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Towards Effective Traffic Sign Detection via
Two-Stage Fusion Neural Networks

Zhishan Li, Hongxu Chen, Battista Biggio, Yifan He�, Haoran Cai�, Fabio Roli, Lei Xie

Abstract—Automatic detection of traffic signs is crucial for
Advanced Driving Assistance Systems (ADAS). Current two-
stage approaches consist of a preliminary object detection step,
where the traffic signs are categorized within broader families
(e.g., speed limits), and then sub-classes (e.g., speed limit 40).
However, these cascading methods fail to achieve satisfying
performance, especially in more realistic driving scenarios where
images are acquired under more challenging conditions. Under
such conditions, the first-stage detection step is likely to provide
inaccurate predictions, making the subsequent classification step
useless. In this paper, we propose a simple yet effective two-
stage fusion framework for traffic sign detection. Different
from the previous cascading method, our framework directly
predicts categories in the first-stage detection and fuse the
two-stage category predictions to improves overall robustness.
Besides, in order to filter the false detection boxes under low-
resolution inputs, we also propose an effective post-processing
method called Surrounding-Aware Non-Maximum Suppression
(SA-NMS) as an alternative technique for the first-stage detection.
After combining the above proposed methods, our framework
obtains good detection performance. Experimental results on the
widely used Tsinghua-Tencent 100K (TT100K) traffic sign dataset
, which contains images of traffic signs collected under a variety
of challenging conditions, show that the proposed framework
outperforms current approaches in both accuracy and inference
speed, achieving 89.7 mAP and 65 FPS for 608 × 608 low
resolution images.

Index Terms—Traffic Sign Detection, Two-Stage Fusion, SA-
NMS, Lightweight

1. INTRODUCTION

With the progress of deep learning theory, object detectors
based on convolutional neural networks (CNNs), such as SSD
[1], YoloV3 [2] and EfficientDet [3], have achieved excellent
performance on open-source detection benchmarks [4]–[7].
Traffic sign detection is one of the most important applications
of object detection in the field of intelligent transportation.
Automatic detection of traffic sign is conducive to driving
safely and preventing frequent traffic accidents.

For current traffic sign detectors, we divide them into two
types. One is to directly design improved single detectors,
which is also the first choice of most recent researches [8]

Zhishan Li, Yifan He are with Institute of Intelligence Science and Engi-
neering, Shenzhen Polytechnic University, Shenzhen, China, 518055. (Email:
zhishanli@zju.edu.cn; heyifan@reconova.com)

Hongxu Chen, Lei Xie are with State Key Laboratory of Industrial
Control Technology and Institute of Cyber-systems and Control, Zhejiang
University, Hangzhou 310027, China. Zhishan Li, Haoran Cai are with Huawei
Technology Co., Ltd. (Email: 3180101444@zju.edu.cn; leix@iipc.zju.edu.cn;
caihaoran1@huawei.com)

Battista Biggio, Fabio Roli are with the Department of Electrical and
Electronic Engineering, University of Cagliari, Cagliari 09123, Italy. (Email:
battista.biggio@unica.it; roli@unica.it)

speedlimit

heightlimit

…

direction

Detector
(with�SA-NMS)

Classifier
(with�Attention)

Fusion

speedlimit 40

height limit 3m

…

turn�right

Detector

Input�Image

Classifier

cropped speedlimit 30

speedlimit 40

…

speedlimit 70

Family�Selection

Classification
(within�family)

Classification

Cascade

Our�method

Input�Image cropped

Fig. 1: Comparison of different two-stage traffic sign detection
frameworks.

[9] [10]. These approaches improve the fitting ability of the
detectors to traffic sign detection by introducing more robust
modules and structures. The other type detectors are those
with two-stage cascading frameworks (detection families →
classification categories). Taking Figure 1 as an example, the
currently popular two-stage cascading traffic sign detection
frameworks [11] [12] [13] are as follows: inputting the image
into detector for first step detection, obtaining the location
and family ”Speed Limit” of traffic signs, then cropping the
object part from the original image and acquiring the category
”Speed Limit 40” through classifier. In the second-stage, the
background of the cropped images is relatively simple, so the
category predictions can be more accurate by using another
classifier. However, the improvement is limited for this cascad-
ing manner. If the family prediction in the first-stage is wrong
(e.g., Height Limit), the category predictions in the second-
stage would belong to other family. The classification network
in the second-stage cannot compensate for the first-stage. Since
the first-stage is an object detection task and the background
of traffic signs is relatively complex, it is difficult to accurately
predict the families. Besides, the process of manually grouping
traffic sign classes into several groups disrupts the inherent
autonomous learning capacity of models. While human might
intuitively take all speed limit signs as a group and all height
restriction signs into another ones, the learning process of
models based on neural networks may not inherently prioritize
the feature similarity of two different speed limit signs over
signs from different class groups. Consequently, this manual
prior setting could indeed interfere with the training process.

In this paper, we discover that rather than using a cascading
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Fig. 2: The red lines represents false detection for traffic
sign. The heatmap area represents the probability of existence
of traffic signs. The changement from blue to red indicates
gradually higher probability.

method, it is better to directly predict the category results in the
first and second-stages, and obtain the final results in a fusion
method (detection categories ⇆ classification categories). The
proposed fusion method possesses higher accuracy and utilizes
the results of the second-stage with higher accuracy to revise
category predictions in the first-stage detector. We use the first-
stage detector to directly predict the detection results of each
category, and crop out the predicted areas from the original
images. These cropped pieces are then fed into a classification
network (second-stage) to generate classification results. The
final categories are fused through weighted summation or
linear regression. From experimental results, we find that
the prediction results of any stage model alone or cascading
method cannot achieve the performance of our proposed fusion
strategy.

Another aspect that needed further optimization is inference
time. Traffic sign detection is a task requiring high real-time
performance, yet most algorithms [11], [12], [14] are based
on high-volume convolutional neural networks, such as Faster-
RCNN [15], FPN [16] and Mask-RCNN [17], which require
a huge amount of computation. Although some lightweight
detectors [8] [18] possess high inference speed, their detection
accuracy is relatively poor. Besides, resizing input images to
a smaller resolution can improve the inference speed, but the
objects will be smaller, which also causes a significant drop
for overall detection performance. Small objects have always
been the obstacle of object detection. For example, the image
resolution of TT100K dataset [14] is 2048 × 2048, but the
area of more than 40% of GroundTruths (GTs) is less than
32×32 pixels. To improve the detection ability of small targets,
some scholars have proposed various optimization strategies
[19] [10], but the improvement is still not enough. If we
directly resize input images to a smaller resolution and utilize
lightweight model to inference, there would be many false
detection boxes for small objects.

To make the overall inference speed faster, we use low-
resolution (608 × 608 or 640 × 640) images instead of high-
resolution (2048 × 2048 or 1024 × 1024) as the inputs.
However, the type of a large number of false prediction boxes
is that one prediction box contains multiple traffic signs,
as shown in Figure 2. In this detection demo, the red box

covering two traffic signs is a false detection box. Besides,
the background area between two traffic signs also has the
probability of being recognized as foreground. Furthermore,
this false detection cannot be filtered out by Non-Maximum
Suppression (NMS) [20]. Due to the low-resolution input,
the size of traffic signs is smaller. With the down-sampling
mechanism of neural network structure, the feature distinction
between adjacent traffic signs is not obvious. Even with human
eyes, it is difficult to distinguish those two traffic signs.
We establish a new type of IoU called Surrounding-Aware
IoU (SAIoU) to describe the surrounding relationship more
clearly. Then we propose a new post-processing method called
Surrounding-Aware NMS (SA-NMS) to delete the prediction
boxes covering multiple traffic signs. As shown in Figure 4, we
insert SA-NMS to the first-stage detector and greatly reduce
false detection boxes.

Fig. 3: Comparison with other detectors. The horizontal axis
is inference FPS and the vertical axis is mAP.

In summary, our purpose is to achieve effective traffic
sign detection for practical application, which means less
inference time and high accuracy. To obtain higher FPS,
we lower the resolution of input images to 608 × 608 and
employ a lightweight framework. As shown in Figure 4, the
first-stage model is based on YoloV5s [21] whose mAP on
TT100K is 69.7 and the second-stage classification network
is based on MobileNetV2. We insert attention mechanism on
MobileNetV2 to improve the classification accuracy. Finally,
we fuse the prediction results of the two stages and utilize
the proposed SA-NMS post-processing method to increase
the mAP to 89.7, with an inference speed of 65 FPS. To
prove the generality of our overall framework, we also conduct
experiments on SSD512 and ResNet18 [22]. Experimental
results show the effectiveness of our method. A more intuitive
comparison is shown in Figure 3. Our two-stage framework
shows better performance in mAP and FPS than other generic
detectors and traffic sign detectors. Finally, our main contri-
bution can be summarized as follows:

• We propose a two-stage fusion strategy for traffic sign
detection, which achieves higher detection accuracy than
the improved single detector and two-stage cascading
method.

• To make the overall inference speed faster, we use rela-
tively low-resolution images and propose SA-NMS post-
processing method to effectively filters out false detection
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boxes.
• Compared with other traffic sign detectors, our proposed

framework achieves higher detection accuracy with less
inference time.

• Our framework is not limited to specific models. Other
detection and classification models are also applicable to
our framework.

2. RELATED WORK

A. Traffic Sign Detectors

With the improvement of computing power, methods based
on machine learning and deep neural networks have achieved
great performance in traffic sign detection. As we illustrate
in Introduction section, current traffic sign detectors can be
divided into two types. The first type is improvement on single
detectors. Shao et al. [23] proposed simplified Gabor Wavelets
to achieve real-time traffic sign detection and recognition.
Zhang et al. [24] proposed an end-to-end convolution network
based on YoloV2 [25], which achieved great performance
on the extended Chinese traffic sign dataset. In order to
accurately detect small traffic signs, Liu et al. [26] presented
a deconvolution region-based convolutional neural network
(DR-CNN). Ahmed et al. [27] proposed Enhance-Net to im-
prove the robustness of traffic sign detection under challenging
weather conditions. Sun et al. [10] proposed a new detector
called Mask-guided SSD, which integrates detection branch
and segmentation branch to improve the accuracy of SSD.
The others are two-stage cascading frameworks. Tabernik et

al. [11] improved the accuracy of traffic sign detection based
on improved Mask-RCNN [17] and data enhancement method.
Serna et al. [12] proposed a multi-level network, which used
Mask-RCNN [17] to detect the category groups and utilized
a small CNN to subdivide the categories. Wu et al. [13]
proposed a real-time traffic sign detector based on YoloV3. For
those categories with less training data, Wu et al. proposed a
data enhancement method to improve the diversity of training
dataset. This optimization at the data level greatly improves the
fitting ability of the original model. For digital types of traffic
sign recognition, almost all detection frameworks belong to
the two-stage type.

B. Post-Processing Methods

With regard to object detection frameworks based on convo-
lutional neural networks, post-processing is an indispensable
part. Whether anchor-based or anchor-free detectors, most
of the prediction boxes acquired through detection head are
repeated predictions. NMS [20] is the most widely used post-
processing method which removes a large number of redun-
dant detection boxes. For crowded scenarios, a common phe-
nomenon is that IoU between different GTs is relatively high,
and using traditional NMS is prone to eliminate those occluded
objects. To address this issue, Bodla et al. [28] proposed Soft-
NMS. Its principle is to reduce the confidence of those non-
maximum detection boxes through penalty weights positively
related to IoU, rather than discarding them completely. Later,
scholars have successively proposed Softer-NMS [29] and
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Adaptive-NMS [30], which are further optimization of post-
processing. However, these optimizations have changed the
original network structure, leading to a lack of generality.

3. TWO-STAGE FUSION FRAMEWORK

A. Overall Construction

YoloV5 is the classical framework of Yolo series models
[2], [25], [31]–[34]. The backbone of YoloV5 is based on two
improved CSPNet [35]. In the detection neck part, YoloV5
configures a more robust feature fusion module by combining
FPN [16] and PANet [36]. Through the detection head, we
obtain three types of outputs corresponding to each anchor
point, including detection box coordinates, probability of the
existence of objects, and prediction confidence of each cate-
gory. YoloV5s is the lightest model of the YoloV5 series. With
the lowest model depth and width, the storage size of YoloV5s
is only 15.1 MB in Linux OS. However, the disadvantage is
that its feature extraction ability is not good enough. Especially
for small traffic signs with less feature representations, its
detection performance is relatively poor compared with other
large-scale models.

The second-stage classifier is based on lightweight Mo-
bileNetV2 [18]. Under the preliminaries of depthwise sepa-
rable convolution of MobileNet [37], MobileNetV2 borrows
the idea of ResNet [22] and designs the structure of inverted
residual block to reduce the feature degradation caused by
ReLU. Besides, attention mechanism [38] [39] [40] have been
demonstrated to enable networks to automatically learn the
importance of each channel from global information through
backpropagation. Then, the effective features are enhanced
and the irrelevant features are suppressed. We introduce the
Convolution Block Attention Module [41] (CBAM) into the
Inverted Residual Block of MobileNetV2 to further improve
the performance of the second-stage classifier. More detailed
module composition is shown in Figure 5.
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Fig. 5: Enhanced inverted residual block based on attention
mechanism. CA indicates the channel attention module and
SA represents the spatial attention module.

In CBAM, the channel attention and spatial attention can
be described as follows:

Fc = σ(MLP (AvgPool(Fin)) +MLP (MaxPool(Fin))) (1)

Fout = σ(Conv7× 7([AvgPool(Fc);MaxPool(Fc)])) (2)

where Fin and Fc indicate the input and output features
of channel attention module, and Fout represent the output

features of spatial attention block. Conv7 × 7, MLP and σ
represent Convolution layer with kernel size of 7× 7, Multi-
Layer Perception and Sigmoid function. Through the attention
mechanism of two dimensions, we enhance the input features
and improve the fitting ability of MobileNetV2 with little
increase in calculation.

In addition, how to train the second-stage classifier is very
important. We uniformly resize the cropped images according
to the coordinates of prediction boxes in the first-stage as
64 × 64 to train the second classifier. To fuse the prediction
results of the two-stage models, we keep the prediction outputs
of classifier in the same shape as the category predictions of
detector. We define the classifier labels according to the IoU
between the position of detection boxes and GTs. If IoU is
greater than 0.5, the label is the corresponding One-Hot vector.
Otherwise, we define this object as background and set an
All-Zero vector as the label. The second-stage label setting is
shown in Figure 6.
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Fig. 6: Definition of labels for the second-stage classifier.
Label1 is the One-Hot vector and Label2 is the All-Zero
vector.The dashed line is the detection box for the first stage
detector.

Because there are All-Zero vectors in the second-stage
labels, we cannot take cross-entropy as classification loss, but
use binary cross-entropy as the loss function of second-stage
network, as shown in the following equation:

Loss2 =

Nb∑
i=1

Nc∑
j=1

(
−yi,j × log(c2i,j)− (1− yi,j)× log(1− c2i,j)

)
(3)

where Nc and Nb is the number of categories and prediction
boxes, yi,j is the label of the j category of the i box and c2i,j
is the Sigmoid activated prediction output of the i box in the
second-stage.

B. Model Fusion Strategy
Instead of the previous cascading methods, we propose a

fusion strategy, which makes the prediction results of the two
stages complement each other, so as to exceed the accuracy
of any individual predictions. We propose two simple yet
effective fusion strategies: one is the weighted summation and
the other is obtained by linear regression.

The first method is the directly weighted fusion, which can
be expressed as follows:

P f
i = λ× P 1

i + (1− λ)× P 2
i 0 ≤ λ ≤ 1 (4)
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where P f
i , P 1

i and P 2
i represent the i box prediction of the

first-stage, the second-stage and the final fusion respectively.
The weighted fusion method is straightforward. By selecting

an appropriate λ of this equation, we change the proportion
of different stages in the final fusion predictions. When λ
is equal to 0, the category predictions completely depend on
the second-stage classifier. On the contrary, the predictions of
category completely depends on the detector in the first-stage
when λ is equal to 1. Through experiments, we find that when
λ is 0.4, the overall detection performance is the best, and the
final result is determined by both stages.

The other fusion method is based on Multiple Linear
Regression [42]. We build a linear regression model for the
two stage prediction results, and take the prediction outputs
of each category in the two-stage model as an independent
variable. Since the prediction confidence of each category of
the final result is a value greater than 0 and less than 1, we
control the regression coefficient between 0 and 1 through the
sigmoid function. This can be mathematically expressed as:

P f
i,j =

2∑
n=1

Wn
j × Pn

i,j =

2∑
n=1

σ(θnj )× Pn
i,j (5)

where P f
i,j is the i box predicted value of the fusion result

for j catgory. Wn
j and θnj represent the j category regression

coefficient of the n stage model.
The objective loss function is the mean square deviation, as

shown below:

ej(θ) =
1

2

Nb∑
i=1

(P f
i,j − yi,j)

2 (6)

We use Gradient Descent to make the predicted value P f
i,j

approach label yi,j . The partial derivative of the loss function
is as follows:

∂ej(θ)

∂θnj
=

Nb∑
i=1

(P f
i,j − yi,j)× Pn

i,j × σ(θnj )× (1− σ(θnj )) (7)

The new θnj is as follows:

θnj = θnj − α
∂ej(θ)

∂θnj
(8)

where α is the learning rate and all equations are based on
one image.

By the Multiple Linear Regression, the regression coeffi-
cient of each category Wn

j is obtained by backpropagation and
the fused results can be automatically acquired. Experiments
show that both the above two methods effectively improve the
accuracy of the overall framework, and significantly surpass
the performance of either isolated stage.

C. Surrounding-Aware Post-Processing Method

To reduce the inference time, we resize original images to
lower resolution as the inputs of the model and establish a
lightweight detection framework. Under this circumstance, a
large number of false detection boxes are as shown in Figure 2.
In the detection area, each traffic sign corresponds to one
detection box, but there is a large detection box surrounding all
traffic signs. Moreover, this false detection cannot be filtered

out by NMS due to not large IoU with any other detection
box. This false detection box appears because of the relatively
lower resolution input. For small traffic signs in the original
resolution, the size of these objects under the new resolution
is smaller. Therefore, convolution kernels fuse several targets
feature together during sliding windows. As a result, the
detector cannot distinct extracted features. Considering that
there is no overlap between different traffic signs, we propose
the SA-NMS post-processing algorithm.

A

B

IoU(A,B)=(A∩B)/(A∪B)=0.14

SAIoU(A,B)=(A∩B)/Min(A,B)=0.91

Fig. 7: Comparison of calculation methods between SAIoU
and IoU.

We first define Surrounding-Aware IoU (SAIoU). As shown
in Figure 7, the large box B almost surrounds the small box
A, and the area proportion of its interaction area (A ∩ B)
in the joint area (A ∪ B) is only 0.14. As a result, it’s not
convenient to filter out B through NMS because of the small
IoU. However, the interaction area between box A and box
B occupies a high proportion of the small one, so box B can
be filtered out through this relationship. We define SAIoU as
follows:

SAIoU(A,B) =
A ∩B

Min(A,B)
(9)

Compared with the original IoU, SAIoU more clearly re-
flects this surrounding false detection. For comparison,
SAIoU(A,B) is 0.91 which is more obvious than IoU(A,B).
By setting the SAIoU threshold Ts, we conduct further post-
processing called SA-NMS, and more detailed steps are shown
in Algorithm 1. The core of SA-NMS is to use SAIoU to filter
detection boxes. For detection box M , if there is a detection
box Bi with smaller area but the SAIoU between M and Bi

is larger than threshold Ts, the detection box M would be
filtered out.

4. EXPERIMENTAL RESULTS

A. Experiment Settings

Dataset. TT100K is a large-scale dataset of traffic sign
detection and recognition, which was recorded by Tsinghua
University and Tencent based on real road scenarios of Chinese
cities. There are 9180 labeled images with 30000 traffic-sign
instances in this dataset, including 6107 images for training
and 3073 images for testing respectively. In addition, the
image resolution of TT100K is 2048 × 2048. As shown in
Table 1, more than 40% of the instances in this dataset are
small objects, which makes TT100K a challenging benchmark.
Besides, according to the definition of large (96×96 < area),
medium(32 × 32 < area < 96 × 96) and small (area <
32 × 32) in COCO benchmark [5], the proportion of large
traffic signs in testset is only 7.6%, and the number of large
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Algorithm 1 Surrounding-Aware NMS.

Input:
B is a set of detection boxes after NMS
A is a set of box area of detection boxes B
Ts is the SAIoU threshold

Output:
D is a set of detection boxes after SA-NMS

1: Initialize D as an empty list: D← ∅;
2: while B ̸= ∅ do
3: Acquire index with the largest area: m← argmaxA;
4: Acquire the box with the largest area: M ← Bm;
5: Initialize the status of M : sur ← 0;
6: Remove M from B and A:

B← B−M ; A← A−Am;
7: for each bi in B do
8: if SAIoU(M, bi) >= Ts then
9: Change the status of M : sur ← 1;

10: break
11: end if
12: end for
13: if sur ̸= 1 then
14: Add M to D: D← D ∪M ;
15: end if
16: end while
17: return D;

instances in many categories is no more than 3 in the testset.
For example, for the category ‘pl20’ and ‘pm30’, there is only
one large target, which causes the detection performance of
these categories to fluctuate greatly. Therefore, we attribute
the targets defined as large and medium in the way of COCO
to medium targets, as Table 1 shows.

TABLE 1: GTs distribution of different object sizes under
different specified methods in the TT100K testset.

Definition Object Size Instances proportion

COCO
small(area < 32× 32) 3281 43.5%

medium(32× 32 < area < 96× 96) 3683 48.9%
large(96× 96 < area) 572 7.6%

Ours
small(area < 32× 32) 3281 43.5%

medium(32× 32 < area) 4255 56.5%

TT100K contains more than 200 traffic sign categories,
which is divided into three types according to colors: yellow
for warning, red for prohibitory, and blue for mandatory.
In order to define categories more simply, TT100K dataset
describes them in the format of combination of type and
serial number. For example, ‘w64’ is a warning sign indicating
that there may be animals on the road, and ‘64’ is its serial
number in warning sign list. ‘pl40’ is the abbreviation of 40
km/h speed limit, which is the type of prohibitory traffic sign.
Although there are more than 200 traffic sign categories, the
training samples of most categories are insufficient. Following
the original analysis method [14], we also ignore the categories
with training data less than 100, and the number of categories
analyzed is 45.

Training Details. The experiments are carried out under Py-
torch deep learning framework. Our hardware mainly includes

2 × NVIDIA TITAN XP GPUs and 1 × Inter Core I7-9700K
CPU. Each stage of our framework is trained separately. In
the first-stage training process, we set the batch size as 32
and the total epochs as 300. For training the second-stage
network, the batch size of cropped images is 160 and the total
epochs are 150. We use the linear learning rate setting for
backpropagation, as follows:

lrepoch = lr0 × (1− epoch

TotalEpoch
) (10)

where lrepoch is the learning rate under current epoch and lr0
is the initial learning rate which we set as 0.01.

Evaluation Metrics. The most commonly used metric in
object detection is Average Precision (AP) whose value is
equal to the area under the Precision-Recall (PR) curve and
mAP is the most important indicator for comparing detection
capabilities, which can be calculated as:

AP =

∫ 1

0

PdR (11)

mAP =
1

Nc

Nc∑
j=0

APj (12)

where P and R represent precision and recall respectively.
Their definition is as follows:

P =
TP

TP + FP
(13)

R =
TP

NGT
(14)

where TP , FP , NGT represent the number of truly predicted
boxes, false positive predicted boxes, and number of GTs.
As previous analysis method [14], we define the prediction
box whose IoU with GT is greater than 0.5 as TP . In object
detection tasks, mAP is set as the main criteria for comparison.
In addition, we also show APs (Average Precision for small
objects) and APm (Average Precision for medium objects) to
make the analysis more thorough.

B. Ablation Experiments

Analysis of different fusion methods. We conduct ablation
experiments about the proposed fusion methods, as shown
in Table 2. The input resolution is 608 × 608. When λ is
1.0, the prediction of the category is completely determined
by the first-stage YoloV5s, and the mAP is only 69.7. With
the decrease of λ, the proportion of the second branch in
the prediction results gradually increases, and the mAP also
gradually increases. Until λ is 0.4, the mAP of this framework
reaches the maximum of 81.1. However, when λ is 0.0, the
prediction results are completely determined by the second-
stage classification network, the overall mAP decreases to
75.0. As shown in Table 2, the accuracy of detection with
YoloV5s only is the lowest. By constructing the second-
stage network and cropping out the box-area images of the
YoloV5s detection for reclassification, the mAP is improved
to 75.0. However, the performance of solely relying on any
stage is not as good as that of integrating the two stages.
By simply weighted summing the two-stage outputs, our
framework boosts the mAP from 69.7 to 81.1. In addition, we
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Fig. 8: Comparison between our method and YoloV5s under each category of AP. The blue bar represents the detection
performance of YoloV5s, and the red bar represents the AP of our framework.

also carry out experiment based on linear regression fusion. It
can be found that the overall mAP has been further improved
to 82.4. Through the above two fusion methods, we confirm
the ability to integrate the two-stage results to improve overall
performance.

TABLE 2: Analysis of different fusion methods.

Fusion Strategy mAP APs APm

BaseLine (YoloV5s) 69.7 69.1 70.9

Weighted

λ=0.0∗ 75.0 74.0 77.7
λ=0.2 80.1 77.7 82.9
λ=0.4 81.1 79.0 83.6
λ=0.6 77.7 77.6 78.7
λ=0.8 73.4 73.0 74.5
λ=1.0⋆ 69.7 69.1 70.9

Linear Regression 82.4 79.0 84.2
∗ λ = 0.0 means that final category predictions

are only the output of second-stage classifier.
⋆ λ = 1.0 means that final category predictions

are only the output of first-stage detector.

Analysis of different post-processing thresholds. We an-
alyze the influence of the hyper-parameter Ts of our proposed
SA-NMS algorithm on the overall performance, as shown in
Table 3. The baseline model is the best result obtained by
our weighted fusion method. With NMS only, the mAP of
this framework is 81.1, as Table 2 shows. Since there are a
large number of false detection boxes like B in Figure 7, we
attach the SA-NMS post-processing algorithm to achieve a
great increase. When Ts is equal to 0.8, our framework reaches
the best mAP of 89.7. Since this method is made after NMS
and the number of detection boxes is not large, the calculation
cost is negligible.

TABLE 3: Analysis of different Ts in our post-processing
method.

Post-Processing Method mAP APs APm

NMS 81.1 79.0 84.2

SA-NMS

Ts=0.2 87.9 82.0 90.8
Ts=0.4 88.4 83.2 91.0
Ts=0.6 89.2 84.1 91.7
Ts=0.8 89.7 84.6 92.1
Ts=1.0 81.1 79.0 84.2

Step by step optimization for the overall performance.
As shown in Table 4, we intuitively show the mAP improve-
ment brought by the optimization strategies. When we directly
utilize the first-stage detector to separately predict 45 classes
of the dataset, the mAP is only 69.7 while the FPS reaches 144
due to the lightweight model structure and low input resolution
of 608×608. The best performance of our proposed framework
reaches 89.7 mAP with the two-stage weighted fusion method
and the SA-NMS post-processing algorithm, which is 29%
higher than that of the baseline model. A more detailed AP
comparison is shown in Figure 8 and the AP of our method is
higher than baseline in each category. Although the inference
FPS is reduced to 65, the overall performance is still better
than other latest generic detectors and traffic sign detectors, as
Table 7 and Table 6 shows.

C. Comparative Experiments

Comparison between our method and YoloV5s with
larger input resolution. Our purpose is to achieve accurate
and fast detection performance, so we design such a two-
stage lightweight framework, and further improve the detec-
tion speed through the low-resolution input. Comparing with
high-resolution input, as shown in Table 5, we verify the
significance of this idea. As we illustrated in the ablation
experiments, the mAP of YoloV5s at the low resolution of
608 × 608 is only 69.7. In terms of object detection tasks,
the higher resolution not only means the improvement in
detection accuracy, but also accompanies a greater amount of
calculation. With the increase of input resolution, the overall
mAP of YoloV5s is significantly improved, but the FPS also
decreased sharply. When the input resolution is 1024× 1024,
the mAP of YoloV5s is increased to 81.1, but FPS is reduced
to 55. In contrast, our method achieves better mAP and higher
FPS on low-resolution inputs at 608×608 and 640×640. With
this comparison, we verify the effectiveness of the proposed
idea. Under low-resolution inputs, we acquire better detection
performance than large-scale inputs in inference speed and
accuracy by proposing the two-stage detection framework.

Comparison with other traffic sign detectors. We also
compare our detection performance with other methods on
TT100K dataset, as shown in Table 6. For fair comparison, we
compare the detectors without loading any pre-trained weights,
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TABLE 4: Step by step optimization for the overall performance

Model First only∗ Second only⋆ Weighted Fusion Linear Regression SA-NMS mAP APs APm FPS

Our Framework

✓ 69.7 69.1 70.9 144
✓ 75.0 74.0 77.7 65

✓ 81.1 79.0 83.6 65
✓ 82.4 79.0 84.2 65

✓ ✓ 89.7 84.6 92.1 65
✓ ✓ 88.5 82.6 92.9 65

∗ means that the final category predictions are only determined by the first-stage detector (YoloV5s).
⋆ means that final category predictions are only determined by the second-stage classifier (Attention-MobileNetV2).

TABLE 5: Comparison between our method and YoloV5s with
large input resolution

Method Input Resolution mAP APs APm FPS

YoloV5s
608*608 69.7 69.1 70.9 144
800*800 75.2 74.6 77.0 90

1024*1024 81.1 78.3 82.4 55

Ours
608*608 89.7 84.6 92.1 65
640*640 90.1 84.9 94.4 63

TABLE 6: Comparison with other traffic sign detectors

Model Resolution mAP FPS
YoloV4-tiny [43] 608×608 52.1 87
Wang et al. [8] 608×608 65.1 95

EFPN-ResNet50 [19] 1400×1400 77.0 9
CABs [44] 512×512 77.1 37

EFPN-ResNet101 [19] 1400×1400 77.6 5
CAB [44] 512×512 78.0 28

Wu et al. [13] 512×512 79.4 42
ESSD [9] 512×512 81.3 23

Zhu et al. [14] 2048×2048 81.6 1
VATSD [45] 608×608 82.8 22

Wu et al. [13] 1024×1024 82.6 12
Mask-SSD [10] 640×640 82.9 20

FE-YOLOv5 [46] 640×640 82.6 -
Gao Improved Faster-RCNN [47] 1333×800 86.5 8

AD-RCNN Lite [48] 1024×1024 86.3 16

Our Method
608×608 89.7 65
640×640 90.1 63

and do not consider the results of those using multi-scale
inputs for evaluation. The best performance is achieved by
AD-RCNN Lite [48], which is 86.3 mAP and 16 FPS. Com-
pared with AD-RCNN Lite and other traffic sign detectors, our
algorithm achieves 90.1 mAP and 63 FPS under 640 × 640
input resolution, which is more superior both in accuracy and
inference speed.

Comparison with other generic detectors. We train
and test other generic object detection networks in TT100K
dataset, and the results are shown in Table 7. For fair compar-
ison, we keep the input resolution consistent for EfficientDet
[3], YoloV3 [2], YoloV5 and YoloX [49]. For SSD [1], M2Det
[50] and FPN [16], we keep the input resolution consistent
with the original network. Through comparative experiments,
it is apparent that the YoloX-l achieves the best mAP under the
input resolution of 608×608 while the inference speed is just
43 FPS. The mAP of our method is much higher than that of
other generic detectors. Besides, our approach also surpasses
most models in inference speed.

TABLE 7: Comparison with other generic object detectors.

Model Input Resolution mAP FPS
MobileNetV2-SSD [18] 512×512 32.0 44

M2Det [50] 512×512 46.6 12
EfficientDet-D0 [3] 608×608 57.9 26

RetinaNet [51] 1000×800 59.0 19
YoloV3 [2] 608×608 61.9 27

YoloX-s [49] 608×608 68.6 59
YoloV5s [21] 608×608 69.7 144
YoloV5m [21] 608×608 72.6 73
YoloV5l [21] 608×608 73.8 56

FPN-ResNet101 [16] 1333×800 75.5 5
FPN-ResNet50 [16] 1333×800 75.8 8

YoloX-m [49] 608×608 78.2 74
YoloX-l [49] 608×608 80.7 43
YoloV7 [52] 608×608 72.7 161
Our Method 608×608 89.7 65

D. Discussions

Why is the second-stage classification network more
accurate than the first-stage detector? The amount of
computation of YoloV5s in the first-stage is almost the same
as that of MobileNetV2 + CBAM in the second-stage, but the
mAP relying solely on the second-stage reaches 75.0, which
is higher than that of relying solely on the first-stage. The
reason is that the detection task is to find the coordinates
of the objects and get the categories on the whole image.
Due to the large resolution of the original images, most of
the features belong to ‘background’, and the proportion of
foreground features is relatively small. Therefore, it is difficult
to accurately judge the objects classes because of the uneven
proportion of features. Compared with object detection tasks,
image classification is relatively simple. When we cropped the
object images according to the first-stage outputs, convolution
neural networks only need to judge which categories these
cropped images belong to. For the cropped images with large
background areas, the extracted background features can be
directly classified as background. For those images that belong
to foreground, the background area is small, so they can
be easily identified as object classes. However, it is not the
best strategy to completely rely on the second-stage outputs.
Although the accuracy of the first-stage is relatively poor, the
result of integrating the two stages is higher than that predicted
by any stage alone.

Generality of our proposed framework. This framework
is not only limited to YoloV5s and MobileNetV2, but also
applicable to other models to achieve higher detection per-
formance on traffic signs. We utilize the classic models, e.g.
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TABLE 8: Detection performance of our framework with SSD
and ResNet18

Method mAP Improvement
SSD(baseline) 64.1 -

+ResNet18 Classifier 73.9 ↑9.8

+Weighted Fusion

λ=0.0 73.9 ↑9.8
λ=0.2 80.6 ↑16.5
λ=0.4 81.3 ↑17.2
λ=0.6 78.9 ↑14.8
λ=0.8 74.4 ↑10.3
λ=1.0 64.1 -

+SA-NMS 84.6 ↑20.5

TABLE 9: Detection performance of our framework with
YoloV7 and Attention-MobileNetV2

Method mAP Improvement
YoloV7(baseline) 72.7 -

+Attention-MobileNetV2 Classifier 76.8 ↑4.1

+Weighted Fusion

λ=0.0 76.8 ↑4.1
λ=0.2 80.2 ↑9.5
λ=0.4 85.4 ↑12.7
λ=0.6 83.1 ↑10.4
λ=0.8 76.2 ↑3.5
λ=1.0 72.7 -

+SA-NMS 92.0 ↑19.3

SSD512 as the first-stage detector and ResNet18 as the second-
stage classifier, to construct this framework. The results are as
shown in Table 8. The mAP using SSD512 for the first-stage
is only 64.1. Without any fusion method, using ResNet18 as
the second-stage classifier, the mAP improves to 73.9. After
we fuse the two stage results, the mAP is increased to 81.3,
which is much better than any individual predictions. In the
process of weighted fusion, the change of overall accuracy
with parameters λ is consistent with the previous YoloV5s and
MobileNetV2 in Table 2. With the insertion of SA-NMS, we
acquire the maximum 84.6 mAP. Compared to the original
SSD512 with only 64.1 mAP, our framework improves the
overall accuracy to 84.6 mAP. It’s an improvement of 20.5
mAP. Therefore, although deploying some classical models
with less powerful detection performance, we still acquire
a more obvious improvement with our framework. Besides,
YoloV7 is a relatively new version to the Yolo series. However,
after deploying it for retraining and testing on the TT100K
dataset, it did not achieve a satisfactory level of accuracy.
We apply the strategies proposed in this paper to improve
the performance of YoloV7. The experimental results are as
shown in Table 9. Notably, our method continues to enhance
accuracy, achieving an impressive mAP of 92.0. Our proposed
framework not only yields noticeable accuracy enhancements
on previous models such as YoloV5 and SSD512 but also
substantially elevates accuracy on new generic object detector
YoloV7. This reflects the generality and effectiveness of our
proposed methods.

Comparison with cascading framework. To compare our
fusion method with previous cascading approach, we conduct
comparative experiments with the same detector and classifier.
According to colors, we divide 45 types of traffic signs into
3 groups and each group has 15 types traffic signs. We use

the first stage YoloV5s to identify the category group, then
use the second stage classification network to recognize the
subcategory index, and finally output the category prediction
by combining the results of the two stages. The experimental
results are as shown in Table 10. It’s apparently that although
the cascading framework possesses higher accuracy compared
to solely rely on classifier, the overall performance is still
inferior to the method of proposed two-stage fusion. This also
verifies that our framework possesses better robustness.

TABLE 10: Comparison of different framework

Method mAP Improve
YoloV5(baseline) 69.7 -

Framework
Only classifier∗ 75.0 ↑5.3

Cascade⋆ 77.4 ↑7.7
Weighted Fusion 81.1 ↑11.4

Linear Regression 82.4 ↑12.7
∗ means that final category predictions are only deter-

mined by the second stage classifier.
⋆ means that final category predictions are formed by

cascading the category group in the first stage detector
and the subcategories in the second stage classifier.

E. Detection Demos

Visualization of step-by-step optimization process. In
order to show the effectiveness of our approach more intu-
itively, we show the visualization results of several images
at different stages, as shown in Figure 9. We enlarge the
area with the potential detected objects to show more clearly.
For the first row images, the false detection box covers the
positive detection box, and the fusion results of the two stages
still cannot recognize the false detection box as ‘background’.
After inserting SA-NMS post-processing algorithm, the false
detection box is filtered out. For the second row images whose
detection demos of the second stage exist false detection
boxes, we finally acquire the non-false detection boxes after
fusing the two-stage results. The step-by-step detection effect
of our whole framework is clearly shown in the third row
images. Through our fusion method and SA-NMS, the two
false detection boxes in original detection image are filtered
out.

Comparison in challenging scenarios. There are also
some challenging scenarios in TT100K dataset, such as blur,
occlusion, distortion and dilapidation. We make a further
comparison, as shown in Figure 10. For the scenarios with
blur and occlusion, the original YoloV5s is interfered and
cannot detect the traffic signs inside the images. In contrast,
whether there are blurred warning signs or prohibited traffic
signs covered by trees, our framework recognizes them and
predicts the correct categories. For traffic signs with distortion
or dilapidation, the original YoloV5s predicts the location of
traffic signs, but the categories predictions are wrong. For
comparison, our framework obtains the accurate categories. In
addition, this also reflects that the robustness of the original
detector is relatively poor. It cannot accurately identify traffic
signs if there is distortion or dilapidation. For comparison,
our method possesses stronger robustness to obtain accurate
predictions.
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Fig. 9: Detection demo at different stages of our framework. The first row images reflect the improvement through the SA-NMS
post-processing method. All the second, third and fifth rows images all show the effect of the two-stage fusion method. The
fourth row images indicate the detection improvement of the whole framework.

Ours

YoloV5s

Blur Occlusion Distortion Dilapidation

Fig. 10: Comparison of detection performance between
YoloV5s and our method in challenging scenarios.

5. CONCLUSIONS

In this paper, we propose a lightweight two-stage fusion
object detection framework for detection and recognition of
traffic signs. By fusing the two-stage outputs, our method
achieves high mAP which exceeds the latest generic detec-
tors and other traffic sign detection algorithms. We further
improve the detection performance by inserting SA-NMS post-
processing method. Our framework consists of simple and
lightweight structures and the input resolution is relatively
lower, but it achieves great performance both in accuracy and
inference speed. Experimental results show the efficiency of
our framework.

In future, we will continue to propose a more general
traffic sign detection algorithm to promote the development
of intelligent transport systems.
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