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Abstract

We study the anti-plane shear waves in a domain consisting of an elastic
layer (plate) with a coating attached to an elastic half-space (substrate). We
assume an imperfect contact between the layer and the half-space, allowing
some sliding. We also assume some elastic bonds between the layer and the
substrate. On the free top surface we apply the compatibility conditions
within the Gurtin-Murdoch surface elasticity. We found two di�erent solu-
tions: (i) the transversely exponential � transversely exponential (TE-TE)
regime with amplitudes decaying exponentially from the free top surface and
the interface in both the plate and the half-space, and (ii) the transversely
harmonic � transversely exponential (TH-TE) regime with harmonic wave
behaviour in the transverse direction in the plate and exponential decay in
the half-space. The TE regime of anti-plane waves in an elastic half-space
with non-perfect contact is also considered as a special case. A detailed
analysis of the derived dispersion relations reveals a crucial in�uence of the
interface sti�ness on the phase velocities of anti-plane waves. This e�ect
consists in the decrease of the phase velocities when the interfacial bonds are
weakened. The strongest e�ect of the interfacial sliding on the phase veloci-
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ties was observed for the long-length waves belonging to the TE-TE regime.
Based on the derived lower bounds for the wave numbers from which the
TE-TE regime of anti-plane waves exists, we have developed the theoretical
background and methodology for assessing the bond sti�ness of thin plates
imperfectly bonded to an elastic substrate.

Keywords: surface elasticity, imperfect contact, Gurtin-Murdoch model,
interfacial sliding, anti-plane waves, dispersion relations, bond sti�ness

Introduction

The study of surface waves is a rather old but still topical branch of the
mechanics and physics of solids and �uids, see for example the classic books
by Achenbach (1973); Überall (1973); Ewing et al. (1957); Brekhovskikh
(1960); Whitham (1999), the recent review by Kaplunov and Prikazchikov5

(2017), and the references therein. In particular, these waves could be useful
for evaluating near-surface properties of materials. At small scales, various
surface-related phenomena, such as surface tension or surface stress, can sig-
ni�cantly in�uence the propagation of surface and interfacial waves. Such
an extension of classical linear elasticity to small scales could be based on10

the surface elasticity approach introduced by Gurtin and Murdoch (1975,
1978) and later generalised by Steigmann and Ogden (1997, 1999), see also
Eremeyev (2020); Rodriguez (2024) for further extensions. Such a strain
gradient type extension could be necessary for proper description of mi-
crostructured coatings Eremeyev et al. (2024). Within this approach one15

introduces additional constitutive equations at the surface or interface, for
example a surface strain density and a surface kinetic energy density. Within
the Gurtin-Murdoch surface elasticity there are two length scale parameters,
static and dynamic. These give us the ability to capture di�erent size e�ects
observed at small scales. For further discussion of surface elasticity we refer20

to (Duan et al., 2008; Wang et al., 2011; Javili et al., 2013; Eremeyev, 2016;
Mogilevskaya et al., 2021) and the references therein.

Similar to surface tension and capillary waves in �uids Whitham (1999),
surface stresses essentially a�ect the propagation of surface and interfacial
waves in solids, see e.g. Gurtin and Murdoch (1978); Murdoch (1976, 1977);25

Steigmann and Ogden (2007). Moreover, within surface elasticity there is
a new class of surface waves called anti-plane surface waves, see Murdoch
(1977); Xu and Fan (2015); Eremeyev et al. (2016). It is similar to the clas-
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sic Love waves in solids. These waves were studied in a series of papers by
Zhu et al. (2019); Eremeyev (2020); Mikhasev et al. (2021, 2022, 2023, 2024),30

where both perfect and non-perfect interfaces were discussed. Note that the
jump conditions for non-perfect interfaces within linear surface elasticity are
almost identical to those derived by Mishuris et al. (2006b,a); see also the
discussion in Gorbushin et al. (2020) and Mishuris et al. (2012, 2020a,b).
In addition, non-perfect contact with sliding can signi�cantly in�uence the35

dispersion curves and the nature of wave propagation, see Eremeyev et al.
(2016). The analysis of such a wave has been proposed for the determination
of material properties of thin �lms Jia et al. (2018); Wu et al. (2020); Mikha-
sev et al. (2024). Analyses of surface waves in cylinders with surface/interface
energy have been given by Chen et al. (2014); Xu and Fan (2016); Huang40

(2018); Eremeyev et al. (2020); Mondal et al. (2024); Dhua et al. (2024),
where di�erent types of waves and contacts were studied. A generalisation of
surface elasticity to surface viscoelasticity with analysis of anti-plane waves
was recently given by Eremeyev (2024).

Surface elasticity can be treated as a limiting case of case of nonlocal con-45

tinuum models Mindlin (1965), see also the comparison between the Mindlin�
Toupin strain gradient elasticity and the Gurtin�Murdoch surface elasticity
given by Eremeyev et al. (2019), see also Li et al. (2020); Jiang et al. (2022);
Yang et al. (2023). Surface waves in nonlocal media have also been studied
by Chebakov et al. (2016); Kaplunov et al. (2022).50

Another view of surface elasticity could be based on lattice dynamics,
see for example the discussion by Murdoch (2005). A scaling law and a
certain correspondence between surface elasticity and lattice dynamics has
been proposed by Eremeyev and Sharma (2019), where anti-plane waves
have also been studied. Using this correspondence the waves in a lattice55

with a surface defect have been analysed by Sharma and Eremeyev (2019).
discrete model Lattice models with non-perfect contact (sliding) have also
been discussed by Cabras et al. (2024).

Motivated by the recent contributions, in this contribution we aim to give
the detailed analyses of anti-plane shear waves in an elastic plate imperfectly60

attached to an elastic half-space and study e�ects of interfacial sliding on
the phase velocity of these waves. The remainder of the paper is organised
as follows. In Section 1 we give the statement of the problem under consid-
eration in the case of anti-plane motion.Two types of solutions are possible
for the plane, expressed by exponential and harmonic (trigonometric) func-65

tions, respectively. We call these solutions transverse exponential (TE) and
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transverse harmonic (TH). As in (Eremeyev et al., 2016), there are only ex-
ponentially decaying solutions for the half-space. A detailed analysis of TE
solutions is given in Section 2, while harmonic waves are analysed in Sec-
tion 3. An exhaustive analysis of the dispersion curves is given in Section 4.70

Finally, a technique for evaluation a bond sti�ness was proposed in Section 5.

1. Statement of the problem

Let us consider an elastic isotropic layer (plate) of thickness h lying on an
elastic isotropic half-space with weak interfaces allowing sliding, see Fig. 1.

Slip
 d

ire
ct

io
n

plate

half-space

Figure 1: Elastic plate lying on elastic half-space with the interfacial sliding and used
Cartesian coordinate system.

For anti-plane waves the vector of displacement u is assumed in the fol-75

lowing form, see e.g. Achenbach (1973):

u = u(x1, x2, x3, t) = u(x1, x2, t)i3, (1)

where t is time and ii are the base vectors, i = 1, 2, 3, see again Fig. 1.
Assuming that the materials are isotropic, we introduce the shear modulus

µj and the mass density ρj, where the subscripts j = 1 and j = 2 correspond
to the layer and half-space, respectively.80

Then the equations of motion for the layer and the half-space take the
form of two wave equations (Achenbach, 1973)

µj

(
∂2uj

∂x2
1

+
∂2uj

∂x2
2

)
= ρj

∂2uj

∂t2
, j = 1, 2. (2)
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Let the upper surface x2 = h be free. Within the Gurtin-Murdoch model
of the surface elasticity, the boundary condition admits the form the com-
patibility condition (Gurtin and Murdoch, 1975, 1978) and read as:85

µ1
∂u1

∂x2

= µ
(s)
1

∂2u1

∂x2
1

− ρ
(s)
1

∂2u1

∂t2
at x2 = h, (3)

where µ(s)
1 and ρ

(s)
1 are surface shear modulus and mass density, respectively.

At the interface x2 = 0, we assume a sliding with the bond sti�ness
ks in the x3�direction. Then the boundary conditions at the interface are
expressed by the following two equations (Newmark, 1951; Gahleitner and
Schoeftner, 2021):90

µ1
∂u1

∂x2

= µ2
∂u2

∂x2

at x2 = 0, (4)

µ1
∂u1

∂x2

= ks(u1 − u2) at x2 = 0. (5)

For the half-space, we consider the wave attenuation condition at in�nity:

u2 −→ 0 as x2 −→ −∞. (6)

Recently it has been shown that if the plate has at least one free surface,
then there exist two di�erent regimes (modes) of anti-plane waves, namely the
transversely exponential (TE) and the transversely harmonic (TH) regime,95

see Mikhasev et al. (2022, 2023). In the TE regime, waves decay exponentially
from both surfaces of the plate, whereas the TH mode is characterised by
waves with harmonic variation of amplitudes in the transverse direction. In
the problem under consideration, both TE and TH modes exist in the plate
and only the TE regime exists in the half-space. In the following, the possible100

modes of anti-plane waves in the plate-half-space system will be referred to
as TE-TE and TH-TE modes, respectively.

2. TE-TE regime with interfacial sliding

In the TE-TE regime, a solution of Eqs. (2) has the form as in Mikhasev
et al. (2023)105

u1 = ei(kx1−ωt)
(
a1e

α1(x2−h1) + a2e
−α1x2

)
, u2 = bei(kx1−ωt)eα2x2 , (7)
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where i =
√
−1 is the imaginary unit, k is a wave number, ω is a circular

frequency, and a1, a2, b are constants have to be determined by the boundary
conditions.

The substitution of (7) into Eqs. (2) gives

αj = |k|
√

1− c2/c2Tj, j = 1, 2, (8)

where c = ω/k is the phase velocity, and cTj =
√

µj/ρj are the shear wave110

speeds in the upper layer and the half-space for j = 1 and j = 2, respectively.
We assumed that c < cTj for both j = 1, 2.

Applying the boundary conditions (3)�(5) to Eq.(7) and using (8), we get
the relations for the constants

a2 =
(µ1α1 − ks)µ2α2 + µ1α1ks
(µ1α1 + ks)µ2α2 + µ1α1ks

e−α1ha1, b =
µ1α1

µ2α2

(
a1e

−α1h − a2
)

(9)

and the required dispersion equation became115

c2T1

√
1− c2

c2T1

[
ld|k|

(
c2 − c2s

)]−1

=
(µ1α1 + ks)µ2α2 + µ1α1ks + e−2α1h [(µ1α1 − ks)µ2α2 + µ1α1ks]

(µ1α1 + ks)µ2α2 + µ1α1ks − e−2α1h [(µ1α1 − ks)µ2α2 + µ1α1ks]

(10)

where cs =

√
µ
(s)
1 /ρ

(s)
1 is a shear wave speed in an elastic membrane asso-

ciated with the Gurtin�Murdoch model, and ld = ρ
(s)
1 /ρ1 is the so-called

dynamic characteristic length-scale parameter.
Introducing the dimensionless quantities

m12 =
µ1

µ2

, kd = |k|ld, n =
h

ld
, κs =

µ1ρ1

ksρ
(s)
1

(11)

and scaling of velocities120

v =
c

cT1

, vs =
cs
cT1

, vr =
cT2

cT1

, (12)

we can rewrite the dispersion equation (10) in the dimensionless form

REE − 1

REE + 1
=

kd(v
2 − v2s)√
1− v2

(13)
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with

REE =

√
1− v2

[
kdκs

√
1− v2

v2r
+m12

]
+
√

1− v2

v2r
√
1− v2

[
kdκs

√
1− v2

v2r
+m12

]
−
√
1− v2

v2r

× e2nkd
√
1−v2 . (14)

It can be seen that for the TE-TE mode v < 1, i.e. for any parameter
κs the velocity of anti-plane waves is less than the velocity of shear waves in
the plate.125

The dispersion relation (13) allows us to consider several special cases,
especially those already analysed in the literature. Thus, assuming m12 = 0
in (14) for 0 < ks < ∞, we obtain the new equation (13) for the plate attached
to the non-deformable half-space with an elastic constraint for shear at the
bottom.130

If κs = 0 (i.e., ks → ∞), we came to the equation for the plate rigidly
attached to the elastic half-space studied by Mikhasev et al. (2023):(√

1− v2

v2r
+m12

√
1− v2

)(
1

kd

√
1− v2 + v2s − v2

)

+

(√
1− v2

v2r
−m12

√
1− v2

)(
1

kd

√
1− v2 − v2s + v2

)
e−2nkd

√
1−v2 = 0.

(15)
When either m12 → ∞ or κs → ∞ (i.e., µ2 → 0 or ks → 0), Eq. (13)

degenerates into the equation (compare with Eq. (3.15) in Mikhasev et al.
(2022))135

1

kd

√
1− v2 + v2s − v2 −

(
1

kd

√
1− v2 − v2s + v2

)
e−2nkd

√
1−v2 = 0, (16)

which corresponds to the plate with free bottom surface without the surface
stresses.

If m12 = κs = 0 (i.e., µ2 → ∞ and ks → ∞), then we arrive at the
dispersion equation for the plate (single layer) with the bottom surface x2 = 0
rigidly clamped in the x3-direction, see Eq. (3.7) in Mikhasev et al. (2022)140

1

kd

√
1− v2 + v2s − v2 +

(
1

kd

√
1− v2 − v2s + v2

)
e−2nkd

√
1−v2 = 0. (17)
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Passing to the limit as n → ∞ (or h → ∞), we get the simple dispersion
equation Eremeyev and Sharma (2019))

1

kd

√
1− v2 + v2s − v2 = 0 (18)

for the half-space with shear modulus µ1 and density ρ1.
Finally, assuming n = 0 (or h = 0) and returning to the initial dimen-

sional variables, we arrive at the following new dispersion equation:145

ks
√
1− c2

c2T2

ks + |k|µ2

√
1− c2

c2T2

= |k|ρ
(s)
1

ρ2

(
c2

c2T2

− c2s
c2T2

)
. (19)

This equation describes anti-plane shear waves in the elastic half-space with
the shear modulus µ2 and density ρ2, which is covered by the nano�lm
(nanomembrane) with µ(s) = µ

(s)
1 , ρ(s), this �lm allowing elastic sliding along

the surface. Substituting . Considering the limit as ks → ∞ in (19), we
again arrive at Eq. (18), but for the half-space with parameters µ2, ρ2.150

Remark. The dispersion equation (19) deserves special consideration: it
could be treated as follows. Let um be the displacements of the �lm in the
x3-direction, and u2 is the displacement of the half-space, which di�er from
um for x2 = 0, in general. The relative displacement um − u2 results in
the shear stress S = ks(um − u2) on the half-space surface, where ks is the155

bond sti�ness (Newmark, 1951). Then the di�erential equation governing
the anti-plane waves in the �half-space�sliding nano�lm� system is

µ(s)∂
2um

∂x2
1

− ρ(s)
∂2um

∂t2
= ks(um − u2), (20)

and the equation for the half-space remains the same, i.e. Eq. (2) with j = 2.
The boundary condition for the half-space coated with the �lm will is

given by160

µ2
∂u2

∂x2

= ks(um − u2) for x2 = 0. (21)

Looking for the displacement of the �lm as um = ame
i(kx1−ωt), where am

is an arbitrary constant, and substituting it together with the ansatz (7)
for u2 into Eqs. (2), (20), and the boundary condition (21), we obtain the
dispersion equation (19). In particular, for ks = 0 this equation gives the
velocity of shear waves in the �lm, c = cs =

√
µ(s)/ρ(s).165
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3. TH-TE regime with interfacial sliding

Let us now consider the second solution, i.e. the TH-TE regime for with
solutions of Eqs. (2) assumed in the form (Mikhasev et al., 2023):

u1 = ei(kx1−ωt) (a1 sinλx2 + a2 cosλx2) , u2 = bei(kx1−ωt)eαx2 , (22)

where a1, a2, b are constants.
Substituting (22) into Eqs. (2) we get170

λ = |k|

√
c2

c2T1

− 1, α = |k|

√
1− c2

c2T2

(23)

with cT1 < c < cT2.
Substitution of (22) into the boundary conditions (3)�(5) gives us the

coupling constants

b =
µ1

µ2

λ

α
a1, a2 =

µ1λ(αµ2 + ks)

ksαµ2

a1, (24)

and the required dispersion equation for TH-TE becomes

|k|ld(v2 − v2s)√
v2 − 1

=
ksαµ2 cosλh− λ(αµ1µ2 + ksµ1) sinλh

ksαµ2 cosλh+ λ(αµ1µ2 + ksµ1) sinλh
. (25)

The dimensionless form of (25) is given by175

1−RHE tan
(
nkd

√
v2 − 1

)
tan
(
nkd

√
v2 − 1

)
+RHE

=
kd(v

2 − v2s)√
v2 − 1

(26)

with

RHE =

√
v2 − 1

(
kdκs

√
1− v2

v2r
+m12

)
√

1− v2

v2r

. (27)

Note that here 1 < v < vr, i.e. cT1 < c < cT2.
Similar to the TE-TE regime analysed in the previous section, Eq. (26)

possesses derivation of the dispersion relations for some particular cases.
For example, if κs = 0, we obtain the TE-TH regime dispersion equation180

for the layer rigidly attached to the half-space (see Eq. (20) in Mikhasev
et al. (2023)).
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If m12 = 0 and 0 < κs < ∞, then we get the new TE-TH regime equation
for the plate which can slide along the non-deformable half-space

1− kdκs

√
v2 − 1 tan(nkd

√
v2 − 1)

tan(nkd
√
v2 − 1) + kdκs

√
v2 − 1

=
kd (v

2 − v2s)√
v2 − 1

. (28)

Assuming m12 = 0 and κs = 0, we get the relatively simple equation185

for the TH regime in an elastic layer with clamped bottom face in the x3�
direction, see Eq. (3.10) in Mikhasev et al. (2022).

When m12 → ∞ or κs → ∞, then Eq. (26) degenerates into the equation
for TH regime in an elastic layer with free bottom face without any surface
e�ects at it, see Eq. (29) in Mikhasev et al. (2023).190

Finally, letting the plate thickness vanish, i.e. n → 0, we arrive at the
equation, which has not any solution. So in this case we have not propagating
anti-plane waves.

4. Dispersion curves analysis

Let us discuss the dispersion relations for all modes in more detail.195

4.1. TE-TE regime

We start our analysis with Eq. (13), which relates to the TE-TE regime.
First, note that the value v = 1 should be excluded because it is only the
trivial solution of Eqs. (2), see relations (7)-(9). Second, the case wh n vs ≥ 1
should also be excluded, since there are no TE-TE mode antiplane waves if200

cs ≥ cT1 (Eremeyev and Sharma, 2019).
We begin our analysis with Eq. (13) related to the TE-TE regime. First,

let us note that the value v = 1 should be excluded, because it is just the
trivial solution to the wave Eqs. (2), see relations (7)-(9). Secondly, the case
vs ≥ 1 should be also excluded, since there are no TE-TE mode anti-plane205

waves if cs ≥ cT1 (Eremeyev and Sharma, 2019).
A numerical analysis shows that there are two di�erent cases in which

the behaviour of the dispersion curves is fundamentally di�erent.
Let vr > 1, i.e. the velocity of the shear waves in the half-space is greater

than the velocity of the shear waves in the plate.210

Figure 2 displays the dimensionless phase velocity v = c/cT1 versus the
dimensionless wave parameter kd = |k|ld calculated at the following values:
vr = 2, vs = 0.25, m12 = 0.5, n = 5.5, and for di�erent values of κs =

10
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Figure 2: Dimensionless phase velocity v = c/cT1 for TE-TE regime vs. wave number
kd = |k|ld calculated at vr = 2, vs = 0.25, m12 = 0.5, n = 5.5 for di�erent values of the
dimensionless parameter κs: red, blue, green, orange and brown curves marked by 1, 2, 3,
4 and 5 correspond to ratios κs = 0, 1, 4, 20 and ∞, respectively.

0, 1, 4, 20,∞. The red curve 1 (κs = 0) is related to the case when the
contact between the plate and half-space is rigid, while the brown curve 5215

(κs = ∞ ) corresponds to the plate with the free lower surface. We can see
that all dispersion curves at 0 < κs < ∞ lie between curves 1 and 5. Any
dispersion curve begins at the point (k∗

d, 1), which is to be excluded, and then
goes down as kd increases. At kd → ∞, all curves approaches the straight
horizontal line v = vs (here vs = 0.25). The behaviour of the dispersion curve220

in the neighbourhood of the point (k∗
d, 1) can be approximated by the linear

function

v = 1− A(kd − k∗
d) +O

[
(kd − k∗

d)
2
]

as kd −→ k∗
d. (29)

The substitution of (29) into (13) results in equations for k∗
d, A. In particular,
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we obtain

k∗
d =

√
m2

12(1− v2s)
2v2r + 4(n+ κs)(1− v2s)(v

2
r − 1)−m12(1− v2s)vr

2(n+ κs)(1− v2s)
√
v2r − 1

. (30)

The relation for A is rather awkward and not given here.225

If κs = 0 (or ks = ∞), then (30) coincides with formula (31) derived
by Mikhasev et al. (2023) for the case of perfect contact between a plate and
an elastic isotropic half-space. The deviation of k∗

d from the value k∗
d|κs=0

can be used as a criterion for assessing the bond strength between a thin
plate and a more rigid elastic body. The greater the deviation, the weaker230

the bond at the interface.
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Figure 3: Dimensionless phase velocity v = c/cT1 for TE-TE regime vs. wave number
kd = |k|ld calculated at vr = 0.92, vs = 0.25, m12 = 0.5, n = 5.5 for di�erent values of the
dimensionless parameter κs: red, blue, green, orange and brown curves marked by 1, 2, 3,
4 and 5 correspond to ratios κs = 0, 2.5, 10, 30 and ∞, respectively.

Now, let vs < vr ≤ 1 (i.e., cs < cT2 ≤ cT1). The plots in Fig. 3 show the
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behaviour of dispersion curves for vr = 0.92, vs = 0.25, m12 = 0.5, n = 5.5,
and κs = 0, 2.5, 10, 30,∞. It is seen that here all the dispersion curves begin
at the point (k∗

d, vr) independently on the bond sti�ness between the plate235

and the half-space. Their behaviour near this point can be approximated by
the asymptotic relation

v = vr − A(kd − k∗
d)

2 +O
[
(kd − k∗

d)
3
]

as kd −→ k∗
d. (31)

Substituting (31) into (13) and considering the �rst two approximations, we
arrive at the transcendental equation

tanh (nk∗
d

√
1− v2r) =

k∗
d(v

2
r − v2s)√
1− v2r

(32)

with respect to k∗
d, and at the following equation for determination of the240

coe�cient A:

e2nk
∗
√

1−v2r

m12

[√
2A

vr

(
1 + k∗

dκs

√
1− v2r −

k∗
dκs

√
1− v2r − 1

m12

√
1− v2r

)

+2nm12(1− v2r)
] [

1− k∗
d(v

2
r − v2s)√
1− v2r

]
= (v2r − v2s)

(
e2nk

∗
√

1−v2r + 1
)
.

(33)

Equation (32) has a nontrivial solution if and only if vs < vr < 1. When
vr = 1, then k∗

d = 0.
Figure 4 displays the dispersion curves plotted for κs = 4, vs = 0.25,

m12 = 0.5, n = 5.5, and di�erent dimensionless ratios vr, including both245

cases where vs < vr ≤ 1 and vr > 1. It can be seen that the behaviour of the
dispersion curves in the vicinity of the points (k∗

d, vr) and (k∗
d, 1) for these

cases is di�erent. However, all curves almost merge with growths of kd, i.e.
they asymptotically approaches the horizontal line v = vs.

4.2. TH-TE regime250

Let us now analyse the dispersion curves corresponding to TH-TE regime.
We recall that for these modes 1 < v < vr. Here, there are two fundamentally
di�erent variants depending on the position of vs with respect to the segment
[1, vr]. The solutions of Eq. (26) versus kd are presented in Fig. 5 for the case
vs < 1. Computations were done at vr = 2, vs = 0.25, m12 = 0.5, n = 5.5,255
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Figure 4: Dimensionless phase velocity v = c/cT1 for TE-TE regime vs. wave number
kd = |k|ld calculated at κs = 4, vs = 0.25, m12 = 0.5, n = 5.5 for di�erent values of the
dimensionless ratio vr: red, blue, green, orange and brown curves marked by 1, 2, 3, 4 and
5 correspond to ratios vr = 0.9, 0.92, 0.95, 1 and 2, respectively.

and for di�erent values of the dimensionless parameter κs. This mode of anti-
plane waves is characterized by the presence of an in�nite number of branches
of dispersion curve. It is interest to note, that if vs < 1, then there exists
the branch (left-hand one) crossing the line v = 1, which is a continuation
of the dispersion curve corresponding to the TE-TE regime plotted for the260

same input parameters, see Fig. 2. If vs > 1, then this branch is absent. In
Figure 6, the dispersion curves are depicted for di�erent 1 < vs < vr with the
same input parameters vr, κs, n,m12 as in Fig. 5. Since plots of dispersion
curves for vs ≥ vr are approximately the same as the plots shown in Fig. 6,
we do not present them here.265

Independently on ratios between the material parameters, any of the dis-
persion curve related to the TH-TE regime begins at the point (k∗

d, vv) which
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Figure 5: Dimensionless phase velocity v = c/cT1 for TH-TE regime vs. wave number
kd = |k|ld evaluated at vr = 2, vs = 0.25,m12 = 0.5, n = 5.5 and for di�erent dimensionless
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is excluded. In the vicinity of the point kd, the phase velocity v(kd) can be
approximated by the function

v = vr − A
√

kd − k∗
d +O(kd − k∗

d) as kd −→ k∗
d, (34)

where k∗
d is determined from the following equation270

tan (nk∗
d

√
v2r − 1) =

k∗
d(v

2
s − v2r)√

(v2r − 1)
. (35)

The latter coincides with Eq. (33) obtained by Mikhasev et al. (2023) for
the plate rigidly attached to the half-space. Thus, for the TH-TE modes of
anti-plane waves, the parameter k∗

d is independent of the bond sti�ness at
the interface.
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4.3. Anti-plane shear waves in elastic half-space coated with sliding �lm275

Let us consider the case without the plate, i.e. n = 0. Then the half-space
with the attached plate is transformed into the elastic half-space imperfectly
coated by an elastic �lm (or membrane) which possesses sliding along the
interface. The corresponding dispersion equation (19) can be rewritten in
the dimensionless form as follows280

√
1− v2

1 + kdκs

√
1− v2

= kd(v
2 − v2s) (36)

with the dimensionless velocity v = c/cT2 and the new ratios

vs =
cs
cT2

, κs =
µ2ρ2

ksρ
(s)
1

, kd =
ρ
(s)
1

ρ2
|k|. (37)
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Here vs ≤ v < 1, i.e., cs ≤ c < cT2.
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Figure 7: Dimensionless phase velocity v = c/cT2 of shear waves in the half-space coated
with the �lm vs. wave number kd = |k|ld for di�erent dimensionless parameter κs evaluated
at vs = 0.25: the red, blue, green, orange and brown curves marked by 1, 2, 3, 4 and 5
correspond to the ratios κs = 0, 1, 4, 20 and 103, respectively; the red dashed straight line
marked by 6 is related to κs = ∞.

Figure 7 displays the solution of Eq. (36) with respect to v as a function
of the wave parameter kd at vs = 0.25, and for di�erent values of κs =
0.0, 1.0, 4.0, 20.0 and 103. The red dashed curve 6 is related to the case when285

the �lm surface is free (κs = ∞). For any κs, all dispersion curves begin at
the point (0, 1).. Near this point the phase velocity can be approximated by
the following function

v = 1− A2kd − A4k
4
d +O(k6

d) as kd → 0, (38)

where A2 > 0. Substituting (38) into Eq. (36) and equating coe�cients by
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kd and k3
d, we get the following relations:290

A2 =
1

2
(1− v2s), −

√
2A2()A

2
2 + 2A4

4A2

= (1− v2s)
√
2Aκs − A2. (39)

It can be seen from Fig. 7 that the dispersion curves plotted for 0 <
κs < ∞ lie between curve 1 and line 6, corresponding to shear waves in
half-space with the �lm perfectly bonded to its surface and shear waves in
the �lm, respectively. An increase in the parameter κs (i.e. a decrease in
the bond sti�ness ks) leads to a decrease in the phase velocity of the anti-295

plane shear waves. When kd → ∞, all dispersion curves approach the red
dashed line 6 for which v = vs (here vs = 0.25). Note the strong in�uence of
the bond sti�ness ks on the dispersion curves. A signi�cant decrease in the
phase velocity of the anti-plane shear waves in the half-space covered by the
nano�lm, compared to the value taken in the red curve 1, can be considered300

as a sign of weakening of the bond between the �lm and the half-space.
Similar dispersion curves for κs = 4 and di�erent vs = 0.02, 0.3, 0.5, 0.7,

0.9 are shown in Fig. 8. As can be seen, the phase velocity of the anti-plane
shear waves in the half-space covered by the sliding �lm increases together
with the velocity cs of the shear waves in this �lm, and the dispersion curve305

approaches the straight line v = 1(c = cT2) as cs → cT2.

5. Towards assessment of bond sti�ness

The above derived equations for the lower bounds of the dimensionless
wave parameter k∗

d can be used for the experimental evaluation of the bond
sti�ness at the interface. For this purpose, the TE-TE mode of the antiplane310

waves, which propagate at a lower speed than the TH-TE mode waves, seems
to be more useful.

5.1. Soft plate attached to sti�er half-space

Let us consider the case where the velocity of the shear waves in the
half-space is greater than that in the plate, i.e. vr > 1. Such a case can315

occur when the plate is softer than the half-space, and it is the simplest for
estimating the bond strength, since here one can use the relation (30) which
contains the dimensionless parameter κs in the explicit form. It can also be
seen from Fig.2 that each di�erent value of the bond sti�ness correlates with
a unique phase velocity when the dimensionless wavenumber kd approaches320

the value k∗
d.
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Figure 8: Dimensionless phase velocity v = c/cT2 of shear waves in the half-space coated
with the �lm vs. wave number kd = |k|ld for di�erent dimensionless parameter vs evaluated
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The procedure for the experimental estimation of the parameter κs could
be organised as follows. One has to carry out the series of experiments excit-
ing anti-plane waves with di�erent wave numbers k until the phase velocity
v < 1 is as close to unity as possible, see Fig. 2. The corresponding di-325

mensionless wave parameter kd is assigned as the required value k∗
d. Then,

knowing all the input parameters, including the shear modulus µ(s)
1 and the

density ρ
(s)
1 , an approximate value κs can be calculated from Eq. (30).

5.2. Sti�er plate attached to softer half-space

Let vr < 1, i.e. cT1 > cT2. This case is more di�cult to estimate the bond330

sti�ness because the dispersion curves corresponding to di�erent parameters
κs (see Fig. 3) merge as the dimensionless wave number kd approaches the
same value k∗

d. Nevertheless, the procedure for �nding the bond sti�ness can
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also be developed here. It consists of three steps. First, after knowing all the
mechanical properties for the half-space and the plate, including the surface335

properties, we solve Eq. (32) to �nd the dimensionless wavenumber k∗
d. In

the second step, we perform experiments to measure the dimensionless phase
velocity v for the wavenumbers kd > k∗

d from the right neighbourhood of the
point k∗

d. Then, using Eq. (31), we can calculate the coe�cient A. Finally,
using Eq. (33) and taking into account Eq. (32), we �nd the value of the340

dimensionless parameter κs:

κs =
m12

k∗
d(m12 − 1)

√
vr
2A

[
m12

√
1− v2r
k∗
d

sinh (2nk∗
d

√
1− v2r)

−
√

2A

vr

(
1 +

1

m12

√
1− v2r

)
− 2nm12(1− v2r)

]
.

(40)

5.3. Half-space coated by a �lm

For the elastic half-space covered by the sliding �lm, the procedure for
evaluating the parameter κs could be constructed as follows. First, using
Eq. (39)1, we calculate A2. Then, by performing experiments and measuring345

the velocity v at a very low frequency, as kd tends to zero, we calculate A4

from Eq. (38). Finally, using Eq. (39)2, we can �nd the required parameter

κs =
4(1− v2s)

3 + 8A4 − (1− v2s)
4

8(1− v2s)
3

, (41)

which is positive if A4 > 0.

Conclusions

We have provided a detailed analysis of anti-plane motions in the �plate-350

half-space� elastic system, considering both surface stresses on the free sur-
face and possible sliding between the plate and half-space. The surface
stresses have been modelled within the linear Gurtin-Murdoch model of sur-
face elasticity. To describe the sliding, a linear spring-like model is introduced
so that the interfacial shear stresses are a linear function of the relative dis-355

placements of the plate and the half-space with a coe�cient called the bond
sti�ness. New dispersion equations taking into account the surface energy
and interfacial sliding for two di�erent regimes of anti-plane waves have been
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derived. The �rst type of anti-plane waves, called the TE-TE regime, is
characterised by the exponentially decaying amplitudes from the top and in-360

terface surfaces in both the plate and half-space. The second class of waves,
called the TH-TE regime, is speci�ed by the harmonic (trigonometric) varia-
tion of the amplitudes in the plate and the exponential decay of the waves in
the half-space bulk. As a limit case, we obtained the dispersion equation for
anti-plane waves in the elastic half-space covered by the �lm, which possesses365

sliding. This case refers to the absence of the plate.
The analysis of the dispersion curves showed a signi�cant in�uence of the

interfacial bond sti�ness on the phase velocities. It consists in the decrease
of the phase velocities with the weakening of the interfacial bonds. The more
pronounced e�ect of interfacial sliding on the phase velocities was observed370

for the long-length waves belonging to the TE-TE regime. It is interesting
to note that this e�ect is stronger when the shear wave velocity in the plate
is lower than the shear wave velocity in half space, and less pronounced oth-
erwise. We also derived the asymptotic relations for lower bounds on the
wave number from which anti-plane shear waves exist, and found functions375

approximating the phase velocities in the vicinity of these bounds. Based on
the derived equations for the lower bounds of the wave numbers, we proposed
an evaluation technique for the bond sti�ness in thin plates imperfectly at-
tached to an elastic half-space. Thus, the obtained results could be used for
non-destructive evaluation of debonding phenomena in solids with coatings.380
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