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1. Introduction

A hypersurface Mn−1 in a n-dimensional Riemannian manifold Nn is called
biconservative if

2Sη(gradH) + (n− 1)H gradH − 2H Ricci(η)⊤ = 0

where η is a unit normal vector field, Sη is the shape operator, H =
traceSη/(n− 1) is the mean curvature function and Ricci(η)⊤ is the tangent
component of the Ricci curvature of N in the direction of η.

The notion of biconservative hypersurfaces was introduced in [7], as we
shall detail in the next section, where the authors classified, locally, biconser-
vative surfaces into 3-dimensional space forms (see also [14]). More precisely,
in [7], it was proved that a biconservative surface of a 3-space form, N3(ρ), is
either a CMC surface or a rotational surface. Moreover, in the same paper,
a relation between the Gaussian curvature, K, and the mean curvature, H,
of the non-CMC biconservative surfaces of N3(ρ) was stated. Indeed, these
rotational surfaces verify

(1) K = −3H2 + ρ .

Throughout this paper, we are going to understand a Weingarten surface as
a surface of N3(ρ) where the two principal curvatures κ1 and κ2 satisfy a cer-
tain relation Φ(κ1, κ2) = 0. These surfaces were introduced by Weingarten
in [34] and its study occupies an important role in classical Differential Ge-
ometry.

The simplest relation Φ(κ1, κ2) = 0 is the pure linear relation, that is,

(2) κ1 = aκ2 , a ∈ R .

Rotational surfaces in Riemannian 3-space forms verifying the relation (2)
between their principal curvatures were geometrically described by Barros
and Garay in [5] where they gave a variational characterisation of the paral-
lels. On the other hand, in [21], the profile curve of rotational linear Wein-
garten surfaces of R3 was characterised as a critical curve for a curvature

energy problem.
In our case, relation (1) implies that non-CMC biconservative surfaces

are linear Weingarten surfaces for a = −1/3 in (2), as it was first pointed
by Fu and Li in [15]. Thus, we have the following description.
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Proposition 1.1. The non-CMC biconservative surfaces of a 3-

dimensional space form N3(ρ) are rotational linear Weingarten surfaces

verifying

(3) 3κ1 + κ2 = 0 ,

where κ1 = −κ is minus the curvature of the profile curve. Moreover, let

S ⊂ N3(ρ) be a rotational linear Weingarten surface verifying (3), then S
is a biconservative surface.

Throughout this paper, we are going to consider the following bending-

type energy problem. More precisely, we consider the curvature energy func-

tional given by

(4) Θ(γ) :=

∫

γ
κ1/4 ,

acting on the space of arc-length parametrized non-geodesic curves γ : I →
N3(ρ), where I is a real interval. Here, κ denotes the curvature of γ. In
the Euclidean 3-space, R3, this functional has been studied in [16], where its
critical curves have been used to produce solutions of a generalized Ermakov-
Milne-Pinney equation. On the other hand, in the unit round 3-sphere, S3(1),
it was analysed in [1]. For more details about this functional see §3.

The first main result of the paper is the following characterisation.

Theorem 1.2. Let S be a non-CMC biconservative surface of a 3-

dimensional space form N3(ρ). Then, locally, S is a rotational surface whose

profile curve verifies the Euler-Lagrange equations for the functional (4).

A converse of Theorem 1.2 is also true and gives us a way of constructing
all non-CMC biconservative surfaces of 3-space forms, as it will be explained
in Theorem 4.2.

A natural problem is to investigate, using the variational characteri-
sation, the existence of closed (i.e. compact without boundary) non-CMC
biconservative surfaces into N3(ρ). This problem was raised for the first time
in [27] and then in [10, 11]. In §5 we tackle this problem and solve it. We first
prove, in Proposition 5.2, that there are no closed non-CMC biconservative
surfaces in 3-space forms, N3(ρ), with ρ ≤ 0. While, for the case of S3(ρ),
we prove the following existence result.
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Theorem 1.3. There exists a discrete biparametric family of closed non-

CMC biconservative surfaces in the round 3-sphere, S3(ρ). However, there
are no closed non-CMC biconservative surfaces embedded in S3(ρ).

2. Biharmonic maps and biconservative immersions

Harmonic maps φ : (M, g) → (N, h) between Riemannian manifolds are the
critical points of the energy functional

E(φ) =
1

2

∫

M
|dφ|2vg .

Their corresponding Euler-Lagrange equation is given by the vanishing of
the tension field

(5) τ(φ) = trace∇dφ .

In [9], Eells and Sampson suggested to study biharmonic maps, which are
the critical points of the bienergy functional

(6) E2(φ) =
1

2

∫

M
|τ(φ)|2vg .

The first variation formula of the bienergy was derived by Jiang, [19]. More-
over, he showed that the Euler-Lagrange equation for E2 is

(7) τ2(φ) = −J(τ(φ)) = −∆τ(φ)− traceRN (dφ, τ(φ))dφ = 0 ,

where J is the Jacobi operator of φ. The curvature operator of (N, h) is
denoted by RN and it can be computed as

RN (X,Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ] ,

for any vector fields X and Y in N , where ∇ denotes the Levi-Civita connec-
tion. Finally, the symbol ∆ in (7) represents the rough Laplacian on sections
φ−1(TN), which, for a local orthonormal frame {ei}mi=1 on M , is defined by

∆ = −
m
∑

i=1

(

∇φ
ei∇

φ
ei −∇φ

∇M
ei
ei

)

.

The equation τ2(φ) = 0 is called the biharmonic equation. Since the Jacobi
operator J is linear, it is easy to check that harmonic maps are always
biharmonic.
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If φ :M → N is an isometric immersion the decomposition of the biten-
sion field with respect to its normal and tangent components was obtained
with contributions of [6, 8, 22, 31] and for hypersurfaces it can be sum-
marised in the following theorem.

Theorem 2.1. Let φ :Mn−1 → Nn be an isometric immersion with unit

normal vector field η and mean curvature vector field H = Hη. Then, the
normal and tangential components of τ2(φ) = 0 are respectively

∆H +H|Sη|2 −H Ricci(η, η) = 0 ,

2Sη(gradH) + (n− 1)H gradH − 2H Ricci(η)T = 0 ,

where Sη is the shape operator and Ricci(η)T is the tangent component of

the Ricci curvature of N in the direction of the vector field η.

Remark 2.2. Let γ : I → N be an arc-length parametrized curve from
an open interval I ⊂ R to a Riemannian manifold N . In this case, putting
T = γ′, the bienergy functional, (6), reduces to

(8) E2(γ) =

∫

γ
κ2 .

Then, the Euler-Lagrange equation for the bienergy when it acts on the
space of all maps between I and N , can be written as

(9) τ2(γ) = ∇3
TT +R(∇TT, T )T = 0 ,

and its solutions are called biharmonic curves. Take into account that har-
monic curves, that is, arc-length parametrized solutions of the tension field
τ(γ), (5), are just geodesics. Moreover, as mentioned before, harmonic maps
are also biharmonic maps and, therefore, biharmonic curves represent a gen-
eralization of geodesics.

One can also study the bienergy functional E2, (8), acting on the space
of curves immersed in N . That is, in this case, the problem consists of seek-
ing critical curves among arc-length parametrized curves and it is usually
referred as bending energy problem, while its critical curves are called elastic

curves.
We point out that the Euler-Lagrange equation for this last variational

problem over curves is

∇3
TT +

3

2
∇T

(

κ2T
)

−R(∇TT, T )T = 0 ,
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which, in principle, is different from (9). However, geodesics are also elastic
curves, which means that this is another way of generalizing the notion of a
geodesic.

2.1. Biconservative immersions

As described by Hilbert in [17], the stress-energy tensor associated with a
variational problem is a symmetric 2-covariant tensor S which is conservative
at critical points, that is, with divS = 0.

In the context of harmonic maps φ : (M, g) → (N, h) between two Rie-
mannian manifolds the stress-energy tensor was studied in detail by Baird
and Eells in [3] (see also [4] and [33]). Indeed, the tensor

S =
1

2
|dφ|2g − φ∗h

satisfies divS = −⟨τ(φ), dφ⟩, where τ(φ) is given by (5). Therefore, we have
that divS = 0 when the map is harmonic. Moreover, when φ is any isometric
immersion, the condition divS = 0 is always satisfied, since the tension field
τ(φ) is normal to the submanifold.

The study of the stress-energy tensor for the bienergy (6) was initiated
in [18] and afterwards developed in [23]. Its expression is

S2(X,Y ) =
1

2
|τ(φ)|2⟨X,Y ⟩+ ⟨dφ,∇τ(φ)⟩⟨X,Y ⟩

− ⟨dφ(X),∇Y τ(φ)⟩ − ⟨dφ(Y ),∇Xτ(φ)⟩,

and it satisfies the condition

(10) divS2 = −⟨τ2(φ), dφ⟩,

where τ2(φ) is the bitension field given in (7). Due to (10), we have that S2

is conforming to the principle of a stress-energy tensor for the bienergy.
Now, if φ is an isometric immersion, (10) reads

(11) (divS2)
♯ = −τ2(φ)T ,

where ♯ denotes the musical isomorphism sharp.
An isometric immersion is biconservative if the corresponding stress-

energy tensor S2 is conservative, that is, if div S2 = 0. From (11), biconser-
vative isometric immersions correspond to immersions with vanishing tan-
gential part of the corresponding bitension field, that is, using Theorem 2.1,
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an isometric immersion φ :Mn−1 → Nn is biconservative if and only if φ
satisfies the condition

(12) 2Sη(gradH) + (n− 1)H gradH − 2H Ricci(η)T = 0 .

An hypersurface Mn−1 immersed in this way is usually called a biconserva-

tive hypersurface.
Notice that, in the particular case when the ambient space is any space

form of dimension n and constant sectional curvature ρ, Nn(ρ), the tan-
gential part of the Ricci curvature vanishes, and therefore equation (12)
simplifies to

2Sη(gradH) + (n− 1)H gradH = 0 .

The theory of biconservative hypersurfaces is developing very rapidly and
we refer the reader to the papers [12, 13, 24–26] and the references therein.

2.2. Invariant surfaces

We end this section recalling that a surface S into N3(ρ) is said to be an in-

variant surface if it stays invariant under the action of a one-parameter
group of isometries of N3(ρ). The one-parameter group of isometries of
N3(ρ) is determined by the flow of a Killing vector field of N3(ρ). Take
Φ ∈ Isom+

(

N3(ρ)
)

an orientation preserving isometry of N3(ρ) and assume
that Φ is a rotation whose axis is a given geodesic ζ. The group of all
isometries in Isom+

(

N3(ρ)
)

with the same axis is isomorphic to SO(2) ⋍ S1

and acts naturally on N3(ρ). A rotational surface, S ⊂ N3(ρ), is an SO(2)-
invariant surface, where SO(2) is considered to be the subgroup of isome-
tries, Isom+

(

N3(ρ)
)

, acting as explained before. The group SO(2) fixes all
the points of the rotation axis ζ and rotates an everywhere orthogonal curve
γ (the profile curve) around ζ sweeping out a rotational surface which will
be denoted by Sγ from now on.

3. Bending-type curvature energy

Let us denote by γ an arc-length parametrized curve immersed in N3(ρ).
If γ(s) is a unit speed non-geodesic smooth curve immersed in N3(ρ), then
γ(s) is a Frenet curve of rank 2 or 3 and the standard Frenet frame along
γ(s) is given by {T,N,B}(s), where N and B are the unit normal and unit

binormal to the curve, respectively, and B is chosen so that det(T,N,B) = 1.
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Then the Frenet equations

∇TT (s) = κ(s)N(s) ,(13)

∇TN(s) = −κ(s)T (s) + τ(s)B(s) ,(14)

∇TB(s) = −τ(s)N(s) ,(15)

define the curvature, κ(s) (we will always consider κ(s) ≥ 0), and torsion,
τ(s), along γ(s) (do not confuse the notation with the tension field τ(φ)
defined in (5)).

In a Riemannian 3-space form any local geometrical scalar defined along
Frenet curves can always be expressed as a function of their curvatures and
derivatives. Notice that, even if the rank of γ is 2 (i.e, τ = 0), the binormal
B = T ×N is still well defined and above formulas (13)-(15) still make sense.
Moreover, in a 3-space form, N3(ρ), a curve verifying τ = 0 can be assumed
to lie in a totally geodesic surface N2(ρ). Curves whose torsion vanishes are
called planar curves. From now on, we are going to deal with planar curves,
unless the opposite is said.

Let us consider the following curvature energy functional (4)

Θ(γ) =

∫

γ
κ1/4 =

∫ L

0
κ1/4(s) ds ,

where, as usual, the arc-length or natural parameter is represented by s ∈
[0, L], L being the length of γ. Then, we consider Θ acting on the following
spaces of curves, satisfying given boundary conditions in (N2(ρ), ⟨·, ·⟩). We
shall denote by Ωρ

pop1
the space of smooth immersed curves of N2(ρ), joining

two given points of it, that is:

Ωρ
pop1

= {δ : [0, 1] → N2(ρ) ; δ(i) = pi, i ∈ {0, 1}, dδ
dt

(t) ̸= 0, ∀t ∈ [0, 1]},

where pi ∈ N2(ρ), i ∈ {0, 1}, are arbitrary given points of N2(ρ).
For a curve γ : [0, 1] → N2(ρ), we take a variation of γ, Γ = Γ(t, t̄) :

[0, 1]× (−ε, ε) → N2(ρ) with Γ(t, 0) = γ(t). Associated to this variation we
have the vector field W =W (t) = ∂Γ

∂t̄ (t, 0) along the curve γ(t). We also

write V = V (t, t̄) = ∂Γ
∂t (t, t̄),W =W (t, t̄), v = v(t, t̄) = |V (t, t̄)|, T = T (t, t̄),

N = N(t, t̄), B = B(t, t̄), etc., with the obvious meanings and put V (s, t̄),
W (s, t̄) etc., for the corresponding reparametrizations by arc-length. Then,
the following general formulas for the variations of v and κ in γ, in the
direction of the variation vector field W can be obtained using standard
computations that involve the Frenet equations (13)-(15) (see, [2], [20] and
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references therein)

W (v) = v⟨∇TW,T ⟩,(16)

W (κ) = ⟨∇2
TW,N⟩ − 2κ⟨∇TW,T ⟩+ ρ⟨W,N⟩.(17)

Next, after a standard computation involving integration by parts and for-
mulae (16) and (17), the First Variation Formula is obtained:

d

dν
Θ(ν)|ν=o

=

∫ L

0
⟨E(γ),W ⟩ds+ B [W,γ]L0 .

Here, E(γ) and B [W,γ]L0 denote the Euler-Lagrange operator and boundary

term, respectively. These are given by

E(γ) = ∇TJ −R(K, T )T = ∇TJ + ρK ,

B [W,γ]L0 = [⟨K,∇TW ⟩ − ⟨J ,W ⟩]L0 ,

where

K(γ) =
1

4κ3/4
N ,(18)

J (γ) = ∇TK − 1

2
κ1/4 T .(19)

We will call critical curve or extremal curve to any curve γ ⊂ Ωρ
pop1

such that E(γ) = 0. Notice that this is an abuse of notation, since proper
criticality depends on the boundary conditions, as it is clear from the First
Variation Formula. However, under suitable boundary conditions, curves
verifying E(γ) = 0 are going to be proper critical curves. Therefore, since
for our purposes we just need to consider curves satisfying E(γ) = 0, for the
sake of simplicity, from now on, we are going to use the name critical curve
(or, extremal curve) to denote any curve γ ⊂ Ωρ

pop1
verifying E(γ) = 0.

Now, using the Frenet equations (13)-(15), we can see that E(γ) has no
component in T , nor in B, while its normal component can be expressed in
terms of the curvature of γ. Thus, after long straightforward computations,
E(γ) = 0 reduces to

κ3/4
d2

ds2

(

1

κ3/4

)

− 3κ2 + ρ = 0 ,(20)

which is the Euler-Lagrange equation for the curvature energy functional Θ,
(4), acting on Ωρ

pop1
and agrees with formula (30) of [7].



✐

✐

“2-Montaldo” — 2023/11/29 — 23:44 — page 300 — #10
✐

✐

✐

✐

✐

✐

300 S. Montaldo and A. Pámpano

Non-geodesic critical curves with constant curvature are given by the
only planar curves (up to isometries) whose curvature verifies

(21) κ2 = κ2o =
ρ

3
,

which is only possible in the case of the round 2-sphere, that is, if N2(ρ) =
S2(ρ).

On the other hand, for critical curves with non-constant curvature, let
us now define the following vector field I along γ

I = T ×K ,

where × denotes the cross product and K is defined in (18). Combining the
Frenet equations (13)-(15) and (18), we see that I is given by

(22) I = T ×K =
1

4κ3/4
B .

Then, a direct long computation using the Frenet equations (13)-(15), for-
mulas (18) and (19), and the Euler-Lagrange equation, (20), shows that the
derivative of the function ⟨J ,J ⟩+ ρ ⟨I, I⟩ along the critical curve is zero.
Thus,

⟨J ,J ⟩+ ρ ⟨I, I⟩ = d,(23)

with d a real constant, represents a first integral of (20). Notice that substi-
tuting the values of J , (19), and I, (22), in above formula we get

(24) κ2s =
16

9
κ2
(

16 d κ3/2 − 9κ2 − ρ
)

.

We point out that, in principle, the constant d may be arbitrary. How-
ever, as we will see later, for our purposes it will be restricted to be positive.

Finally, to end this section, we are going to see that critical curves for
Θ, (4), have a distinguished vector field along them. A vector field W along
γ, which infinitesimally preserves unit speed parametrization, is said to be a
Killing vector field along γ (in the sense of [20]) if γ evolves in the direction
of W without changing shape, only position. In other words, the following
equations must hold

W (v)(s, 0) =W (κ)(s, 0) = 0 ,

(v = |γ′| = |dγds | being the speed of γ) for any variation of γ having W as
variation field.
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It turns out that extremals of Θ, (4), have a naturally associated Killing
vector field defined along them, as we summarise in the following proposition
(for a proof, see [2] and [20])

Proposition 3.1. Assume that γ is an immersed curve in N2(ρ) which is

an extremal of Θ, (4). Consider the vector field (22)

I =
1

4κ3/4
B ,

defined on γ, B being its Frenet binormal vector field. Then I is a Killing

vector field along γ.

4. Characterisation of profile curves as bending-type energy

extremals

Throughout this section we are going to assume that S is a non-CMC bicon-
servative surface of a Riemannian 3-space form, N3(ρ). Then, as mentioned
in §2, S is locally rotational. We denote by γ the curve everywhere orthog-
onal to the rotation, then S can be locally parametrized as

(25) x(s, t) = ϕt(γ(s)),

where ϕt denotes the one-parameter group of rotations. Usually, γ is called
the profile curve of Sγ ⊂ S.

Profile curves of rotational surfaces are planar and, furthermore in this
case, they have a nice geometric property, as stated in Theorem 1.2. We
prove this theorem in the following subsection.

4.1. Proof of Theorem 1.2

Let S ⊂ N3(ρ) be an isometrically immersed non-CMC biconservative sur-
face in any Riemannian 3-space form N3(ρ) with local orientation deter-
mined by the normal vector η. Then, by Proposition 1.1, it is a rotational
surface verifying the relation (3) between its principal curvatures. We will
denote by ξ the Killing vector field which is the infinitesimal generator of
the rotation that leaves S invariant. Then, locally on S, we can choose Fermi
geodesic coordinates (U, x), x : U → S, x(s, t), so that ξ = ∂

∂t and smeasures
the arc-length along geodesics orthogonal to ξ. Thus, calling γ(s) := x(s, 0),
we have that x(U) := Sγ ⊂ S is parametrized by (25) where ϕt ∈ Gξ, the
one-parameter group of isometries generated by ξ. Observe that γ(s) and
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all its copies by the action of Gξ, γt(s) := ϕt(γ(s)), t ∈ R, are arc-length
parametrized geodesics of Sγ which are orthogonal to ξ, so that Sγ is foli-
ated by geodesics having κ(s, t) as curvature in N3(ρ). Furthermore, they
all have vanishing torsion. If γt(s) were also geodesics in N3(ρ), ∀t, then Sγ
would be foliated by geodesics of the ambient space what would make it a
ruled surface. In this case, we have that from relation (3), Sγ is minimal,
since κ1 = −κ(s) = 0, which is not possible. Hence, we assume that the or-
thogonal curves to the Killing field ξ, γt(s), are not geodesics of the ambient
space. Then, γt(s) are Frenet curves and defined over them we have a Frenet
frame {T (s, t), N(s, t), B(s, t)} satisfying (13)-(15).
At this point, after long straightforward computations, one can see that the
Gauss and Weingarten formulae and the simplicity of the curvature ten-
sor in N3(ρ), lead to a PDE system to be satisfied (see, for instance, [2]).
The compatibility conditions for this system are given by the Gauss-Codazzi
equations, which in our case, since ϕt are isometries, can be shown to boil
down just to

0 =

(

1

κ

(

Gss +G(κ2 + ρ)
)

)

s

− κsG ,(26)

where G is the length of the Killing vector field ξ, that is, G2(s) = ⟨xt, xt⟩.
Moreover, not only G(s), but also all the involved functions depend only
on s. Now, κ1(s) = −κ(s) and κ2(s) = h22(s), the second coefficient of the
second fundamental form given by (for details, see [2])

h22 =
1

κ

(

Gss

G
+ ρ

)

,

and, therefore, the relation (3) becomes

Gss = G
(

3κ2 − ρ
)

.(27)

Let us assume first that γ has constant curvature κ(s) = κo in N3(ρ). We
combine (26) and (27) to obtain that G(s) must be a positive constant and,
therefore, Sγ should be a flat isoparametric surface which contradicts the
fact that S has non-CMC. Consequently, it is out of our consideration. Even
though, in this case, equation (27) implies that

3κ2o = ρ ,

that is, γ is also a critical curve with constant curvature for Θ, (4), (see
formula (21)).
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Finally, suppose that κ is not constant. Locally, by the Inverse Function
Theorem we can suppose that s is a function of κ and calling G(κ) = Ṗ (κ),
where the upper dot denotes derivative with respect to κ, we have that (26)
and (27) can be expressed in the following way

Ṗss + Ṗ
(

κ2 + ρ
)

− κ (P + λ) = 0 ,(28)

Ṗss − Ṗ
(

3κ2 − ρ
)

= 0 ,(29)

for some λ ∈ R. Now, equation (28) is the Euler-Lagrange equation for
∫

γ(P (κ) + λ)ds in N3(ρ) (see for instance, [2]). Moreover, substituting it
in equation (29) we get an ODE in P which can be solved obtaining

P (κ) = κ1/4 − λ .

Thus, γ must be a critical curve for Θ, (4), proving the result. □

In fact, as mentioned in the introduction, the converse of Theorem 1.2
is also true and gives us a way of constructing all non-CMC biconservative
surfaces of 3-space forms after binormal evolution of extremal curves, as we
will explain in what follows.

From Proposition 3.1, we know that the vector field along γ, I, (22), is
a Killing vector field along the curve. Therefore, using an argument similar
to that of [20] we can extend I to a Killing vector field on the whole N3(ρ).
Let us denote it by I again. Since N3(ρ) is complete, we can consider the
one-parameter group of isometries determined by the flow of I, {ϕt ; t ∈ R},
and define the surface Sγ := {ϕt(γ(s))} obtained as the evolution of γ under
the I-flow. Observe that Sγ is an I-invariant surface, which is foliated by
congruent copies of γ, γt(s) := ϕt(γ(s)).

Moreover, since ϕt are isometries of N3(ρ), we have

xt(s, t) =
1

4κ3/4
B(s, t) ,

κ(s) being the curvature of γ(s), and B(s, t) the unit Frenet binormals of
γt(s). Thus, Sγ obtained as the flow evolution of γ, x(s, t) = ϕt(γ(s)), is

a binormal evolution surface with velocity V (s) := ⟨xt, xt⟩
1

2 = ⟨I, I⟩ 1

2 (for
more details see, [2]).

Now, if Sγ denotes a binormal evolution surface all whose filaments sat-
isfy τ = 0, then, as proved in [2], the fibers of Sγ have constant curvature and
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zero torsion (if they are not geodesics) in N3(ρ). In particular, if the curva-
ture of the filaments, κ(s, t), is also constant, then Sγ is a flat isoparametric
surface.

For the case where the filaments have non-constant curvature, the fol-
lowing proposition was proved in [2].

Proposition 4.1. Let Sγ ⊂ N3(ρ) be a binormal evolution surface all

whose filaments have zero torsion. Then, if they also have non-constant cur-

vature, Sγ is a rotational surface.

Thus, using these facts together with equation (3), we can prove the
converse of Theorem 1.2.

Theorem 4.2. Let γ be a planar extremal curve with non-constant curva-

ture of the energy Θ(γ) =
∫

γ κ
1/4 and let Sγ denote the I-invariant surface

in N3(ρ) obtained by evolving γ under the flow of the Killing field I which

extends (22) to N3(ρ). Then, Sγ is a rotational linear Weingarten surface

of N3(ρ) verifying (3), that is, Sγ is a non-CMC biconservative surface.

Proof. Take any planar extremal curve ofΘ, (4), then as explained above, we
can locally define the I-invariant surface Sγ = {ϕt(γ(s)}, where {ϕt ; t ∈ R}
is the one-parameter group of isometries determined by I. Furthermore, the
square of the length of the Killing vector field I is given by

(30) V 2(s) = ⟨I, I⟩ = 1

16κ3/2
.

Then, as the evolution is made by isometries, γ and all its congruent copies
are planar extremals of Θ, (4). Now, from Proposition 4.1 we have that Sγ
is a rotational surface. Finally, any γt verifies the Euler-Lagrange equation
(20), which is, using (30), equivalent to

Vss
V

= 3κ2 − ρ .

Thus, using that κ1 = −κ and κ2 = h22 we get 3κ1 + κ2 = 0. That is, Sγ is
a rotational linear Weingarten surface verifying (3). □

Notice that Theorem 4.2 gives a way of constructing non-CMC biconser-
vative surfaces of N3(ρ). In fact, together with Theorem 1.2, it characterises
non-CMC biconservative surfaces as the binormal evolution surfaces gener-
ated by a planar extremal of Θ, (4). This characterisation also allows us to
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analyse global properties of the binormal evolution surfaces based on topo-
logical facts about the profile curves. In [27], [28] and [29], the existence of
complete non-CMC biconservative surfaces has been proved for both R3 and
S3(ρ). Moreover, in [5], the authors have proved the existence of complete
non-compact rotational surfaces verifying the linear relation (3) between
their principal curvatures when ρ ≤ 0. In §5, making use of our characteri-
sation of the profile curve, we are going to study the existence of non-CMC
closed biconservative surfaces.

5. Closed non-CMC biconservative surfaces of 3-space forms

The main purpose of this section is to study the existence of closed (compact
without boundary) non-CMC biconservative surfaces in 3-space forms. To
fulfill this objective, we are going to use the characterisation introduced in
the previous section. First of all, we need the orbits of the rotation to be
closed, that is, euclidean circles. Notice that the value of the constant of
integration d plays an essential role, as proved in [2]. In fact, the orbits of
the rotation are euclidean circles if and only if d is positive. Therefore, we
need to constraint the constant of integration and, after that, we have two
options in order to obtain closed surfaces. On one hand, if the critical curve
cuts the axis of rotation sufficiently many times, then the rotational surface
will be closed. On the other hand, closed critical curves also give rise to
closed surfaces.

Observe that a critical curve γ is completely determined (up to rigid
motions) by its curvature, κ(s), which must be a solution of the first integral
of the Euler-Lagrange equation (24). Now, we need the right hand side of
equation (24) to be positive. For notation convenience we write u = κ1/2

and, therefore, equation (24) reads

(31) u2s =
4

9
u2
(

16 d u3 − 9u4 − ρ
)

.

Then, the following polynomial must be positive for some values of u

(32) Q(u) = 16 d u3 − 9u4 − ρ > 0 .

We have that Q(u) tends to −∞, whenever u tends to either +∞ or −∞.
Moreover, u = 4d/3 represents a (local) maximum for Q(u). Therefore, con-
dition (32) is verified for some values of u if and only if Q(4d/3) > 0, which
gives an extra constraint on the parameter d.
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Figure 1. Plot of the polynomial Q(u) for ρ = 1 and d = 1.

To be more precise, this extra constraint only appears when ρ > 0 (since
for ρ ≤ 0 is always true), and in this case we have

(33) d > d∗ =
(27 ρ)

1

4

4
.

Notice that this argument also shows the existence of just two roots of
Q(u) (see Figure 1). Let us call α and β these roots, where β < α. Revers-
ing the change of variable u = κ1/2, they will become the maximum and
minimum curvatures of the profile curve γ, respectively. Indeed, we have
β < u < α for any u that verifies (32).

If the profile curve γ happens to cut the axis of rotation, then there
will be some fixed points in the evolution under the I-flow. However, from
Proposition 3.1, we have that the I-flow has fixed points along γ if and only
if the curvature, κ(s), tends to infinity, which is not possible since u (and,
therefore, the curvature) is bounded. Thus, the only option to find closed
surfaces is that the profile curve is closed.

Observe that a necessary, not sufficient, condition for a curve to be
closed is to have periodic curvature. Let us assume for a moment that there
exist critical curves for Θ, (4), with periodic curvature, then we can obtain
conditions for both γ and Sγ to be closed. Indeed, adapting the computations
of [1], if we define the function

(34) Λ(d) = 12

∫ ϱ

o

κ7/4

16 d κ3/2 − ρ
ds ,

where ϱ is the period of κ(s) and d > 0 is the constant of integration given
by (23), we have the following sufficient condition.

Proposition 5.1. Let γ ⊂ N3(ρ) be a planar critical curve for Θ, (4), with
periodic curvature κ(s), then γ(s) is closed if and only if the function Λ(d),
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(34), vanishes for ρ ≤ 0, or it is equal to 2nπ
m

√
ρ d

, for some integers n and m,

when ρ > 0.

Now, making use of Proposition 5.1, the following result is clear, since,
for ρ ≤ 0, the integrand of (34) is always positive and, therefore, Λ(d) never
vanishes.

Proposition 5.2. There are no closed non-CMC biconservative surfaces

in 3-space forms, N3(ρ), with ρ ≤ 0.

We point out that Proposition 5.2 can be also deduced from [30] by using
a different approach.

If N3(ρ) = S3(ρ), we will prove the existence of closed non-CMC bicon-
servative surfaces. We begin by checking that there are critical curves of
Θ, (4), in S2(ρ) whose curvature is periodic. What is more, we have the
following proposition.

Proposition 5.3. When defined in the whole real line, all critical curves

for Θ, (4), in S2(ρ) have periodic curvature.

Proof. Let γ(s) be a critical curve for Θ, (4). Then, the non-constant
curvature of γ(s) must be a solution of the first integral of the Euler-
Lagrange equation (24), where d > d∗, see (33). To simplify notations we
put x = u = κ1/2 and y = xs. Then, (24) can be rewritten as (see (31))

y2 =
4

9
x2
(

16dx3 − 9x4 − ρ
)

=
4

9
x2Q(x).

This is an algebraic curve which, by the standard square root method of
algebraic geometry and above analysis of the polynomial Q(x) (see Figure
1), it is closed for any d > d∗. Thus, the curve c(s) = (x(s), y(s)) is included
in the trace of the compact regular curve y2 = (4/9)x2Q(x) and it can be
thought as a bounded integral curve of the smooth vector field

X(κ, z) =

(

z,
1√
κ

[

5

2
z2 +

2

3
ρκ− 2κ3

])

defined in {(κ, z) ∈ R
2 : κ > 0}. This implies that c(s) is smooth and defined

on the whole R. Finally, since the vector field X(κ, z) has no zeros along
the curve c(s) when d > d∗, we conclude, applying the Poincaré-Bendixon
Theorem, that c(s) is a periodic curve. □



✐

✐

“2-Montaldo” — 2023/11/29 — 23:44 — page 308 — #18
✐

✐

✐

✐

✐

✐

308 S. Montaldo and A. Pámpano

Remark 5.4. Of course, since the profile curve has periodic curvature, the
binormal evolution surface generated by it is complete. Moreover, using the
differential equation (31) satisfied by u = κ1/2, it is easy to check that when
u = α or u = β the vector field J has only component in T , that is, the
profile curve γ is parallel to the integral curves of the Killing vector field
J in that points. Therefore, our curve is bounded between those parallels.
What is more, in those points the length of J is never zero, since, both α
and β are positive. This means that γ does not cross over the pole of the
parametrization. In fact, since the component in T of the Killing vector field
J is a non-zero multiple of u1/2 and u is always positive (it varies from α
to β, which are, in the spherical case, positive since Q(0) < 0), we get that
γ is never orthogonal to the integral curves of J , that is, γ is always going
forward. Consequently, it does not cut itself in one period of its curvature,
unless it gives more than one round in that period.

Now, in order to assure closure, we have seen that a binormal evolution
surface of S3(ρ) whose profile curve γ has periodic curvature, κ(s), and
vanishing torsion is a closed surface if and only if the function Λ(d), (34),
verifies

(35) Λ(d) = 12

∫ ϱ

o

κ7/4

16 d κ3/2 − ρ
ds =

2nπ

m
√
ρ d

,

for some d > 0 and some integersm and n with gcd(m,n) = 1. The integer n
represents the number of rounds the curve gives around the pole in order to
close up, while m is the number of lobes the curve has, that is, the number
of periods of the curvature. In particular, a closed curve γ is simple if and
only if it closes up in one round, that is, if it verifies the closure condition
for n = 1.

To check the closure condition (35), we need to study the image of the
function I(d) =

√
ρ dΛ(d) as d varies in the domain (33). For this purpose,

first we are going to state the following technical lemma (for the proof see
§6).

Lemma 5.5. The function I(d) =
√
ρ dΛ(d) is strictly decreasing in d. Fur-

thermore, for any d ∈ (d∗,+∞), it is bounded by

π < I(d) =
√

ρ dΛ(d) <
√
2π .

Summarising our findings we obtain the proof of Theorem 1.3 as men-
tioned in the introduction.
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5.1. Proof of Theorem 1.3

Let m and n be two integers such that gcd(m,n) = 1 and m < 2n <
√
2m.

Then

π <
2nπ

m
<

√
2π .

Now, from Lemma 5.5, the function I(d) =
√
ρ dΛ(d) varies from π to

√
2π

as d decreases from +∞ to d∗. Thus, there exists a dm,n > d∗, such that the
relation (35) is verified and, therefore, the corresponding associated non-
CMC biconservative surface is closed.
Furthermore, the corresponding surface is embedded if the profile curve is
simple. Now, using Remark 5.4, the profile curve is simple if and only if it
closes up in one round. Therefore, when n = 1, we need that the closure
condition is satisfied for some integer m. That is, we need the existence of
an integer m such that

π <
2π

m
<

√
2π .

However, the above relation is not possible and, therefore, there are not
closed non-CMC biconservative surfaces embedded in S3(ρ), as stated. □

From the proof of Theorem 1.3 we deduce that there exists a discrete
biparametric family of closed non-CMC biconservative surfaces in S3(ρ).
In fact, we have a closed non-CMC biconservative surface for any couple
of integers m and n such that m < 2n <

√
2m. The first one corresponds

to n = 2 and m = 3, that is, the binormal evolution surface with initial
condition a critical curve for Θ, (4), which has 3 lobes and needs 2 rounds
around the pole to close up. We explain this in Figure 2. The green part
of the curve corresponds with the part of the critical curve covered in one
period of the curvature. Notice that, as the curvature is the same for each
period of it, our critical curve is nothing but congruent copies of the green
part, that is, the whole curve can be constructed by gluing smoothly m
copies (in these particular cases m = 3 and m = 5 copies, respectively) of
the trace covered in one period of the curvature.
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Figure 2. Closed critical curves for Θ, (4), in S2(ρ) for m = 3 and n = 2
(Left) and m = 5 and n = 3 (Right).

Furthermore, as proved in previous sections, all non-CMC biconserva-
tive surfaces are binormal evolution surfaces with initial condition a planar
critical curve for Θ, (4). In the round 3-sphere, these binormal evolution
surfaces Sγ ⊂ S3(ρ) can be parametrized, up to an isometry of the ambient
sphere, as:

x(s, ϕ) =
1

4
√
ρ d κ

3

4

(√
ρ cosϕ,

√
ρ sinϕ,

√

16 d κ
3

2 − ρ sinψ(s),

√

16 d κ
3

2 − ρ cosψ(s)

)

,

where κ(s) represents the curvature of γ, which is a solution of the Euler-
Lagrange equation (20), and ψ(s) is given by

ψ(s) = −12
√

ρ d

∫

κ7/4

16 d κ3/2 − ρ
ds .

Finally, notice that γ(s) = x(s, 0) is a parametrization of the profile curve.
In Figure 3, by using the above parametrization we show a plot of the
stereographic projection of the closed non-CMC biconservative surface in
S3(ρ) for m = 3 and n = 2.
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Figure 3. Stereographic projection of the closed non-CMC biconservative
surface in S3(ρ) for m = 3 and n = 2.

Remark 5.6. Note that, from (3), we deduce immediately that the mean
curvature H of Sγ , along the profile curve γ, coincides with the curva-
ture κ. Moreover, the parametrization x(s, ϕ) is obtained by the action on
γ(s) = x(s, 0) of the one-parameter group of isometries generated by the
Killing vector field of S3(ρ) given by I =

√
d(y∂/∂x− x∂/∂y). Then a point

γ(so) = x(so, 0) generates a geodesic orbit of Sγ , under the action of I, if
so satisfies Vs(so) = 0 where V (s) is the norm of I along γ(s). A straight-
forward computation gives Vs(s) = −3κs/(16κ

7/4). We conclude that the
points where the derivative of the curvature of the profile curve γ vanishes
determine closed geodesics on the surface and gradH vanishes along those
geodesics.

6. Proof of Lemma 5.5

Throughout this section we will prove Lemma 5.5. For this end, observe that,
with the notation introduced in previous section and taking into account the
symmetry, Λ(d) can be written as

Λ(d) = 24

∫ ϱ/2

o

u7/2

16 d u3 − ρ
ds ,



✐

✐

“2-Montaldo” — 2023/11/29 — 23:44 — page 312 — #22
✐

✐

✐

✐

✐

✐

312 S. Montaldo and A. Pámpano

Now, since in a half period of the curvature the function u is increasing, we
can use equation (31) to make a change of variable, obtaining that

(36) Λ(d) = 36

∫ α

β

u5/2

(16 d u3 − ρ)
√

16 d u3 − 9u4 − ρ
du .

At this point, we divide our proof in three different parts.

6.1. Part (i)

We begin by considering the limit of I(d) =
√
ρ dΛ(d) when d tends to d∗

(see the definition in (33)). We will compute this limit with the aid of the
Dirac’s delta, δ(u−ϖ), since the limit of the integrand is zero everywhere
but at u = 4d∗/3, where it goes to infinity. This suggests that the integrand
is a multiple of δ(u−ϖ) with ϖ = 4d∗/3. Therefore, we first recall that any
general Dirac’s delta δ(u−ϖ) can be represented by the limit

δ(u−ϖ) = lim
ε→0

ε

π ((u−ϖ)2 + ε2)
.

Let us multiply and divide the integrand of Λ(d), (36), by this limit for
ε = d− d∗. That is,

lim
d→d∗

I(d) = lim
d→d∗

√

ρ dΛ(d)

= 36 lim
d→d∗

∫ α

β

√
ρ d u

5

2

(16 d u3 − ρ)
√

16 d u3 − 9u4 − ρ
du

= 36

∫

R

lim
d→d∗

π
√
ρ d u

5

2χ(β,α)(u)

(

(

u−
(ρ
3

)
1

4

)2
+ (d− d∗)

2

)

(d− d∗) (16 d u3 − ρ)
√

16 d u3 − 9u4 − ρ

× δ

(

u−
(ρ

3

)
1

4

)

du

Moreover, we recall that a nice property of these distributions that will be
essential in this first part of the proof is the following

∫

R

f(u) δ(u−ϖ) du = f(ϖ) ,

for any function f and any constant ϖ. Notice that since we have taken ε =
d− d∗, the limit ε→ 0 changes to d→ d∗. Indeed, this is quite convenience,
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since whenever d is close to d∗, α and β converge linearly in d to (ρ/3)1/4,
that is, precisely to 4d∗/3. Thus, by using this property we have

lim
d→d∗

I(d) = 36 lim
d→d∗

π
√
ρ d
(ρ
3

)
5

8

(

16 d
(ρ
3

)
3

4 − ρ
)

√

9
(ρ
3

)
1

2 +
√
3 ρ
(

1 + 2
(ρ
3

)
1

4

)

=
√
2π .

This limit can also be computed using Lemma 4.1 of [32]. For our par-
ticular case, when d = d∗, the only root of the polynomial Q(u), (32), is
u = 4d∗/3. Furthermore, as explained before, 4d∗/3 is a local maximum of
Q(u) for d = d∗. Therefore, the result of this lemma can be summarised as
follows

lim
d→d∗

I(d) =
36
√
ρ d∗

(ρ
3

)5/8
π

(

16 d∗
(ρ
3

)3/4 − ρ
)

√

−1
2Q

′′
(

(ρ
3

)1/4
)

=
√
2π ,

obtaining the desired result.

6.2. Part (ii)

Let us now consider the limit of I(d) =
√
ρ dΛ(d) when d goes to infinity.

For this purpose, we need to work in the complex plane C. We begin by
defining the complex function

h(z) = −i
(√

−z
)5

(α− z)

√

z − β

α− z

√

9 (z − ω1) (z − ω̄1)

where ω1 and ω̄1 are the two pure complex roots of Q(u), and the square
root symbol denotes the principal branch of it.

If U1 = {x+ i y ∈ C ; y = 0, β < x < α}, then the Moebius transforma-
tion z−β

α−z maps U1 to the set of positive real numbers R+. Now, U2 =

{x+ i y ∈ C ; y = 0, x < 0} and we obtain that
√
−z is well-defined and an-

alytic in C− U2. Finally,
√

(z − ω1) (z − ω̄1) is also analytic far from ω1 and
ω̄1. That is, the complex function

(37) f(z) =
36

√
ρ d z5

(16 d z3 − ρ)h(z)
,

is well-defined and holomorphic for any

z ∈ C− (U1 ∪ U2 ∪ {0, β, α, ω1, ω̄1, ω2, ω̄2})
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where ω2 and ω̄2 represent the pure complex roots of 16dz3 − ρ.
Moreover, notice that we have the following limits

lim
ϵ→0

√

− (x+ i ϵ)
√

(x+ i ϵ− ω1) (x+ i ϵ− ω̄1)

= i
√
x
√

(x− ω1) (x− ω̄1) ,

lim
ϵ→0+

√

x+ i ϵ− β

α− x− i ϵ
=

√

x− β

α− x
,

lim
ϵ→0−

√

x+ i ϵ− β

α− x− i ϵ
= −

√

x− β

α− x
.

And, therefore,

lim
ϵ→0+

h(x+ i ϵ) =
(√
x
)5√

Q(x) ,

lim
ϵ→0−

h(x+ i ϵ) = −
(√
x
)5√

Q(x) .

Now, we define the curve σ such that it surrounds all the singularities of
the function f(z), (37), and having the shape of a big enough square being
sufficiently close to the imaginary axis (see the green curve in Figure 4).
We are going to denote by σω the circle of radius ϵ around ω, where ω may

be either uo =
1
2

( ρ
2d

)1/3
, ω1, ω̄1, ω2 or ω̄2 (see the blue paths in Figure 4).

Finally, σ∗ is the curve that surrounds β and α such that it is formed by two
parts of circles of radius ϵ centered at β and α, respectively; together with
the segments joining them (see the red curve in Figure 4). We can assume
that all the curves are positively oriented. Then, due to previous limits it is
easy to check that

I(d) = −1

2
lim
ϵ→0

∫

σ∗

f(z) dz .

If we call U to the region whose boundary is σ, σ−∗ and σ−ω for all ω as
above (the enclosed region, see Figure 4) we have that f(z) is holomorphic
in U and, as a consequence,

∫

σ
f(z) dz =

∫

σ∗∪σuo
∪σω1

∪σω̄1
∪σω2

∪σω̄2

f(z) dz .

Moreover, denoting g(z) = (z − uo) f(z) we have that in the region sur-
rounded by σuo

, g(z) is analytic. Thus, we apply Cauchy’s Integral Formula
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Re

Im

Figure 4. Representation of the curves σ (in green), σω for each ω (in blue)
and σ∗ that surrounds the singularities β and α (in red).

to compute

∫

σuo

f(z) dz = 2π i

(

1

2π i

∫

σuo

g(z)

z − uo
dz

)

= 2π i g(uo) = 2π i Resz=uo
f(z) = 2π .

Furthermore, arguing similarly we can check that the sum of the following
path integrals vanishes

∫

σω2

f(z) dz +

∫

σω̄2

f(z) dz = 2π i (Resz=ω2
f(z) + Resz=ω̄2

f(z)) = 0 .

On the other hand, by applying the Cauchy’s Integral Formula once more,
we get

∫

σω1

f(z) dz =

∫

σω̄1

f(z) dz = 0 .

That is, we conclude that

∫

σ∗

f(z) dz =

∫

σ
f(z) dz − 2π .

Finally, observe that along σ, f(z) → 0 whenever d goes to infinity, therefore,

lim
d→∞

∫

σ∗

f(z) dz = lim
d→∞

(
∫

σ
f(z) dz − 2π

)

=

∫

σ
lim
d→∞

f(z) dz − 2π = −2π .
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Then, considering ϵ going to zero we get,

lim
ϵ→0

lim
d→∞

∫

σ∗

f(z) dz = −2 lim
d→∞

I(d) = −2π .

That is, limd→∞ I(d) = π, which finishes the second part of the proof.

6.3. Part (iii)

Finally, in this last part, we will prove that the function I(d) =
√
ρ dΛ(d) is

monotonically decreasing on d. Let us consider the extension to the complex
plane introduced in part (ii), (37). Then, we know that

I(d) = −1

2
lim
ϵ→0

∫

σ∗

f(z) dz = −1

2
lim
ϵ→0

(
∫

σ
f(z) dz − 2π

)

.

Thus, if we differentiate above equation we get,

I ′(d) = −1

2
lim
ϵ→0

(

∂

∂d

∫

σ
f(z) dz

)

= −1

2
lim
ϵ→0

∫

σ
fd(z) dz

where

fd(z) =
∂f

∂d
(z) =

18
√
ρ z5

(

16 d z6 (9z − 32d) + ρ z3 (16d+ 9z) + ρ2
)

√
d (16 d z3 − ρ)2 h(z) (−9z4 + 16 d z3 − ρ)

.

Moreover, by a similar argument to that of part (ii) and using Cauchy’s
Integral Formula again we have that

∫

σ
fd(z) dz =

∫

σ∗

fd(z) dz .

That is, combining everything, we obtain that

I ′(d) = −1

2
lim
ϵ→0

∫

σ
fd(z) dz = −1

2
lim
ϵ→0

∫

σ∗

fd(z) dz =

∫ α

β
fd(u) du < 0 ,

where last inequality comes from the fact that

16d (32d− 9u)u6 − ρ (16d+ 9u)u3 − ρ2 > 16d (32d− 9u)u6 − 32ρ du3

= 16du3
(

−9u4 + 32du3 − 2ρ
)

> 144du7 > 0 .

That is, I(d) =
√
ρ dΛ(d) decreases monotonically.
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In conclusion, combining parts (i) to (iii) we have that the function
I(d) =

√
ρ dΛ(d) monotonically decreases from

√
2π (obtained when

d→ d∗) to π (which corresponds with d→ ∞). This concludes the proof of
Lemma 5.5.
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