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Abstract: The modeling of the cell mass distribution for microalgae growth processes is
addressed using the Fokker–Planck equation for a stochastic logistic growth model of a single
cell. Relations between the proposed model and the classical Droop model used for mass–
balance based modeling of the algae growth are established. The proposed model is evaluated
using experimentally obtained cell mass distribution data for the microalgae Chlamydomonas
reinhardtti showing a good correspondence between measurements and model predictions. The
obtained model is considerably simpler in comparison to cell mass population balance models
used so far to describe the temporal behavior of the cell mass distribution.
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1. INTRODUCTION

The modeling of particle size distributions is a key in
understanding, monitoring and controlling the outcome
of many particulate processes in chemical, bioprocess and
pharmaceutical engineering [Ramkrishna 2000, Mesbah
et al. 2012, Geyyer et al. 2015, Palis and Kienle 2014, Otto
et al. 2022]. Many different approaches have been proposed
for this purpose depending on the particular application
scenario, ranging from crystallization, spray drying to
fermentation and microalgae growth. The present paper
focusses on the latter, in particular within batch process
setups. Microalgae growth can be considerably well de-
scribed on a (mascroscopic) mass–balance level using, e.g.,
the Droop model [Droop 1968, Bernard et al. 1999, Mairet
and Bernard 2016]. The cell mass distribution (and thus
the cell size distribution) can be modeled, e.g., using cell
population balance equations, accounting explicitly for cell
growth and division [Villadsen 1999]. The cell population
balance approach has recently been reported for microal-
gae in [Atzori et al. 2021] showing a rather good correspon-
dence with measurement data for extracelular substrate
(i.e., nitrate) concentration, biomass concentration and
cell size distribution. Inspite its usefullness for describing
the associated growth phenomena and the ability of pa-
rameter identification outlined in [Atzori et al. 2021] (i)
the identification is associated to a high experimental and
analytic effort, (ii) the model analysis is rather complex,
and (iii) it can be computation time–consuming to employ
the resulting model for online monitoring and control.

A different approach that has been employed for modeling
particle size distribution, in particular in crystallization
processes is based on the Fokker–Planck equation [Cogoni
et al. 2011, Grosso et al. 2011, Cogoni et al. 2012, 2014] (see
also the general purpose discussion of the Fokker–Planck
framework, e.g., in [Risken and Frank 1996, Gardiner 2009,

Jazwinski 1970]). In these studies quite simple basic crystal
growth models, motivated, e.g., by the logistic equation
where employed and the parameters identified using exper-
imental data. The results of numerical simulations show a
rather convincing correspondence with the measurements
and the approach has already been employed in control
design studies with experimental validation. A particularly
clear advantage of the Fokker–Planck based approach is
that the associated equations enable to (i) draw analytic
solutions for the stationary state probability density func-
tion (PDF), (ii) analyze transients on multiple time scales
(deterministic, diffusion and escape time scales, with the
latter only applying for multimodal distributions), and (iii)
bear the potential for simple, real–time capable monitoring
and control implementations.

In spite its usefullness in crystallization processes the
Fokker–Planck approach has not been employed for de-
scribing cell size distributions in bioreactors so far. The
reported studies on the use of this framework for biore-
actors have focussed mainly on the mass–balance models
[Stephanopoulos et al. 1979] and [Baratti et al. 2021,
Schaum et al. 2021] for which the deterministic multiplic-
ity and bifurcation behavior were analytically related to
the stochastic multimodality, metastability, fragility and
the transient behavior on the associated deterministic,
diffusion and escape time scales. The studies in [Baratti
et al. 2021, Schaum et al. 2021] extended previous ones
on the dynamics and robustness of one– and two–state
chemical reactors subject to additive and multiplicative
noise disturbances [Tronci et al. 2011, Baratti et al. 2016,
2018, Alvarez et al. 2018].

Having the above mentioned studies as points of depar-
ture, the present one addresses the modeling of the time
evolution of the cell mass distribution of microalgae in a
batch reactor following the Fokker–Planck based approach
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Having the above mentioned studies as points of depar-
ture, the present one addresses the modeling of the time
evolution of the cell mass distribution of microalgae in a
batch reactor following the Fokker–Planck based approach

proposed in [Cogoni et al. 2011, Grosso et al. 2011, Cogoni
et al. 2012, 2014]. For this purpose a stochastic logistic
model approximation for a single cell is derived in Section
2 based on the Droop model [Droop 1968, Bernard et al.
1999], and successively employed to develop a model for
the time–evolution of the cell–mass distribution using the
Fokker–Planck equation in Section 3. A specific approach
for parameter identification based on sampled (in time and
space) measurements of the cell–mass distribution and the
total biomass in the reactor (sampled in time) is presented
in Section 4. The employed numerical solution approach is
explained in Section 5 together with the presentation of
the comparison between measurements and simulations.
The discussions and outlook are presented in Section 6.

2. MICROALGAE GROWTH MODEL

2.1 The Droop model revisited

The Droop model [Droop 1968, Bernard et al. 1999, Mairet
and Bernard 2016] for microalgae growth in a batch reactor
is given by

ḃ = µ(q)b, t > 0, b(0) = b0 (1a)

q̇ = ρ(s)− µ(q)q, t > 0, q(0) = q0 (1b)

ṡ = ρ(s)b, t > 0, s(0) = s0 (1c)

where b, q, s are the dimensionless state variables repre-
senting the biomass concentration b = B/Br with ref-
erence value Br, internal nutrient quota q, i.e. the in-
tracellular nutrient concentration per biomass unit and
extracellular nutrient concentration s = S/Sr with ref-
erence concentration Sr. The specific biomass growth rate
is denoted by µ(q) which is a smooth function depending
on q (and on the light intensity). The substrate uptake
rate is denoted by ρ(s), which is a smooth function of s.

2.2 A logistic model approximation

Considering that the internal nitrogen quota remains con-
stant over time, i.e.

q(t) = const. = q0 > 0 ⇔ µ(q)q = ρ(s) (2)

one can simplify the Droop model (1) to the simple two–
state bioreactor model

ḃ = q−1ρ(s)b (3a)

ṡ = −ρ(s)b (3b)

with the associated reaction invariant [Aris 1969, Feinberg
1977, Bastin and Dochain 1990]

m = qb+ s, m(t) = const. = m0 = b0 + s0. (4)

Accordingly, for all t ≥ 0 one has that

s(t) = m0 − qb(t) (5)

implying that

ḃ = q−1ρ(m0 − qb)b.

Considering the monotonically increasing Monod uptake
(and growth) rate function

ρ(s) =
k0s

Ks + s
(6)

with the maximum growth rate k0 and half–saturation
constant Ks yields the biomass dynamics

ḃ =
k0(m0 − qb)

q(Ks + s)
b

that can be recast into the form of the logistic growth
model [Bacaër 2011]

ḃ = r(s)b

(
1− b

K

)
(7a)

with

r(s) =
k0m0

q(Ks + s)
> 0, K =

m0

q
(7b)

and the two equilibrium solutions

b = 0 (repulsor) and b = K (attractor). (7c)

It should be noted that for a monotonic Monod growth
rate (6) with half–saturation constant Ks ∼ 1 (considering
s ∈ [0, 1]) the value of r(s) will be almost constant
(cp. Figure 1). Accordingly, for Ks ∼ 1 it is reasonable
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Fig. 1. Behavior of the growth rate parameter r(s) = 1
Ks+s

(i.e., considering k0m0 = 1) with Ks = 0.1, 1, 2.

to approximate the logistic model (7a) with a constant
growth factor r > 0.

Remark 1. It should be noted that one could also write
the growth factor r(s) in the model (7a) in the form
r(s) = r(m0 − qb) as substrate and biomass are strictly
related through the total mass according to (4). Here
the dependency on the substrate is used to motivate
the consideration of a constant growth rate coefficient to
maximally simplify the model.

2.3 Logistic cell mass dynamics

Based on the preceding considerations it is reasonable to
assume that each cell satisfies a logistic growth equation
and is subject to noise. Denoting in the following with
m ≥ 0 the cell mass of an individual cell, this leads to

ṁ = rm
(
1− m

K

)
+ wm, m(0) = m0 (8)

with the white noise variable wm with variance assumed
in the following as depending on the cell mass

wm ∼ N (0, qnm
2), qn > 0. (9)

The model (8) can be equivalently written as

ṁ = f(m) + g(m)w (10)

with

f(m) = rm
(
1− m

K

)
, g(m) =

√
qnm, w ∼ (0, 1).

(11)
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proposed in [Cogoni et al. 2011, Grosso et al. 2011, Cogoni
et al. 2012, 2014]. For this purpose a stochastic logistic
model approximation for a single cell is derived in Section
2 based on the Droop model [Droop 1968, Bernard et al.
1999], and successively employed to develop a model for
the time–evolution of the cell–mass distribution using the
Fokker–Planck equation in Section 3. A specific approach
for parameter identification based on sampled (in time and
space) measurements of the cell–mass distribution and the
total biomass in the reactor (sampled in time) is presented
in Section 4. The employed numerical solution approach is
explained in Section 5 together with the presentation of
the comparison between measurements and simulations.
The discussions and outlook are presented in Section 6.

2. MICROALGAE GROWTH MODEL
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on q (and on the light intensity). The substrate uptake
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2.2 A logistic model approximation

Considering that the internal nitrogen quota remains con-
stant over time, i.e.

q(t) = const. = q0 > 0 ⇔ µ(q)q = ρ(s) (2)

one can simplify the Droop model (1) to the simple two–
state bioreactor model
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related through the total mass according to (4). Here
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Based on the preceding considerations it is reasonable to
assume that each cell satisfies a logistic growth equation
and is subject to noise. Denoting in the following with
m ≥ 0 the cell mass of an individual cell, this leads to

ṁ = rm
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with the white noise variable wm with variance assumed
in the following as depending on the cell mass
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Remark 2. Note that the analysis of the behavior of the
stochastic differential equation (10) can be addressed
with different methods, including Monte Carlo simulations
[Chen and Zhang 2013, Zhang et al. 2014, Meng et al. 2016,
Wang et al. 2017, Sun et al. 2017] or the Fokker–Planck
equation approach [Risken and Frank 1996, Gardiner 2009,
Jazwinski 1970]. Here the latter approach is followed going
in line with studies on crystallization processes [Cogoni
et al. 2011, Grosso et al. 2011, Cogoni et al. 2012, 2014].

3. CELL MASS PROBABILITY DENSITY FUNCTION

Following the Fokker–Planck equation based approach em-
ployed in [Cogoni et al. 2011, Grosso et al. 2011, Cogoni
et al. 2012, 2014] for the modeling and control of crystal
size distributions in this section the stochastic logistic
model approximation (10) for microalgae growth intro-
duced in the preceeding section is employed to describe
the time–evolution of the cell mass distribution.

The Fokker–Planck equation (in Stratonovich form ) asso-
ciated to (10) is given by

∂tψ = ∂m

(
1

2
g2∂mψ − [f(m)− 1

2
g∂mg]ψ

)
(12a)

= ∂m

(
qm2

2
∂mψ −

[
rm

(
1− m

K

)
− qnm

2

]
ψ

)
(12b)

for t > 0,m ∈ (0, 1) with ψ : [0,∞)×[0, 1] → R+ satisfying
the boundary conditions

qnm
2

2
∂mψ(·,m)−

[
rm

(
1− m

K

)
− qnm

2

]
ψ(·,m) = 0,

(12c)

for t > 0,m ∈ {0, 1}. The coefficient of the convective term
in (12) can be rewritten as

rm
(
1− m

K

)
− qnm

2
= r̄m

(
1− m

K̄

)
(13)

with

r̄ = r − qn
2
, K̄ = K

r̄

r
. (14)

The stationary solution of (12) satisfies

0 = ∂m

(
qnm

2

2
∂mψ̄ −

[
r̄m

(
1− m

K̄

)]
ψ̄

)

what after integration from 0 to m and substitution of the
left boundary conditions yields

0 =
qnm

2

2
∂mψ̄ −

[
r̄m

(
1− m

K̄

)]
ψ̄

and thus

ψ̄(m) = C exp



∫ m

0

2r̄
(
1− m′

K̄

)

qm′ dm′


 (15)

with the integration constant C > 0 chosen so that the
integral of ψ̄ over the domain is equal to 1. The unique
maximum of ψ̄ satisfies

∂mψ̄(m) =
2r̄

qnm

(
1− m

K̄

)
= 0

⇔ m∗ = K̄ =
r − qn

2

r
K, ∂2

mψ̄(m∗) = − 2r̄

qnK̄2
< 0.

Note that in correspondence the mode of the pdf is not
located at the deterministic equilibrium point m̄ = K but
shifted toward m∗ = K̄ with a difference that increases
with the noise intensity qn < 2r.

4. PARAMETER IDENTIFICATION

In this section the problem of identifying the parameters
r,K, qn in the PDE model (12) for a given microalgae
growth process is addressed. For this purpose it is con-
sidered that cell size distribution measurements

yd(tk) = [n1(tk) · · · nm(tk)]
T

(16)

are at hand at different discrete time instances 0 <
t1, . . . , tN , where ni(tk), i = 1, . . . , n denotes the number
of cells at time tk with diameter between dk−1 and dk,
where d0 = 0 and dm = d+, being d+ the maximum
diameter. This means that yd basically corresponds to a
histogram over the diameter of the cell size distribution.
Accordingly the total number of cells is given by

N(tk) =

n∑
i=1

ni(tk). (17)

Having the total number of cells the mean cell diameter
can be directly determined as

〈d 〉 (tk) =
1

N(tk)

n∑
i=1

dini(tk). (18)

In the following it is described how one can derive from
this measurement the necessary information about the cell
mass probability distribution density function ψ. In the
following the cells are considered spherical to simplify the
calculations 1 . First of all take into account the relation
between the mass m(d) of a cell with diameter d consider-
ing a constant (i.e. mass and diameter invariant) density

, given by

m(d) =
3π

4



(
d

2

)3

. (19)

Equivalently this equation can be solved to describe d in
function of m as follows

d(m) = 2

(
4

3π

m

) 1
3

. (20)

A crucial information that is required in the preceding
equations is the cell density 
. To determine 
 consider
the additional measurement of the biomass at the time
instances tk, k = 1, . . . , N , i.e.,

yb(tk) = b(tk). (21)

With the total biomass measurement and the cell number
N from (17) one can directly obtain the mean cell mass

〈m〉 (tk) =
b(tk)

N(tk)
. (22)

With the mean cell mass 〈m〉 and the mean cell diameter
〈d 〉 one obtains a value for the cell density for every
measurement time tk by


k =
〈m〉 (tk)
〈v 〉 (tk)

, k = 1, . . . , N, 〈v〉 = 4π

3

(
〈d〉
2

)3

from which one can determine the cell density as


 =
1

N

N∑
k=1


k. (23)

To finally get the relation with the cell mass probability
distribution density function ψ, denote by ψd the cell size
1 For microalgae this approximation is typically reasonable, at least
in most of the cell stages.

probability distribution density function (with respect to
the diameter d) defined by

ψd(t, d) = ψ(t,m(d)) (24)

with m(d) defined in (19). Recall the relation (20) between
the cell mass m and diameter d so that

ni(tk) =

∫ di

di−1

ψd(tk, δ)dδ =

∫ mi

mi−1

ψ(tk, µ)d
′(µ)dµ. (25)

Using the trapezoidal rule it follows that

ni(tk) ≈
ψ(tk,mi)d

′(mi) + ψ(tk,mi−1)d
′(mi−1)

2
∆mi

with ∆mi = mi−mi−1, i = 1, . . . , n with m0 = 0, so that
an approximation ψa of ψ is given by

ψa(tk,mi) =
2

∆mi
ni(tk)− ψa(tk,mi−1)d

′(mi−1)

d′(mi)
, i ≥ 1

(26a)

ψa(tk, 0) = 0. (26b)

With the approximated cell mass distribution density
function measurement ψa and a numerical approximation
ψn of the solution ψ of the Fokker–Planck equation (12)
one can perform a least–squares approximation to identify
the parameters with

p = argmin
p=[r,K,qn]

N∑
k=1

n∑
i=1

(ψa(tk,mi)− ψn(tk,mi))
2
, (27)

In the next section this approach is illustrated for a mi-
croalgae growth process for Chlamydomonas reinhardtti in
a lab–scale reactor.

Remark 3. Note that instead of explicitely using the rela-
tion (26) to determine the cell mass probability distribu-
tion density function one can alternatively use numerical
tools, like, e.g., the ones in Matlab implemented in the
Statistics and Machine Learning Toolbox or simi-
lar libraries.

5. EXPERIMENTAL VALIDATION

In this section the numerical method employed for solving
the Fokker–Planck equation (12) is shortly commented
and the results from the parameter identification with
experimental data is presented.

5.1 Numerical solution

For the numerical solution of the Fokker–Planck equation
the Matlab standard algorithm pdepde was employed.
For this purpose (12) is put into the standard form

∂tψ = m−c∂m (mcF (ψ, ∂mψ) +G(ψ, ∂mψ))

0 = pl + qlF (ψ, ∂mψ), m = 0

0 = pr + qrF (ψ, ∂mψ), m = 1

with

c = 0, F = r̄m
(
1− m

K̄

)
, G = 0,

pl = pr = 0, ql = qr = 1

with M = 100 discretization points. The initial condition
was set as a lognormal distribution

ψ0 = C0
1√

2πσ0m
exp

(
− (ln(m)− α)2)

(2σ2
0)

)

where the parameters σ0, α are identified using the initial
condition from the measurement data.

5.2 Validation with experimental data

Measurements from a microalgae growth experiment were
obtained at time instances

[t1, t2, t3, t4, t5, t6, t7, t8, t9]

≈ [73, 97, 121, 170, 241, 265, 289, 313, 338] (in h)

and the first measurement used to fit the parameters α, σ0

in the initial lognormal distribution above for the nu-
merical simulation. Then the Matlab internal algorithm
fmincon was used to determine the parameters with lower
and upper bounds set as

K = 0.9480 · 10−6 g, qn = 0.0016, r = 0.0063 h−1

� = 1.11 · 103 g/l, m0 = −1.1, σ0 = 0.2.

A comparison between the distributions obtained using the
numerical solution of the Fokker–Planck equation (12) and
the measured ones is shown in Figure 2. It can be seen that
a rather good correspondence is achieved, showing the big
potential of the proposed method for the prediction of the
cell mass distribution.

For further validation the experimentally determined
biomass concentration values are compared with the first
moment of the cell mass distribution density obtained from
the numerical solution of the Fokker–Planck equation mul-
tiplied by the measured total number of cells determined
in (17). For this purpose the distribution is multiplied
with the total number of cells which is obtained at each
measurement point from the measurement device yielding
the cell mass distribution density function. The biomass
value then theoretically corresponds to the mean value
(i.e., the first moment) of this density function. Figure 3
shows the comparison at the measurement times, with a
considerably good correspondence.

Remark 4. It should be noted that the measurements of
the distributions and the biomass are subject to different
sources of errors, given that they involve probe–taking,
dilution, device errors, and further filtering for dry biomass
determination. The model on the other side is based on a
rather simple approximation of the complex cell dynamics
which depends on external and internal substrate concen-
trations and light intensity fluctuations (microalgae grow
heterotrophically based on both substrate and light) which
are not considered explicitely but implicitly attributed to
the white noise perturbation. Having these experimental
and model approximation limitations in mind the resulting
correspondence between the simulation results and the ex-
periments show the feasibility of the approach. Further im-
provement could be obtained by considering variations in
the substrate. This could be done using the representation
pointed out in Remark 1, or introducing the substrate, or
quota as in [Mairet and Baron 2019] as additional degree of
freedom, implying a two–dimensional spatial dependency
in the Fokker–Planck equation.

Remark 5. Note that besides the shown correspondence
between model predictions and experimental data for the
presented parameter values the stationary solution of the
Fokker–Planck equation does not match the final one of
the experiment but will have a mode at K̄ ≈ 2.85 · 10−10

that is reached along a considerably larger time–scale.
Given the monomodality of the distribution no escape–
time phenomena will be present. To enable for a good long
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considerably good correspondence.

Remark 4. It should be noted that the measurements of
the distributions and the biomass are subject to different
sources of errors, given that they involve probe–taking,
dilution, device errors, and further filtering for dry biomass
determination. The model on the other side is based on a
rather simple approximation of the complex cell dynamics
which depends on external and internal substrate concen-
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are not considered explicitely but implicitly attributed to
the white noise perturbation. Having these experimental
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Fig. 2. Comparison of experimental cell mass distribution measurements and the numerical solution of the Fokker–Planck
equation.
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Fig. 3. Comparison of the calculated and experimentally
determined biomass concentrations.

term correspondence the possible parameter range would
need to be further reduced.

6. CONCLUSIONS

A Fokker–Planck equation based modeling approach for
the cell mass distribution of a microalgae growth process
of Chlamydomonas reinhardtti is employed for describing
the temporal behavior of the associated probability density
function. The Fokker–Planck equation describes the tem-
poral evolution of the probability density distribution of a
stochastic logistic differential equation that is motivated
by some assumptions on the behavior of the mircroal-
gae in terms of their internal nitrogen quota and uptake
rates. The comparison of the model predictions with the
experimental measurement data shows that this approach
can be used for approximating the associated cell mass

distribution. It should be noticed that the resulting model
is considerably simpler and easier to parameterize than
alternative cell population balance equations.

Future studies will focus on the use of this approach for
online estimation of substrates and potential applications
in the control of the cell size distribution. A further route
for future investigations consists in extending the proposed
method to consider varying growth rates or additional
dependencies through the solution of the Fokker–Planck
equation on higher–dimensional spatial domains.
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