry of the metric
allows one to choose a light-cone frame in which the asymptotic observer does not see any
singularity.

Let us now show that this is still true even in the presence of Hawking radiation
and backreaction effects. For the full solution (44), the singularity trajectory ϕ = 0 is
described by:

2φ0

Λ
+ φ0a

(
x+ + x−

)
−
(
x− − x+

) ∫∫
τ−−dx− + 2

∫∫∫
τ−−dx− = 0. (45)

On the asymptotic timelike boundary x− = x+, we have

x− = − 1
φ0a

[
φ0

Λ
+
∫∫∫

τ−−dx−
]

. (46)

When τ−− is a positive-definite function, as it should be in the case of Hawking radiation,
the right-hand side of Equation (46) is always negative. This implies, again, that we
can always remove the future singularity in the asymptotic timelike boundary using an
appropriate light-cone frame.

In order to have an explicit description of the black hole evaporation process, let us
now model it in a simple way, as a sequence of steps in which the Hawking flux can be
taken as constant. This allows us to fix t− = constant in Equation (33), which is given
in terms of a running black hole mass M̂ 6 M. M̂ will decrease during the evaporation
process, with M̂→ 0 as the end point approaches.

It is well known that the stress-energy tensor describing the outgoing Hawking radi-
ation is given in terms of the Schwarzian derivative of the static coordinate transforma-
tions (17) connecting the Schwarzschild and the conformal gauges, and reads [43]:

〈0|T−−|0〉 =
N
48

a2Λ2. (47)

This equation determines the function τ−− in Equation (44) and allows writing explicitly
the singularity Equation (45)

2φ0

Λα2 +

√
2M̂φ0

Λ
(
x+ + x−

)
−
(

x− − x+
)NM̂Λ

24φ0

(
(x−)2

2
+ C0x− + C1

)
+

NM̂Λ
12φ0

(
C2 + C1x− + C0

(x−)2

2
+

(x−)3

6

)
= 0,

(48)

where we used the expression of the (running) ADM mass, i.e., M̂ = Λφ0a2/2, while the
Cis are integration constants. From Equation (47), it immediately follows

C2 + C1x− + C0
(x−)2

2
+

(x−)3

6
> 0. (49)

Evaluating Equation (48) on the asymptotic boundary x+ = x−, we obtain

f (x−) ≡ 2φ0

Λα2 + 2

√
2M̂φ0

Λ
x− +

NM̂Λ
12φ0

(
C2 + C1x− + C0

(x−)2

2
+

(x−)3

6

)
= 0. (50)
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As expected, the function f (x−) is positive definite so that there is no future asymptotic
singularity.

It is important to stress that M̂ becomes smaller and smaller as the evaporation pro-
ceeds. In our simplified picture, the apparent black hole horizon shrinks as the evaporation
proceeds and the asymptotic timelike observer will never hit the singularity. At the end
of evaporation, we have M̂ = 0 and the Hawking flux also vanishes. From Equation (48)
follows that the space-time boundary disappears, i.e., the solution becomes the LDV solu-
tion (18). This also holds true for the general solution (44). τ−− must be a monotonically
decreasing function of x− and a→ 0 at the end point of the evaporation process, implying
that solution (44) becomes the LDV given by Equation (18).

One should keep in mind that, although the asymptotic observer does not encounter
any future singularity during the evaporation process, the AdS0 space-time is not geodesi-
cally complete, as can be seen by the fact that radial null geodesics suddenly terminate at
finite length at r → 0, i.e., at the space-time singularity φ = 0 (see Equation (3)), which
prevents them from being continued beyond [66]. This is of course due to the fact that we
cut the space-time at r = 0 (see Section 2.1). Only its maximal extension, i.e., the full AdS2
space-time, is singularity free and geodesically complete. On the other hand, the stability
argument of [44] can be used again to argue that the true end point of the evaporation
process will be the CDV with φ0 = 0, full AdS2 space-time, consistent with unitarity.

In the next sections, we will confirm this conclusion by investigating the evolution of
the entanglement entropy of Hawking radiation during evaporation and by constructing
its Page curve.

4. Entanglement Entropy of 2D AdS Black Holes

In the present and the following sections, we tackle the information problem during
the evaporation process of a 2D JT black hole. We will do this by taking into account the
entanglement entropy of both black hole and Hawking radiation. The peculiarities of 2D
AdS gravity will allow us to have a precise, quantitative description of the EE of the hole
and of Hawking radiation during the entire evaporation process, which accounts for the
information flow between them.

In two space-time dimensions, black hole entropy can be fully ascribed to quantum
entanglement. This is due to the fact that the 2D Newton constant (parameterized by
the dilaton) is wholly induced by quantum fluctuations of the geometry. This can be
shown by working in the AdS/CFT correspondence framework, which peculiarly has
a non-holographic realization in two space-time dimensions in terms of a dual (chiral)
two-dimensional CFT (CFT2) living in the bulk [67,68]. The existence of this dual quantum
gravity theory is a crucial ingredient because it allows computing the EE of the JT black
hole in terms of the EE of the dual CFT2 in the curved gravitational background [45]

S(bh)
ent =

c
6

ln
(

L
πrh

sinh
πrh

L

)
, (51)

where c = 12φ0 is the central charge of the CFT (φ0 plays the role of the 2D inverse Newton
constant) and L, rh are the AdS length (related to the inverse of the cosmological constant,
i.e., L = Λ−1) and the black hole radius, respectively. Notice that Equation (51) holds true
only when we are allowed to use our effective description of AdS2 quantum gravity in
terms of the dual CFT2 with c � 1, corresponding to the weakly-coupled regime of the
gravitational theory, φ−1

0 � 1.
The computations of [45], leading to Equation (51), are performed using an Euclidean

instanton and can therefore be easily extended to the case of the AdS−, i.e., a black hole
with “negative mass”. In the following, we will make use of this result to describe the EE
of the evaporating black hole interior in a simple way.
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The thermal, Bekenstein–Hawking (BH) entropy SBH of AdS2 black holes can be
derived as the leading term in the large mass expansion of the EE (51). In fact, for large
black holes, rh/L� 1, S(bh)

ent gives the BH entropy with a subleading log term:

S(bh)
ent ≈ SBH − 2φ0 ln SBH . (52)

Equation (51) describes the entanglement entropy of an eternal AdS black hole and is in
agreement with several results, which appeared in the literature:

• Classical space-time structure, in particular its connectedness, emerges out of quantum
entanglement [48–50];

• The BH entropy has its origin in the entanglement entropy of the two edges of maxi-
mally extended AdS2 space-time when the degrees of freedom (DOF) in one edge are
traced out [69]. The result (51) is a slightly different realization of the idea proposed
in [69], where the entanglement entropy is generated by two copies of a CFT in an
initial entangled state and by using a thermo-field double. Equation (51) is instead
obtained using a single CFT defined in the maximally extended space-time by tracing
the degrees of freedom (DOF) in half of it;

• Holographic entanglement entropy formulas [33,46,47] give the EE of maximally
extended AdS space-time in terms of the area of co-dimension two minimal surfaces,
which can be identified with the event horizon.

Altogether, these results indicate that black holes are quantum gravity objects (possibly
at horizon scale) for which the relevant DOF are not localized near the event horizon, as a
simple-minded interpretation of the Bekenstein–Hawking area law would suggest. The
horizon area dependence of the BH entropy, and hence its holographic nature, should be
therefore related to the area scaling law of EE in QFT.

Equation (51), together with the microscopic derivation of the BH formula given
in [21], gives a simple and intuitive characterization of the information content of an eternal
JT black hole. As shown in [21], the BH entropy simply counts the microstates of the CFT2
which are dual to the black hole of mass M, whereas Equation (51) tells us that information
is stored in the black hole in the form of quantum correlations localized in the black hole
interior. On the other hand, Equation (51) does not reveal if and how the information stored
in the black hole comes out during evaporation. In order to understand this aspect, we
need to discuss the Page curve and the information flow for the evaporating JT black hole.
This will be the subject of the next section.

5. Information Flow and the Page Curve for Evaporating JT Black Holes

Let us now consider the black hole evaporation process in terms of the information
flow between the shrinking black hole interior and its exterior, and the information carried
by Hawking radiation. We will describe this in a quantitative way, by computing the EE of
the black hole with its exterior and the EE of Hawking radiation. We will use a simplified
description of the process in terms of a sequence of static states characterized by constant
black hole radius rh, so that the black hole EE can be given as a function of rh at any time.

As seen in the previous sections, this simplified picture is fully justified in the JT
gravity context, since the evaporation process, including backreaction can be described
as a sequence of static states (see Section 3.2). We will also consider the simplest case in
which the Hawking radiation is given by N right-moving species of 2D massless scalar
fields fi. This will result in a particularly symmetric situation in which Hawking radiation
is treated in the same way as AdS2 quantum gravity, i.e., a (chiral) CFT2 with central charge
c = N. Although this may not be the most general situation, it is simple enough to tackle
the conceptual puzzles involved in the black hole evaporation.

5.1. Hawking Radiation

In order to describe Hawking radiation, we parameterize the 2D black hole geometry
using, as usual, two sets of light-cone coordinates defined in the previous sections. The
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coordinates u = t + r, v = t − r, pertaining to the frame of the asymptotic observer,
are expressed in terms of its time t and radial coordinate r and cover the black hole
exterior only. The coordinates U = x+, V = x− define, instead, the frame of the inertial
observer falling through the black hole horizon, with a related time coordinate τ = (x+ +
x−)/2. Correspondingly, the asymptotic observer will expand quantum fields using bν, b†

ν

modes of a given t-frequency ν, whereas the infalling observer will use aµ, a†
µ modes of a

given τ-frequency µ. The modes bν can be expressed in terms of aµ, a†
µ by a Bogoliubov

transformation [1,4,70]. In this way the a-vacuum |a〉a (the quantum vacuum for the
infalling observer) is seen as a bath with a thermal spectrum, at the black hole Hawking
temperature TH , by the asymptotic observer.

The modes bν are not enough to calculate the EE of Hawking radiation, as they are
only defined in the outside region (region I). Since Hawking radiation is entangled with
the black hole interior, we need to introduce the quantum field modes b̂ν, which are defined
in the black hole interior (region I I) [1,4]. Denoting with H the Hamiltonian of the full
system, the mode b†

ν raises the energy by a quantum ν: [H, b†
ν ] = νb†

ν (i.e., it creates a
particle of energy ν in the outside region I), whereas b̂†

ν lowers the energy by a quantum
ν: [H, b̂†

ν ] = −νb̂†
ν (i.e., it creates a particle of negative energy −ν in the interior region I I).

One can easily show that the a-vacuum can be expressed in terms of b†
ν and b̂†

ν as [4]

|a〉a = A exp
(∫ dν

2π
e−ν/TH b†

ν b̂†
ν

)
|0〉b,b̂, (53)

withA normalization factor and |0〉b,b̂ the b-vacuum. This equation tells us that the b-modes
of Hawking radiation are entangled with the b̂ modes in the black hole interior.

5.2. The Page Curve

During the evaporation process, the thermal entropy of a JT black hole of initial radius
rh = RH and final radius rh = 0 decreases from the initial value SBH(RH) = 2πφ0ΛRH to
the final SBH(0) = 0. Correspondingly, the thermal entropy of the Hawking radiation SR,
which is roughly proportional to the number of quanta emitted, will grow from SR = 0 to
SR ≈ MBH/TH ≈ SBH(RH). This is the essence of the information loss problem: assuming
the JT black hole is formed by the collapse of a quantum pure state, the evaporation process
transforms a pure into a mixed quantum state.

Conversely, if we assume that evolution is unitary or, more precisely, if we assume the
validity of the so-called “Central Dogma” [22], the quantum state of Hawking radiation has
to be purified, and so its EE SE must go to zero in the final stages of the evaporation process.

Although there is no general consensus about the mechanism that purifies the radia-
tion, Page has shown, using general principles of information theory, that information can
only come out at late times. The result is the famous Page curve for SE [29,30]. SE starts
from zero and initially grows, closely following the thermal entropy of the radiation SR,
until the latter intersects SBH at approximately half-way of the evaporation process. At the
intersection point t = tPage, called Page time, SE reaches a maximum and then decreases,
closely following the Bekenstein–Hawking entropy curve SBH at late times. At the end of
the evaporation, SE becomes zero again (the final state is a pure state).

5.3. 2D Black Hole Information

A crucial issue in explaining the Page curve is to understand the way information
can flow from the black hole into late Hawking radiation, so that the radiation final state
can be purified. Recent attempts, such as the wormhole and the island proposal (see,
e.g., [22,31,32,51,54–60]) have been focused on effects of the (Euclidean) low-energy gravi-
tational theory, which may be responsible for transferring information from the evaporating
black hole interior to the outside radiation. This latter approach is not completely satis-
factory because it leaves the question about the microscopic origin of these low-energy
effects unanswered. Despite some interesting proposals (see, e.g., [23–25,27,28,71–76]), we
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are far away from having a clear hint of how the N ∼ SBH quantum states building the
black hole may evolve unitarily during black hole evaporation, transferring completely the
information of the initial pure state, which collapsed to form the black hole, into late time
Hawking radiation.

The strategy we follow in this paper is to use a simplified model for black hole
evaporation, which allows connecting the microscopic effective description of the black
hole in terms of a 2D CFT with the evaporation process. This is possible on account of the
simplicity and peculiarities of 2D JT gravity. In fact, it has been observed that the black hole
entropy can be fully ascribed to quantum entanglement if the Newton constant is induced
by quantum fluctuations [77]. The original version of the proposal referred to quantum
fluctuations of matter fields, but, in the context of the AdS/CFT correspondence in 2D, it
has been extended to the CFT degrees of freedom dual to 2D AdS gravity. The peculiarity of
the AdS/CFT correspondence in 2D is the fact that it has a bulk/bulk realization, in terms
of a chiral CFT living in 2D [21,67,68]. It follows that thermodynamics and the evaporation
process of the JT black hole allow for an effective description in terms of a 2D CFT with
central charge c given by the inverse of 2D Newton constant φ0 [21]:

c = 12φ0. (54)

In particular, this means that black hole entropy has its origin in the quantum entanglement
of c microscopic DOF, which gives an effective description of AdS2 quantum gravity.
S(bh)

ent equals the thermal entropy SBH for large black holes, i.e., when thermal fluctuations
dominate. In this regime, we expect a semiclassical description to hold, i.e., the black hole
to be described by a quantum, thermal, CFT of central charge c in a classical gravitational
background endowed with an event horizon. Away from this semiclassical regime, we
have contributions coming from the quantum entanglement of the microscopic DOF. As
expected, these corrections are negative (see Equation (52)). In this generic quantum gravity
regime, we cannot simply describe the system as a QFT in a fixed background geometry
endowed with an event horizon. We expect quantum contributions to the geometry to
become relevant, the classical notion of horizon to loose much of its meaning and the inner
structure of the black hole to play a role in the black hole information problem.

These features are also evident in the computations of [45] leading to Equation (51).
The EE is calculated using an Euclidean instanton and it arises, similarly to [69], by tracing
out the CFT degrees of freedom over part of the space. In this description, the BH entropy
is not simply the Boltzmann entropy of a CFT living in a boundary (the stretched horizon
of the black hole) of a structureless interior black hole space-time, but it is rather due to
quantum entanglement of the black hole interior with the outside world. This change of
perspective also implies that the holographic nature of the Bekenstein–Hawking formula
has its roots in the scaling of the EE with the area of the boundary separating the observable
from the unobservable region.

The interpretation of the black hole entropy as the semiclassical limit of the EE of some
microscopic quantum gravity (QG) DOF localized in the black hole interior is also consistent
with the proposal of [78], which sees black hole thermodynamics as a manifestation of
long-range quantum gravity effects. In particular, the (generalized) thermal equivalence
principle (GTEP) [79], which is used to explain the Hawking temperature, should be seen
as a universal property of semiclassical horizons in the sense explained above.

Presently, we do not have a precise formulation of AdS2 quantum gravity, but only
a low-energy effective description in terms of a 2D CFT with central charge given by
Equation (54). We will therefore use an extremely simplified model to investigate the
implications of our quantum entanglement-based description for the black hole information
problem. Our discussion will remain quite general and based on general principles of QFT,
so that we will not need to know an exact formulation of AdS2 quantum gravity. We will
merely assume that such a formulation does indeed exist.
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5.4. Entanglement Entropy of Hawking Radiation

In our simplified model, we describe black hole evaporation as the emission of Hawk-
ing radiation (the modes bν of positive frequency ν) in the exterior region together with
the formation of a state of negative mass (the modes b̂ν of negative frequency −ν) in the
black hole interior. We have already seen that the two sets of modes are entangled and
can be considered as two subsets,Hb,Hb̂ of the full Hilbert space spanned by the modes
a. The EE of the radiation SE is the von Neumann entropy obtained by partial tracing the
full density matrix ρbb̂ overHb̂. Well-known properties of the EE imply that SE can be also
calculated by partial tracing the density matrix overHb

SE = −Trb̂ρb̂ ln ρb̂, (55)

where ρb̂ := Trbρbb̂.
In order to simplify the calculation of SE, we will assume that all the modes of negative

frequency −ν will be localized in a connected space-like slice of size Σ 6 RH of the black
hole interior, where RH is the initial black hole radius. This is not necessarily true. We
could also have contributions coming from several disconnected regions—islands using
the terminology of [22,31,32,55,56]. However, we do not expect this contribution to change
at least the qualitative behavior of our final results. With this assumption, we consider the
localized, connected structure generated by clumping the b̂-modes of negative energy as
a 2D black hole of negative energy in AdS2, with Σ playing the role of the radius of the
negative mass black hole. The entanglement entropy of an AdS2 black hole with negative
mass has been calculated in [45]. Using this result, we obtain

SE =
N
6

ln
(
L
πδ

sin
πΣ
L

)
, (56)

where N is the number of species of fields and L, δ are the IR, UV cutoffs respectively. Being
Σ 6 RH , we can identify the IR cutoff as the initial black hole radius: L = RH . Let us now
denote with rh the time-dependent value of the black hole horizon during evaporation. rh
runs from rh = RH at the beginning of evaporation to rh = 0 at the end. Correspondingly,
Σ = RH − rh runs from 0 to RH . We get therefore for the EE entropies of the black hole and
Hawking radiation

SE(rh) =
N
6

ln
[

RH
πδ

sin
π(RH − rh)

RH

]
, S(bh)

ent (rh) =
c
6

ln
(

δ

πrh
sinh

πrh
δ

)
, (57)

where we have used the fact that the UV cutoff is of order L (see [45]) and set δ = L in
Equation (51).

The entanglement entropy (57) has well-known UV divergences caused by the con-
tribution of arbitrarily short wavelength modes. In our case, these divergences manifest
themselves at the beginning (rh = RH) and end point (rh = 0) of evaporation, when SE
blows up. At these points, we have the leading logarithmic divergences

SE '
N
6

ln
rh
δ

, SE '
N
6

ln
(

RH − rh
δ

)
. (58)

The UV regulator δ of the dual CFT can be used to remove these divergences just
by cutting off rh at distances above RH − δ and below δ. The regularized EE S(reg)

E can

then be obtained just by cutting the curve at the points rh,2 = RH
π arcsin

(
πδ
RH

)
and rh,1 =

RH
π

[
π − arcsin

(
πδ
RH

)]
where SE vanishes (see Figure 2). For small values of δ/RH , the

intersection points become rh,2 ≈ δ and rh,1 ≈ RH − δ.
Alternatively, we can subtract the finite SE(rh = δ) term from SE in such a way

that the regularized EE of radiation S(reg)
E = SE(rh) − − − SE(rh = δ) always vanishes
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exactly at rh = δ and rh = RH − δ. Notice that the term we are subtracting SE(rh = δ) =
N
6 ln

(
RH
πδ sin πδ

RH

)
consistently vanishes in the limit δ/RH → 0.

Figure 2. Regularized entanglement entropy S(reg)
E of the radiation as a function of the black hole

radius rh, for the following selected values of the parameters: N = 1 and RH/δ = 1000. We plot SE

for δ ≈ rh,2 6 rh 6 rh,1 ≈ RH − δ. SE starts from zero at rh ≈ δ, reaches its maximum at the Page
radius rh = rPage = RH/2 when the black hole has reduced its size by a factor 1/2, then decreases
down to zero at the end of the evaporation process, at rh ≈ RH − δ. This behavior is consistent with
a unitary evaporation process and has the form of the Page curve. Note that time runs towards
decreasing values of rh.

5.4.1. Thermal Entropy of Hawking Radiation and Relation between N and c

The thermal entropy SR of Hawking radiation gives an upper bound for its entangle-
ment entropy SE and characterizes the thermodynamical regime of the radiation, where
thermal correlations dominate over the quantum ones. This allows for a coarse grained
description of the radiation in terms of a thermal density matrix. The computation of SR
and the use of simple thermodynamical arguments will also allow us to find a relation
between the central charge c of the CFT describing the JT black hole and the number of
field species N in the Hawking radiation.

We derive the thermal entropy of the Hawking radiation at large temperature by first
computing the von Neumann entropy of a single mode in a thermal bath at temperature T
and then integrating over the total number of modes. We put the system in a 1D box of
finite size `, which therefore acts as an IR cutoff. The spectrum for the eigenvalues Em of
the Hamiltonian of the system will be therefore discrete. At large T, we can take Em = mω,
where m is a (positive) integer and ω is of order 1/`.

The state (53) corresponds to a thermal density matrix ρ of a single mode

ρmm′ = δmm′
e−βEm

Z , (59)

where β = 1/T, with T temperature of the thermal bath in thermal equilibrium with the
hole. Z is the partition function

Z = Tr
(

e−βĤ
)
=

∞

∑
m=0

e−mω/T =
eω/T

eω/T − 1
=
(

1− e−ω/T
)−1

, (60)

where Ĥ is the Hamiltonian of the system. Since we are considering T � 0, we can neglect
the contribution of the vacuum.
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The normalized eigenvalues of the density matrix (59) thus are:

pm =
(

1− e−ω/T
)

e−mω/T . (61)

It is easy to check that the normalization condition Tr ρ = 1 is satisfied. The corresponding
von Neumann entropy of the mode is:

Sω = −
∞

∑
m=0

pm ln pm =
ω/T

eω/T − 1
− ln

(
1− e−ω/T

)
. (62)

To compute the total entropy, we need to integrate over the number of modes N (ω).
If we consider the 1D volume `, each mode has wavenumber k = mπ/`, where m is again a
positive integer. However, k = ω, so m = ω`/π. The total number of modes in the m-space
is N = N 1

2 · 2m = Nm, where 2m is the volume of the 1D box, the factor 1/2 accounts for
the fact that m is positive and N for the number of species of fields.
In terms of ω, N (ω) = N `

π ω, and thus, we have

SR =
∫

Sω dN (ω) = N
`

π

∫ ∞

0

[
ω/T

eω/T − 1
− ln

(
1− e−ω/T

)]
dω = N

π

3
T `. (63)

As expected, the coarse-grained thermal entropy of the Hawking radiation is given by
the thermal entropy for a 2D CFT (massless bosons) on the plane with IR regulator ` and
central charge given by:

cHR = N. (64)

As Hawking radiation lives in the AdS2 background, the most natural choice for the IR
regulator ` is to be of the order of the AdS length L. In the following, we will therefore set
` = πL.

At first sight, the use of L both as the UV regulator δ of the CFT dual to AdS2 quantum
gravity and as the IR regulator ` for Hawking radiation in the AdS2 background seems
contradictory. This apparent contradiction can be solved by the UV/IR connection in the
context of the AdS/CFT correspondence [80], which relates the IR cutoff of the gravity
theory with the UV cutoff of the dual CFT.

So far, the central charge (54) of the CFT describing AdS2 quantum gravity and
the central charge (64) of the CFT describing the Hawking radiation are two completely
independent quantities. Let us now use a standard thermodynamical argument to show
that c = cHR. Let us consider the emission of an infinitesimal amount of energy dEq
from a black hole of radius rh and corresponding mass M and temperature TH given
by Equations (4) and (5) as a reversible process. After this emission, the black hole mass
decreases to M − dEq, its radius decreases to rh − drh, whereas the black hole entropy

decreases by the amount dSq ≡
dEq
TH

. Conservation of energy implies:

φ0

2L3 (rh − drh)
2 + dEq =

φ0

2L3 r2
h. (65)

Neglecting terms of order O
(
dr2

h
)

and using Equation (5) for the black hole temperature,
we have

dEq =
φ0

L3

(
2πL2

)2
TH dTH . (66)

This gives the entropy change for the hole:

dSq =
dEq

T
= 4π2φ0L dTH . (67)
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Equating this change of thermal entropy with that of radiation, given by Equation (63),
we obtain

N = 12φ0 = c, (68)

where we used Equation (54). This is a non-trivial relation between the number of species
of fields N in the Hawking radiation and the central charge c of the CFT dual to the AdS2
quantum gravity. The result is a consequence of the interplay between thermodynamics
and field-theoretical features (in particular the AdS/CFT correspondence). Specifically, it
follows from (1) the reversible transfer of coarse grained entropy from the black hole to the
radiation [81,82] dSBH = −dSR, (2) the description of both the black hole and the Hawking
radiation in terms of a 2D CFT and the related linear scaling (63) of the entropy with the
temperature, which allows writing the number of species N in the Hawking radiation in
terms of the (inverse of) 2D Newton constant φ0 and (3) the AdS/CFT correspondence
which implies Equation (54), i.e., it allows writing the central charge of the CFT dual to
AdS2 gravity in terms of φ0 .

It is also interesting to notice that the derivation above is fully consistent with a
corpuscular description of the black hole [78], i.e., its description in terms of a bound state
of n quanta of N = c number of species, with energy of the order of the temperature of the
black hole, i.e., Eq ∼ T = rh/2πL2. The corresponding infinitesimal change of the black

hole mass when n quanta are emitted is therefore dM ∼ Eqdn⇒ dn ∼ dM/Eq ∼ 2πL2

rh
dM.

However, dM ∼ N
12L3 rh drh, and hence:

dn ∼ π

6L
Ndrh ⇒ n ∼ π

6L
Nrh = SBH . (69)

In the corpuscular description, Hawking evaporation is just the transfer of energy and
entropy from n quanta building the black hole to the n Hawking radiation quanta. Again,
energy and entropy conservation require the number of species building the black hole to
be the same of that composing Hawking radiation.

5.4.2. Entanglement Entropy and Page Curve for the JT Black Hole

In the previous sections, we have computed all quantities characterizing the black hole
and Hawking radiation, which are relevant from the point of view of quantum information
and thermodynamics, namely SBH (Equation (6)), SR (Equation (63)), S(reg)

E (left expression
in Equation (57))

SR =
πc
6

RH − rh
δ

; (70a)

S(reg)
E =

c
6

ln
(

RH
πδ

sin
πrh
RH

)
; (70b)

SBH =
πc
6

rh
δ

. (70c)

We can now plot and discuss the Page curve for the JT black hole.
The Page curve for the JT black hole is shown in Figure 3, where it is compared with

the thermal entropy of Hawking radiation and to the Bekenstein–Hawking entropy of the
black hole. Note that time increases towards decreasing values of rh, from the beginning
t = 0 to the ending t = tE of evaporation. This corresponds to rh decreasing from the
initial regularized black hole radius rh = RH − δ to the final regularized radius rh = δ. The
plots show a behavior of Sreg

E which is fully consistent with unitary evolution during the
evaporation process and has the form of the Page curve. The EE of radiation starts from
zero at rh = δ, reaches its maximum when the black hole has reduced its size by a factor
1/2, rh = RH/2, then decreases monotonically down to zero at the end of the evaporation
process, at rh = RH − δ.
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Conversely, the EE of the black hole, which for large (rh � L) black hole is well
approximated by the thermodynamical entropy SBH , starts from its maximum value at
rh = RH , then monotonically decreases to zero at rh = 0.

Figure 3. Qualitative plot of the entanglement entropy S(reg)
E of the radiation, thermal entropy of the

radiation SR and the Bekenstein–Hawking entropy SBH as a function of rh. We show the curves for
the following selected values of the parameters: RH = 100, N = 1 and δ = 20. As δ approaches zero,

the two zeros of S(reg)
E approaches to rh = 0 and rh = RH . Note that the time runs towards decreasing

values of rh.

The Bekenstein–Hawking entropy SBH and the thermal entropy of radiation SR (green
and orange solid lines, respectively) behave linearly as a consequence of the CFT description
and of the space-time dimensionality. The regularized entanglement entropy S(reg)

E closely
tracks the behavior of the thermal entropy of the radiation SR and the Bekenstein–Hawking
SBH curves at the beginning and at the end of evaporation, respectively, while in the other
stages, it is determined by the behavior of the ln sin function. This is because, initially, most
of the correlations in the radiation have thermal nature. As the evaporation proceeds, S(reg)

E
begins to deviate strongly from SR. At half evaporation, at the Page time, rh = RH/2 in
our 2D case, SE reaches its maximum and the correlations in the radiation begin to extract
information from the black hole. At the end of the evaporation process, when most of
the information has been extracted from the hole, SE catches up with SBH and becomes
thermal again.

The curve for S(reg)
E is symmetric with respect to the “Page radius” RH/2. This seems,

again, to be a consequence of the low D = 2 space-time dimensionality.
It is important to stress again that, thanks to the equality between N and the central

charge c of the CFT dual to AdS2 gravity, Equation (68), the SE curve is always bounded
from above by the coarse-grained entropies SR and SBH . As in Page’s argument [29], this is
due to the fact that the latter two retain less information, being related to thermal states,
representing thus the upper bound of the entanglement entropy.

6. Conclusions

In this paper, we have investigated the semiclassical dynamics of 2D dilatonic JT black
holes and derived the Page curve for their entanglement entropy. Our results are fully
consistent with unitarity of the evaporation process. Specifically, we have shown that the
end point of the evaporation is 2D AdS space-time with vanishing dilaton—a perfectly
regular state with zero mass and entropy. We have also shown that, during the evaporation,
the behavior of the entanglement entropy of the radiation agrees with Page’s argument and
with information preservation. In fact, the EE of the radiation initially grows, following a
thermal behavior, reaches a maximum at half-way of the process, and then goes down to
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zero, following the Bekenstein–Hawking entropy of the black hole. Moreover, the existence
of a dual CFT description for the JT black hole and usual thermodynamic arguments imply
a non-trivial identification of the central charge of the CFT dual to AdS2 gravity with the
number of species of fields in the Hawking radiation.

We have used a simplified model to discuss the semiclassical dynamics and to describe
the black hole interior. In particular, we have modeled the evaporation process by consid-
ering the contribution of a single, connected configuration of negative mass—or island,
forming and growing inside the positive-mass black hole. Of course, contributions of sev-
eral disconnected parts may be present. Nonetheless, we expect our simplified description
to give the leading contribution.

One nice feature of our model is that one of the main assumptions of the Central
Dogma—the existence of a description of the black hole in terms of N ∼ SBH quantum
states—certainly applies. Although the precise mechanism that allows information to
escape from the black hole interior is not fully clear (this would require a precise description
of AdS2 quantum gravity), the existence of an underlying dual CFT dynamics drastically
improves our understanding of the process of the information flow. On the one hand,
our outcome represents an independent confirmation of several interesting results which
recently appeared in the literature [37,51,54], in which the Page curve for 2D black holes is
derived either using higher-dimensional theories or an holographic entropy formula. On
the other hand, our model allows us to compute the Page curve for the EE entropy in a
closed form and in a rather simple manner, and to keep track of the quantum mechanical
correlations between the interior and the exterior of the black hole in a natural way, by
working entirely in the 2D theory context.

Another interesting feature of our model and our results is that they explain in a
simple and intuitive way how geometry and quantum entanglement are both essential
to save unitarity in the black hole evaporation process. This happens in a way which is
fully consistent with the ER = EPR proposal and the emergence of the classical space-time
structure out of quantum entanglement [50]. The informational content of the eternal
JT black holes can be considered as the information contained in one of the two edges
of the maximally extended AdS2 space-time [69]. As evaporation proceeds, after the
Page time, information extraction from the hole occurs in two steps. During the first one,
which terminates with the black hole setting down to the AdS0 vacuum, only quantum
correlations in one edge of AdS2 are reconstructed. In the second one, characterized by the
phase transition from AdS0 to the CDV (the two-edged AdS2), the full quantum correlations
in the two edges are restored, leaving behind a final pure state for the radiation and a
regular space-time geometry. Unfortunately, our effective theory cannot be used to describe
this second step, in particular to explain how quantum correlations may emerge between
classically disconnected regions of space-time. It is quite obvious that, for these purposes, a
full AdS2 quantum gravity theory is needed. Actually, the phase transition by itself is most
likely a signal of the breakdown of our effective description and of the reorganization of
the relevant DOF.

Apart from its simplicity, our model has also other drawbacks. It is a 2D model with
AdS asymptotics and it is not clear to what extent it may capture features of asymptotically
flat 4D black holes. The JT model appears in a variety of cases as a description of the near-
extremal near-horizon regime of charged and rotating 3D, 4D (and also D-dimensional)
black holes (see, e.g., [42,43,62,83–88]). Thus, our model is a good approximation for this
kind of black holes in the aforementioned regime, but its validity for generic black holes
has to be further investigated.

Author Contributions: Both authors have contributed equally to this manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by INFN, research initiative QUAGRAP.

Institutional Review Board Statement: Not applicable.



Entropy 2022, 24, 101 22 of 24

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220; Erratum in Commun. Math. Phys. 1976,

46, 206. [CrossRef]
2. Hawking, S.W. Black hole explosions. Nature 1974, 248, 30–31. [CrossRef]
3. Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D 1976, 14, 2460–2473. [CrossRef]
4. Polchinski, J. The Black Hole Information Problem. arXiv 2016, arXiv:1609.04036.
5. Harlow, D. Jerusalem Lectures on Black Holes and Quantum Information. Rev. Mod. Phys. 2016, 88, 015002. [CrossRef]
6. Mathur, S.D. The Information paradox: A Pedagogical introduction. Class. Quant. Grav. 2009, 26, 224001. [CrossRef]
7. Unruh, W.G.; Wald, R.M. On evolution laws taking pure states to mixed states in quantum field theory. Phys. Rev. D 1995, 52,

2176–2182. [CrossRef]
8. Unruh, W.G.; Wald, R.M. Information Loss. Rept. Prog. Phys. 2017, 80, 092002. [CrossRef]
9. Banks, T.; Susskind, L.; Peskin, M.E. Difficulties for the Evolution of Pure States Into Mixed States. Nucl. Phys. B 1984, 244,

125–134. [CrossRef]
10. Chen, P.; Ong, Y.C.; Yeom, D.H. Black Hole Remnants and the Information Loss Paradox. Phys. Rept. 2015, 603, 1–45. [CrossRef]
11. Mathur, S.D. The Fuzzball proposal for black holes: An Elementary review. Fortsch. Phys. 2005, 53, 793–827. [CrossRef]
12. Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [CrossRef]
13. Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 1999, 38, 1113–1133.

[CrossRef]
14. Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 1998, 428,

105–114. [CrossRef]
15. Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [CrossRef]
16. Aharony, O.; Gubser, S.S.; Maldacena, J.M.; Ooguri, H.; Oz, Y. Large N field theories, string theory and gravity. Phys. Rept. 2000,

323, 183–386. [CrossRef]
17. Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J. Black Holes: Complementarity or Firewalls? J. Energy Phys. 2013, 2, 062.

[CrossRef]
18. Almheiri, A.; Marolf, D.; Polchinski, J.; Stanford, D.; Sully, J. An Apologia for Firewalls. J. Energy Phys. 2013, 9, 018. [CrossRef]
19. Witten, E. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 1998, 2,

505–532. [CrossRef]
20. Strominger, A. Black hole entropy from near horizon microstates. J. Energy Phys. 1998, 2, 009. [CrossRef]
21. Cadoni, M.; Mignemi, S. Entropy of 2-D black holes from counting microstates. Phys. Rev. D 1999, 59, 081501. [CrossRef]
22. Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. The entropy of Hawking radiation. arXiv 2020,

arXiv:2006.06872.
23. Giddings, S.B. Models for unitary black hole disintegration. Phys. Rev. D 2012, 85, 044038. [CrossRef]
24. Giddings, S.B.; Shi, Y. Quantum information transfer and models for black hole mechanics. Phys. Rev. D 2013, 87, 064031.

[CrossRef]
25. Giddings, S.B. Nonviolent nonlocality. Phys. Rev. D 2013, 88, 064023. [CrossRef]
26. Giddings, S.B. A ”black hole theorem”, and its implications. arXiv 2021, arXiv:2110.10690.
27. Zhang, B.; Cai, Q.Y.; Zhan, M.S.; You, L. Information conservation is fundamental: Recovering the lost information in Hawking

radiation. Int. J. Mod. Phys. D 2013, 22, 1341014. [CrossRef]
28. Corda, C. Time dependent Schrödinger equation for black hole evaporation: No information loss. Ann. Phys. 2015, 353, 71–82.

[CrossRef]
29. Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [CrossRef]
30. Page, D.N. Time Dependence of Hawking Radiation Entropy. JCAP 2013, 9, 28. [CrossRef]
31. Penington, G.; Shenker, S.H.; Stanford, D.; Yang, Z. Replica wormholes and the black hole interior. arXiv 2019, arXiv:1911.11977.
32. Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. Replica Wormholes and the Entropy of Hawking Radiation.

J. Energy Phys. 2020, 5, 13. [CrossRef]
33. Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 2006, 96, 181602.

[CrossRef]
34. Engelhardt, N.; Wall, A.C. Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime. J.

Energy Phys. 2015, 1, 73. [CrossRef]
35. Penington, G. Entanglement Wedge Reconstruction and the Information Paradox. J. Energy Phys. 2020, 9, 2. [CrossRef]
36. Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an

evaporating black hole. J. Energy Phys. 2019, 12, 63. [CrossRef]

http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1038/248030a0
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/RevModPhys.88.015002
http://dx.doi.org/10.1088/0264-9381/26/22/224001
http://dx.doi.org/10.1103/PhysRevD.52.2176
http://dx.doi.org/10.1088/1361-6633/aa778e
http://dx.doi.org/10.1016/0550-3213(84)90184-6
http://dx.doi.org/10.1016/j.physrep.2015.10.007
http://dx.doi.org/10.1002/prop.200410203
http://dx.doi.org/10.1063/1.531249
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP09(2013)018
http://dx.doi.org/10.4310/ATMP.1998.v2.n3.a3
http://dx.doi.org/10.1088/1126-6708/1998/02/009
http://dx.doi.org/10.1103/PhysRevD.59.081501
http://dx.doi.org/10.1103/PhysRevD.85.044038
http://dx.doi.org/10.1103/PhysRevD.87.064031
http://dx.doi.org/10.1103/PhysRevD.88.064023
http://dx.doi.org/10.1142/S0218271813410149
http://dx.doi.org/10.1016/j.aop.2014.11.002
http://dx.doi.org/10.1103/PhysRevLett.71.3743
http://dx.doi.org/10.1088/1475-7516/2013/09/028
http://dx.doi.org/10.1007/JHEP05(2020)013
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://dx.doi.org/10.1007/JHEP01(2015)073
http://dx.doi.org/10.1007/JHEP09(2020)002
http://dx.doi.org/10.1007/JHEP12(2019)063


Entropy 2022, 24, 101 23 of 24

37. Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y. The Page curve of Hawking radiation from semiclassical geometry. J. Energy
Phys. 2020, 3, 149. [CrossRef]

38. Almheiri, A.; Mahajan, R.; Maldacena, J. Islands outside the horizon. arXiv 2019, arXiv:1910.11077.
39. Jackiw, R. Lower Dimensional Gravity. Nucl. Phys. B 1985, 252, 343–356. [CrossRef]
40. Teitelboim, C. Gravitation and Hamiltonian Structure in Two Space-Time Dimensions. Phys. Lett. B 1983, 126, 41–45. [CrossRef]
41. Grumiller, D.; Kummer, W.; Vassilevich, D.V. Dilaton gravity in two-dimensions. Phys. Rept. 2002, 369, 327–430. [CrossRef]
42. Cadoni, M.; Mignemi, S. Classical and semiclassical properties of extremal black holes with dilaton and modulus fields. Nucl.

Phys. B 1994, 427, 669–696. [CrossRef]
43. Cadoni, M.; Mignemi, S. Nonsingular four-dimensional black holes and the Jackiw-Teitelboim theory. Phys. Rev. D 1995, 51,

4319–4329. [CrossRef]
44. Cadoni, M.; Ciulu, M.; Tuveri, M. Symmetries, Holography and Quantum Phase Transition in Two-dimensional Dilaton AdS

Gravity. Phys. Rev. D 2018, 97, 103527. [CrossRef]
45. Cadoni, M. Entanglement entropy of two-dimensional Anti-de Sitter black holes. Phys. Lett. B 2007, 653, 434–438. [CrossRef]
46. Hubeny, V.E.; Rangamani, M.; Takayanagi, T. A Covariant holographic entanglement entropy proposal. JHEP 2007, 7, 62.

[CrossRef]
47. Giataganas, D.; Tetradis, N. Entanglement entropy, horizons and holography. Phys. Lett. B 2019, 796, 88–92. [CrossRef]
48. Van Raamsdonk, M. Building up spacetime with quantum entanglement. Gen. Rel. Grav. 2010, 42, 2323–2329. [CrossRef]
49. Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortsch. Phys. 2013, 61, 781–811. [CrossRef]
50. Van Raamsdonk, M. Comments on quantum gravity and entanglement. arXiv 2009, arXiv:0907.2939.
51. Gautason, F.F.; Schneiderbauer, L.; Sybesma, W.; Thorlacius, L. Page Curve for an Evaporating Black Hole. J. Energy Phys. 2020,

5, 91. [CrossRef]
52. Callan, C.G., Jr.; Giddings, S.B.; Harvey, J.A.; Strominger, A. Evanescent black holes. Phys. Rev. D 1992, 45, 1005. [CrossRef]
53. Russo, J.G.; Susskind, L.; Thorlacius, L. The Endpoint of Hawking radiation. Phys. Rev. D 1992, 46, 3444–3449. [CrossRef]
54. Verheijden, E.; Verlinde, E. From the BTZ black hole to JT gravity: Geometrizing the island. arXiv 2021, arXiv:2102.00922.
55. Goto, K.; Hartman, T.; Tajdini, A. Replica wormholes for an evaporating 2D black hole. arXiv 2020, arXiv:2011.09043.
56. Marolf, D.; Maxfield, H. Observations of Hawking radiation: The Page curve and baby universes. arXiv 2020, arXiv:2010.06602.
57. Kim, W.; Nam, M. Entanglement entropy of asymptotically flat non-extremal and extremal black holes with an island. arXiv 2020,

arXiv:2103.16163.
58. Hollowood, T.J.; Kumar, S.P. Islands and Page Curves for Evaporating Black Holes in JT Gravity. J. Energy Phys. 2020, 8, 94.

[CrossRef]
59. Anegawa, T.; Iizuka, N. Notes on islands in asymptotically flat 2d dilaton black holes. J. Energy Phys. 2020, 7, 36. [CrossRef]
60. Bousso, R.; Shahbazi-Moghaddam, A. Island Finder and Entropy Bound. Phys. Rev. D 2021, 103, 106005. [CrossRef]
61. Almheiri, A.; Polchinski, J. Models of AdS2 backreaction and holography. J. Energy Phys. 2015, 11, 14. [CrossRef]
62. Achucarro, A.; Ortiz, M.E. Relating black holes in two-dimensions and three-dimensions. Phys. Rev. D 1993, 48, 3600–3605.

[CrossRef]
63. Maldacena, J.M.; Michelson, J.; Strominger, A. Anti-de Sitter fragmentation. J. Energy Phys. 1999, 2, 11. [CrossRef]
64. Christensen, S.M.; Fulling, S.A. Trace Anomalies and the Hawking Effect. Phys. Rev. D 1977, 15, 2088–2104. [CrossRef]
65. Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [CrossRef]
66. Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge Monographs on Mathematical Physics; Cambridge

University Press: Cambridge, UK, 2011. [CrossRef]
67. Cadoni, M.; Cavaglia, M. Open strings, 2-D gravity and AdS / CFT correspondence. Phys. Rev. D 2001, 63, 084024. [CrossRef]
68. Cadoni, M.; Cavaglia, M. Two-dimensional black holes as open strings: A New realization of the AdS / CFT duality. Phys. Lett.

B 2001, 499, 315–320. [CrossRef]
69. Maldacena, J.M. Eternal black holes in anti-de Sitter. J. Energy Phys. 2003, 4, 21. [CrossRef]
70. Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics; Cambridge

University Press: Cambridge, UK, 1984. [CrossRef]
71. Horowitz, G.T.; Maldacena, J.M. The Black hole final state. J. Energy Phys. 2004, 2, 8. [CrossRef]
72. Papadodimas, K.; Raju, S. An Infalling Observer in AdS/CFT. J. Energy Phys. 2013, 10, 212. [CrossRef]
73. Avery, S.G.; Chowdhury, B.D.; Puhm, A. Unitarity and fuzzball complementarity: ‘Alice fuzzes but may not even know it!’. J.

Energy Phys. 2013, 9, 12. [CrossRef]
74. Verlinde, E.; Verlinde, H. Passing through the Firewall. arXiv 2013, arXiv:1306.0515.
75. ‘t Hooft, G. Black hole unitarity and antipodal entanglement. Found. Phys. 2016, 46, 1185–1198. [CrossRef]
76. Liu, H.; Vardhan, S. A dynamical mechanism for the Page curve from quantum chaos. J. Energy Phys. 2021, 3, 088. [CrossRef]
77. Fiola, T.M.; Preskill, J.; Strominger, A.; Trivedi, S.P. Black hole thermodynamics and information loss in two-dimensions. Phys.

Rev. D 1994, 50, 3987–4014. [CrossRef]
78. Cadoni, M.; Tuveri, M.; Sanna, A.P. Long-Range Quantum Gravity. Symmetry 2020, 12, 1396. [CrossRef]
79. Tuveri, M.; Cadoni, M. Galactic dynamics and long-range quantum gravity. Phys. Rev. D 2019, 100, 024029. [CrossRef]
80. Susskind, L.; Witten, E. The Holographic bound in anti-de Sitter space. arXiv 1998, arXiv:hep-th/9805114.
81. Alonso-Serrano, A.; Visser, M. Entropy/information flux in Hawking radiation. Phys. Lett. B 2018, 776, 10–16. [CrossRef]

http://dx.doi.org/10.1007/JHEP03(2020)149
http://dx.doi.org/10.1016/0550-3213(85)90448-1
http://dx.doi.org/10.1016/0370-2693(83)90012-6
http://dx.doi.org/10.1016/S0370-1573(02)00267-3
http://dx.doi.org/10.1016/0550-3213(94)90644-0
http://dx.doi.org/10.1103/PhysRevD.51.4319
http://dx.doi.org/10.1103/PhysRevD.97.103527
http://dx.doi.org/10.1016/j.physletb.2007.08.026
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://dx.doi.org/10.1016/j.physletb.2019.07.019
http://dx.doi.org/10.1142/S0218271810018529
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1007/JHEP05(2020)091
http://dx.doi.org/10.1103/PhysRevD.45.R1005
http://dx.doi.org/10.1103/PhysRevD.46.3444
http://dx.doi.org/10.1007/JHEP08(2020)094
http://dx.doi.org/10.1007/JHEP07(2020)036
http://dx.doi.org/10.1103/PhysRevD.103.106005
http://dx.doi.org/10.1007/JHEP11(2015)014
http://dx.doi.org/10.1103/PhysRevD.48.3600
http://dx.doi.org/10.1088/1126-6708/1999/02/011
http://dx.doi.org/10.1103/PhysRevD.15.2088
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1017/CBO9780511524646
http://dx.doi.org/10.1103/PhysRevD.63.084024
http://dx.doi.org/10.1016/S0370-2693(00)01398-8
http://dx.doi.org/10.1088/1126-6708/2003/04/021
http://dx.doi.org/10.1017/CBO9780511622632
http://dx.doi.org/10.1088/1126-6708/2004/02/008
http://dx.doi.org/10.1007/JHEP10(2013)212
http://dx.doi.org/10.1007/JHEP09(2013)012
http://dx.doi.org/10.1007/s10701-016-0014-y
http://dx.doi.org/10.1007/JHEP03(2021)088
http://dx.doi.org/10.1103/PhysRevD.50.3987
http://dx.doi.org/10.3390/sym12091396
http://dx.doi.org/10.1103/PhysRevD.100.024029
http://dx.doi.org/10.1016/j.physletb.2017.11.020


Entropy 2022, 24, 101 24 of 24

82. Mück, W. Hawking radiation is corpuscular. Eur. Phys. J. C 2016, 76, 374. [CrossRef]
83. Giddings, S.B.; Strominger, A. Dynamics of extremal black holes. Phys. Rev. D 1992, 46, 627–637. [CrossRef]
84. Trivedi, S.P. Semiclassical extremal black holes. Phys. Rev. D 1993, 47, 4233–4238. [CrossRef]
85. Almheiri, A.; Kang, B. Conformal Symmetry Breaking and Thermodynamics of Near-Extremal Black Holes. J. Energy Phys. 2016,

10, 52. [CrossRef]
86. Nayak, P.; Shukla, A.; Soni, R.M.; Trivedi, S.P.; Vishal, V. On the Dynamics of Near-Extremal Black Holes. J. Energy Phys. 2018,

9, 48. [CrossRef]
87. Moitra, U.; Trivedi, S.P.; Vishal, V. Extremal and near-extremal black holes and near-CFT1. J. Energy Phys. 2019, 7, 55. [CrossRef]
88. Moitra, U.; Sake, S.K.; Trivedi, S.P.; Vishal, V. Jackiw-Teitelboim Gravity and Rotating Black Holes. J. Energy Phys. 2019, 11, 47.

[CrossRef]

http://dx.doi.org/10.1140/epjc/s10052-016-4233-3
http://dx.doi.org/10.1103/PhysRevD.46.627
http://dx.doi.org/10.1103/PhysRevD.47.4233
http://dx.doi.org/10.1007/JHEP10(2016)052
http://dx.doi.org/10.1007/JHEP09(2018)048
http://dx.doi.org/10.1007/JHEP07(2019)055
http://dx.doi.org/10.1007/JHEP11(2019)047

	Introduction 
	2D AdS Black Holes
	Classical Solutions in Absence of Matter
	Coupling to Matter, Conformal Anomaly and Evaporation

	Black Hole Evaporation
	Black Hole Evaporation in the Static Patch
	Boundary Dynamics

	Entanglement Entropy of 2D AdS Black Holes
	 Information Flow and the Page Curve for Evaporating JT Black Holes
	Hawking Radiation
	The Page Curve
	2D Black Hole Information
	Entanglement Entropy of Hawking Radiation 
	Thermal Entropy of Hawking Radiation and Relation between N and c
	Entanglement Entropy and Page Curve for the JT Black Hole


	Conclusions
	References

