

Ph.D. DEGREE IN Neuroscience

Cycle XXXV

TITLE OF THE Ph.D. THESIS

Towards precision medicine in psychiatry: investigating the contribution of cellular aging, pleiotropy and gender differences in psychiatric disorders and pharmacological response

Scientific Disciplinary Sector

Pharmacology (BIO-14)

Ph.D. Student:

Claudia Pisanu

Supervisor

Alessio Squassina

Final exam. Academic Year 2021/2022 Thesis defence: January 2023 Session To Gianpaolo: the love of my life and my best friend

Claudia Pisanu gratefully acknowledges Sardinian Regional Government for the financial support of her PhD scholarship (P.O.R. Sardegna F.S.E. - Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2014-2020 - Axis III Education and training, Thematic goal 10, Investment Priority 10ii), Specific goal 10.5.

I would also like to acknowledge the financial support from Fondazione Umberto Veronesi, Fondazione di Sardegna and Centro Studi Nazionale su Salute e Medicina di Genere.

Acknowledgments

I wish to thank all the people who have supported me over the years. Prof. Maria Del Zompo: your passion and enthusiasm constantly inspire me. Thank you for believing in me and encouraging me to always give my best. I thank my PhD advisor, Prof. Alessio Squassina, for his guidance before and during the whole doctorate and for creating countless wonderful opportunities to learn, grow, travel and establish great collaborations. I thank Dr. Donatella Congiu who, from the first day we met, has always been there for me, making each challenge seems less daunting and each success worth to celebrate. I would like to thank our research group, especially Dr. Giovanni Severino and Dr. Anna Meloni, and the clinical groups of the Unit of Clinical Pharmacology at the San Giovanni di Dio Hospital and of the Unit of Psychiatry of the University of Cagliari for always making me feel supported. I am deeply grateful to all research participants who decided to give their contribution to our studies, making them possible and meaningful.

I wish to thank Prof. Helgi Schiöth and Dr. Jessica Mwinyi for such a great experience at Uppsala University and for many awesome studies made in collaboration.

I thank my parents Serafino and Iride and my sister Elena, whose support never ends. I would have liked my dad to see this goal and the exciting path I'm on. He might have already known, as he learned all about research impact just to be able to discuss it with me, usually knowing any news before I mentioned it.

Finally, I would like to thank my husband Gianpaolo for being a constant source of support and laughs, and for making my life complete. My greatest luck in life has been to find you. You are the source of my strength, joy and inspiration.

Table of contents

Abstract1	
1 Introduction	
1.1 Severe mental disorders21.2 Precision medicine in severe mental disorders31.3 Aims of this thesis5	
2 Identification of molecular factors associated with efficacy and safety of psychotropic drugs	
2.1 Telomere length and inflammatory load in severe mental disorders and in response to psychotropic medications	
3 Characterizing the genetic overlap between severe mental disorders and related traits	
3.1 Pleiotropy and methods to investigate loci shared between two traits223.2 Genetic loci shared between bipolar disorder and risk-taking propensity243.2.1 Bipolar disorder and risk-taking propensity243.2.2 Methods273.2.3 Results313.2.4 Discussion45	
3.3 Genetic loci shared between mental disorders and telomere length513.3.1 Genetic determinants of LTL513.3.2 Methods523.3.3 Results543.3.4 Discussion62	
3.4 Gender differences in genetic loci shared between mental disorders and metabolic traits.653.4.1 Introduction	
4 Conclusions and future directions	
Appendix	
Bibliography103	5

Abstract

Severe mental disorders such as bipolar disorder (BD), schizophrenia (SZ) and major depressive disorder (MDD) are characterized by a substantial socio-economic burden. Pharmacological treatment is the mainstay in the acute phase of severe mental disorders as well as in the prevention of recurrences. However, only one third of patients show excellent response to the first pharmacological treatment, while the other two thirds show partial or no response. The identification of reliable tools to stratify patients depending on the probability to respond to a specific treatment would allow to develop improved treatment strategies for these patients. In this regard, precision medicine aims to provide a more tailored treatment by integrating demographic, clinical, lifestyle and biological characteristics. Novel analytical approaches that allow to leverage pleiotropy to improve the yield of existing genome-wide summary statistics might also be of help to identify novel potential drug targets. In this thesis, we focus on the investigation of molecular markers related to cellular aging (telomere length) and inflammation in predisposition to severe mental disorders and response to psychotropic treatments. In addition, we present different studies aimed at identifying genetic loci shared between severe mental disorders and related traits (i.e. risktaking propensity, telomere length and metabolic phenotypes). In the latter study we also focus on exploring gender differences in genetic determinants shared between mental disorders and metabolic phenotypes, highlighting the relevance of gender in the identification of pleiotropic loci and potential drug targets. Elucidating the shared genetic bases between severe mental disorders and genetically predicted markers of cellular aging, as well as age-related disorders such as metabolic disturbances, might allow us to discover novel drug targets and define subgroups of patients that might benefit of more tailored treatment strategies, moving toward precision medicine in severe mental disorders.

1. Introduction

1.1 Severe mental disorders

According to the World Health Organization (WHO), around 450 million people in the world currently suffer from mental disorders [1]. The global burden of mental illness accounts for 21-32% of years lived with disability, causing a considerable socio-economic impact [2]. Among severe mental disorders, major depressive disorder (MDD) is the most prevalent, affecting more than 250 million people worldwide, but large proportions of the general population are affected by bipolar disorder (BD, 45 million people) and schizophrenia (SZ, 20 million people), which both significantly contribute to the cumulative high prevalence of mental illness worldwide [3]. Differently from somatic disorders, most of severe mental illnesses have their onset in late adolescence and young adulthood, determining substantial impairment over the remaining lifespan [4, 5]. Pharmacological treatment is the mainstay in the acute phase of severe mental disorders as well as in the prevention of recurrences. However, about one third of patients show excellent response to the first pharmacological treatment, while the other two thirds show variable degree of response, from partial to no response [6-8]. An unsatisfying response or an adverse drug reaction represent important obstacles to adherence and can substantially affect the quality of life of patients. Different genetic and environmental factors have been suggested to contribute to the interindividual variability in response to psychopharmacological treatment, but the complex interplay of these factors has yet to be disentangled and fully understood. The relatively low response to psychiatric medications calls for better management of pharmacological interventions, which would significantly benefit from the identification of reliable tools to stratify patients depending on the probability to respond to a specific treatment. In this regard, precision medicine aims to provide a more tailored treatment by integrating demographic, clinical, lifestyle and biological characteristics [9].

1.2 Precision medicine in severe mental disorders

In the last few years, precision medicine has emerged as a novel player in healthcare. [9, 10]. There is consensus that precision medicine is changing the paradigm of clinical care from the traditional evidence-based approach (founded on data gathered in large populations of patients), to an individual-based deep knowledge of clinical and biological characteristics. If identified, these features could then be implemented in the development of specific algorithms that can predict the individual response to treatments [11]. In psychiatry, the transition toward precision medicine is still lagging behind compared to other fields of medicine such as oncology or haematology [12, 13]. While this approach is still in its infancy, successful examples of its application are starting to be provided in the field of neuropsychopharmacology [9]. Among the biological characteristics involved in modulating drug response, an important role is played by genetic and epigenetic factors [14], whose contribution to the efficacy and tolerability of medications is investigated by pharmacogenomics [15] and pharmacoepigenomics [16]. Findings with clinical significance (a concept which is related to the impact and importance of a finding for a patient population) are starting to being applied to dosing recommendations for psychotropic drugs, such as selective serotonin reuptake inhibitors (SSRI) and tricyclic antidepressants (TCAs), based on genetic information. Specifically, information on genotypes of CYP2D6 and/or CYP2C19, two genes encoding enzymes that contribute to the metabolism of several antidepressants, can be used to adjust the dosage or select an alternative treatment based on the recommendations made by the Clinical Pharmacogenetics Implementation Consortium (CPIC) [17, 18]. As regards to drug safety, in the case of carbamazepine, recommendations based on HLA genotypes were formulated on the basis of a large body of evidence supporting an association between specific alleles and the risk of severe adverse drug reactions [19]. These initiatives represent a precious effort to overcome one of the barriers to precision psychiatry, i.e., the difficulty in translating pharmacogenetic results into actionable treatment decisions. While available recommendation for genotyping is generally focused on few specific genes for which the most robust evidence is available, response to psychotropic drugs represents a complex trait for which the contribution of several genes can be hypothesized. It can be postulated that genes implicated in the development of mental disorders might also play a role in the mechanism of action of psychotropic drugs and/or clinical response. In the last decade, genome-wide association studies (GWAS) have uncovered thousands of genetics variants associated with different complex traits, including susceptibility for psychiatric disorders [20-22]. However, the identification of causal genetic variants and related genes is often challenging. Cross-trait analyses, gene-based analyses, integration of different types of omic data and transcription-wide association studies are only some of the computational approaches that can be used to build on GWAS knowledge, to gain insights on the molecular mechanisms underlying the observed associations. In the case of response to psychotropic drugs, this research is still in its infancy. However, some of these approaches such as cross-trait analyses and polygenic risk score (PRS) have started to be applied to response to lithium. The mood stabilizer lithium represents a cornerstone in the long-term management of BD, due to its efficacy in the treatment of manic episodes, prevention of mood relapses and reduction of the risk of suicide [23, 24]. However, only one third of patients show excellent response to this drug. Excellent responders to lithium have been suggested to represent a subphenotype and seem to share some clinical characteristics, such as family history of BD and of lithium response, absence of rapid cycling and absence of psychotic symptoms [25, 26]. However, low effect sizes and limited predictive value of these characteristics, as well as the necessity of a long time of clinical observation to collect some of this information, do not allow a reliable and prompt identification of lithium responders in the clinical setting. Since lithium response has been suggested to be a heritable trait, a growing body of research investigated the potential predictive value of genetic markers. In the last few years, studies have largely shifted from the assessment of candidate genes to the genome-wide approach, which is however still limited by several challenges related to the necessity to collect large cohorts of patients with a deep clinical characterization. In this sense, international efforts such as the International Consortium on Lithium Genetics (ConLiGen) [27] can provide a crucial contribution towards the identification of reliable markers of lithium response and the development of precision medicine approaches. Recent studies that leveraged the GWAS dataset from the ConLiGen consortium as well as larger datasets on severe mental disorders from the Psychiatric Genomics Consortium, suggested a high genetic load for SZ [28], or MDD [29] to be associated with poor lithium response. In addition, a PRS combining variants associated with either SZ or MDD was recently shown to be able to improve prediction of lithium response compared to single-disorder PRS (proportion of phenotype variance explained by combined PRS: partial $R^2 = 0.91\%$; schizophrenia-PRS: partial $R^2 = 0.82\%$; depression-PRS partial $R^2 = 0.47\%$) [30]. In the ConLiGen cohort, patients in the highest decile for the combined PRS had 2.5 times higher odds of being poor responders compared with patients in the lowest decile [30]. These approaches are based on pleiotropy, i.e. a condition in which the same gene affects multiple phenotypes simultaneously. In this sense, approaches aimed at increasing knowledge on the genetic and molecular determinants of mental disorders and correlated traits could be of help to improve pharmacological treatment through 1) the identification of novel genetic determinants of mental disorders, that might serve as pharmacological targets, 2) the definition of subgroups of patients sharing a specific genetic background that might play a role in the efficacy or safety of pharmacological treatments.

1.3 Aims of this thesis

Based on the framework presented in the previous section, aims of this thesis were to investigate the contribution of different genetic and molecular markers in predisposition to mental disorders and response to psychotropic medications. In section 2, we present an original study investigating the interplay between telomere length (TL) and inflammation in patients with BD, SZ, MDD compared with non-psychiatric controls (NPC) [31]. We explored differences in these markers across disorders as well as based on response to psychotropic medications. In Section 3, we present three studies in which we leveraged pleiotropy to identify novel genetic determinants of severe mental disorders and related traits (risk-taking propensity [32], peripheral TL and metabolic traits). In the

third study included in this section we also focused on exploring gender differences in genetic determinants shared between mental disorders and metabolic phenotypes, highlighting the relevance of gender in the identification of pleiotropic loci. In Section 4, we report concluding remarks and future developments of this work.

2 Identification of molecular factors associated with efficacy and safety of psychotropic drugs

2.1 Telomere length and inflammatory load in severe mental disorders and in response to psychotropic medications

2.1.1 Telomere length and inflammation

Severe mental disorders are characterized by decreased life expectancy (up to 10-20 years compared to the general population) as well as significant excess mortality [33-36]. Most of these deaths are accounted for by comorbid chronic disorders that are usually associated with aging, such as cardiovascular, respiratory, and infectious diseases, diabetes, and hypertension [37-40]. In particular, age-disorders characterized by an inflammatory component, such as cardiovascular and metabolic disorders, present a higher incidence in patients with mental disorders compared with individuals without mental illness [37, 41, 42]. Based on this evidence, accelerated aging and inflammation have been hypothesized to play a central role in the etiopathogenesis and detrimental course of severe mental disorders (Figure 1.1). Patterns of accelerated epigenetic aging [43, 44] and increased brain age have also been reported in patients with psychiatric disorders compared with non-psychiatric controls [45-49]. In addition, individuals affected by severe psychiatric disorders have shorter TL compared to unaffected individuals [50]. Telomere shortening is a hallmark of cellular aging. In humans, telomeric DNA consists of multiple (TTAGGG)n repeats ending in a single stranded-overhang of the G-rich 3' strand. Together with a number of specific proteins, called shelterins, which directly bind DNA or are associated with chromatin, it contributes to the structure of the chromosome telomeres [51]. This highly conserved complex ensures chromosome stability, preventing chromosome shortening and chromosome end fusion, as well as distinguishing telomeres from double strand breaks, thus avoiding their degradation by the DNA repair machinery. Telomeres physiologically shorten after each cell division in most somatic tissues, whereas early in human development this shortening is counteracted by the enzyme telomerase.

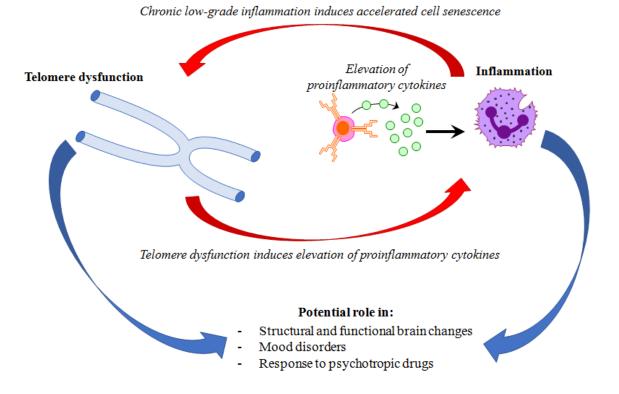


Figure 1.1. Hypothetical interplay between telomere dysfunction and low-grade inflammation in mood disorders.

After birth, telomerase is active predominately in stem cells and germ cells, while in telomerasenegative somatic cells each DNA replication leads to a loss of approximately 100 bp of telomeric sequence. This progressive telomere decline impairs the number of cell generations and causes cell senescence, with either growth arrest or activation of apoptotic processes [52]. A recent study evaluating mortality in more than 64,000 subjects from the general population showed that short telomeres in peripheral blood leukocytes were associated with high mortality [53]. Some studies have also shown that TL correlates with brain age, with shortest telomeres correlating with older age [54-57], and with reduced hippocampal volume in schizophrenia [58]. While data on telomere shortening in mental disorders have not been all concordant, a recent meta-analysis showed a significant overall effect size for telomere shortening across all mental disorders [59].

Telomere attrition is also caused by several biological insults, including inflammatory processes [60]. Interestingly, it has been largely shown that patients affected by severe mental disorders have increased levels of peripheral inflammatory markers, suggesting an involvement of inflammation in

the etiopathogenesis of these disorders [61-63]. This could be enacted through their access into the central nervous system and their impact on neurotransmitters and neural circuits [62, 64-67].

Taken together, these findings suggest a complex interplay of telomere shortening and inflammation in modulating the risk for severe mental disorders. However, the investigation on the potential interaction between the inflammatory processes and telomere shortening in the etiology and progression of these disorders has been scarce. Treatment with mood stabilizers or antidepressants might also play a role in this interplay. Specifically, the duration of long-term lithium treatment has been shown to correlate with longer peripheral TL [68-70], while shorter TL has been associated with worse clinical response to antidepressants [71, 72]. However, overall there is a paucity of data regarding the potential effect of treatment with psychotropic medications (in terms of exposure, duration and clinical response) on TL. In addition, the potential role of comorbid age-related disorders on this interplay has been scarcely investigated.

In this study, we evaluated the interplay between TL and inflammation in three deep-phenotyped samples of patients with severe mental disorders, namely BD, MDD and SZ as well as a sample of non-psychiatric controls (NPC). Aims of this study were to investigate whether there are significant differences across the three disorders in peripheral TL and levels of two inflammatory markers, as well as to specifically explore the role of pharmacological treatments and comorbid age-related disorders in the interplay between telomere shortening and inflammation in these disorders.

2.1.2 Methods

Sample

The cohort included in this study comprised 40 patients with BD, 37 with MDD, and 41 with SZ followed-up and treated at the community mental health center of the Unit of Psychiatry of the Department of Medical Science and Public Health, University of Cagliari and University Hospital Agency of Cagliari, and at the Unit of Clinical Pharmacology, University Hospital Agency, Cagliari, Italy. The recruitment process was based on the inclusion and exclusion criteria described

in Manchia et al., 2020 [73]. Briefly, the diagnosis was made according to DSM-IV criteria and SADS-L (BD patients), and Structured Clinical Interview for DSM IV-TR Axis I Disorders (SCID) (MDD and SZ patients). Exclusion criteria comprised acute infections, chronic autoimmune inflammatory conditions, diagnosis of any eating disorder, post-traumatic stress disorder, substance use disorders, neurological disorders, traumatic brain injury or severe medical conditions (such as cancer, HIV infection). All patients had been followed up longitudinally with periodic assessments of their psychopathological status, which included the use of standard psychometric tools, in certain cases since the illness onset. This accurate clinical depiction of the clinical course was the basis for the definition of treatment resistance (TR) in MDD and SZ patients. Specifically, TR for MDD and SZ patients was defined according to the criteria of Souery et al. [74] and Kane et al. [75], respectively on the basis of the clinical course and assessment of treatment response patterns.

In patients with BD, response to lithium was characterized using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder scale (or Alda scale), as previously described [26, 76]. The scale quantifies the degree of improvement during lithium treatment with a score from 0 to 10, adjusting for potential confounders. Patients with a total score \geq 7 are considered as responders [26, 76]. All BD patients enrolled in the study were under mood stabilizing treatment at time of recruitment, with 38 patients being either responders or nonresponders to lithium based on the Alda scale. A total of 36 NPC with no personal or familial history of psychiatric disorders in first degree were recruited based on the same exclusion criteria described for patients. NPC were administered the Italian version of the SCID-I/NP 26 to rule out the presence of Axis I psychiatric disorders [77]. For each individual included in the study, information about co-morbid conditions related to aging (specifically cardiovascular diseases, diabetes mellitus type 2, and obesity) were collected. Patients and controls were all from the same geographical area (Sardinia, Italy), Caucasians and of Italian origin.

For all participants, fasting blood was collected in the morning and processed for the different protocols within 1 hour from collection, during which it was stored at controlled temperature (4 °C).

At blood drawn, patients with BD and MDD were in euthymic phases with an interval of at least six months from the last mood episode meeting diagnostic criteria. Similarly, patients with SZ were sampled after at least six months from the last psychotic episode. Clinical and demographic variables collected for the present study are reported in Table 2.1. The research protocol followed the principles of the Declaration of Helsinki and was approved by the Ethics Committee of the University of Cagliari, Italy (approval number: 348/FC/2013 and PG/2018/11693). All participants signed informed written consent after a detailed description of the study procedures.

Quantitative Fluorescence in Situ Hybridization (Q-FISH)

Quantitative Fluorescent in situ hybridization (Q-FISH) was adopted to quantify the target repetitive hexameric sequences (TTAGGG) located at the distal end of chromosomes. Telomere peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) and appropriate digital image software were used for capture and quantification of fluorescence signals. Phytohemagglutinin-M (GIBCO, Milan, Italy) stimulated T-lymphocytes chromosomes were obtained from whole blood and shortterm cultures set up within 24 hours. Metaphase preparations analyses were carried out as previously described [78]. Metaphase chromosomes were hybridized using a Cy3-labeled (CCCTAA)3 PNA probe (DAKO, Glostrup, Denmark) according to the manufacturer's instructions. Slides with cells from patients from the different subgroups and control cells were randomly distributed in a single experiment. Telomere hybridization signals of 20 complete metaphases per subject, all from a single slide, were randomly selected for microscopic evaluation of FISH signals. Images were captured by a digital image analysis system based on an epifluorescence Olympus BX41 microscope using DAPI and Cy3 filters and charge-coupled device camera (Cohu, San Diego, CA), interfaced with the CytoVysion System software (Applied Imaging). Telomere fluorescence signals were quantified with ImageJ, version 1.43u (National Institutes of Health, http://rsbweb.nih.gov/). The software measures fluorescence intensity of individual telomeres expressed as the product of the telomere area and the average gray value within the selected telomere. The method provides excellent quantitation as the fluorescence intensity directly correlates to the length of the telomeres and provides a measure of length of individual telomeres. TL was calculated as the mean fluorescence intensity signals for each participant. Two quality control criteria were set for sample exclusion: the number of metaphases in the harvested cultures and processed cells (< 40 available metaphases in the slide), and the appearance of chromosome morphology (fuzzy chromosomes). Ten samples (2 MDD, 2 BD, 5 SZ, and 1 NPC) did not meet the first parameter and were excluded.

Inflammatory markers hsCRP and TNFa

Plasma levels of C-reactive protein (CRP) were measured with high sensitivity (hs) ELISA sandwich kits (Origene: catalog number EA100881). The monoclonal anti-CRP antibody (CRP Mab) was used immobilized on the microtiter wells. Standards (curve range 0.005-0.1 mg/L; 10ul/well in duplicate) and samples (dilutions 1:100, 10 ul/well) were incubated with the second antibody (anti-CRP bound to HRP, 100 ul/well) for 60 minutes at room temperature. Measurements were done by incubating the TMB substrate for 15 minutes at room temperature, stopping the reaction with blocking buffer and measuring optical density at 450 nm in the plate reader (Chameleon: Hidex, Turku, Finland). Plasma tumor necrosis factor alpha (TNFa) was measured by commercial UltraSensitive ELISA kit (Invitrogen Corporation, Carlsbad, CA, USA, catalog number KHC3014). Standards (curve range 0.5-32 pg/mL; 50ul/well in duplicate), samples (50 ul/well) and Hu TNFa biotinylated detection antibody (50 ul/well) were added to the capture antibody coated wells for 2 hours at 37°C. Streptavidin-HRP (30 minutes at room temperature) and TMB substrate (30 minutes at room temperature) were used to reveal the positive labeling. The reaction was stopped with blocking solution and the optical density was measured at 450 nm using a multilabel plate reader (Chameleon: Hidex, Turku, Finland). All samples were run in four assays, each including similar numbers of samples from each subgroup, which were assigned to randomly distributed wells across plates, and across each assay plate. Five samples were assessed in each assay and used for quality control and to normalize for minor differences in values calculated in the different assay runs. For TNF α assays, all sample values fallen within the range of the standard curve, while in the hsCRP levels equal or higher that 10 mg/L were excluded from the analysis (13 in total), as this threshold is indicative of acute, macro-inflammation [79-81], while our study aimed to focus on signatures of low grade inflammation. Linear regression analysis of standard curves yielded R² values between 0.99 and 1. Inter-assays coefficient of variation of TNF α and hsCRP were 7% and 9% respectively.

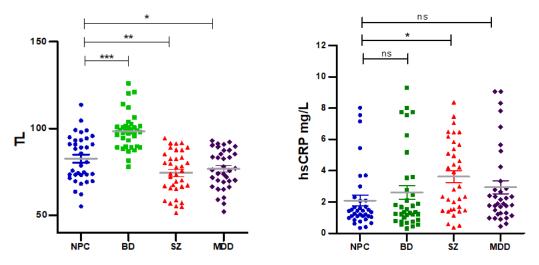
Statistical analysis

Differences in categorical and quantitative variables among groups were assessed using the Pearson's Chi-Square test and the ANOVA or Kruskal-Wallis tests, respectively. Normality of distribution of TL, hsCRP and TNF α levels was assessed using the Shapiro-Wilk test. Correlation between hsCRP levels and TL was tested with partial correlation, adjusting for age and body mass index (BMI). The association of categorical variables with molecular measures was tested with t-test or Mann-Whitney test. For TL, differences among the diagnostic groups were tested using ANCOVA with TL as dependent variable, diagnosis and gender as factors, and age, and BMI as covariates. Since levels of hsCRP and TNF α were not normally distributed, differences among the diagnostic groups were tested using rank analysis of covariance, with diagnosis and gender as grouping variables. P-values of pairwise comparisons were corrected with Bonferroni. Otherwise, a p-value < 0.05 was considered statistically significant. The analyses were conducted using IBM SPSS Statistics v. 25 (IBM Corporation, Armonk, NY, USA) and Graphpad Prism V. 8 (GraphPad Software, San Diego, CA USA).

2.1.3 Results

Demographic and clinical characteristics of the sample are reported in Table 2.1.

Variables	BD (n=40)	SZ (n=41)	MDD	NPC	Statistics
			(n=37)	(n=36)	
Gender (M/F)	17/23	36/5	12/25	21/15	X ² =28.2; p<0.0001
FH (Y/N/U)	19/21	20/20/1	20/13/4	6/30	X ² =15.4; p=0.001
Suicide attempt (Y/N/U)	11/29	8/33	6/30/1	0	X ² =1.4; p=0.484
Smoking (Y/N)	22/18	31/10	18/18/1	13/23	X ² =12.6; p=0.006
Substance use (Y/N/U)	0	16/23/2	1/20/16	0	X ² =7.0; p=0.008
Physical Activity (Y/N/U)	18/22	15/26	13/23/1	25/11	X ² =10.9; p=0.013
Cardio-metabolic disorders (Y/N/U)	14/26	15/26	10/26/1	8/28	X ² =2.4; p=0.498
Cardiovascular disorders (Y/N)	6/34	5/36	6/31	7/29	X ² =0.844; p=0.839
Metabolic disorders (Y/N/U)	13/27	13/28	7/29/1	1/35	X ² =12.5; p=0.006
BMI (mean \pm SD)	27.7 ± 6.7	27.2 ± 4.1	25.4 ± 5.1	23 ± 3.5	F=6.5; p=0.0003
Age (mean \pm SD)	51.6 ± 10.7	46.9 ± 11.9	51.2 ± 12.9	43.3 ± 10.7	F=4.3; p=0.006
Age of father at birth (mean \pm SD)	33.8 ± 5.9	33.4 ± 6.6	33.7 ± 5.4	33.7 ± 5.6	F=0.04; p=0.990
Patients under MS treatment (Y/N)	15/25	11/30	7/30	/	
Patients under AP treatment (Y/N)	19/21	41/0	8/29	/	
Patients under AD treatment (Y/N)	7/33	11/30	29/8	/	
Lithium responders (Y/N/U)	12/26/2	/	/	/	
MD Treatment-resistant (Y/N)	/	/	10/27	/	
SZ Treatment-resistant (Y/N)	/	20/21	/	/	

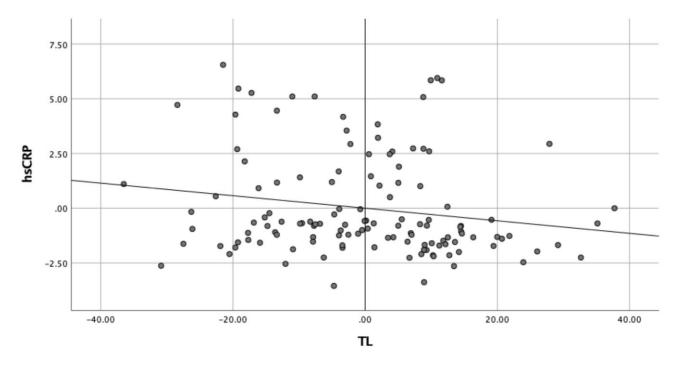

 Table 2.1: Demographic and clinical variables in the four diagnostic groups

Abbreviations: AD, antidepressants; AP, antipsychotics; BD, Bipolar Disorder; BMI, Body Mass Index; F, females; FH, family history of any psychiatric disorder; M, males; MDD, Major Depressive Disorder; MS, mood stabilizers; N, no; n, number; NPC, Non psychiatric controls; SD, standard deviation; SZ, Schizophrenia; U, unknown; Y, yes. Smoking was defined as: Y, current or ex-smokers; N, ever smokers. Physical activity was defined as: Y, any physical activity performed at least twice a week; N, no physical activity.

In the model including age, gender and BMI as controlling factors, TL was significantly different among the four groups (model $F_6 = 20.13$, $p = 8.73 \times 10^{-17}$, partial eta squared 0.47; effect of diagnosis, $F_3 = 31.87$; $p = 1.08 \times 10^{-15}$; partial eta squared = 0.41; Figure 2.1). There was a significant contribution of age to the model ($F_1 = 14.81$, p = 0.0001, partial eta squared = 0.10), but diagnosis was the most significant variable explaining the largest proportion of variation. Post-hoc analysis

with Bonferroni correction showed that patients with SZ and MDD had significantly shorter TL compared to NPC (SZ versus NPC, p = 0.002; MDD versus NPC, p = 0.039) and to BD (SZ versus BD, $p = 1.91 \times 10^{-13}$; MDD versus BD, $p = 4.22 \times 10^{-12}$). Patients with BD had the longest TL compared to all the other groups (Figure 2.1). This finding could be explained by the effect of exposure to mood stabilizers, as suggested by the significant correlation that we observed between duration of treatment with mood stabilizers and TL (partial correlation controlled for age and BMI: correlation coefficient = 0.45; p = 0.001). Indeed, all patients with BD were under mood stabilizing treatment at time of recruitment. The full model was also statistically significant, with diagnosis explaining the largest variance (model $F_{11} = 11.08$, $p = 9.42 \times 10^{-14}$, partial eta squared = 0.52; effect of diagnosis, $F_3 = 20.568$, $p = 9.71 \times 10^{-11}$, partial eta squared = 0.35).

Figure 2.1. Difference in telomere length (TL) and high sensitivity C-reactive protein (hsCRP) levels among the four diagnostic groups

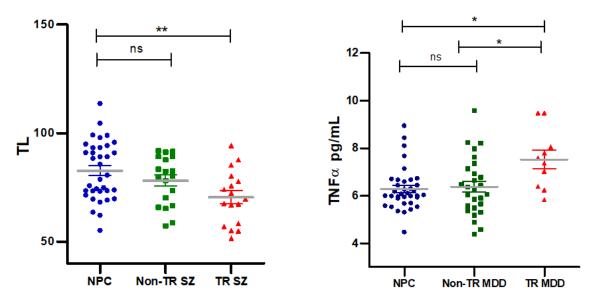

The left panel shows the difference in TL among the four diagnostic groups (effect of diagnosis $F_3 = 31.87$, $p = 1.08x10^{-15}$), while the right panel the difference in hsCRP levels among the four diagnostic groups (effect of diagnosis $F_3 = 4.680$, p = 0.004). Graphs were obtained using the raw values (unadjusted), while the statistical significance for TL and hsCRP is based on post-hoc analysis with Bonferroni correction of the univariate models controlling of age, gender and BMI as covariates. * p<0.05; ** p<0.005; *** p<0.005; ns, not significant. Bars represent mean and standard errors on the mean. Abbreviations: BD, bipolar disorder; MDD, major depressive disorder; NPC, non-psychiatric controls; SZ, schizophrenia

The rank analysis of covariance with age, gender and BMI as controlling variables showed that hsCRP levels were higher in patients with severe mental disorders (model $F_4 = 4.18$; p = 0.004, partial eta squared = 0.11), with diagnosis being the most significant independent variable ($F_3 =$

4.68; p = 0.004; partial eta squared = 0.10; contribution of gender, $F_1 = 5.42$, p = 0.021, partial eta squared = 0.039, Figure 2.1).

The highest hsCRP levels were observed in patients with SZ (post-hoc analysis: SZ versus NPC, adjusted p = 0.027), with a mean value of 3.62 mg/L (standard deviation ± 2.28 ; mean value in NPC = 2.09, standard deviation ± 1.99), suggesting the presence of low grade peripheral inflammation, which is generally defined by hsCRP level ≥ 3.0 mg/L [82-85]. Moreover, hsCRP levels were inversely correlated with TL when controlling for age and BMI (partial correlation coefficient = -0.18; p = 0.042, Figure 2.2). While modest, this finding suggests a potential interplay between shorter TL and low-grade inflammation, which appeared to be stronger in SZ.

Figure 2.2. Correlation between hsCRP and TL



Partial correlation between hsCRP levels and TL in the whole sample controlled for BMI and age. Correlation coefficient = -0.180, p = 0.042. Abbreviations: hsCRP, high sensitivity C-reactive protein; TL, telomere length

We found no significant differences in TNF α levels among the four diagnostic groups in the simplified model. We also tested possible differences in molecular measures according to response to antipsychotics in SZ and antidepressants in MDD, characterized as TR or non-TR, and to lithium response in BD, characterized as responders or non-responders. In SZ, TL was significantly different among groups (model F₅ = 4.58, p = 0.001, partial eta squared = 0.26; effect of diagnosis,

 $F_2 = 6.93$, p = 0.002, partial eta squared = 0.18), with shorter TL in TR-SZ compared to NPC (adjusted p = 0.001), but not in non-TR compared to NPC (adjusted p = 0.13; Figure 2.3), suggesting that TR SZ might be characterized by more severe molecular impairments. Age (F = 7.63, p = 0.007, partial eta squared = 0.105) and gender (F = 5.01, p = 0.029, partial eta squared = 0.072) also significantly contributed to the model, but diagnosis was the most significant factor explaining the largest proportion of variation. There was no difference in hsCRP or TNF α levels between TR and non-TR patients.

Figure 2.3. Difference in TL or TNF α levels among patients with treatment-resistant schizophrenia or depression, patients with non-treatment resistant schizophrenia or depression and controls

The left panel shows the difference in TL among non-psychiatric controls (NPC), patients with treatment-resistant schizophrenia (TR), and patients with non-treatment resistant schizophrenia (non-TR) (effect of diagnosis $F_2 = 6.93$; p = 0.002). The right panel shows the difference in levels of tumor necrosis factor alpha (TNF α) among non-psychiatric controls (NPC), patients with treatment-resistant major depressive disorder (TR), and patients with non-treatment resistant major depressive disorder (TR), and patients with non-treatment resistant major depressive disorder (TR), and patients with non-treatment resistant major depressive disorder (TR), and patients with non-treatment resistant major depressive disorder (non-TR) (effect of diagnosis $F_2 = 4,00$; p = 0.023). Graphs were obtained using the raw values (unadjusted), while the statistical significance for TL, hsCRP and TNF α is based on post-hoc analysis with Bonferroni correction of the univariate models, with age, gender and BMI as covariates.

**p<0.005; *p<0.05; ns, not significant. Bars represent mean and standard error of the mean

In MDD, there was no significant difference in TR, non-TR or NPC in terms of TL or hsCRP. However, the rank analysis of covariance with age, gender and BMI as controlling variables showed significant differences in TNF α among TR MDD, non-TR MDD, and NPC (model F₃ = 2.72, p = 0.05, partial eta squared = 0.11; effect of diagnosis, F₂ = 3.998, p = 0.023, partial eta squared = 0.11). Post-hoc comparison showed that patients with TR MDD had higher levels of TNF α compared to both non-TR (adjusted p = 0.039) and NPC (adjusted p = 0.028), while non-TR and NPC had similar levels (adjusted p = 1; Figure 2.3), suggesting that treatment resistance might be associated with increased inflammation compared to non-TR. As regards to lithium response, we found no difference for any of the molecular measures tested between BD patients responders or non-responders (data not shown).

2.1.4 Discussion

We compared TL and levels of circulating inflammatory markers among groups of patients with different severe mental disorders (BD, MDD and SZ) and NPC, and investigated the role of treatment with psychotropic medications and comorbid cardio-metabolic disorders in the potential interplay between telomere shortening, inflammation and psychiatric disorders. Patients with SZ and MDD had shorter TL compared to NPC, while BD patients presented the longest telomeres of all groups. Shorter TL has been extensively reported in psychiatric disorders though negative or opposite findings have also been published [86]. Concerning SZ, a recent study by Russo and colleagues (2018) supported the hypothesis of telomere attrition in SZ, showing that a diagnosis of SZ was the most significant variable contributing to shorter leukocyte telomere length (LTL), with a higher weight than gender, age, cigarette smoking or alcohol drinking [87]. Moreover, in this study the authors performed a meta-analysis showing decreased LTL in SZ compared to controls. In our study we also showed that only patients with TR-SZ and not the non-TR group had significantly shorter telomeres compared to NPC. Shorter telomeres in patients with SZ with poor response to antipsychotics have been previously reported by other studies [88-91]. However, to our knowledge, this is the first study exploring TL in TR versus non-TR patients. We can hypothesize that short telomeres could be a trait marker of poor response to antipsychotics and possibly TR-SZ. Another finding of our study was that patients with SZ had higher plasma levels of hsCRP compared to controls and to the other groups of patients with psychiatric disorders, suggesting a state of lowgrade systemic inflammation and a putative interaction between inflammatory processes and telomere shortening. This interpretation is supported by our finding of an inverse correlation between TL and hsCRP levels, which was not influenced by age, BMI, or cardio-metabolic disorders. Although inflammation and telomere shortening have been largely studied as independent phenomena in ageing and disease association, their possible interdependent nature has been hypothesized, and a detrimental effect of inflammation on telomere dynamics has been suggested [60]. One of the most valuable findings from longitudinal studies in psychiatric disorders was published by Osler and coworkers [92], who explored the interplay between stressful life events, clinical features (including the characterization of depressive symptoms) and measures of inflammation and biological stress in a large cohort of Danish men. Results showed that early stressful events were associated with shorter TL in middle-aged men, and that the largest proportion of this association was mediated through depressive mood and CRP. Nevertheless, the number of longitudinal studies exploring TL and inflammation in psychiatric disorders remains limited and more efforts are needed to better elucidate the role of disturbances in these molecular dynamics in mental disorders.

While we did not show a significant difference in hsCRP levels between MDD and NPC, we showed significantly higher plasma levels of TNF α in TR-MDD when compared to both non-TR MDD and NPC, while levels in non-TR were similar to NPC. This finding suggests that TR-MDD patients might be characterized by increased inflammation, an hypothesis that has been investigated and supported by previous investigations [93-95]. Treatment with antidepressants fails in about 30% of patients, and data suggest that those patients with high inflammation are more prone to be resistant [96, 97]. A role of TNF α in MDD is also supported by the evidence that TNF α inhibitors show antidepressant effects in patients with TR-MDD with higher baseline levels of inflammatory markers [98], that lower baseline levels of TNF α (pretreatment) correlates with better response to electroconvulsive therapy (ECT) in TR-MDD [99], and that ECT reduces plasma levels of TNF α [100, 101]. The importance of modulating levels of TNF α in MDD has been also supported by a

recent meta-analysis including 22 studies and 827 patients, which showed that treatment with SSRIs significantly reduces circulating levels of a number of inflammatory markers, including TNF α [102], suggesting that part of the therapeutic effects of SSRIs could be attributable to their anti-inflammatory properties.

In our study, MDD patients had shorter telomeres compared to NPC, while there was no significant difference between TR-MDD, TR MDD, and NPC. Shorter TL in MDD has been reported in several studies suggesting that telomere attrition could be a marker of MDD [50, 103]. A recent meta-analysis including 38 studies and a total of 34,347 cases, showed that MDD was significantly associated with shorter TL [104]. Recently, we showed that patients with MDD had shorter LTL compared to controls in an independent sample of 54 MDD patients and 47 NPC [105]. Similar to the present study, our previous work did not show a significant difference in TL between TR and non-TR MDD. Only a small number of investigations explored the correlation between TL and response to antidepressants in patients. Hough and coworkers (2016) showed that LTL before treatment with SSRIs was shorter in patients with MDD non-responders to treatment than in responders. Moreover, the authors observed less improvement in negative affect in patients with shorter pre-treatment LTL. Another study published by Wolkowitz et al. [71] showed that MDD patients with lower pretreatment activity of telomerase and greater increase in telomerase activity during antidepressant treatment had better response to antidepressants. Nevertheless, the number of studies exploring the correlation between TL and response to antidepressants remains too scarce to draw definite conclusions and require further investigation.

In our study, patients with BD had the longest TL of the tested groups. This finding appears in contrast with the hypothesis of telomere attrition in mental disorders, but previous authors reported similar results in BD [69, 106]. This discrepancy between BD and the other groups of psychiatric disorders could be determined by several factors, but our findings suggest that a great role could be played by exposure to mood stabilizing treatments. In fact, TL was significantly positively correlated with duration of treatment with mood stabilizers, and all BD patients included in the

study were under treatment with these medications at time of recruitment. A correlation between TL and duration of treatment with lithium, the mood stabilizer of first choice in BD, have been shown by previous works [68-70, 107]. While in the present study we were not able to compare patients with BD exposed versus non-exposed to mood stabilizers, our hypothesis is corroborated by our previous study [108] showing that patients with BD exposed to lithium had longer LTL compared to patients never exposed and to healthy controls, thus suggesting that lithium, and possibly other mood stabilizers, might counteract telomere attrition in psychiatric disorders. Overall, our findings suggest that severe mental disorders present altered TL and peripheral levels of inflammatory markers compared to non-psychiatric controls.

These results need to be interpreted in light of the strengths and limitations of our study. TL was measured using Q-FISH, which compared to other more utilized methods, such as qPCR, provides a more sensitive and accurate tool, especially if performed on metaphases chromosomes rather than on interphase nuclei: the measurements made on individual chromosome provide indeed an accurate estimation of fluorescence, allowing precise signal count. On the other hand, being more time consuming and less cost-effective, the choice to use Q-FISH contributed to limiting the sample size included in the present study. One of the major strengths of our study is the deep phenotypic characterization of the subjects included, which allowed a deeper exploration on the role of a number of potentially relevant features which have been often overlooked in previous investigations, including but not limited to history of pharmacological treatments, cigarette smoking, substance abuse, physical activity, suicidal behavior, family history for psychiatric disorders, and age of father at birth. On the other hand, the main limitation of our study resides is in its cross-sectional nature and the lack of patients naïve to treatment with psychotropic medications. Future studies with a longitudinal prospective design are needed to clearly elucidate the role of telomeres, inflammation and aging in severe mental disorders.

3 Characterizing the genetic overlap between severe mental disorders and related traits

3.1 Pleiotropy and available methods to investigate loci shared between two traits

In the last few years, the improved statistical power of GWAS has allowed to discover thousands of genetic variants associated with different complex traits, including mental disorders. However, a large part of the genetic architecture underlying these disorders is still undetected. In fact, while recent GWAS usually involve hundreds of thousands of participants, the sample size needed for a GWAS to be able to detect all common genetic variants affecting a phenotype can be different based on the number of causal variants involved and their effect sizes [109]. Besides improving GWAS sample size, a complementary approach to further study the genetic bases of complex traits relies on the application of statistical tools that improve results obtained by existing GWAS. Genome-wide genetic correlations (rg) evaluated with linkage-disequilibrium score regression (LDSC) have pointed to widespread shared genetic factors across multiple mental disorders and related traits. This method allows to estimate heritability and genetic correlation from GWAS summary statistics and to study genetic correlation globally, considering the average of the shared signals across the genome, including the contribution of single nucleotide polymorphisms (SNP) that do not reach genome-wide significance [110], considering possible sample overlap and population stratification. Genetic correlation is computed by normalizing genetic covariance by SNP heritabilities as in the equation:

$$r_g = \frac{\varrho_s}{\sqrt{h_1^2 h_2^2}}$$

where Q_s indicates the genetic covariance and h_i^2 indicates the SNP heritability from study *i*. However, this approach may underestimate some of the shared genetic signals between mental disorders and related traits, as it does not allow to identify mixtures of concordant and discordant direction of effects. Using novel statistical genetics tools, it is possible to identify the shared genetic underpinnings of mental disorders and related traits even when mixed direction of effects across loci are present. In addition, novel methods allow to identify specific genetic loci involved in both disorders, in order to evaluate their potential functional relevance and try to identify potentially implicated genes. All these approaches rely on pleiotropy, i.e. the association of a genetic variant with multiple traits. The identification of shared genetic signals between different traits or disorders can inform diagnostic classification systems, provide biological insights and be of help to develop improved treatment strategies [111].

Recently, the conditional false discovery rate (condFDR)/conjunctional false discovery rate (conjFDR) method has been developed [112, 113]. This method, implemented in the pleioFDR software, allows to re-adjust the GWAS statistics in a primary phenotype by leveraging pleiotropic enrichment with a GWAS in a secondary phenotype. The condFDR method represents a Bayesian extension of FDR that allows to incorporate prior information on each SNP to improve power. We define the conditional FDR as the posterior probability that a given SNP is null for the first trait given that the p-values for both traits are as small or smaller as the observed p-values. For each p-value in the primary phenotype, condFDR estimates are obtained by calculating the stratified empirical cumulative distribution function of the p-values [111]. Formally:

FDR
$$(p_1|p_2) = \pi_0 (p_2)p_1 / F(p_1|p_2)$$

where p_1 is the p-value for the first trait, p_2 is the p-value for the second trait, $F(p_1|p_2)$ is the conditional cdf and $\pi_0(p_2)$ the conditional proportion of null SNPs for the first trait given that p-values for the second trait are as small as p_2 or smaller.

The strata are obtained by the enrichment of SNP associations depending on increased p-values in a secondary phenotype [111]. In the presence of pleiotropy, stratification of test statistics in a primary phenotype based on the association with a second trait will result in a reduction in the FDR at a given nominal p-value relative to the FDR computed from the unstratified distribution of the primary phenotype p-values [111]. Conjunctional FDR represents an extension of the conditional FDR, defined as the maximum of the two conditional FDR statistics for a specific SNP.

The condFDR/conjFDR method has recently been applied to the study of several pairs of traits, including mental disorders and related traits (for a recent review see [109]). In the following section, we present results from three studies in which we applied this method to discover novel loci associated with mental disorders as well as to investigate shared genetic bases between mental disorders and related traits such as risk-taking propensity (Section 3.2), LTL (Section 3.3) and metabolic traits (Section 3.4).

3.2 Genetic loci shared between bipolar disorder and risk-taking propensity

3.2.1 Bipolar disorder and risk-taking propensity

Besides mood episodes of mania and depression, which represent primary features of this disorder, a subset of patients with BD might also present deficits across multiple domains of cognitive function [114-117]. These impairments are not exclusively observed in patients with BD but also in other mental disorders such as e.g. SZ [118] and attention-deficit hyperactivity disorder (ADHD) [119, 120], with the latter being specifically characterized by symptoms in the inattentive or hyperactive and impulsive domains [121].

Among deficits in executive function, patients with BD may exhibit abnormalities in impulsivity, sub-optimal decision-making and increased propensity for risk-taking behaviors. Risk-taking behaviors can be described as activities with high potential for negative consequences and may be linked to abnormal processing of reward-predicting stimuli [122-125]. Excessive involvement in activities with high potential for negative consequences is one of the 7 symptoms included in the DSV-IV or DSM-V diagnostic criteria for a manic episode (at least 3 symptoms must be present during a period characterized by persistently elevated, expansive, or irritable mood and increased energy) [126, 127]. However, in patients with BD increased risk-taking propensity can also be present during remission and may contribute to poor clinical outcome, being linked to increased prevalence of substance abuse and suicide [128, 129]. Risk-taking propensity in BD is still understudied, as can be inferred from a recent meta-analysis which included only six studies [130].

In this meta-analysis, a non-significant trend for impairment in risk-behavior was observed when considering all studies in a sample with high heterogeneity (p = 0.06; $I^2 = 81.3\%$), while significant impairment was observed in a more homogenous subgroup of BD type I and euthymic patients with no heterogeneity ($I^2 = 0\%$, standardized mean difference = 0.92; p < 0.0001).

The neurobiological determinants of impairments in decision-making and, specifically of increased risk-taking propensity, are still largely unknown. A recent study suggested risk-taking to be negatively associated with white matter integrity in the right cingulum in both patients with BD and controls, while white matter alterations in the left inferior frontooccipital fasciculus were specifically implicated in risk-taking behavior in patients with BD [131]. In addition, risk-taking propensity has been associated with alterations in reward salience in the frontostriatal pathway in patients with BD [132], reduced gray matter volume in the amygdala and hippocampus in humans [133] and increased hippocampal glutamate and monoamine levels in preclinical studies and in humans [134-136]. The mood stabilizer lithium, which represents the gold-standard in the maintenance of BD, being able to reduce recurrences and suicide risk [114, 137], has been suggested to be able to reduce risk-taking behaviors in preclinical models of mania [138, 139], although the underlying molecular mechanisms are not known.

Specific subgroups of patients with BD might show increased predisposition to risk-taking propensity. Indeed, a recent study including 54 euthymic BD type 1 patients who underwent cognitive testing and resting state neuroimaging identified three main clusters using hierarchical cluster-analysis on executive function scores [140]. One of these clusters was characterized by increased risk-taking propensity during the Cambridge Gambling Task [140]. Increased risk-taking predisposition in a subset of patients with BD might be at least partly explained by shared genetic determinants, as also supported by the observation of poorer adjustment in risk-taking behavior measured with the Balloon Analogue Risk Task (BART) in both patients with BD and their first-degree relatives compared to healthy controls [141]. BD has a strong genetic component which has recently started to be elucidated by GWAS that identified multiple SNPs associated with this

disorder [142, 143]. Similarly, a recent GWAS identified several genetic variants associated with risk-taking [144] and also showed this trait to be positively genetically correlated with BD ($r_g = 0.21$), SZ ($r_g = 0.17$) and ADHD ($r_g = 0.25$), using LDSC [144]. However, the specific casual genes and biological mechanisms, as well as the potential shared genetic factors between BD and risk-taking propensity, have not been investigated. It is well known that several genetic variants exhibit allelic pleiotropy, i.e. are associated with more than one phenotype [111]. For instance, BD has been shown to share part of its genetic architecture with other mental disorders [145-147]. The identification of shared genetic variants can improve our understanding of the biological underpinnings of two phenotypes as well as lay the basis to develop improved treatment strategies [111]. Recently, the condFDR/conjFDR method allowed to identify novel loci associated with BD leveraging pleiotropic association with SZ [112], ADHD [148] and intelligence [109]. However, this approach has never been applied to leverage pleiotropic association between BD and risk-taking propensity.

Aims of our study were to 1) identify genetic variants and genes that influence both susceptibility to BD and risk-taking propensity, 2) investigate whether genetic data on risk-taking propensity may improve discovery of loci associated with BD, and 3) evaluate the potential functional role, functional enrichment and suitability as drug targets of genetic loci associated with these two traits. In addition, we explored which of the identified genetic loci might be specifically shared between risk-taking and BD and which represent instead cross-disorders markers, being also shared between risk-taking propensity and either SZ or ADHD. These two disorders were selected based on previous reports of positive genetic correlation with risk-taking propensity [144] as well as studies supporting their association with executive function disturbances [118-120].

3.2.2 Methods

GWAS samples

GWAS summary statistics for BD were obtained from the Psychiatric Genomics Consortium (PGC) BD group (freeze 3) [149]. The BD sample included 41,917 cases from 57 cohorts collected in Europe, North America and Australia and 371,549 controls of European origin [149]. GWAS summary statistics on risk-taking propensity were obtained from the Social Science Genetic Association Consortium [144]. The sample included 466,571 participants from UK Biobank and replication cohorts. General risk tolerance was coded as a categorical variable based on the answer to the question: "Would you describe yourself as someone who takes risks?". After exclusion of variants ambiguous (A/T and C/G) or located in regions characterized by strong linkage disequilibrium (LD) such as the Major Histocompatibility Complex (MHC) region (chr6:25119106-33854733), chromosome 8p23.1 (chr8:7200000–12500000) and the *MAPT* gene (chr17:40000000–47000000), 6,346,208 variants common to the two datasets were retained.

In order to verify whether observed associations between BD and risk-taking propensity were specific for BD or common to other mental disorders, we also conducted cross-trait analyses using large publicly available datasets on SZ (dataset from the PGC, freeze 2, including data 35,476 patients with SZ or schizoaffective disorder and 46,839 controls [150]) and ADHD (PGC dataset including data for 19,099 cases and 34,194 controls of European ancestry from 10 cohorts [151]). After exclusion of ambiguous variants and variants located in regions characterized by strong LD, analyses were conducted on 8,176,252 and 5,448,916 variants common between risk-taking and SZ or ADHD, respectively. For all GWAS datasets, quality control procedures, including adjustment for population stratification, were performed by the original studies [144, 150-152].

Conditional and conjunctional false discovery rate analysis

To identify shared loci between LTL and psychiatric traits, we used the condFDR/conjFDR method implemented in pleioFDR [112, 113], which allows to re-adjust the GWAS statistics in a primary

phenotype (e.g. BD) by leveraging pleiotropic enrichment with a GWAS in a secondary phenotype (e.g. risk-taking propensity). For each p-value in the primary phenotype, condFDR estimates are obtained by calculating the stratified empirical cumulative distribution function of the p-values [111]. The strata are obtained by the enrichment of SNP associations depending on increased pvlues in a secondary phenotype [111]. We first constructed conditional QQ plots, which extend the standard QQ plots to visualize the cross-trait polygenic enrichment. The plot is constructed by creating subsets of SNPs based on the level of association with the secondary phenotype (using three thresholds $p \le 0.10$, $p \le 0.01$ and $p \le 0.001$). Under the null hypothesis, nominal p-values follow the straight line, while under cross-trait polygenic enrichment they show leftward deflections as levels of SNP association with the secondary phenotype increase. We also constructed fold enrichment plots, in which the fold enrichment is calculated as the ratio between the $-\log_{10}(p)$ cumulative distribution for a given stratum and the cumulative distribution for all SNPs. The conjFDR method is an extension of condFDR aimed at discovering SNPs associated with two phenotypes simultaneously. After inverting the roles of the primary and secondary phenotypes, the conjFDR is defined as the maximum of the two condFDR values. Thresholds for significant condFDR and conjFDR associations were set at 0.05 and 0.01 as in previous studies [111, 153-155]. We checked for correlation of Z scores among intergenic SNPs using the function implemented in pleioFDR and controlled results for sample overlap using the function implemented in pleioFDR consisting in decorrelation of vectors of Z scores based on the Mahalanobis Transformation [113].

Definition of genetic loci and functional enrichment

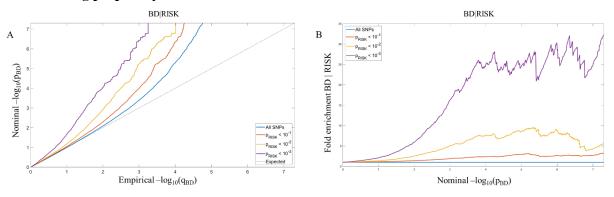
Independent significant genetic loci were defined according to the FUMA protocol [156]. Lead SNPs were defined by double clumping (a clumping of SNPs significant and independent at $r^2 < 0.6$, and a secondary clumping of these SNPs at $r^2 < 0.1$). Loci separated by a distance lower than 250 kb were merged. 1000 genome phase 3 was used as a reference panel to compute LD in FUMA. The direction of allelic effects for significant variants was evaluated by comparing betas reported in

the original GWAS. Positional and functional annotation of lead SNPs was performed using different tools. Nearest gene and functional category as well as the combined Annotation Dependent Depletion (CADD) score [157], which predicts how deleterious a variant is on protein structure/function by contrasting variants that survived natural selection with simulated mutations, were computed in FUMA. RegulomeDB rank (from 1 to 7, with 1 being associated with highest evidence of functional effects) was calculated using RegulomeDB [158] based on known and predicted regulatory elements including regions of DNase hypersensitivity, binding sites of transcription factors and promoter regions. We searched whether SNPs acted as expression quantitative trait loci (eQTL) based on genotyping and gene expression data (obtained from a range of 114 - 209 samples) from Genotype-Tissue Expression (GTEx) v.8 in brain regions. In the GTEx project, gene expression was measured with Illumina TrueSeq RNA sequencing or Affymetrix Human Gene 1.1 ST Expression Array, while genotyping data were obtained with whole genome sequencing, whole exome sequencing, Illumina OMNI 5M, 2.5M or Exome SNP arrays [159]. We reported cis eQTLs in a +/- 1Mb cis window around the transcription start site (TSS) and significant based on FDR. We tested the functional enrichment for GO terms and Panther pathways using WebGestalt [160] with default options, adjusting results based on FDR. In addition, we investigated whether proteins encoded by the identified genes showed significant protein-protein interaction (PPI) enrichment using STRING. A significant PPI indicates that the identified proteins have more interactions among themselves than would be expected for a random set of proteins of the same size and degree distribution drawn from the genome. Genes in which significantly associated variants were located or nearest genes were searched in the Drug Gene Interaction Database (DGIdb) [161] to assess whether they are known targets of existing drugs (drug-gene interactions) or 'potentially druggable' based on their involvement in selected pathways, molecular functions or gene families (druggable genome). According to this definition, the genes included in the druggable genome have some properties that make them suitable for drug targeting, even in absence of a drug currently targeting them [161]. The DGIdb database classifies genes in categories based on information retrieved from different drug target repositories (DrugBank, PharmGKB, Chembl, Drug Target Commons, Therapeutic Target Database and others). Functional enrichment for drug targets classified based on clinical indication according to Anatomical Therapeutic Chemical Classification System (ATC) or International Classification of Diseases 10 (ICD10) diagnostic codes was conducted using genome for REPositioning drugs (GREP) [58]. In addition, we searched for upstream regulators of our genes of interest using Ingenuity Pathway Analysis (IPA, Ingenuity System Inc, USA). Upstream regulators are defined as genes, microRNAs, transcription factors or chemical compounds that affect the genes of interest through effects on expression, transcription, activation, molecular modification, transport or binding events according to the Ingenuity Knowledge Base, a large collection of observations in various experimental contexts [59]. A p-value of overlap < 0.01 was set as the significant threshold as default.

Local genetic covariance analysis using SUPERGNOVA

As a complementary approach to investigate pleiotropy between BD and risk-taking propensity, we estimated local genetic covariance using SUPERGNOVA [162]. This tool estimates the genetic similarity of complex traits in specific genomic regions using GWAS summary statistics and is robust to sample overlap [162]. Genetic covariance between two traits is estimated by minimizing the distance between the empirical covariance of *Z* scores. LD was estimated using the 1000 genomes project reference panel [163]. In order to control for sample overlap, the first K_i eigenvectors were used to transform and decorrelate Z scores in any given region *i*, where K_i is determined adaptively in SUPERGNOVA. After decorrelation, local genetic covariance was estimated using a weighted least squares regression in each region [162]. The software identifies genomic regions characterized by a significant local genetic covariance between two traits. P-values were adjusted based on FDR. As in the case of analyses with pleioFDR, ambiguous variants or variants located in regions with strong LD were excluded.

eQTL informed gene-based analysis


In order to investigate the functional effects of genetics variants associated with BD and risk-taking propensity, we conducted eQTL informed gene-based analysis using eMAGMA [164]. This method leverages tissue specific eQTL information across multiple human tissues to identify putative casual genes for a phenotype. eMAGMA provides tissue-specific annotation files while gene-based statistics were computed using MAGMA (v. 1.09) [165]. SNPs were assigned to genes based on their association with gene expression in the 13 brain tissues included in GTEx (v. 8) as well as in whole blood. Bonferroni-adjusted p-value thresholds were set accordingly to the number of genes included in MAGMA (p = 0.05/19,427 = 2.6e-06).

3.2.3 Results

Genetic overlap between BD and risk-taking propensity

The conditional QQ plot and the fold enrichment plot showed significant cross-trait enrichment in variants associated with BD when conditioning on risk-taking propensity (Figure 3.1). We identified 102 independent genomic loci associated with both BD and risk-taking at a conjFDR < 0.05 (Figure 3.2, Table 3.1 and Appendix). Notably, 89 of these loci (87%) showed the same direction of effect on BD and risk-taking based on betas reported in the original GWAS (i.e. a variant associated with increased risk-taking propensity was also associated with increased predisposition to BD) (Table 3.1). Fifty of these SNPs were located in introns (49.0%), 4 in UTR or downstream regions (3.9%), 2 in exonic regions (2.0%), 34 in intergenic regions (33.3%) and 12 in non-coding RNAs (11.8%).

Figure 3.1. Conditional QQ plot and fold enrichment plot showing cross-trait enrichment between BD and risk-taking propensity

A: Conditional QQ plot. The progressive leftward deflection from the null line as levels of SNP associations with the secondary phenotype increase shows significant cross-trait enrichment between BD (primary phenotype) and risk-taking propensity (secondary phenotype). **B: Fold-enrichment plot.** The fold enrichment, calculated as the ratio between the $-\log_{10}(p)$ cumulative distribution for a given stratum and the cumulative distribution for all SNPs, shows a significant enrichment for variants associated with BD conditioning on risk-taking propensity.

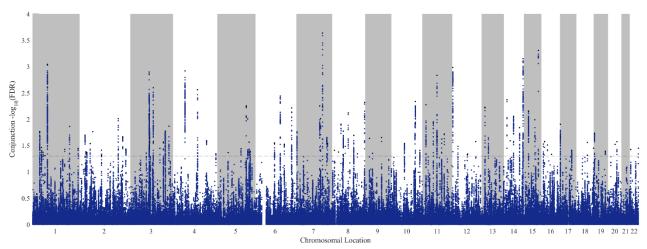


Figure 3.2 Manhattan plot showing genomics loci associated with BD and risk-taking propensity.

The figure shows 102 independent genomic loci associated with both BD and risk-taking propensity at a conjunctional false discovery rate < 0.05

Table 3.1. Independent genomic loci significantly associated with BD and risk-taking propensity at a conjunctional false discovery rate < 0.05

SNP	Nearest gene (Kb)	Functional category	A1/ A2	beta BD	p BD	beta risk	p risk	conjFDR	Specificity
rs1746662	FNDC5	intronic	T/C	0.05	1.5E-04		2.9E-05	0.017	BD
rs12138864	PHC2	intronic	T/C	0.03	2.2E-04	0.01	1.7E-06	0.021	BD
rs12096927	<i>RIMKLA</i> (4.6)	intergenic	T/C	0.04	5.3E-04	0.01	5.8E-06	0.035	BD
rs2367724	KDM4A (8.4)	intergenic	T/C	-0.04	2.6E-04	-0.01	4.7E-04	0.040	BD, SZ, ADHD
rs1417364	NRD1:RP4- 657D16.3	ncRNA	A/G	0.06	3.7E-04	0.01	5.2E-04	0.043	BD
rs182823	NFIA	intronic	T/C	-0.03	9.8E-04	0.01	3.6E-04	0.049	BD
rs11210099	<i>RP4-660H19.1</i> (64.7)	intergenic	T/C	0.05	1.1E-06	0.01	2.0E-07	0.001	BD, SZ, ADHD

rs34194740	RGS8 (4.4)	intergenic	T/C	0.04	2.6E-04	0.01	4.3E-04	0.037	BD
rs823130	NUCKS1	intronic	T/C	0.04	9.2E-05	0.01	8.7E-05	0.014	BD, SZ
rs4146671	SDCCAG8	intronic	A/G	0.03	5.6E-04	0.01	1.1E-09	0.036	BD, SZ
rs11124327	AC068490.2	ncRNA	T/C	0.03	2.0E-04	0.01	7.6E-06	0.020	BD, SZ, ADHD
rs35605321	CENPA (14.7)	intergenic	T/G	-0.03	7.3E-04	-0.01	2.6E-04	0.041	BD, SZ
rs2194464	GALNT14	intronic	T/C	-0.03	7.7E-04	-0.01	2.8E-04	0.043	BD
rs55951536	CAMKMT	intronic	T/C	0.04	3.8E-04	0.01	6.2E-05	0.029	BD
rs7591022	EML6	intronic	T/C	0.04	1.5E-04	0.01	8.2E-05	0.017	BD
rs1433309	AC092568.1	intergenic	A/G	-0.03	5.7E-04	-0.01	3.7E-04	0.039	BD
	(51.4)	-							
rs73041394	ZNF804A	intronic	A/G	-0.04		-0.01	4.3E-05		BD, SZ
rs55811672	MAP2 (19.0)	intergenic	A/G	-0.04	1.7E-04	-0.01	1.8E-04		BD
rs2047134	CUL3	intronic	A/C	0.04	6.8E-05	0.01	4.1E-04		BD, SZ
rs1288974	FOXP1	intronic	A/G	-0.04	6.9E-04	0.01	4.1E-04		BD
rs9831123	CADM2	intronic	T/C	0.04	1.8E-06	0.01	8.0E-07		BD, SZ, ADHD
rs9681407	MIR4795 (65.3)	intergenic	T/C	-0.04	3.4E-04	-0.01	8.5E-05		BD 67
rs836927	<i>RP11-115H18.1</i> (18.7)	intergenic	A/C	-0.04	9.9E-05	0.01	2.6E-04	0.027	BD, SZ
rs326359	CD47 (10.8)	intergenic	A/G	0.05	4.0E-07	0.01	6.1E-06	0.003	BD
rs12054405	RP11-442N1.1	intergenic	A/G	0.05	5.6E-04	-0.01	2.5E-04		BD
	(38.2)								
rs359544	PLCH1	intronic	T/C	0.05	9.5E-05	0.01	2.6E-04		BD
rs4350923	RP11-208P4.1	intergenic	T/C	-0.04	1.5E-04	-0.01	9.0E-05	0.017	BD
rs4434184	(1.5) SOX2-OT	ncRNA	A/G	-0.05	1.0E-04	-0.02	1.4E-10	0.014	BD
rs535066	RP11-320H14.1	intergenic	T/G	0.05	1.7E-06		8.1E-07		BD, SZ
10000000	(5.3)	mergeme	1,0	0.00	11/2 00	0.01	0.112 07	0.001	22,52
rs2647256	TET2 (0.6)	downstrea	T/C	0.05	6.1E-06	0.02	3.3E-10	0.003	BD
rs11737121	SLC10A7	m intronic	A/G	-0.06	1.8E-05	-0.01	2.3E-04	0.026	BD
rs7696225	SORBS2	intronic	A/G A/C	-0.08	1.8E-05 8.5E-04	-0.01	2.3E-04 7.9E-05		BD
rs201587781		intergenic	A/C A/G	-0.04 0.09	8.3E-04 7.8E-04		7.9E-05 7.2E-05		BD, SZ
rs13163662	EMB (213.4) KCNN2	intronic	A/G A/G	0.09	4.5E-04		4.1E-04		BD, SZ BD
rs13169274	ETF1	intronic	A/G T/C	-0.04		-0.01	4.1E-04 9.7E-06		BD BD, SZ
			T/C	-0.04 0.09	2.0E-05 9.5E-06				BD, SZ BD
rs76157183	TCERG1	intronic ncRNA			9.3E-06 3.4E-04		5.1E-05		
rs10053762	AC091969.1		A/C	-0.03			2.2E-04		BD, SZ
rs2195450 rs10068495	GRIA1	intronic	A/G	0.04	7.9E-04		5.7E-06 1.8E-04		BD BD
	EBF1	intronic	A/G	-0.04	7.0E-04		2.7E-04		
rs852944	RP1-288M22.2	ncRNA	T/C	0.03	3.6E-04		2.7E-04 1.1E-05		BD
rs1487445	RP11-436D23.1	ncRNA	T/C	0.07	1.5E-15				BD BD
rs7739294	GOPC BCS17	intronic	T/C	0.04	3.3E-04 6.2E-06		3.0E-04		
rs6557271	RGS17	intronic	T/C	0.05			2.4E-05		BD ADUD
rs11768212	MAD1L1	intronic	A/C	-0.04	1.6E-04		7.2E-05		BD, ADHD
rs117450257	SLC12A9:RP11- 126L15.4	ncRNA	A/G	-0.11	2.6E-06	-0.02	2.1E-05	0.006	BD, SZ
rs2470943	RP11-325F22.2	ncRNA	A/G	0.04	5.6E-05	0.01	4.4E-05	0.010	BD, SZ
rs10251192	RP11-222023.1	intergenic	T/C	-0.05	1.2E-07		1.9E-07		BD, SZ
	(117.0)	-							
rs7785663	DGKI	UTR3	A/G	-0.04	2.4E-04	-0.01	3.0E-05		BD, SZ
rs80274100	RAB19	intronic	A/G	0.04	1.5E-04		2.8E-04		BD
rs2924726	CSMD1	intronic	A/G	0.04	1.6E-04		4.5E-04		BD
rs10106054	RP11-468H14.2	ncRNA	A/G	-0.04	4.1E-04		5.1E-04		BD
rs78035175	RP11-98P2.1	intergenic	A/G	0.10	6.5E-05	-0.02	7.4E-05	0.012	BD

	(19.0)								
rs16883443	AC098612.1	intergenic	T/G	0.03	2.5E-04	0.01	6.3E-04	0.048	BD
	(56.4)	8							
rs11777067	FGFR1	intronic	T/C	-0.04	1.2E-04		1.2E-04		BD, SZ
rs10957894	SNTG1	intronic	A/G	-0.03	4.8E-04	-0.01	1.8E-04		BD
rs7813444	<i>RP11-21C4.4</i>	intergenic	A/G	0.04	3.5E-05	0.01	8.5E-06	0.008	BD, SZ
rs4623479	(29.3) RUNX1T1	intronic	T/C	0.04	1.6E-04	0.01	1.6E-04	0.020	BD, ADHD
rs7011741	RP11-25D10.2	intergenic	A/G	0.03	8.5E-04		6.7E-05		BD
	(18.3)	8							
rs34853464	TSNARE1	intronic	T/C	0.04	1.6E-05	0.01	3.2E-07		BD, SZ
rs6474852	FREM1	intronic	A/G	-0.04	2.6E-04	-0.01	1.2E-04		BD
rs10967586	RN7SL100P	ncRNA	A/G	-0.06	9.4E-05	-0.01	5.6E-04		BD, SZ
rs10821122	RNU6-829P (19.8)	-	T/C	-0.04	1.7E-04	-0.01	1.9E-04		BD, SZ
rs9888039	PCDH15	intronic	T/C	-0.04	2.0E-04		2.8E-04		BD
rs7085104	C10orf32-ASMT	intronic	A/G	0.04	8.0E-05	-0.01	5.2E-05		BD, SZ
rs12761679	SORCS3	intronic	A/C	0.05	1.5E-05	0.01	4.1E-06		BD, SZ, ADHD
rs12359871	RPS27P18 (50.8)	intergenic	T/C	-0.06			4.5E-04		BD
rs10082688	ARNTL (31.3)	intergenic	T/C	0.04	1.9E-05	0.01	1.6E-05		BD
rs11038655	<i>CTD-2210P24.4</i> (13.2)	intergenic	T/C	-0.07	7.2E-05	0.02	3.0E-05	0.011	BD
rs11227478	(13.2) RP11-867G23.10	intergenic	A/G	-0.06	2.3E-06	-0.01	1.3E-06	0.001	BD
	(3.2)								
rs4988321	LRP5	exonic	A/G	0.08	2.2E-04		1.7E-04		BD
rs10831015	GRM5	intronic	A/C	0.04	2.7E-04		7.2E-05		BD
rs7932899	CNTN5	intronic	A/G	0.05	4.5E-05	0.01	1.5E-04		BD
rs61909095	CACNA1C	intronic	T/C	-0.08	9.4E-15	-0.01	1.6E-06		BD, SZ
rs10842271	SOX5 (129.9)	intergenic	T/C	-0.03	4.1E-04		3.4E-04		BD
rs7959452	LYZ (6.6)	intergenic	A/G	0.03	2.2E-04		6.2E-04		BD
rs11178282	PTPRB	intronic	T/C	0.05	7.7E-04		4.0E-04		BD
rs3764002	WSCD2	exonic	T/C	-0.04	3.3E-04	-0.01	9.7E-05		BD, ADHD
rs3885907	ALOX5AP	intronic	A/C	-0.04	2.3E-05		6.7E-06		BD
rs7139704	GNG5P5 (155.0)	intergenic	A/G	0.04	2.5E-04		1.5E-04		BD
rs34012672	NPAS3 (9.8)	intergenic	T/C	-0.06	1.3E-05		1.3E-05		BD, SZ, ADHD
rs3007061	MDGA2 (70.2)	intergenic	T/C	-0.04	2.5E-04		2.3E-04		BD, ADHD
rs8005321	SYT16	intronic	T/G	-0.04	2.1E-05		4.2E-05		BD
rs72703614	FOXN3	intronic	A/G	-0.04	1.1E-04		3.0E-05		BD 67
rs12892189	LINC00637	ncRNA	A/C	0.05	8.2E-07		2.4E-07		BD, SZ
rs4924676	ZNF106	intronic	T/C	0.07	2.0E-05	0.02	2.9E-05		BD, SZ
rs4327001	CD276 (3.4)	intergenic	A/G	0.04	4.5E-05		5.4E-05		BD SZ
rs12442456	IREB2	intronic	T/G	-0.05	2.7E-04		2.5E-05		BD, SZ
rs2071382	FES	intronic	T/C	-0.05	4.2E-08		5.6E-07		BD, SZ
rs6500948	RBFOX1	intronic	A/G	-0.04	4.0E-04		1.3E-04		BD, SZ
rs2352759	GRIN2A	intronic	T/C	0.03	3.3E-04		4.8E-05		BD
rs62029337	<i>PRKCB</i> (27.2)	intergenic	T/C	0.06	5.4E-05		3.1E-04		BD
rs55910718	GINS3 (60.0)	intergenic	T/C	0.04	8.9E-04		1.6E-04		BD BD SZ
rs7219635	YWHAE	intronic	T/C	-0.04	6.4E-06		7.4E-05		BD, SZ
rs112562460	TANC2:AC037445 .1	IICKINA	T/C	0.04	6.5E-04	0.01	1.8E-04	0.039	BD
rs9636107	TCF4	intronic	A/G	-0.03	3.5E-04	-0.01	1.1E-07	0.028	BD, SZ
rs12928	PQLC1	UTR3	A/G	-0.03	5.5E-04	-0.01	3.0E-04	0.036	BD, SZ
rs1736182	THOP1	intronic	T/G	-0.04	2.8E-05	0.01	1.4E-04	0.018	BD

rs2304204	IRF3:BCL2L12	UTR5	T/C	0.04	7.0E-04	0.01	1.4E-04	0.041	BD, SZ
rs1291112	RN7SL156P (1.4)	intergenic	T/C	-0.06	1.0E-04	-0.01	3.0E-04	0.030	BD
rs12624433	SLC12A5	intronic	A/G	0.05	3.6E-06	0.01	2.5E-04	0.027	BD
rs404060	<i>XXbac-B444P24.8</i> (21.9)	intergenic	T/C	0.03	6.1E-04	-0.01	3.0E-04	0.038	BD
rs13055562	SHANK3	intronic	A/G	0.04	8.4E-05	0.01	3.9E-04	0.036	BD

The table reports 102 linkage disequilibrium independent genomic loci associated with bipolar disorder and risk-taking propensity at a conjFDR < 0.05. Position denotes the chromosome and location of the lead SNP based on the hg19 assembly. Nearest gene and functional category have been annotated using FUMA (for SNPs located in intergenic regions, distance in Kb from the nearest gene is reported). Beta BD and beta risk show the direction of effect of the A1 allele in the original BD and risk-taking propensity GWAS datasets. The last column shows whether the genetic locus has been found to be specific for BD or whether it was also detected in the analyses conducted between risk-taking and either SZ or ADHD.

In order to assess specificity of loci shared between BD and risk-taking, conjFDR analyses were also conducted between risk-taking and SZ or ADHD. Among the 102 loci, 62 (61%) were specifically shared between risk-taking propensity and BD, while the others were also shared between risk-taking and SZ (n = 30), ADHD (n = 4) or both (n = 6) (Table 3.1). Among the 62 loci specifically shared between BD and risk-taking, 20 SNPs were found to significantly affect gene expression in at least one brain region, whole blood or both (Appendix). Sixteen variants were located in (FNDC5, NRD1:RP4-657D16.3, FOXP1, PLCH1, SOX2-OT, KCNN2, EBF1, FREM1, GRM5, PTPRB, GRIN2A, THOP1 and SLC12A5) or near (CD47, PRKCB and CD276) genes part of the druggable genome or clinically actionable, and 17 in or near genes showing drug-gene interactions in DGIdb (Appendix). We identified 128 independent genomic loci associated with BD after conditioning on risk-taking propensity at a condFDR < 0.01 (Appendix). Among these, 45 loci (35%) were specific for BD, while 83 loci were also associated with SZ (n = 76), or SZ and ADHD (n = 7) after conditioning on risk-taking propensity. Among loci specific for BD, 15 are novel and are reported in Table 3.2. Eight SNPs were found to act as eQTLs in brain regions, whole blood or both. Three variants were located in genes part of the druggable genome (HTR6, CAPN10:GPR35 and ATP2B2), and 4 in or near genes showing drug-gene interactions in DGIdb (Appendix).

Similarly, we identified significant enrichment in variants associated with risk-taking propensity when conditioning on BD. We reported 79 independent genomic loci associated with risk-taking propensity at a condFDR < 0.01. Among these, 26 loci (33%) were specific for risk-taking after

conditioning on BD, while 53 were also associated with risk-taking propensity after conditioning on SZ (n = 18), ADHD (n = 4) or both SZ and ADHD (n = 31). Of the 26 specific loci, 22 are novel and are reported in Table 3.3. Eight SNPs were found to act as eQTLs in brain regions or both brain tissues and whole blood. Three variants are located in genes part of the druggable genome (*GRIA1*, *SLC12A9* and *GRM5*) and 6 in genes showing drug-gene interactions in DGIdb (Appendix).

SNP	Nearest gene (Kb)	Functional	A1/A2	beta BD	p BD	condFDR	0	CADD	eQTL	Gene	Region
rs10917509	HTR6	category UTR5	T/C	0.05	7.3E-08	BD risk 5.2E-03	Rank 2b	Score 7.91	Yes	HTR6	Nucleus accumbens, whole blood
1810917309	ПТКО	UIKS	I/C	0.05	7.3E-08	3.2E-05	20	7.91	res	NBL1	Nucleus accumbens, whole blood Nucleus accumbens
rs483252	VAV3-AS1	ncRNA	A/C	-0.06	9.9E-07	7.3E-03	3a	5.74	No	-	-
rs67050019	RNU6-239P (0.03)	upstream	A/G	0.08	3.7E-07	4.5E-03	5	6.76	No	_	_
rs4915346	RP11-382E9.1	ncRNA	A/G	-0.05	1.3E-05	6.6E-03	5	11.13	No	_	
rs4972439	SCRN3	intronic	T/C	0.06	4.3E-05	8.0E-03	4	1.50	Yes	SCRN3	Whole blood
rs6433891	AC068196.1:AC10 4820.2	ncRNA	A/G	0.05	1.6E-07	3.1E-03	4	13.00	Yes	UBE2E3	Cerebellum, whole blood
rs4676412	CAPN10:GPR35	intronic	A/G	0.06	7.6E-08	7.8E-03	4	0.11	Yes	ANKMY1	Cortex
rs7644022	ATP2B2	intronic	A/C	0.05	2.5E-07	6.2E-03	5	3.51	No	-	-
rs78104110	ZBTB20	intronic	T/C	-0.13	2.1E-07	1.4E-03	5	5.22	No	-	-
rs2651566	EMCN (68.1)	intergenic	A/G	-0.04	4.3E-06	9.0E-03	7	2.23	No	-	-
rs11770210	SCRN1	intronic	A/G	0.07	6.4E-08	8.6E-03	5	1.14	Yes	PLEKHA8 AC007285.6 WIPF3 SCRN1	Cerebellum, whole blood Cerebellum Cortex Whole blood
rs10869262	<i>RP11-404E6.1</i> (11.0)	intergenic	A/G	0.05	7.8E-08	9.0E-03	7	1.19	Yes	ANXA1 ALDH1A1	Whole blood Whole blood
rs75888683	SYT1	intronic	T/G	0.12	1.1E-07	6.3E-03	6	3.32	Yes	SYT1	Spinal cord
rs8043792	CDH8 (20.6)	intergenic	T/C	-0.04	2.0E-06	3.3E-03	6	4.88	No	-	-
rs4788865	ARMC7	intronic	T/G	-0.05	2.3E-07	6.8E-03	4	3.35	Yes	NUP85	Amygdala, anterior cingulate, caudate, cerebellum, cortex, hippocampus, hypothalamus, whole blood
										NTC5	Nucleus accumbens, putamen, spinal cord hypothalamus
										ITGB4	Putamen
										MRPS7	Whole blood
										SUMO2	Whole blood
										GGA3	Whole blood

Table 3.2 Novel genomic loci associated with bipolar disorder at a condFDR < 0.01 conditioning on association with risk-taking propensity

Novel independent genomic loci associated with bipolar disorder conditioning on risk-taking propensity at a condFDR < 0.01, after exclusion of loci associated with either SZ or ADHD. Nearest gene and functional category have been annotated using FUMA (for SNPs located in intergenic regions, distance in Kb from the nearest gene is reported). Beta and p columns show the direction of effect of the A1 allele and p values from the original GWAS dataset. The RegBD rank was calculated using RegulomeDB based on known and predicted regulatory elements. The CADD score was computed in FUMA. In case the SNP is reported to be a significant eQTL in GTEx v.8 in brain regions or whole blood, the last two columns report regulated genes and relative region

SNP	Nearest gene	Functional category	A1/A2	beta risk	p risk	condFDR risk BD	RegDB Rank	CADD Score	eQTL	Gene	Region
rs1868402	RP11-	intronic	A/G	-0.01	8.3E-07	3.6E-03	1f	0.15	Yes	PNO1	Anterior cingulate, caudate, cerebellum
	474G23.1:PPP3R1									PLEK	Cerebellum
rs545200731	AC062032.1	ncRNA	T/C	0.04	5.3E-06	5.8E-03	6	1.08	No	-	-
rs34288552	ERICH2 (6.0)	intergenic	A/G	0.01	2.0E-07	5.8E-03	5	7.33	Yes	AC007405.6	Amygdala, anterior cingulate, cerebellum, cortex, frontal cortex, hypothalamus, susbtantia nigra Anterior cingulate, caudate
										ERICH2	
rs1014959	ZNF804A	intronic	A/G	-0.01	4.0E-05	8.3E-03	7	0.50	No	-	-
rs326353	RP11-861A13.4	ncRNA	T/C	-0.01	6.0E-06	2.7E-03	3a	3.28	Yes	IFT57	Whole blood
										HHLA2	Whole blood
	DD11200D41(200)		TIC	0.01	5 9E 0C	4 05 02	5	0.22	N.	CD47	Whole blood
rs7628391	RP11-208P4.1 (38.9)	intergenic	T/C	0.01	5.8E-06	4.0E-03	5	0.33	No	-	- Coulete couleilleur
rs4696294	<i>RP11-424M21.1</i> (7.6)	intergenic	A/C	-0.01	2.9E-06	9.6E-03	6	0.02	Yes	SH3D19 RP11-164P12.5 FAM160A1 GATB RP11-164P12.3 FAM160A1	Caudate, cerebellum Cerebellum, whole blood Cerebellum, whole blood Cerebellum, cortex, frontal cortex, whole blood Cerebellum Cerebellum
rs76157183	TCERG1	intronic	T/C	0.02	5.1E-05	9.6E-03	5	0.08	No	-	-
rs2195450	GRIA1	intronic	A/G	0.01	5.7E-06	3.8E-03	4	16.32	No	-	-
rs852960	RP1-288M22.2 (37.1)	intergenic	A/G	0.01	1.6E-05	5.7E-03	5	5.28	No	OGFRL1	Cerebellum
rs7758002	RGS17	intronic	T/G	-0.01	7.1E-07	1.3E-03	7	1.06	Yes	MTRF1L RGS17	Anterior cingulate, cerebellum, whole blood Cerebellum
rs117450257	SLC12A9:RP11- 126L15.4	ncRNA	A/G	-0.02	2.1E-05	5.6E-03	5	0.14	No	-	-
s80206917	MKRN1	intronic	T/C	0.01	2.3E-05	6.5E-03	2b	5.92	No	-	-
rs17055053	RP11-98P2.1 (24.3)	intergenic	T/C	-0.02	5.1E-05	9.5E-03	4	14.95	No	-	-
rs7871821	RP11-343J18.1 (39.6)	intergenic	T/C	0.01	5.5E-06	6.9E-03	5	1.18	Yes	PBX3	Cortex
rs7111300	<i>CTD-2210P24.4</i> (12.7)	intergenic	T/G	0.02	3.0E-05	7.0E-03	5	1.34	Yes	CTD-2210P24.4	Caudate, putamen
rs11827676	GRM5	intronic	A/C	0.01	3.7E-05	8.0E-03	6	3.66	No	-	-
rs3885907	ALOX5AP	intronic	A/C	-0.01	6.7E-06	2.9E-03	4	2.17	Yes	ALOX5AP	Whole blood
rs8005321	SYT16	intronic	T/G	-0.01	4.2E-05	8.6E-03	4	0.33	No	-	-
rs12927162	CASC16	ncRNA	A/G	-0.01	1.9E-06	4.9E-03	5	21.80	No	-	-
rs72841389	TANC2	intronic	A/G	0.01	5.4E-06	4.7E-03	7	4.83	Yes	CYB561	Anterior cingulate, caudate, cortex, frontal cortex, hippocampus, nucleus accumbens, putamen
										TANC2	Cerebellum
rs6017733	NCOA5	intronic	A/G	-0.01	2.2E-06	5.7E-03	6	6.25	Yes	CD40	Cerebellum

Table 3.3. Novel genomic loci associated with risk-taking propensity at a condFDR< 0.01 conditioning on association with bipolar disorder

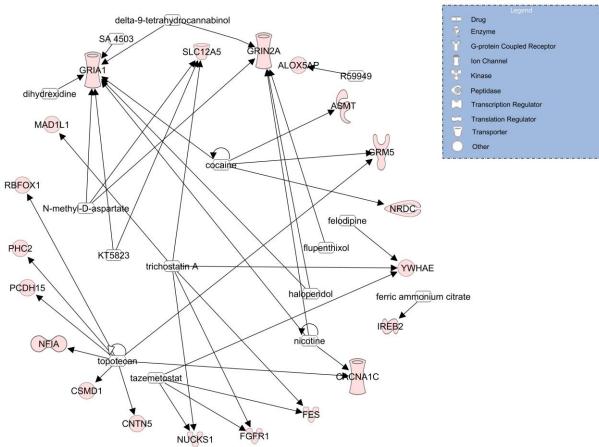
The table reports 22 novel genetic loci associated with risk-taking propensity conditioning on bipolar disorder at a condFDR < 0.01, after excluding loci associated with risk-taking propensity conditioning on SZ or ADHD.

Functional enrichment of genes associated with BD and risk-taking propensity

We evaluated the functional enrichment for KEGG pathways and GO terms for genes in which variants jointly associated with BD and risk-taking propensity were located. Genes in which variants associated with risk-taking propensity and specifically BD were located were enriched for two KEGG pathways ("Glutamatergic synapse" and "Long-term potentiation"), the biological process "Glutamate receptor signaling pathway" GO term and four cellular component GO terms ("Postsynaptic specialization", "Neuron to neuron synapse", "Synaptic membrane", "Neuron spine") (Table 3.4). Genes in which variants specifically shared between BD and risk-taking were located showed a significant enrichment for drug targets with different clinical indications, including disorders related to the central nervous system (i.e. "mood disorders", "inflammatory disorders of the central nervous system" and "other degenerative disorders of the nervous system", Table 3.5). Using IPA, we identified 161 significant upstream regulators of genes in which variants associated with BD and risk-taking were located (including cross-disorder genes). Figure 3.3 shows a network of these genes including upstream regulators classified as "drugs". Upstream regulators of genes associated with BD and risk-taking included the antipsychotics haloperidol and flupentixol, as well as psychoactive substances such as cocaine, delta-9-tetrahydrocannabinol and nicotine. Several upstream regulators were found to be significantly associated with more than one gene in the network.

Table 3.4. Enrichment for KEGG pathways and GO terms for genes in which variants jointly associated with BD and risk-taking propensity were located

Pathway/GO term	р	FDR	ER	Genes
KEGG pathways	1			
Glutamatergic synapse	3.8E-05	0.012	12.6	CACNA1C, GRIA1, GRIN2A, GRM5, SHANK3
Long-term potentiation	7.6E-05	0.012		CACNA1C, GRIA1, GRIN2A, GRM5
Biological process GO terms				
Cognition	4.9E-05	0.033	7.2	DGKI, GRIA1, GRIN2A, GRM5, SHANK3, SLC12A5, SORCS3
Regulation of membrane potential	7.7E-05	0.033	5.6	CACNA1C, DGKI, GRIA1, GRIN2A, GRM5, KCNN2, SHANK3, YWHAE
Cellular component GO terms				
Neuron spine	2.9E-04	0.013	8.4	DGKI, GRIA1, KCNN2, SHANK3, ZNF804A
Postsynaptic specialization	2.1E-06	1.9E-04	7.4	CACNA1C, DGKI, GOPC, GRIA1, GRIN2A, GRM5, SHANK3, SORCS3, TANC2
Neuron to neuron synapse	2.2E-06	1.9E-04	7.4	CACNA1C, DGKI, GOPC, GRIA1, GRIN2A, GRM5, SHANK3, SORCS3, TANC2
Synaptic membrane	1.5E-05	8.3E-04	5.9	CACNA1C, CNTN5, DGKI, GOPC, GRIA1, GRIN2A, GRM5, SHANK3, SORCS3
Glutamatergic synapse	0.0014	0.047	4.8	DGKI, GRIA1, GRIN2A, SORCS3, TANC2, YWHAE
Molecular function GO terms				
Glutamate receptor activity	1.4E-04	0.040	29.1	GRIA1, GRIN2A, GRM5
Variants specifically associated w	ith risk-ta	king prop	ensity	and BD
KEGG pathways				
Glutamatergic synapse	6.2E-05	0.020	17.5	GRIA1, GRIN2A, GRM5, SHANK3
Long-term potentiation	2.9E-04	0.047	22.3	GRIA1, GRIN2A, GRM5
Biological process GO terms				
Glutamate receptor signaling pathway	2.0E-05	0.017	24.4	GRIA1, GRIN2A, GRM5, SHANK3
Cellular component GO terms				
Postsynaptic specialization	2.6E-05	0.002	9.4	GOPC, GRIA1, GRIN2A, GRM5, SHANK3, TANC2
Neuron to neuron synapse	2.7E-05	0.002	9.3	GOPC, GRIA1, GRIN2A, GRM5, SHANK3, TANC2
Synaptic membrane	9.8E-05	0.006	7.4	CNTN5, GOPC, GRIA1, GRIN2A, GRM5, SHANK3
Receptor complex	6.7E-04	0.029	6.7	GRIA1, GRIN2A, LRP5, PTPRB, SHANK3
Molecular function GO terms				
Glutamate receptor activity	3.0E-05	0.008	48.9	GRIA1, GRIN2A, GRM5


Variants associated with risk-taking and BD (without excluding cross-disorder variants associated with

Abbreviations: ER, enrichment ratio; FDR, false discovery rate

Table 3.5. Enrichment for drug targets among genes in which variants jointly associated with BD and risk-taking propensity were located

Clinical indication	Odds ratio	р	Targets and drugs
Drugs classified based on ATC codes	Tutio		
Nervous system	7.22	0.007	<i>CACNA1C</i> : cinnarizine; <i>GRIA1</i> : enflurane, isoflurane, desflurane, sevoflurane, methoxyflurane, perampanel; <i>GRIN2A</i> : felbamate, memantine, acamprosate; <i>GRM5</i> : acamprosate
Drugs classified based on ICD-10 codes			-
F30-F39 Mood [affective] disorders	8.10	0.005	<i>CACNA1C</i> : verapamil; <i>GRIA1</i> : farampator; <i>GRIN2A</i> : acamprosate; <i>GRM5</i> : adx-48621 acamprosate, adx10059, azd2066, grn-529, gsk-2210875, mglur5 antagonists (anxiety) novartis
G00-G09 Inflammatory diseases of the central nervous system	10.21	0.023	GRM5: adx-63365; KCNN2: dequalinium
G30-G32 Other degenerative diseases of the nervous system	6.50	0.009	<i>FGFR1</i> : mk-2461; <i>GRIA1</i> : gyki-52466; <i>GRIN2A</i> : memantine; <i>GRM5</i> : adx-63365, mk-3328
G40-G47 Episodic and paroxysmal disorders	5.11	0.036	GRIN2A: felbamate; GRM5: adx-63365, ly467711, ly525327; SLC12A5: clp-635
I20-I25 Ischaemic heart diseases	12.48	0.0002	ALOX5AP: am103; CACNA1C: amlodipine, nicardipine, nifedipine, r-56865, th-9229, verapamil; <i>FGFR1</i> : fgf-1; GRIA1: nbqx; <i>GRIN2A</i> : 1-698532, nbqx; <i>GRM5</i> : rti-4229-982
I60-I69 Cerebrovascular diseases	5.03	0.037	ALOX5AP: am103; CACNA1C: th-9229, nimodipine; GRIN2A: dizocilpine, 1-701324
I70-I79 Diseases of arteries, arterioles and capillaries	6.59	0.009	ALOX5AP: am103; CACNA1C: th-9229, nicardipine, nimodipine, verapamil, amlodipine; FGFR1: sar-106881; PTPRB: akb-9778
K55-K64 Other diseases of intestines	6.68	0.049	CACNA1C: trimebutine; KCNN2: trimebutine
M30-M36 Systemic connective tissue disorders	7.12	0.016	GRIA1: farampator; GRIN2A: acamprosate; GRM5: acamprosate, grn-529
Q90-Q99 Chromosomal abnormalities, not elsewhere classified	33.53	0.037	<i>GRM5</i> : afq056, ctep, mcn3377, rg-7090
R50-R69 General symptoms and signs	3.90	0.043	<i>GRIA1</i> : nbqx, sevoflurane, soretolide, ym-90k; <i>GRIN2A</i> : 1-698532, nbqx, ym-90k; <i>GRM5</i> : azd2066, azd2516, ly467711, ly525327, rti-4229-982; <i>SLC12A5</i> : bumetanide
Variants specifically associated with risk-taking prope	nsity and I	BD	
Drugs classified based on ATC codes			
Nervous system	9.43	0.012	<i>GRIA1:</i> enflurane, isoflurane, desflurane, sevoflurane, methoxyflurane, perampanel; <i>GRIN2A:</i> felbamate, memantine, acamprosate; <i>GRM5:</i> acamprosate
Drugs classified based on ICD-10 codes			
F10-F19 Mental and behavioural disorders due to psychoactive substance use	7.45	0.047	GRIN2A: acamprosate; GRM5: acamprosate

10.57	0.009	<i>GRIA1</i> : farampator; <i>GRIN2A</i> : acamprosate; <i>GRM5</i> : adx-48621, acamprosate, adx10059, azd2066, grn-529, gsk-2210875, mglur5 antagonists (anxiety), novartis
18.41	0.009	<i>GRM5</i> : adx-63365; <i>KCNN2</i> : dequalinium
8.50	0.015	GRIA1: gyki-52466; GRIN2A: memantine; GRM5: adx-63365, mk-3328
10.24	0.009	GRIN2A: felbamate; GRM5: adx-63365, ly467711, ly525327; SLC12A5: clp-635
13.73	0.002	ALOX5AP: am103; GRIA1: nbqx; GRIN2A: 1-698532, nbqx; GRM5: rti-4229-982
14.26	0.004	GRIA1: farampator; GRIN2A: acamprosate; GRM5: acamprosate, grn-529
56.00	0.024	<i>GRM5</i> : afq056, ctep, mcn3377, rg-7090
9.12	0.007	<i>GRIA1</i> : nbqx, sevoflurane, soretolide, ym-90k; <i>GRIN2A</i> : 1-698532, nbqx, ym-90k; <i>GRM5</i> : azd2066, azd2516, ly467711, ly525327, rti-4229-982; <i>SLC12A5</i> : bumetanide
	18.41 8.50 10.24 13.73 14.26 56.00	18.410.0098.500.01510.240.00913.730.00214.260.00456.000.024

Figure 3.3. Network of drugs that were found to be significant upstream regulators of genes in which variants shared between BD and risk-taking propensity were located

Local genetic correlation analysis using SUPERGNOVA

Using a complementary approach, we applied SUPERGNOVA to estimate local genetic covariance between BD and risk-taking propensity in specific genomic regions. Seventeen genomic regions characterized by a significant genetic covariance between BD and risk-taking propensity at an FDR < 0.05 are reported in Table3.6. Fifteen of these regions (88%) were overlapping with genomic loci identified with pleioFDR. Ten regions were specifically shared between risk-taking propensity and BD, while seven also showed a significant genetic covariance between risk-taking propensity and SZ (n=4), ADHD (n=2) or both disorders (n=1).

Chr	Start	End	rho	var	р	FDR	Identified	Specificity
							by pleioFDR	
1	32042540	34016219	0.0002	1.9E-09	1.9E-06	8.6E-04	Yes	BD
1	71822765	74326378	0.0003	4.1E-09	1.2E-05	3.3E-03	Yes	BD, SZ,
								ADHD
1	242700803	244105053	0.0003	3.0E-09	1.6E-08	9.5E-06	Yes	BD, SZ
2	22428680	23855977	0.0003	4.5E-09	7.0E-05	1.4E-02	Yes	BD,
								ADHD
3	85093629	86734415	0.0005	6.4E-09	3.8E-09	2.9E-06	Yes	BD,
								ADHD
4	45188855	47543891	0.0002	2.2E-09	3.1E-04	4.2E-02	Yes	BD
5	144584265	145803004	0.0001	1.2E-09	4.7E-05	1.2E-02	Yes	BD
6	97093295	98893182	0.0002	2.9E-09	6.0E-05	1.4E-02	Yes	BD
11	87827514	89208590	0.0002	1.8E-09	6.6E-06	2.3E-03	Yes	BD
12	2176265	2886299	0.0005	4.8E-09	2.4E-12	5.5E-09	Yes	BD, SZ
12	68742112	69826093	0.0002	2.5E-09	2.0E-04	3.2E-02	Yes	BD
13	31384910	32983250	0.0002	3.2E-09	7.0E-05	1.4E-02	Yes	BD
13	78807836	80252742	0.0002	2.2E-09	2.4E-04	3.5E-02	No	BD
14	102341650	104759919	0.0004	5.0E-09	1.5E-09	1.8E-06	Yes	BD, SZ
15	42222390	43473907	0.0002	3.0E-09	1.5E-04	2.5E-02	Yes	BD
17	820511	1480393	0.0003	3.4E-09	6.8E-06	2.3E-03	Yes	BD, SZ
19	10030690	11279257	0.0002	2.3E-09	7.9E-05	1.4E-02	No	BD

Table 3.6. Local genetic covariance analysis between BD and risk-taking propensity using SUPERGNOVA

Regions with significant (FDR < 0.05) local genetic covariance among BD and risk-taking propensity estimated with SUPERGNOVA. rho: estimates of local genetic covariance; var: variance of local genetic covariance; p: p-value of local genetic covariance; FDR, false discovery rate.

eQTL-informed gene-based analysis of variants associated with BD and risk-taking propensity

The eQTL-informed gene-based analysis showed 103 significant genes associated with BD in at least one brain region, 74 in whole blood, and 32 in both brain and whole blood (Appendix). Twenty-eight genes were associated with risk-taking propensity in at least one brain region, 14 in whole blood, and 6 in brain and whole blood. *CACNA1C* was significantly associated with both BD and risk-taking propensity in the cerebellar hemisphere (BD, Z = 6.48, p = 3.8E-14, adj p = 7.4E-10; risk-taking, Z = 4.66, p = 1.6E-06, adj p = 0.033). Notably, a genomic locus located in *CACNA1C* was also significantly associated with both phenotypes in the conjFDR analysis (Table 2.1) and in the local genetic covariance analysis. This gene is part of the druggable genome and a known target of calcium channel blockers. Two other genes significantly associated with both BD

and risk-taking in the conjFDR analysis were also associated with BD in the gene-based analysis: *SLC12A5* in caudate and hippocampus (most significant: hippocampus, Z = 4.87, adj p = 0.11) and FES in whole blood (Z = 4.57, adj p = 0.048) (Appendix). In addition, three genes associated with BD and risk-taking in the conjFDR analysis were also significantly associated with risk-taking in the eQTL-informed gene-based analysis: *CADM2* (most significant: hypothalamus, Z = 6.26, adj p = 3.8E-06), *RGS17* in cerebellum (Z = 4.88, adj p = 0.01) and *SDCCAG8* (most significant: cortex, Z = 6.15, adj p = 7.7E-06) and whole blood (Z = 6.27, adj p = 3.6E-06) (Appendix).

3.2.4 Discussion

In this study we leveraged large GWAS summary statistics to identify novel genetic variants associated with BD and risk-taking propensity as well as genetic loci shared between these two phenotypes using the condFDR/conjFDR method. Importantly, the large majority of the identified shared loci (87%) showed the same direction of effect, supporting previous evidence suggesting positive genetic correlation between these two phenotypes [144]. Among these loci, 62 (61%) were specifically shared between risk-taking propensity and BD, while the others were also shared between risk-taking and SZ or ADHD, two other traits previously shown to be genetically correlated with risk-taking [144]. In additional analyses, we computed local genetic covariance between BD and risk-taking as well as identified tissue-specific genes associated with the two traits through an eQTL-informed gene-based analysis in brain regions and whole blood. The CACNA1C gene was the only one to be significantly associated with both BD and risk-taking propensity using all approaches. This gene is part of the druggable genome and is a target of calcium channel blockers, a group of medications widely used for different cardiovascular indications such as hypertension and angina pectoris [166]. We found the same locus to be shared between risk-taking propensity and SZ, but not ADHD. Besides being previously associated with BD [143], as well as with alcohol dependence in patients with BD [167], CACNA1C has been consistently implicated in different psychiatric disorders such as SZ [168] and obsessive-compulsive disorder [169]. The mechanisms underlying its putative role of a cross-disorders gene might include modulation of stress-coping behavior [170] and gene-environment interactions in response to adverse life events [171, 172]. The identification of shared genetic loci between BD and risk-taking may have relevant clinical implications. We suggest that patients with BD and increased risk-taking propensity may represent a specific sub-phenotype and benefit of more tailored treatment approaches. CACNA1C, the most robust locus identified in our study, encodes Cav1.2a, the alpha-1 subunit of a voltagedependent L-type calcium channel [173], which forms the pore through which ions pass into the cell. Therefore, patients with BD and increased risk-taking propensity might show better response to drugs acting on calcium signaling, such as calcium channel blockers. Intriguingly, increased intracellular calcium ion concentration, with or without stimulation by agonists such as thrombin or serotonin has been reported in peripheral cells from patients with BD [174] and shown to be normalized by in vitro treatment with lithium [175] or carbamazepine [176]. Recent studies also showed dysregulation in calcium signaling in hippocampal dentate gyrus-like neurons derived from induced pluripotent stem-cells of patients with BD compared with controls [177]. The hyperexcitability phenotype of these neurons was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment [177]. In addition, CACNA1C was part of a glutamatergic network suggested to mediate lithium response in a recent epigenome pathway analysis [178] and knockdown of this gene in fibroblasts from patients with BD was found to alter circadian rhythm amplitude and eliminate lithium's ability to amplify rhythms [179].

However, it must be noted that calcium channel blockers have been previously used in patients with BD without clear results. Verapamil has been the first calcium channel blocker suggested to be useful in the treatment of mania [180-182]. While a recent meta-analysis did not support clinical efficacy of verapamil in mania, the small number of studies and the lack of high-quality data from randomized trials do not allow to draw definitive conclusions [183]. In the last few years, the interest in therapies targeting calcium channels has grown considerably [183] and new studies are

46

currently being designed to clarify the potential for drug repurposing [184]. A recent population study including 142,691 participants from Sweden with a diagnosis of BD, SZ or nonaffective psychosis found exposure to L-type calcium channel blockers to be associated with reduced rates of psychiatric hospitalization and self-harm [185]. Importantly, genetic variants might modulate the effect of calcium-channel blockers. A recent double-blind pharmacoMRI study recruited healthy men genotyped for the CACNA1C rs1006737 variant who were randomized to a single 60 mg dose of the brain-permeable calcium channel blocker nimodipine or placebo [186]. Participants treated with nimodipine showed decreased frontal cortical and parietal cortical activity and improved working memory performance during the N-back task. The decrease in frontal cortical activity was more pronounced in carriers of the rs1006737 risk allele [186]. Calcium channel blockers have also started to be studied as potential adjunctive treatment options for cognitive impairment in patients with SZ. In a recent double-blind, randomized, placebo-controlled trial, patients with SZ randomized to 5 mg of the nonselective brain-permeable calcium channel blocker isradipine for 6 weeks showed improvement in verbal memory and attention dysfunction measured with the Stroop test compared with patients randomized to placebo [187]. As genetic variants may affect Cav1.2a expression and activity [188], an ongoing trial will evaluate whether CACNA1C polymorphisms and gene expression may affect response to calcium channel blockers in young adults with mood instability [184]. This trial might provide elements to support or confute the hypothesis that participants might show differential response to calcium channel blockers based on their level of risk-taking propensity, as participants will undergo cognitive testing aimed at assessing impulsivity, behavioral inhibition and reward learning [184].

While we found a relevant overlap between genomic loci shared between risk-taking propensity and the three psychiatric disorders we investigated, around half of the loci were specifically shared between risk-taking propensity and BD (Table 3.1). Similar to cross-disorder genes, these loci were enriched for KEGG pathways related to postsynaptic specialization and long-term potentiation, with GO terms related to postsynaptic specialization and synapses (Table 3.4) as well as for targets of drugs used for mood disorders, substance use disorders and other disorders of the central nervous system (Table 3.5).

Besides the identification of loci jointly associated with BD and risk-taking propensity, another aim of our study was to identify novel loci associated with these phenotypes. By leveraging pleiotropic enrichment between these two traits, we identified 128 loci associated with BD after conditioning on risk-taking propensity, including 15 loci which were novel and specific for BD, and 79 associated with risk-taking propensity conditioning on BD, including 22 novel loci identified when conditioning specifically on BD and not SZ or ADHD. One novel locus specifically associated with BD was rs10917509 in the UTR5 region of HTR6, which encodes a G protein-coupled serotonin receptor and is a druggable gene as well as a known target of different antipsychotics and antidepressants. Another locus with rs75888683 as the lead SNP is located in the SYT1 gene which encodes synaptotagmin-1, a synaptic vesicle membrane protein that serves as a calcium sensor and is implicated in vesicular trafficking and exocytosis [189]. In mouse cortical neurons, a breakpoint mutant version of the DISC1 protein (which is encoded by a known susceptibility gene for BD and SZ) was shown to disrupt vesicle transport via defective assembly between the kinesin-1 adaptor FEZ1 and the cargo protein Synaptotagmin-1 [190], with this effect found to be rescued by in vitro treatment with the mood stabilizer lithium 2 mM for 48 hours [190]. Three novel loci specifically associated with BD, four with risk-taking propensity and six with both phenotypes (Tables 3.1, 3.2 and 3.3) were located in non-coding RNAs. LncRNAs have been increasingly implicated in psychiatric disorders [191] and related phenotypes, such as lithium response [192], highlighting the need to improve our understanding of the role of these molecules in brain processes.

Among loci associated with risk-taking propensity, only 33% were identified when conditioning specifically on BD, while a relevant number of loci (39%) were associated with risk-taking when conditioning on all investigated psychiatric disorders and therefore show extensive pleiotropic profiles. Some of these loci might be worth of investigation as potential therapeutic targets as they were found to be located in genes part of the druggable genome (e.g *CGREF1*, which has been

recently associated with non-response to antidepressants [193], or TET2 which has been implicated in the potential antidepressants effect of metformin in a recent preclinical study [194]). Another interesting locus associated with risk-taking propensity when conditioning on all psychiatric phenotypes was found in the NPAS3 gene, which encodes a transcription factor regulating genes involved in key neuronal processes such as postnatal hippocampal neurogenesis [195]. NPAS3 was first identified as a candidate risk gene for psychiatric disorders through the study of a balanced chromosomal translocation, t(9,14)(q34.2;q13), associated with SZ and learning disability [196, 197]. Interactions between risk and protective haplotypes at this gene have been suggested to contribute to susceptibility to both SZ and BD [198] and variants located in this gene have been consistently associated with BD at a nominal p < 0.05 in different GWAS [199]. In addition, a group of SNPs in the first intron (top SNP = rs4982029, p = 3.96E-06) showed pleiotropic effects on BD, SZ and major depressive disorder [200]. Besides reduced adult hippocampal neurogenesis [201], mice deficient for NPAS3 also show abnormalities in glutamate, dopamine and serotonin signaling [202]. All these effects might underlie the association we observed between NPAS3 and risk-taking propensity, as this trait has been found to be positively associated with hippocampal glutamate [134, 136] and monoamine levels [135] and negatively associated with gray matter volume in the amygdala and hippocampus [133].

Results from this study have to be interpreted in light of a number of limitations. As in other studies conducted using GWAS, it cannot be excluded that the identified lead SNPs may be in LD with other causal SNPs. No assessment of risk-taking propensity in participants included in the BD GWAS was conducted. Identified SNPs only explained a small proportion of variance of the BD phenotype. Additionally, a cohort from UK Biobank is included in the PGC BD freeze 3 cohort. Therefore, we cannot exclude that overlapping participants may inflate the cross-trait enrichment statistics. Finally, as our investigation of the potential functional role of identified variants was largely based on *in-silico* methods, functional characterization based on independent experimental data, as well replication of the loci in independent cohorts, is needed to confirm and further assess

the putative role of these variants in the shared polygenic architecture between BD and risk-taking propensity. In conclusion, we observed pleiotropic enrichment between BD and risk-taking propensity and identified 102 loci shared between these two phenotypes, 87% of which showed the same direction of effect and 61% of which were specifically shared between the two traits. Our findings dissect for the first-time genetic factors shared between risk-taking propensity and BD and lay the basis for future investigation of treatment approaches targeting molecular mechanisms involved in both traits.

3.3 Genetic loci shared between psychiatric disorders and telomere length

3.3.1 Genetic determinants of LTL

As previously mentioned, patients with BD, SZ and MDD may show features suggestive of accelerated cellular aging such as shorter LTL. However, contrasting results have also been reported and there is scarce knowledge on the factors that might increase or rather counteract accelerated cellular aging in these patients. As in the case of mental disorders, LTL has a strong genetic component. The largest GWAS of LTL was conducted in 472,174 well-characterized participants in the UK Biobank [203]. This study identified 197 variants associated with LTL at 138 genomic loci (108 of which were new). In addition, genetically determined LTL was associated with multiple biological traits (e.g. bone marrow function) as well as a number of diseases spanning neoplastic, vascular and inflammatory disorders [203]. While both mental disorders and LTL are heritable traits, the specific genes involved independently, or shared among different traits, are only partially known. Few studies have tried to assess whether the observed relationship between mental disorders and LTL might be affected by genetic determinants. In a previous study, we used twosample mendelian randomization analysis to evaluate the bidirectional association between genetically determined LTL (using summary statistics from a GWAS including genetic data for 37,684 individuals [204]) and predisposition to BD (using data from PGC BD freeze 2, including 20,352 cases and 31,358 controls [142] and reported negative results [108]. Consistently, another study did not find any significant association between polygenic risk for BD, MDD or SZ and LTL in a sample including 351 participants characterized for depression using self-reported measures [205]. However, a recent study conducted in the larger UK Biobank cohort for which LTL measurements are now available, reported a PRS for depression to be associated with shorter telomeres ($\beta = -0.006$, adjusted p = 0.001) [206], suggesting the existence of a possible link between mental disorders and genetically predicted LTL. Thanks to the development of analytical methods based on pleiotropy, novel genetic variants associated with severe mental disorders have been identified by leveraging related traits. This approach has never been applied to TL. We aimed to investigate whether 1) there is a significant pleiotropy between psychiatric disorders and TL, and 2) shared genetic loci might predispose patients to accelerated cellular aging or rather play a counteractive role.

3.3.2 Methods

GWAS samples

We conducted a cross-trait analysis using the largest publicly available datasets for BD, SZ, MDD and LTL. GWAS summary statistics for BD, SZ and MDD were obtained from the Psychiatric Genomics Consortium (PGC) [20-22]. The BD sample included 41,917 cases from 57 cohorts collected in Europe, North America and Australia and 371,549 controls of European origin [149]. The SZ sample included 53,386 cases and 77,258 controls of European origin [21], while the MDD sample 170,756 cases and 329,443 controls. GWAS summary statistics for genetically determined LTL were obtained for 472,174 UK Biobank participants [203]. For all GWAS datasets, quality control procedures, including adjustment for population stratification, were performed by the original studies. Analyses were conducted on autosomal variants common to GWAS on psychiatric traits and LTL, after exclusion of ambiguous variants (A/T and C/G) or variants located in regions characterized by strong LD such as the MHC region (chr6:25119106-33854733), chromosome 8p23.1 (chr8:7200000–12500000) and the *MAPT* gene (chr17:40000000–47000000).

Global genetic correlation analysis

Global genetic correlation analysis was conducted using LDSC [207]. To this aim, summary statistics were converted into the LDSC format, while LD Scores were computed using 1000 Genomes European data [110, 207]. The cross-trait LDSC method represents an extension of single-trait LDSC to estimate heritability and genetic correlation from GWAS summary statistics. As explained in Section 3.1, this method allows studying the genetic correlation globally,

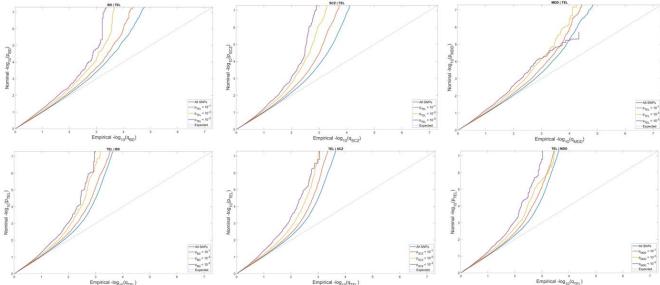
considering the average of the shared signals across the genome (including the contribution of SNPs that do not reach genome-wide significance [110]), considering possible sample overlap and population stratification.

Conditional and conjunctional false discovery rate analysis

To identify shared loci between genetically predicted LTL and mental disorders, we used the condFDR/conjFDR method implemented in pleioFDR [112, 113], as described in Section 3.2.2. The conjFDR method is an extension of condFDR aimed at discovering SNPs associated with two phenotypes simultaneously. The threshold for significant conjFDR associations was set at 0.05, as in previous studies [111, 153-155]. We checked for correlation of *Z* scores among intergenic SNPs using the function implemented in pleioFDR. While we detected low correlation coefficients between LTL and BD (0.003), SZ (0.007) or MDD (0.011), we still controlled results for sample overlap using the function implemented in pleioFDR consisting in decorrelation of vectors of *Z* scores based on the Mahalanobis Transformation [113].

Definition of genomic loci and functional annotation

Independent significant genetic loci were defined according to the FUMA protocol [156], as described in Section 3.2.2. The direction of allelic effects for significant variants was evaluated by comparing betas reported in the original GWAS. We searched whether SNPs acted eQTLs in brain regions based on genotyping and gene expression data (obtained from a range of 114 - 209 samples) from GTEx v.8 [159]. We reported cis eQTLs in a +/- 1Mb cis window around the TSS and significant based on FDR. For genes with significant eQTLs found to be associated with lower LTL and increased predisposition to mental disorders (i.e. genes for which expression levels are modified by the identified SNPs) we tested the functional enrichment for GO terms and Panther pathways using WebGestalt [160] with default options, adjusting results based on FDR. In addition, we investigated whether proteins encoded by the identified genes showed significant protein-protein


interaction (PPI) enrichment using STRING. A significant PPI indicates that the identified proteins have more interactions among themselves than would be expected for a random set of proteins of the same size and degree distribution drawn from the genome.

3.3.3. Results

Among mental disorders, only MDD showed a significant negative global genetic correlation with LTL ($r_g = -0.11$, p = 1.4E-08). Conversely, global genetic correlation between LTL and BD ($r_g = -0.03$, p = 0.17) or SZ ($r_g = 0.00$, p = 0.98) was not significant.

On the other hand, conditional QQ plots suggested cross-phenotype polygenic enrichment between all mental disorders and genetically determined LTL (Figure 3.4).

Figure 3.4. Conditional QQ plots suggesting cross-phenotype polygenic enrichment between mental disorders and LTL

A total of 16 genetic loci were shared between BD and LTL at a conjFDR < 0.05 (Table 3.7). Of 18 lead SNPs, 7 were associated with increased risk of BD and shorter LTL (while 11 with increased risk of BD and increased LTL).

Chr	Start locus	Stop locus	Lead SNP	Gene	EA	OA	beta LTL	beta BD	conjFDR
1	149999764	150514149	rs11588837	Intergenic	А	G	0.01	0.06	0.037
1	163582980	163766672	rs2345964	Intergenic	А	G	0.01	0.05	0.032
1	226613126	226702300	rs1299858	Intergenic	Т	С	-0.02	0.05	0.020
2	210043728	210322212	rs34842775	Intergenic	А	С	0.01	0.04	0.033
3	52277445	52838402	rs12629701	PBRM1	Т	С	0.01	0.06	0.035
6	11920763	12037477	rs11968174	Intergenic	Т	С	0.01	-0.07	0.033
7	129663496	129685597	rs11556924	ZC3HC1	С	Т	-0.01	0.04	0.042
10	64451233	64556238	rs10822056	Intergenic	С	Т	0.01	-0.05	0.011
10	106453550	106560225	rs7909129	SORCS3	А	G	0.01	-0.05	0.027
15	74099922	74161676	rs4886412	Intergenic	А	С	-0.01	-0.04	0.011
15	84703470	85344550	rs11638445	Intergenic	С	А	0.01	0.06	0.009
16	69141138	69432250	rs12919664	TERF2	Т	С	-0.02	-0.05	0.002
18	52297945	52504252	rs117201218	RAB27B	Т	G	-0.02	-0.13	0.038
18	52297945	52504252	rs56162185	RAB27B	С	Т	-0.01	-0.04	0.031
20	33224174	33360785	rs6059976	PIGU	G	А	-0.01	-0.04	0.045
20	35488246	35503978	rs75438122	Intergenic	Т	С	-0.02	0.11	0.013
20	35488246	35503978	rs1291117	Intergenic	А	G	-0.02	-0.06	0.047
20	62127121	62129566	rs310619	EEF1A2	G	А	0.01	-0.04	0.047

Table 3.7 Loci associated with risk of BD and LTL

Loci reported in bold are concordant with the hypothesis of higher predisposition to BD being associated with shorter LTL. Abbreviations: Chr, chromosome; EA, effect allele; OA, other allele

Six of the 18 lead SNPs were found to act as eQTLs for different genes in at least one brain region (Table 3.8). However, only the intergenic SNP rs10822056, suggested to act as an eQTL for the *ADO* gene in the caudate brain region, was associated with increased predisposition to BD and shorter LTL, while all the other SNPs acting as eQTLs were associated with the two traits with a concordant direction of effect (increased predisposition to BD and longer LTL).

lead SNP	RDB score	RDB rank	eQTL in brain regions (GTEx v. 8)
rs11588837	0.55	1f	VPS45 (frontal cortex)
rs2345964	0.63	5	-
rs1299858	0.59	5	-
rs34842775	0.18	7	-
rs12629701	0.18	7	<i>GNL3</i> (cerebellum, frontal cortex, hypothalamus, putamen); <i>RP5-966M1.7</i> (cerebellum, cortex, putamen); <i>PPM1M</i> (cerebellum); <i>NEK4</i> (cerebellum); <i>GLYCTK</i> (cerebellum); <i>ITIH4</i> (cortex, hypothalamus, putamen); <i>POC1A</i> (putamen)
rs11968174	0.53	5	-
rs11556924	0.22	1f	-

Table 3.8 Functional effect of lead SNPs associated with BD and LTL

01290.135-54120.135-384450.595GOLGA2P7 (amygdala, anterior cingulate cerebellum, cortex, frontal cortex, hippoca nucleus accumbens, putamen); CSPG4P1 cortex, cerebellum, cortex, frontal cortex,	ampus, hypothalamus,
38445 0.59 5 <i>GOLGA2P7</i> (amygdala, anterior cingulate cerebellum, cortex, frontal cortex, hippoca nucleus accumbens, putamen); <i>CSPG4P1</i> cortex, cerebellum, cortex, frontal cortex,	ampus, hypothalamus,
cerebellum, cortex, frontal cortex, hippoca nucleus accumbens, putamen); <i>CSPG4P1</i> cortex, cerebellum, cortex, frontal cortex,	ampus, hypothalamus,
 hypothalamus, putamen); <i>LINC00933</i> (ar caudate, cortex); <i>GOLGA6L5P</i> (anterior c caudate, cortex, frontal cortex, putamen, s (caudate); <i>DNM1P51</i> (cortex, frontal cortex (cortex), <i>EFTUD1P1</i> (hypothalamus) 19664 0.18 7 <i>VPS4A</i> (anterior cingulate cortex, caudate hypothalamus, nucleus accumbens, putam (cerebellum, cortex); <i>SNTB2</i> (cerebellum) accumbens); <i>UTP4</i> (nucleus accumbens) 	nterior cingulate cortex, cingulate cortex, substantia nigra); <i>NMB</i> ex); <i>RP11-182J1.14</i> e, cortex, frontal cortex, nen); <i>TERF2</i>
201218 0.43 6 -	
52185 0.18 7 -	
0976 0.39 5 <i>MAP1LC3A</i> (anterior cingulate cortex, cat cortex, hypothalamus, nucleus accumbens (cerebellum); <i>ACSS2</i> (cerebellum, cortex) <i>MMP24-AS1</i> (cortex)	s); <i>MYH7B</i>
38122 0.18 7 -	
1117 0.71 3a -	
519 0.61 4 -	

Abbrevations: RDB, RegulomeDB

A total of 52 loci were shared between SZ and LTL (Table 3.9). Of the 55 lead SNPs, 33 were

associated with increased risk of SZ and shorter LTL.

Table 3.9 Loc	i associated	with risk	of SZ and	LTL
---------------	--------------	-----------	-----------	-----

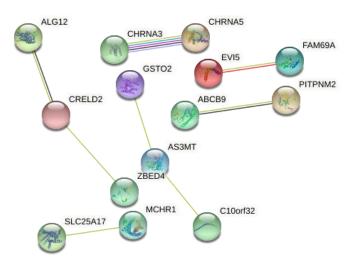
Chr	Start locus	Stop locus	Lead SNP	Gene	EA	OA	beta	beta SZ	conjFDR
							LTL		
1	92664966	93035020	rs10874656	GFI1	Т	С	0.01	-0.05	0.043
1	146919919	146984386	rs1874422	Intergenic	А	G	-0.01	-0.05	0.035
1	149999764	150514149	rs11588837	Intergenic	А	G	0.01	0.06	0.026
1	153768740	154162493	rs7521047	NUP210L	Т	С	0.01	0.04	0.038
1	163582980	163766672	rs2345964	Intergenic	А	G	0.01	0.05	0.022
1	207917499	208049502	rs4844621	Clorf132	А	G	-0.01	0.05	0.012
1	226694849	226694849	rs58787117	Intergenic	А	G	-0.01	-0.06	0.032
2	48178775	48324044	rs11891807	AC079807.4	Т	G	-0.01	0.04	0.036
2	53864496	54497500	rs7583622	GPR75-ASB3	G	А	-0.01	0.05	0.015
2	53864496	54497500	rs7567556	ACYP2	С	Т	0.07	-0.11	0.022
2	58872553	58991868	rs7591382	LINC01122	Т	С	0.01	-0.04	0.023
3	48446237	49631585	rs12107252	CELSR3	Т	С	-0.01	-0.06	0.013
3	52277445	52838402	rs12629701	PBRM1	Т	С	0.01	0.06	0.024
4	48342682	48697149	rs34386102	Intergenic	Т	С	-0.01	0.04	0.041

4	102766892	102931290	rs34208976	BANK1	G	Т	-0.01	-0.04	0.013
4	105375274	105443381	rs10034519	CXXC4	А	С	-0.01	0.04	0.018
4	153018256	153101286	rs35296212	RP11-18H21.2	Т	G	0.01	0.04	0.025
6	11957303	12038979	rs209809	Intergenic	G	Т	-0.01	0.05	0.046
6	24905311	24998665	rs77386029	FAM65B	С	Т	0.03	0.12	0.025
7	23600173	23881813	rs798641	Intergenic	G	А	0.02	-0.06	0.022
8	70943083	70990615	rs3750228	PRDM14	Т	С	-0.02	-0.05	0.037
9	34081331	34130435	rs11557154	DCAF12	С	Т	0.03	0.05	0.043
9	96181075	96381916	rs564	FAM120A	Т	С	0.01	0.04	0.028
9	138378856	138378856	rs2078266	PPP1R26	А	G	0.01	0.07	0.022
10	78741559	78763297	rs11001965	KCNMA1	G	А	0.01	-0.04	0.030
10	104697781	104741114	rs12414777	CNNM2	С	Т	-0.01	0.08	0.010
10	106003861	106076414	rs17883150	GSTO1	G	А	-0.01	0.04	0.023
10	106453550	106560225	rs7909129	SORCS3	А	G	0.01	-0.05	0.009
11	46330604	47207362	rs61882672	Intergenic	С	А	0.01	-0.09	0.001
11	47925962	49248150	rs10838843	Intergenic	G	Т	0.01	-0.07	0.048
12	53730164	54028059	rs34169640	RP11-793H13.8	А	G	0.02	-0.12	0.032
12	57486647	57492996	rs4559	STAT6	С	Т	0.01	-0.04	0.029
12	110229434	110229434	rs117145318	TRPV4	С	А	0.02	-0.12	0.039
12	122804256	123144293	rs7952868	CLIP1	А	G	0.02	-0.04	0.020
12	123421902	123897177	rs73230058	PITPNM2	С	Т	-0.01	0.06	0.028
12	123421902	123897177	rs1727302	PITPNM2	G	А	-0.02	0.07	1.E-07
13	79855297	80159615	rs3187338	RBM26	С	Т	0.01	0.05	0.048
14	104332759	104363528	rs10139856	Intergenic	Т	С	-0.01	0.05	0.027
15	38820606	38869666	rs28582094	RASGRP1	А	G	0.01	-0.04	0.029
15	78712119	78858400	rs16969894	IREB2	С	Т	-0.01	0.07	0.001
15	82827938	83406857	rs783522	CPEB1	А	G	-0.01	-0.05	0.019
15	84703470	85344550	rs11638445	Intergenic	С	А	0.01	0.06	0.007
15	91416550	91429042	rs4702	FURIN	G	А	-0.01	0.08	0.040
16	68285847	68419298	rs61593058	PRMT7	Т	С	-0.01	-0.06	0.003
16	69141138	69432250	rs8049057	RNU6-22P	G	Т	-0.02	-0.04	0.014
16	90109372	90120171	rs3743824	URAHP	G	А	-0.01	0.05	0.001
18	4930206	5038613	rs4798275	RP11-172F10.1	G	А	-0.01	0.04	0.047
18	9129337	9414607	rs2902839	RP11-888D10.3	С	Т	-0.02	-0.08	0.034
20	32903904	33294945	rs6059779	ITCH	С	Т	0.01	0.04	0.015
20	62127121	62171556	rs1741617	EEF1A2	Т	С	0.02	-0.05	0.006
20	62127121	62171556	rs310653	SRMS	Т	С	0.01	-0.04	0.020
22	29162506	29358802	rs6005928	Intergenic	Т	С	-0.01	-0.04	0.019
22	41411804	41613303	rs4822000	RP11-12M9.4	Т	С	0.01	-0.04	0.004
22	50162136	50321623	rs138832	BRD1	А	G	0.01	-0.05	0.026
22	50978504	50982272	rs58111256	CTA-384D8.35	С	Т	0.02	-0.08	0.008

Loci reported in bold are concordant with the hypothesis of higher predisposition to SZ being associated with shorter LTL. Abbreviations: Chr, chromosome; EA, effect allele; OA, other allele

Twenty-eight of the 55 lead SNPs were found to act as eQTLs for different genes in at least one brain region (Table 3.10).

Lead SNP	RDB score		eQTL in brain regions (GTEx v. 8)
rs10874656	0.61	4	<i>EVI5</i> (amygdala, caudate, cortex, hyppocampus, hypothalamus, putamen, substantia nigra); <i>RP4-621B10.8</i> (cerebellum, cortex, frontal cortex); <i>FAM69A</i> (cerebellum); <i>C1orf146</i> (cerebellum)
rs1874422	0.23	5	-
rs11588837	0.55	5 1f	<i>VPS45</i> (frontal cortex)
rs7521047	0.48	3a	CREB3L4 (caudate); SLC27A3 (cerebellum)
rs2345964	0.63	5	-
rs4844621	0.61	4	<i>CD46</i> (amygdala, anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hyppocampus, hypothalamus, nucleus accumbens, putamen, substantia nigra)
rs58787117	0.13	5	-
rs11891807	0.89	5	FOXN2 (caudate, cerebellum, frontal cortex, nucleus accumbens, putamen)
rs7583622	0.16	5	-
rs7567556	0.13	5	-
rs7591382	0.18	7	-
rs12107252 rs12629701	0.55 0.18	1f 7	<i>NCKIPSD</i> (anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, nucleus accumbens, putamen); <i>WDR6</i> (caudate, cerebellum, cortex, frontal cortex, nucleus accumbens, putamen); <i>CCDC71</i> (cerebellum cerebellum); <i>PFKFB4</i> (cerebellum); <i>TREX1</i> (cortex, nucleus accumbens) <i>GNL3</i> (cerebellum, frontal cortex, hypothalamus, putamen); RP5-966M1.7 (cerebellum, cortex, putamen); <i>PPM1M</i> (cerebellum); <i>NEK4</i> (cerebellum);
rs34386102	0.61	4	<i>GLYCTK</i> (cerebellum); <i>IT1H4</i> (cortex, hypothalamus, putamen); <i>POC1A</i> (putamen)
rs34208976	0.01	4 5	-
rs10034519	0.03	6	-
rs35296212	0.22	5	-
rs209809	0.15	4	
rs77386029	1.00	5	<i>GPLD1</i> (cortex)
rs798641	0.13	5	FAM221A (caudate, nucleus accumbens)
rs3750228	0.13	5	-
s11557154	0.13	5	UBAP1 (substantia nigra)
rs564	0.80	2b	-
rs2078266	0.38	20 3a	_
rs11001965	0.35	5u	-
rs12414777	0.18	7	AS3MT (amygdala, anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hypothalamus, nucleus accumbens, putamen, substantia nigra); <i>RPARP-AS1</i> (caudate, cerebellum, cortex, nucleus accumbens); <i>BORCS7</i> (cerebellum, cortex); <i>RPL22P17</i> (cerebellum); <i>RP11-724N1.1</i>
rs17883150	0.61	4	(cerebellum) <i>RP11-127L20.3</i> (amygdala, anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen); <i>GSTO2</i> (amygdala, anterior cingulate cortex, caudate, cerebellur cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen); <i>ITPRIP</i> (cortex)
rs7909129	0.13	5	putanten), III MI (COLUX)
rs61882672	0.15	4	<i>C11orf49</i> (cerebellum)
rs10838843	0.08	6	FOLH1 (caudate, cerebellum, nucleus accumbens, putamen)


Table 3.10 Functional effect of lead SNPs associated with SZ and LTL

rs34169640	0.59	5	_
rs4559	0.83	2b	_
rs117145318	0.18	20 7	_
rs7952868	0.13	5	_
rs73230058	0.00	5	ABCB9 (cerebellum); KMT5A (cerebellum)
rs1727302	0.61	4	PITPNM2 (cerebellum); RP11-282018.3 (cerebellum); KMT5A
151727502	0.01	-	(cerebellum); ZCCHC8 (cerebellum); CCDC62 (cerebellum)
rs3187338	0.37	3a	<i>RBM26</i> (cerebellum); <i>LINC01068</i> (cerebellum)
rs10139856	0.49	5	TDRD9 (caudate, cerebellum, cortex)
rs28582094	0.16	6	-
rs16969894	0.39	5	CHRNA3 (caudate, nucleus accumbens); CHRNA5 (nucleus accumbens)
rs783522	0.68	5	GOLGA2P10 (amygdala, caudate, cerebellum); GOLGA6L9 (anterior
rs11638445	0.59	5	cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hippocampus, nucleus accumbens); <i>GOLGA6L10</i> (caudate, cerebellum, cortex, frontal cortex, hippocampus, putamen, substantia nigra); <i>CSPG4P10</i> (caudate, cerebellum); <i>ADAMTS7P1</i> (cerebellum); <i>RPS17</i> (cortex, frontal cortex, hippocampus); <i>CPEB1</i> (cortex); <i>AP3B2</i> (cortex) <i>GOLGA2P7</i> (amygdala, anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hypothalamus, nucleus accumbens, putamen); <i>CSPG4P12</i> (anterior cingulate cortex, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen); <i>CSPG4P12</i> (anterior cingulate cortex, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens, putamen); <i>DNM1P51</i> (cortex, frontal cortex); <i>EFTUD1P1</i> (hypothalamus); <i>GOLGA6L5P</i> (anterior cingulate cortex, caudate, cortex, frontal cortex, putamen, substantia nigra); <i>LINC00933</i> (anterior cingulate cortex, caudate, cortex); <i>NMB</i> (caudate); <i>RP11-182J1.14</i> (cortex)
rs4702	0.61	4	FURIN (frontal cortex)
rs61593058	0.14	6	<i>PRMT7</i> (caudate, cortex, frontal cortex, nucleus accumbens, putamen, substantia nigra)
rs8049057	0.09	1d	<i>COG8</i> (cortex, frontal cortex); <i>NIP7</i> (frontal cortex, nucleus accumbens, putamen); <i>SNTB2</i> (cerebellum); <i>TERF2</i> (cerebellum); <i>UTP4</i> (nucleus accumbens); <i>VPS4A</i> (anterior cingulate cortex, caudate, cortex, frontal cortex, nucleus accumbens, putamen)
rs3743824	0.61	4	-
rs4798275	0.13	5	-
rs2902839	0.55	1f	-
rs6059779	0.61	4	ACSS2 (cerebellum); EDEM2 (cortex); ITCH (cortex); MAP1LC3A (anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hypothalamus, nucleus accumbens, putamen); MMP24-AS1 (cortex, nucleus accumbens, substantia nigra); MYH7B (cerebellum)
rs1741617	0.61	4	-
rs310653	0.61	4	PTK6 (caudate)
rs6005928	0.32	5	-
rs4822000	0.18	7	<i>MCHR1</i> (cerebellum); <i>RP11-12M9.4</i> (cerebellum); <i>SLC25A17</i> (cerebellum, nucleus accumbens); <i>ZC3H7B</i> (cerebellum)
rs138832	0.55	1f	<i>ALG12</i> (hippocampus, nucleus accumbens); <i>CRELD2</i> (hypothalamus); <i>RP3-522J7.6</i> (cerebellum); <i>ZBED4</i> (cerebellum)
rs58111256	0.70	4	-
Abbreviations	: RDB,	Regulom	eDB

Genes modulated by SNPs associated with increased predisposition to SZ and shorter LTL were

enriched for the nicotine pharmacodynamics pathway (FDR = 0.049, genes: *CHRNA3* and *CHRNA5*) as well as for the ammonium ion binding molecular function GO term (FDR = 0.045, genes: *CHRNA3*, *CHRNA5* and *PITPNM2*). Proteins encoded by the identified genes also showed significant protein-protein interaction enrichment (PPI enrichment p-value: 1.02E-05, Figure 3.5).

Figure 3.5 Protein-protein interaction network for genes with significant eQTLs among SNPs associated with increased predisposition to SZ and shorter LTL

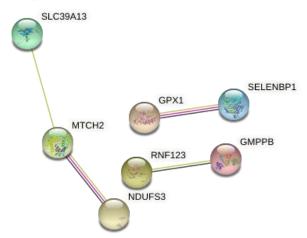
Finally, 12 loci were shared between MDD and LTL (Table 3.11). Of the 13 lead SNPs, 10 were associated with increased risk of MDD and shorter LTL.

Chr	Start locus	Stop locus	Lead SNP	Gene	EA	OA	Beta	Beta	conjFDR
							LTL	MDD	
1	151364199	151449138	rs4971040	Intergenic	А	С	0.02	-0.03	0.006
2	58878085	59039998	rs7596101	LINC01122	А	G	-0.01	0.02	0.027
3	49609477	49890967	rs148383796	IP6K1	А	G	-0.01	0.03	0.035
4	164483214	164570327	rs11729015	MARCH1	А	С	0.01	-0.02	0.032
5	145463497	145704064	rs17104395	CTC-359M8.1	Т	С	-0.01	0.03	0.045
10	106453550	106560225	rs7909129	SORCS3	А	G	0.01	-0.02	0.027
11	47401448	49555740	rs7107356	Intergenic	А	G	0.01	-0.02	0.049
11	47401448	49555740	rs116941111	OR4A42P	Т	С	-0.03	0.07	0.009
11	118569414	118712509	rs564091	AP002954.4	А	G	0.01	-0.03	0.006
14	64649894	64877135	rs944047	ESR2	Т	С	0.01	0.02	0.041
15	38820606	38925195	rs56059718	RASGRP1	А	С	-0.01	0.02	0.033
18	51764473	51832407	rs4940321	Intergenic	А	G	0.02	0.02	0.020
18	52464388	52504252	rs2008551	RAB27B	Т	С	0.01	0.02	0.006

Table 3.11 Loci associated with risk of MDD and LTL

Loci reported in bold are concordant with the hypothesis of higher predisposition to MDD being associated with shorter LTL. Abbreviations: Chr, chromosome; EA, effect allele; OA, other allele

Of the 13 lead SNPs, six were found to act as eQTLs for different genes in at least one brain region


(Table 3.12).

Lead SNP	RDB	RDB	eQTL in brain regions (GTEx v. 8)
	score	rank	
rs4971040	0.40	3a	<i>POGZ</i> (cerebellum, cortex, frontal cortex, nucleus accumbens, putamen); <i>SELENBP1</i> (cortex)
rs7596101	0.41	5	-
rs148383796	0.13	5	<i>AMT</i> (anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, Hyppocampus, nucleus accumbens, putamen, substantia nigra); <i>CCDC71</i> (amygdala); <i>DALRD3</i> (cerebellum); <i>FAM212A</i> (cerebellum); <i>GMPPB</i> (amygdala, anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hyppocampus, nucleus accumbens bens, putamen, substantia nigra); <i>GPX1</i> (caudate, cerebellum, cortex, frontal cortex, nucleus accumbens); <i>P4HTM</i> (cerebellum, cortex); <i>RBM6</i> (cerebellum, cortex, frontal cortex); <i>RNF123</i> (cerebellum, nucleus accumbens); <i>RP11-694I15.7</i> (cerebellum)
rs11729015	0.18	7	-
rs17104395	0.13	5	-
rs7909129	0.13	5	-
rs7107356	0.50	6	<i>C1QTNF4</i> (cerebellum); <i>MTCH2</i> (cerebellum, cortex, nucleus accumbens, Putamen); <i>NDUFS3</i> (cerebellum); <i>RP11-750H9.5</i> (cerebellum); <i>SLC39A13</i> (cerebellum)
rs116941111	0.13	5	FOLH1 (cortex)
rs564091	0.59	5	<i>RP11-158I9.8</i> (amygdala, anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hyppocampus, hypothalamus, nucleus accumbens, putamen, substantia nigra)
rs944047	0.88	3a	-
rs56059718	0.13	5	-
rs4940321	0.16	6	<i>POLI</i> (anterior cingulate cortex, caudate, cerebellum, cortex, frontal cortex, hypothalamus, nucleus accumbens, putamen); <i>STARD6</i> (cortex)
rs2008551	0.35	6	-

Table 3.12 Functional effect of lead SNPs associated with MDD and LTL

Five of the six eQTLs were associated with increased predisposition to MDD and shorter LTL. Genes modulated by these SNPs were not significantly enriched for GO terms or molecular pathways. However, proteins encoded by these genes showed a significant PPI (PPI enrichment p-value: 0.002, Figure 3.6).

Figure 3.6 Protein-protein interaction network for genes with significant eQTLs among SNPs associated with increased predisposition to MDD and shorter LTL

3.3.4 Discussion

In this study, we explored pleiotropy between severe mental disorders and genetically determined LTL. Using global genetic correlation, we found only MDD to be significantly associated with shorter LTL ($r_g = -0.11$, p = 1.4E-08). This result is in line with a recent study suggesting shorter LTL in individuals with depression in UK Biobank as well as a significant association between a PRS for depression and shorter LTL [206]. However, using a method able to identify specific genetic loci between two traits, rather than just investigating genetic correlation at a global level, we identified significant cross-trait enrichment between all the investigated severe mental disorders (MDD, BD and SZ) and genetically determined LTL. Our study identified for the first time specific genetic loci shared between mental disorders and LTL, with the highest number of loci being identified for SZ. Interestingly, a high percentage of loci among identified loci showed lead SNPs with a direction of effect unexpected based on the hypothesis that severe mental disorders might be characterized by accelerated cellular aging. Specifically, 61% (11/18), 40% (22/55) and 23% (3/13) were associated with increased risk of BD, SZ or MDD, respectively, and longer LTL. BD showed the highest percentage of loci with an unexpected direction of effect. Interestingly, among mental disorders, BD is the one for which the most conflicting results have been reported as regards to shorter LTL compared with individual without mental illness. Indeed, a number of studies has observed longer LTL in patients with BD compared with controls [31, 108]. While treatment with the mood stabilizer lithium has been suggested to exert a potential counteractive effect on telomere shortening [69, 70], it might also be the case that some genetic variants might protect patients with BD from accelerated telomere shortening. Among variants associated with increased risk of BD and shorter TL, we found the rs12919664 SNP located in the TERF2 gene. This gene encodes a telomere specific protein which is a component of the telomere nucleoprotein complex and plays a key role in the protective activity of telomeres. As previously mentioned, SZ was the mental disorder for which we identified the highest number of genetic loci shared with LTL (52 loci with 55 lead SNPs). Around half of these SNPs were found to act as significant eQTLs for a variety of genes in at least one brain region. Finally, MDD was the disorder for which we identified the smaller number of SNPs shared with LTL. However, it was also the disorder for which the large majority of SNPs showed the expected direction of effect (the allele associated with increased predisposition to MDD was also associated with shorter LTL). This observation is in line with the finding of a significant negative global genetic correlation between MDD and LTL. On the other hand, methods able to identify specific genetic loci shared between two traits even in the absence of a global genetic correlation, have proved to be more useful for BD and SZ. Based on the direction of effect of identified variants, shorter TL in patients with SZ or BD could be at least partly counteracted by genetic factors. Interestingly, a locus on chr 10 (106453550-106560225), with rs7909129 as the lead SNP and located in the SORCS3 gene, was associated with shorter LTL and increased predisposition to all three mental disorders. This gene has been previously implicated in different mental disorders [146, 208, 209] as well as in Alzheimer's disease [209, 210]. The protein encoded by this gene is a member of the vacuolar protein sorting 10 (Vps10) family of receptors, which represent cargos of the retromer complex and are involved in protein trafficking and intracellular/intercellular signaling in neuronal and non-neuronal cells [211, 212]. The retromer is a complex of proteins that control the reverse transport of molecules from the endosomes trans-Golgi network or to the cell surface, thus potentially playing a relevant role in different neurodegenerative diseases. Besides their roles as cargo proteins of the retromer complex, members of the Vps10 receptor family such as SORCS3 have been shown to modulate neurotrophic signaling pathways [212]. Based on this evidence, SORCS3 represents an interesting target that might be involved in the molecular mechanisms underlying accelerated cellular aging in severe mental disorders. In addition, four loci with rs11588837, rs11638445, rs12629701 and rs2345964 as lead SNPs, were associated with longer LTL and predisposition to both BD and SZ. Three of these variants are significant eQTLs for a variety of genes in different brain regions. Among genes modulated by these variants, rs11588837 is able to affect the expression of *VPS45* (a gene encoding another protein involved in trafficking through the endosomal system [213]) in the frontal cortex.

Taken together, our results support the existence of shared genetic loci between severe mental disorders and LTL and point to the retromer complex and intracellular protein trafficking as interesting molecular mechanisms potentially underlying the shared genetic bases between these traits.

3.4 Gender differences in genetic loci shared between mental disorders and metabolic traits

3.4.1 Introduction

As previously mentioned, patients with severe mental disorders show excess mortality and decreased life expectancy, mainly due to a high prevalence of comorbid chronic disorders such as cardiovascular disorders. High rates of metabolic risk factors greatly contribute to the increased incidence of cardiovascular disorders in patients with severe mental disorders. Indeed, patients with BD show increased frequency of overweight and obesity (41% compared to 27% in general population in US) [214, 215] and a three-fold higher risk of type 2 diabetes (T2D) [216] compared to the general population. Obesity exerts a negative impact on the course of BD, as this comorbidity is associated with higher episode frequency, rates of disability, suicide attempts, psychiatric and medical comorbidities as well as cognitive impairment and white matter abnormalities [217]. Conversely, a lower body mass index (BMI) has been associated with positive response to lithium treatment, suggesting a potential interplay between BMI and molecular targets involved in the mechanism of action of this mood stabilizer. Although a link between mental disorders and metabolic traits has been established, the molecular mechanisms underlying this comorbidity have only recently started to be investigated and are still largely unknown. The factors underlying the association between mental disorders and metabolic risk factors are manyfold and include, among others, lifestyle factors (e.g. diet, physical activity, smoking habits) and metabolic adverse effects of psychotropic drugs. However, shared genetic determinants between mental disorders and metabolic traits might also play a role. A few studies have started to investigate pleiotropic loci shared between psychiatric disorders and BMI, with different analytical methods [218-221]. To our knowledge, no study investigating shared genetic determinants between mental disorders and metabolic phenotypes (or any other phenotype) has considered the effect of gender. However, there are substantial differences between men and women in body composition, muscle mass, adipose distribution, glucose homeostasis, incidence of metabolic disorders as well as genetic determinants of metabolic traits [222, 223]. Therefore, the aim of the present study was to investigate whether shared genetic determinants between severe mental disorders and metabolic traits might be associated with metabolic abnormalities in a gender-specific way. We conducted our analyses in larger datasets compared to previous studies and evaluated the potential functional role and druggability of identified genetic variants and related genes.

3.4.2 Methods

GWAS samples

We used the latest release of GWAS summary statistics for BD, SZ and MDD from the Psychiatric Genomics Consortium (PGC) [20-22] as described in Section 3.3.2. GWAS summary statistics for BMI (434,794 women and 374,756 men) and waist-to-hip ratio adjusted for BMI (^{BMIadj}WHR, 379,501 women and 315,284 men) were obtained from GIANT consortium and UK Biobank [223]. For all GWAS datasets, quality control procedures, including adjustment for population stratification, were performed by the original studies. Analyses were conducted on autosomal variants common to GWAS on psychiatric traits and LTL, after exclusion of ambiguous variants (A/T and C/G) or variants located in regions characterized by strong LD such as the MHC region (chr6:25119106-33854733), chromosome 8p23.1 (chr8:7200000–12500000) and the *MAPT* gene (chr17:40000000–47000000).

Global genetic correlation analysis and conjunctional false discovery rate analysis

Cross-trait global genetic correlation analysis was conducted using LDSC [110, 207] as described in Section 3.3.2.

To identify shared loci between mental disorders and metabolic traits, we used the condFDR/conjFDR method implemented in pleioFDR [112, 113], as described in Section 3.2.2. The threshold for significant conjFDR associations was set at 0.05, as in previous studies [111, 153-155]. Results were controlled for sample overlap using the decorrelation of vectors of Z scores based on the Mahalanobis Transformation [113].

Definition of genomic loci and functional annotation

Independent significant genomic loci were defined according to the FUMA protocol [156], as described in Section 3.2.2. The direction of allelic effects for significant variants was evaluated by comparing betas reported in the original GWAS. Genes in which genetic variants significantly associated with a mental disorder and a metabolic trait with a concordant direction of effect were located were tested for functional enrichment for GO terms using WebGestalt [160] with default options, adjusting results based on FDR. We tested the functional enrichment for GO terms using WebGestalt [160] with default options, adjusting results based on FDR. In addition, genes in which significantly associated variants were located were searched in the Drug Gene Interaction Database (DGIdb) [161] to assess whether they are known targets of existing drugs (drug-gene interactions) or 'potentially druggable' based on their involvement in selected pathways, molecular functions or gene families.

3.4.3 Results

Using LDSC regression, we found heterogeneity in the direction of effect of global genetic correlation (r_g) patterns, especially for BD and SZ, as shown in Table 3.13.

]	BD		SZ	MDD	
Phenotype	rg	р	rg	р	rg	р
BMI (All)	-0.04	0.033	-0.11	$1.6E^{-12}$	0.11	5.6E-11
BMI Women	-0.05	0.015	-0.11	$1.5E^{-12}$	0.12	4.5E-10
BMI Men	0.07	0.008	-0.06	0.003	0.14	4.8E-11
^{BMIadj} WHR (All)	0.05	0.010	0.03	0.059	0.10	3.8E-09
BMIadjWHR Women	0.04	0.087	-0.02	0.286	0.07	1.5E-04
BMIadjWHR Men	0.07	0.008	-0.06	0.003	0.14	4.8E-11

Table 3.13. Global genetic correlation analysis between psychiatric and metabolic traits

Significant results in the expected direction of effect (positive association between increased predisposition to the mental disorders and BMI or ^{BMIadj}WHR) are reported in bold.

The conditional QQ plot showed significant cross-trait enrichment in variants associated with mental disorders when conditioning on metabolic traits. As an example, Figure 3.7 shows conditional QQ plots for BD conditioned on the BMI GWAS in the whole sample, the BMI GWAS

in women and the BMI GWAS in men, as well as QQ plots for BMI in the whole sample, BMI in women and BMI in men, when conditioning on BD.

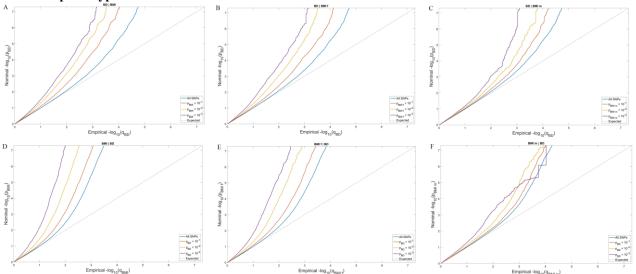
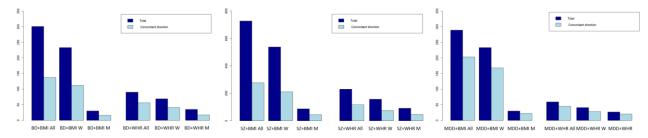
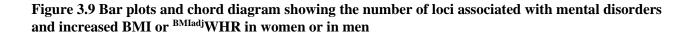


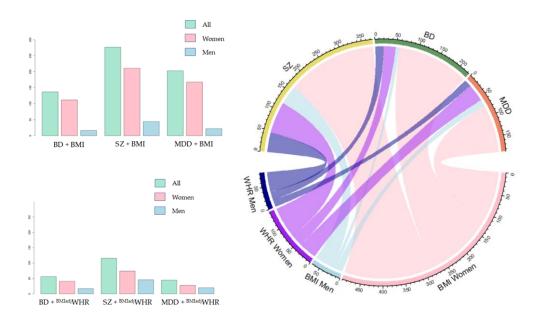
Figure 3.7 Conditional QQ plots suggesting cross-phenotype polygenic enrichment between mental disorders and metabolic phenotypes

The progressive leftward deflection from the null line as levels of SNP associations with the secondary phenotype increase shows significant cross-trait enrichment between primary and secondary phenotype. A: BD conditioned on BMI; B: BD conditioned on BMI in women; C: BD conditioned on BMI in men; D: BMI conditioned on BD; E: BMI in women conditioned on BD; F: BMI in men conditioned on BD

Using conjFDR, we identified a high number of loci shared between mental disorders and metabolic traits and, consistently with LDSC regression, we observed mixed patterns of direction of effect for SZ and BD, while MDD showed a higher rate of variants with concordant direction of effect (Figure 3.8). Overall, SZ was the disorder found to share the highest number of genetic loci with metabolic traits, followed by BD and MDD. However, when considering the direction of effect, for MDD, in the large majority of loci, the allele associated with increased risk for the psychiatric disorder was also associated with increased BMI or ^{BMIadj}WHR (Table 3.14).


	SZ		BD		MDD	
Sample	SNP (loci)	SNP concordant dir. (%)	SNP (loci)	SNP concordant dir. (%)	SNP (loci)	SNP concordant dir. (%)
BMI	727 (539)	277 (38%)	301 (272)	137 (46%)	289 (257)	203 (70%)
BMI Women	538 (429)	211 (39%)	233 (218)	112 (48%)	233 (212)	168 (72%)
BMI Men	87 (80)	44 (51%)	30 (28)	16 (53%)	30 (28)	22 (73%)
^{BMIadj} WHR	230 (192)	116 (50%)	90 (86)	56 (62%)	59 (55)	45 (76%)
BMIadjWHR Women	157 (135)	74 (47%)	69 (63)	41 (59%)	41 (40)	28 (68%)
BMIadjWHR Men	91 (84)	46 (51%)	35 (33)	17 (49%)	27 (26)	20 (74%)


Table 3.14 Overall number of shared genetic loci between mental disorders and metabolic traits


Abbreviations: Concordant dir, concordant direction of effect between mental disorders and metabolic traits; SNP, single nucleotide polymorphism

Substantial gender differences in terms of global genetic correlation, number of identified loci, number of loci with concordant direction of effect and genes to which genomic loci were mapped were observed (Figure 3.9). A higher number of loci shared with psychiatric disorders was associated with higher BMI or ^{BMIadj}WHR exclusively in women.

Figure 3.8. Shared SNPs between mental disorders and metabolic traits

Functional enrichment of genes shared between mental disorders and metabolic traits

Genes to which genetic variants associated with increased risk for SZ and increased BMI in women were mapped were enriched for different biological processes (Table 3.15) and cellular components GO terms (Table 3.16). Conversely, genes in which genetic variants associated with increased risk for SZ and increased BMI in men were located were not enriched for any significant GO term.

Table 3.15. Biological processes GO ter	ms showing enrichment am	nong loci associated with SZ and
increased BMI in women		

Gene Set	Description	Ratio	р	FDR
GO:0010975	regulation of neuron projection development	5.63	5.2E-08	4.4E-05
GO:0098742	cell-cell adhesion via plasma-membrane adhesion molecules	5.95	2.0E-05	0.006
GO:0001764	neuron migration	8.27	2.2E-05	0.006
GO:0061564	axon development	4.01	8.7E-05	0.017
GO:0097485	neuron projection guidance	5.49	1.0E-04	0.017
GO:0035051	cardiocyte differentiation	7.59	1.4E-04	0.020
GO:0050769	positive regulation of neurogenesis	3.99	1.9E-04	0.023
GO:0016358	dendrite development	5.7	2.3E-04	0.023
GO:0030900	forebrain development	4.28	2.4E-04	0.023
GO:0031345	negative regulation of cell projection organization	6.12	4.4E-04	0.038
GO:0099177	regulation of trans-synaptic signaling	3.85	5.3E-04	0.041
GO:0042692	muscle cell differentiation	4.22	6.0E-04	0.043

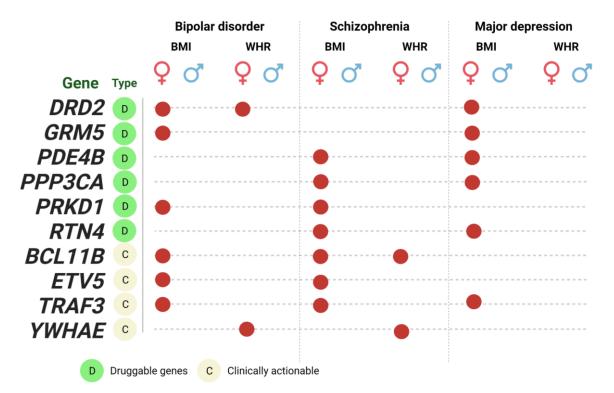
Gene Set	Description	Ratio	р	FDR
GO:0044309	neuron spine	6.81	6.9E-05	0.012
GO:0099572	postsynaptic specialization	4.30	2.1E-04	0.012
GO:0098984	neuron to neuron synapse	4.29	2.2E-04	0.012

Table 3.16. Cellular component GO terms showing enrichment among loci associated with SZ and increased BMI in women

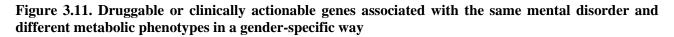
Loci in which genetic variants associated with increased risk for MDD and increased BMI in

women were located were enriched for different cellular components (Table 3.17) GO terms.

Table 3.17. Cellular component GO terms showing enrichment among loci associated with MDD and increased BMI in women


Gene Set	Description	Ratio	р	FDR
GO:0099572	postsynaptic specialization	6.52	6.3E-07	5.6E-05
GO:0098984	neuron to neuron synapse	6.50	6.5E-07	5.6E-05
GO:0097060	synaptic membrane	4.69	4.0E-05	0.002
GO:0098793	presynapse	3.76	5.3E-04	0.023
GO:0044309	neuron spine	6.04	1.4E-03	0.045
GO:0098978	glutamatergic synapse	4.03	1.6E-03	0.045

Conversely, genes in which genetic variants associated with increased risk for MDD and increased BMI in men were located were not enriched for any significant GO term. Finally, genes in which genetic variants associated with increased risk for BD and increased BMI in women or in men were located were not enriched for any significant GO term. In addition, genes in which genetic variants associated with increased risk for any severe mental disorder and increased ^{BMIadj}WHR were not enriched for any significant GO term.


Identification of Druggable genes

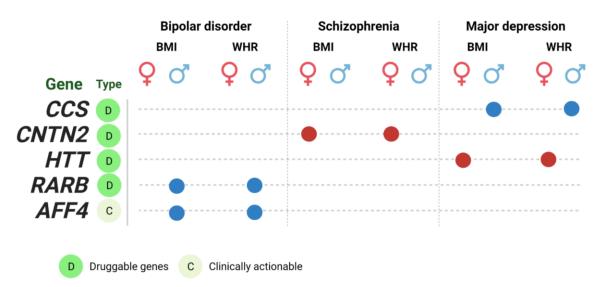
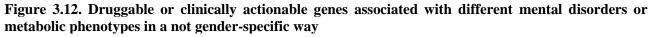
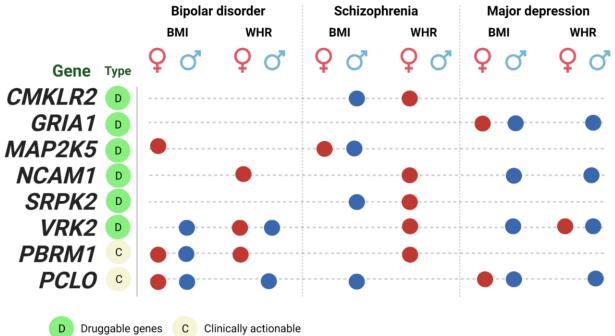

A total of 23 loci identified as significantly shared between severe mental disorders and increased BMI or ^{BMIadj}WHR in either women or men were found to encompass genes part of the druggable genome or clinically actionable. Loci located in 10 druggable genes were associated with different mental disorders and one or more metabolic phenotypes in a gender-specific way (exclusively in women). These genes are reported in Figure 3.10.

Figure 3.10. Druggable or clinically actionable genes associated with multiple mental disorders and increased BMI or ^{BMIadj}WHR exclusively in women


In addition, we identified 5 druggable or clinically actionable genes associated with the same psychiatric disorder and different metabolic phenotypes in a gender-specific way (2 specific for women and 3 for men). These genes are shown in Figure 3.11.



Finally, loci located in 8 druggable or clinically actionable genes were associated with multiple

mental disorders or metabolic traits in a not gender-specific way (Figure 3.12).

3.4.4 Discussion

In this study, we explored for the first time pleiotropy between severe mental disorders and metabolic traits taking into consideration the effect of gender. Specifically, we aimed to assess whether genetic loci associated with predisposition to severe mental disorders might also be associated with increased BMI or ^{BMIadj}WHR in a gender-specific way. Overall, compared with previous studies, we identified a higher number of genetic loci shared between severe mental disorders and the investigated metabolic phenotypes. Of note, we identified relevant differences in the direction of effect of these loci across severe mental disorders. Specifically, in the case of SZ and BD a large part of the identified loci was found to be associated with predisposition to mental disorders and lower BMI or ^{BMIadj}WHR. Conversely, in the case of MDD the majority of loci was found to act in the expected direction of effect, based on the observation that patients with mental disorders show increased frequency of cardiometabolic disturbances. This finding is in line with previous results [219, 220] and suggests that the study of the association between mental disorders

and metabolic traits needs to be conducted with analytical methods able to assess the contribution at specific loci rather than just the genetic correlation at a global level, as this method does not allow to identify signals confined to particular genomic regions or in opposing directions at different loci. Indeed, when evaluating global genetic correlation, only MDD was significantly and positively associated with increased BMI and ^{BMIadj}WHR in the whole sample as well as in the gender stratified samples. Conversely, we observed mixed patterns of effects for SZ and BD. We therefore applied the conjFDR approach to evaluate whether global r_g patterns might mask considerable heterogeneity in the bivariate local r_g across the genome.

We observed substantial gender differences in terms of global genetic correlation, number of identified loci, number of loci with concordant direction and genes to which genomic loci were mapped. When evaluating loci with concordant direction of effect (i.e. loci associated with increased predisposition to mental disorders and increased BMI or ^{BMIadj}WHR), we found loci associated with increased predisposition to SZ or MDD and increased BMI in women (but not in men) to be enriched for a number of GO terms related to neuronal functions.

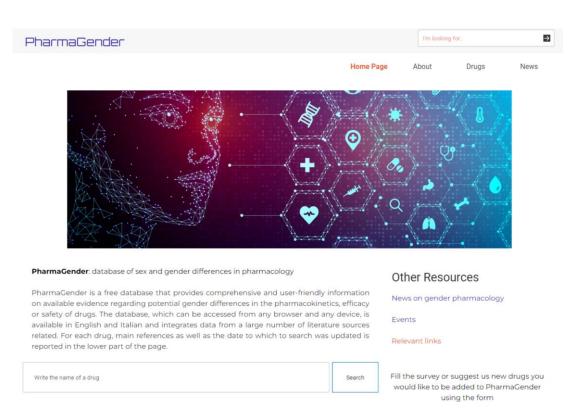
These results have to be interpreted in light of some limitations. First, common genetic variants only explain a small part of the comorbidity between mental and metabolic disorders. Indeed, several psychotropic drugs used for the management of mental disorders have relevant metabolic adverse effects. Lifestyle factors such as diet, physical activity and alcohol intake also play a relevant role. These factors might also be affected by gender. However, our results suggest that shared genetic determinants might also play a role in the observed increased frequency of metabolic disorders in patients with severe mental disorders and that some of these shared genetic determinants are gender-specific. Future developments of this work might include replication of the identified loci with a different analytical method that estimates local genetic correlation between different traits and allows to evaluate the effect of potential confounding phenotypes (e.g. inflammatory markers, exposure or response to medication).

4 Conclusions and future directions

In this work, we used different experimental and analytical approaches to investigate molecular and genetic determinants of severe mental disorders, with a specific focus on cellular aging and pleiotropy. We explored different aspects of cellular aging in severe mental disorders, such as its interplay with inflammatory markers and the role of genetic factors regulating TL. While the hypothesis of a relationship between reduced TL and severe mental disorders is corroborated by a number of studies, our transdiagnostic approach allowed to observe substantial differences between disorders. We observed shorter TL to characterize patients with MDD and SZ, while patients with BD showed longest TL compared to non-psychiatric controls. We hypothesize this finding to be related to the fact that all patients were treated with lithium at the time of sampling, as this mood stabilizer has been previously hypothesized to exert neuroprotective properties and a counteractive effect on telomere shortening [68-70, 108]. However, genetic factors might also play a role. To explore this hypothesis, we investigated the potential interplay between genetic variants, severe mental disorders and LTL using the largest available genome-wide summary statistics. All three severe mental disorders showed substantial pleiotropy with genetically-determined LTL, but we observed different scenarios based on the investigated disorder as regards to the direction of effect of the identified variants. As regards to BD, among the 18 genetic variants we found to be shared between this disorder and LTL, 11 were associated with increased predisposition to BD while exerting a protective effect on telomere shortening. Intriguingly, some of these variants might be able to affect mechanisms involved in the neuroprotective effects of lithium. To this regard, different SNPs that we found to be associated with both BD and LTL, acts as eQTLs and are therefore able to affect gene expression in different brain regions. The T allele of the rs12629701 SNP, which we observed to be associated with increased predisposition to BD and longer LTL, increases expression of different genes, including the guanine nucleotide-binding protein-like 3 (GNL3) gene in cerebellum, frontal cortex, hypothalamus and putamen. Intriguingly, the GNL3 gene is located in a locus on chromosome 3 which has been recently shown to be associated with

75


lithium-induced proliferation. Specifically, increasing the expression of *GNL3* using clustered regularly interspaced short palindromic repeats interference (CRISPRi) in primary human neural precursors cells (NPC) from fetal brain tissue has been shown to increase NPC proliferation in response to lithium [224]. Conversely, decreasing expression of *GNL3* decreased lithium-induced proliferation. Future developments of our study will include testing the moderating effect of the identified genetic variants on the putative protective effects of lithium on accelerated cellular aging in cellular models or peripheral cells derived from patients with BD characterized for lithium response.


Using global genetic correlation analysis, MDD was the only disorder to show a significant negative global genetic correlation with LTL ($r_g = -0.11$, p = 1.4E-08). Accordingly, the direction of effect of the large majority of shared genetic variants (77%) associated with MDD also predisposed to shorter LTL (thus showing a direction of effect in line with the hypothesis of a genetic predisposition to both MDD and accelerated cellular aging). The high rate of concordance in the direction of effect of variants predisposing to MDD and shorter LTL is in line with the more consistent results reported by studies investigating cellular aging in this disorder. In fact, while controversial results have been reported for BD, the majority of available studies found shorter LTL in patients with MDD compared with controls, as also observed by our group in different and independent samples [31, 105, 225]. However, results from longitudinal studies are needed to further disentangle the potential relationships between cellular aging and depression severity, course and response to psychotropic treatments.

In this thesis, we also conducted two studies using state-of-the-art analytical approaches to investigate shared genetic bases between mental disorders and related traits (risk-taking propensity and the two metabolic traits BMI and ^{BMIadj}WHR). We showed that some of the loci shared between mental disorders and related phenotypes are located in genes part of the druggable genome or clinically actionable, that might be further investigated as potential pharmacological targets. Future developments of these studies will include evaluation of these loci using analytical approaches that

76

allow to incorporate the effect of potentially confounding traits (e.g. inflammatory markers and exposure to medication). In addition, we plan to validate in the cohort presented in Section 2 the identified pleiotropic loci. In the latter study we showed substantial gender differences in global genetic correlation patterns as well as in the number of specific genetic loci shared between mental disorders and metabolic traits. However, adverse effects of psychotropic medications also play a relevant role in the comorbidity between mental disorders and metabolic disturbances. In order to contribute to spread the knowledge on the importance of sex and gender differences in the efficacy and safety of drugs, we are developing a free resource to access updated information on this relevant topic: the PharmaGender database. The pilot version of this resource has been funded by the "Centro Studi Nazionale su Salute e Medicina di Genere" and is currently being developed (Figure 4.1).

The database will be freely accessible from computers, tablets or smartphones and will contain curated information on sex and gender differences in the pharmacokinetics, efficacy and safety of drugs. Information will be extracted from the summary of product characteristics as well as from a systematic review of the scientific literature.

To conclude, accelerated cellular aging and inflammation might play a role in the pathogenesis of severe mental disorders as well as in response to pharmacological treatment. Elucidating the shared genetic bases between severe mental disorders and genetically predicted markers of cellular aging, as well as age-related disorders such as metabolic disturbances, might allow us to discover novel drug targets and define subgroups of patients that might benefit of more tailored treatment strategies, moving toward precision medicine in severe mental disorders.

							Significant eQT	L in GTEx V. 8
SNP	Nearest gene (Kb)	RegDB Rank	CADD Score	Druggable categories	Drug-gene interactions	Specificity	Gene	Brain region
rs1746662	FNDC5	4	13.09	Druggable genome	-	BD	RP5-1174N9.2 S100PBP	Caudate, whole blood Whole blood
rs12138864	PHC2	1f	1.66	-	-	BD	A3GALT2	Cerebellum, whole blood
rs12096927	RIMKLA (4.6)	5	10.66	-	-	BD	-	-
rs2367724	<i>KDM4A</i> (8.4)	5	1.17	Druggable genome	CHEMBL2094532, CHEMBL1504762, pralidoxime iodide, ranolazine hydrochloride, CHEMBL1255836, minaprine hydrochloride, CHEMBL502057, cycloheterphyllin, CHEMBL1728638, CHEMBL256062	BD, SZ, ADHD	ARTN CCDC24	Cerebellum Whole blood
rs1417364	NRD1:RP4- 657D16.3	5	1.01	Druggable genome	-	BD	TXNDC12	Whole blood
rs182823	NFIA	5	2.71	-	-	BD	-	-
rs11210099	<i>RP4-660H19.1</i> (64.7)	6	5.64	-	-	BD, SZ, ADHD	-	-
rs34194740	RGS8 (4.4)	3a	2.08	-	CHEMBL1917204	BD	APOBEC4	Cerebellum
rs823130	NUCKS1	4	1.39	-	-	BD, SZ	PM20D1 RAB29 SLC41A1	Anterior cingulate, caudate, cortex, frontal cortex, hippocampus, hypothalamus, NAc, putamen, spinal cord, substantia nigra, whole blood Cerebellum, hypothalamus, whole blood Cerebellum, hippocampus, whole blood Cerebellum, whole blood NAc
rs4146671	SDCCAG8	7	6.01	-	-	BD, SZ	NUCKS1 RAB7B SDCCAG8,	Whole blood
		-					CEP170	Whole blood
rs11124327	AC068490.2	7	2.34	-	-	BD, SZ, ADHD	-	-
rs35605321	CENPA (14.7)	5	0.83	-	-	BD, SZ	-	-
rs2194464	GALNT14	5	1.99	-	Mitoxantrone, sorafenib, cisplatin, fluorouracil	BD	-	-
rs55951536	CAMKMT	5	1.46	-	-	BD	CAMKMT	Whole blood
rs7591022	EML6	5	0.06	-	-	BD	-	-
rs1433309	AC092568.1 (51.4)	7	4.71	-	-	BD	-	-

Appendix Table 1. Functional characterization of independent genomic loci associated with bipolar disorder and risk-taking propensity

rs73041394	ZNF804A	5	9.69	-	Lithium	BD, SZ	-	-
rs55811672	MAP2 (19.0)	7	2.89	-	Estramustine, melatonin, docetaxel, colchicine, paclitaxel	BD	-	-
rs2047134	CUL3	3a	2.16	Clinically actionable	-	BD, SZ	CUL3	Cortex, hippocampus
rs1288974	FOXP1	3a	1.11	Clinically actionable	-	BD	-	-
rs9831123	CADM2	5	0.77	-	Alcohol	BD, SZ, ADHD	CADM2	Caudate, putamen
rs9681407	MIR4795 (65.3)	5	0.15	-	-	BD	POU1F1 CHMP2B	Putamen Whole blood
rs836927	<i>RP11-115H18.1</i> (18.7)	5	0.65	-	-	BD, SZ	LINC01990	Caudate, putamen, NAc
rs326359	CD47 (10.8)	4	0.08	Druggable genome	ALX-148, magrolimab, ABT-510	BD	CD47, IFT57	Whole blood
rs12054405	RP11-442N1.1 (38.2)	3a	6.12	-	-	BD	-	-
rs359544	PLCH1	5	0.14	Druggable genome	-	BD	-	-
rs4350923	RP11-208P4.1 (1.5)	5	4.67	-	-	BD	-	-
rs4434184	SOX2-OT	3a	20.30	Clinically actionable	-	BD	-	-
rs535066	<i>RP11-320H14.1</i> (5.3)	6	0.33	-	-	BD, SZ	GABRA2	Hypothalamus
rs2647256	TET2 (0.6)	4	3.36	-	Decitabine, azacitidine, hydrochlorotiazide	BD	-	-
rs11737121	SLC10A7	5	3.38	-	-	BD	-	-
rs7696225	SORBS2	5	4.68	-	-	BD	-	-
rs201587781	EMB (213.4)	7	6.29	-	-	BD, SZ	-	-
rs13163662	KCNN2	5	0.78	Druggable genome	Apamin, tubocurarine, dequalinium	BD	-	-
rs13169274	ETF1	7	1.38	-	-	BD, SZ	ETF1	Whole blood
rs76157183	TCERG1	5	0.08	-	-	BD	-	-
rs10053762	AC091969.1	5	5.06	-	-	BD, SZ	LINC01470	Caudate
rs2195450	GRIA1	4	16.32	-	Perampanel, talampanel, piracetam, CX516, tianeptine, tezampanel, NBQXM, zonampanel, MK-8777, selurampanel	BD	-	-
rs10068495	EBF1	7	1.28	Clinically actionable	-	BD	-	-
rs852944	RP1-288M22.2	6	0.80	-	-	BD	-	-
rs1487445	RP11-436D23.1	5	3.27	-	-	BD	-	-
rs7739294	GOPC	5	7.63	-	-	BD	DCBLD1	Whole blood

rs6557271	RGS17	5	3.94	-	-	BD	RGS17	Cerebellum
rs11768212	MADILI	2b	2.05	-	Paclitaxel, carbotaxel	BD, ADHD	MRM2 AC110781.3	Caudate NAc
rs117450257	SLC12A9:RP11- 126L15.4	5	0.14	Druggable genome	-	BD, SZ	-	-
rs2470943	RP11-325F22.2	5	0.14	-	-	BD, SZ	<i>RP11-325F22.2</i> <i>LHFPL3-AS2</i>	Whole blood Whole blood
rs10251192	<i>RP11-222023.1</i> (117.0)	7	0.45	-	-	BD, SZ	-	-
rs7785663	DGKI	6	1.57	-	-	BD, SZ	-	-
rs80274100	RAB19	6	3.88	-	-	BD	-	-
rs2924726	CSMD1	5	0.30	-	Hydrochlorothiazide, oxaliplatin	BD	-	-
rs10106054	RP11-468H14.2	6	1.33	-	-	BD		
rs78035175	RP11-98P2.1 (19.0)	5	2.56	-	-	BD	-	-
rs16883443	AC098612.1 (56.4)	6	0.31	-	-	BD		
rs11777067	FGFR1	1f	4.41	Druggable genome	CHEMBL89363, CHEMBL1231606, palifermin; rogaratinib, pemigatinib, FP-1039, E-7090, derazantinib, erdafitinib	BD, SZ	RPS20P22 PLPP5 DDHD2 BAG4 RP11-350N15.5	Cerebellum Cerebellum, cortex, NAc Cerebellum, NAc Whole blood Whole blood
rs10957894	SNTG1	5	1.87	-	-	BD	-	-
rs7813444	RP11-21C4.4 (29.3)	6	5.15	-	-	BD, SZ	-	-
rs4623479	RUNXITI	7	0.68	Clinically actionable	-	BD, ADHD	RUNXITI	Putamen
rs7011741	<i>RP11-25D10.2</i> (18.3)	5	1.47	-	-	BD	-	-
rs34853464	TSNARE1	5	1.07	-	-	BD, SZ	-	-
rs6474852	FREM1	5	3.96	Druggable genome	-	BD	CER1	Cerebellum
rs10967586	RN7SL100P	5	8.63	-	-	BD, SZ	CAAP1 IFT74	Cerebellum Cortex
rs10821122	RNU6-829P (19.8)	6	0.29	-	-	BD, SZ	RP11-165J3.6	Whole blood
rs9888039	PCDH15	5	1.03	-	-	BD	-	-
rs7085104	C10orf32-ASMT	4	8.18	-	Melatonin	BD, SZ	AS3MT	Amygdala, anterior cingulate, caudate, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, NAc, putamen, spinal cord, substantia nigra, whole blood
							BORCS7	Anterior cingulate, caudate, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, NAc, putamen, spinal cord substantia nigra, whole blood
							RPARP-AS1	Caudate, accumens

							RPL22P17 RP11-724N1.1 ARL3 CALHM2 CNNM2	Cerebellum Cerebellum Cerebellum Whole blood Whole blood
rs12761679	SORCS3	6	4.17	-	-	BD, SZ, ADHD	-	-
rs12359871	RPS27P18 (50.8)	5	0.90	-	-	BD	-	-
rs10082688	ARNTL (31.3)	7	0.16	-	-	BD	-	-
rs11038655	<i>CTD-2210P24.4</i> (13.2)	7	1.13	-	-	BD	CTD-2210P24.4	Caudate, putamen
rs11227478	<i>RP11-867G23.10</i> (3.2)	5	0.31	-	-	BD	RP11-867G23.8 RP11-867G23.10 RP11-755F10.1 LRFN4 CTSF	Cerebellum Cerebellum Cerebellum, NAc, putamen Cerebellum, whole blood Whole blood
rs4988321	LRP5	4	24.40	-	-	BD	-	-
rs10831015	GRM5	6	2.11	Druggable genome	Dipraglurant, raseglurant, basimglurant, STX107, AZD2066, RG7342, mavoglurant, CHEMBL2164552, CHEMBL2164551, CHEMBL292065	BD	-	-
rs7932899	CNTN5	7	0.80	-	-	BD	-	-
rs61909095	CACNAIC	3a	0.13	Druggable genome	Barnidipine, lacidipine, drotaverine, benidipine, manidipine, ritodrine, isradipine, levamlodipine, clevidipine, efonidipine	BD, SZ	-	-
rs10842271	SOX5 (129.9)	3a	0.83	-	-	BD	-	-
rs7959452	<i>LYZ</i> (6.6)	5	0.24	-	Propanol, triacetylchitotriose, chitodextrin, CHEMBL541253, arsanilic acid, sucrose, aspartic acid	BD	YEATS4	Anterior cingulate, caudate, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, NAc, putamen, whole blood
							LYZ	Caudate, cortex, hippocampus, putamen, spinal cord, whole blood
		_					RP11-1143G9.5	Whole blood
rs11178282	PTPRB	5	2.52	Druggable genome	CHEMBL379000, razuprotafib, sunitinib	BD	-	-
rs3764002	WSCD2	4	28.10	-		BD, ADHD	-	-
rs3885907	ALOX5AP	4	2.17	-	Fiboflapon, fiboflapon sodium	BD	ALOX5AP	Whole blood
rs7139704	GNG5P5 (155.0)	4	3.02	-	-	BD	-	-
rs34012672	NPAS3 (9.8)	5	0.68	-	-	BD, SZ, ADHD	-	-

rs3007061	MDGA2 (70.2)	3a	7.07	-	Milnacipram, fluvoxamine, paroxetine	BD, ADHD	MDGA2	Cerebellum
rs8005321	SYT16	4	0.33	-	-	BD		
rs72703614	FOXN3	5	2.67	-	-	BD		
rs12892189	LINC00637	4	1.95	-	-	BD, SZ	PPP1R13B APOPT1 XRCC3 KLC1 RP11-73M18.8 TDRD9 BAG5	Caudate Caudate, hippocampus Whole blood Whole blood Whole blood Whole blood Whole blood
s4924676	ZNF106	3a	2.09	Druggable genome	-	BD, SZ	GANC CAPN3	Anterior cingulate, putamen, whole bloo Cerebellum, whole blood
s4327001	CD276 (3.4)	2a	0.51	Druggable genome	Enoblituzumab	BD	C15orf59-AS1	Spinal cord
s12442456	IREB2	6	0.00	-	-	BD, SZ	-	-
rs2071382	FES	4	10.02	Druggable genome	Lorlatinib, hesperadin, dasatinib, SP-600125, fostamatinib, linifanib	BD, SZ	FES	Whole blood
rs6500948	RBFOX1	3a	0.17	-	-	BD, SZ	-	-
s2352759	GRIN2A	4	7.46	Druggable genome	Memantine, philanthoxin, dizocilpine, dextromethorphan, tenocyclidine, felbamate, dextromethorphan, glycine, selfotel, N-Methyl-D-Aspartic Acid	BD	-	-
s62029337	PRKCB (27.2)	3a	1.58	Druggable genome	Phosphorylethanolamine, tocopherol acetate, (+)-alpha- tocopheryl succinate, enzastaurin, ruboxistaurin, vitamin E, bisindolymaleimide IX, bryostatin, enoxolone, sincalide	BD	-	-
s55910718	GINS3 (60.0)	3a	3.20	-	-	BD	-	-
s7219635	YWHAE	2a	1.06	-	CHEMBL4244843, insulin, phenethylisothiocyanate	BD, SZ	-	-
s112562460	TANC2:AC037445.1	5	4.81	-	-	BD	CYB561	Caudate, cortex, frontal cortex, NAc, putamen
		_				DD 07	TANC2	Cerebellum
s9636107	TCF4	5	5.05	-	-	BD, SZ	-	-
\$12928	PQLC1	5	1.62	-	-	BD, SZ	AC139100.3 PQLC1	Cortex Whole blood
s1736182	THOP1	4	2.65	Druggable genome	Nemonoxacin, icofungipen, karenitecin	BD	THOP1 ZNF554	Cerebellum Cerebellum
s2304204	IRF3:BCL2L12	4	11.47	-	-	BD, SZ	IRF3 PRR12 CPT1C	Cerebellum, hypothalamus Cerebellum, frontal cortex Cerebellum

rs1291112	RN7SL156P (1.4)	4	12.07	-	-	BD	-	-
rs12624433	SLC12A5	2a	4.24	Druggable genome	Bumetanide	BD	SLC12A5 CD40	Caudate, hippocampus, putamen Cerebellum, whole blood
rs404060	XXbac-B444P24.8 (21.9)	1f	2.01	-	-	BD	-	-
rs13055562	SHANK3	5	2.37	-	-	BD	RABL2B	Whole blood

The table reports functional characterization for the 102 linkage disequilibrium independent genomic loci associated with bipolar disorder and risk-taking propensity at a conjFDR < 0.05. Nearest gene and functional category have been annotated using FUMA (for SNPs located in intergenic regions, distance in Kb from the nearest gene is also reported). The RegBD rank (from 1 to 7, with 1 being associated with highest evidence of functional effects) was calculated using RegulomeDB based on known and predicted regulatory elements including regions of DNase hypersensitivity, binding sites of transcription factors and promoter regions that regulate transcription. The CADD score, which predicts how deleterious a variant is on protein structure/function was computed in FUMA, based on 63 annotations. Higher scores indicate more deleterious SNP, with a suggested threshold of 12.37 for a SNP to be considered deleterious. Nearest genes were searched in DGIdb in order to assess whether they are part of the druggable genome (druggable categories) or known targets of drugs (drug-gene interactions). In case more than 10 drug-gene interactions were found, the top 10 based on their interaction score in DGIdb are reported. The specificity reports whether the locus has been found to be specific for BD and risk or if it was detected in the analyses between SZ and risk or ADHD and risk at a conjFDR < 0.05. In case the SNP is reported to be a significant eQTL in GTEx v.8 in brain regions or whole blood, the last two columns report regulated genes and relative regions.

Abbreviations: ADHD, attention deficit hyperactivity disorder; BD, bipolar disorder; NAc, nucleus accumbens; SNP, single nucleotide polymorphism; RegBD, Regulome DB, SZ, schizophrenia

SNP	Position	Nearest gene (Kb)	Functional category	A1 / A2	beta BD	p BD	condFDR BD risk	RegDB Rank	CADD Score	Druggable categories	Drug-gene interactions	Novel	Specific
rs10917509	1:19992066	HTR6	UTR5	T/C	0.05	7.3E-08	5.2E-03	2b	7.91	Druggable genome	Cyproheptadine, risperidone, fluperlapine, loxapine, amoxapine, idalopirdine, amitriptyline, cerlapiridine, metitepine, BRL- 15,572	Yes	BD
rs1284373	1:33355923	HPCA	intronic	T/C	-0.05	5.1E-05	9.5E-03	3a	0.95	-	-	Yes	BD, SZ
s61774748	1:41841503	FOXO6	intronic	T/G	-0.05	9.8E-07	3.0E-03	6	17.19	-	-	1	BD, SZ
s2126180	1:61105668	RP11-776H12.1	ncRNA	A/G	0.06	1.6E-09	1.7E-04	3a	1.00	-	-	2	BD, SZ
s11210099	1:73429567	RP4-660H19.1 (64.7)	intergenic	T/C	0.05	1.1E-06	8.9E-04	6	5.64	-	-	3	BD, SZ, ADHD
rs483252	1:108510358	VAV3-AS1	ncRNA	A/C	-0.06	9.9E-07	7.3E-03	3a	5.74	-	Setipiprant, carbacyclin, iloprost, AM-461, cloprostenol, vidupiprant, asapiprant, nedocromil, dinoprostone, treprostinil	Yes	BD
s67050019	1:154267953	RNU6-239P (0.03)	upstream	A/G	0.08	3.7E-07	4.5E-03	5	6.76	-	-	Yes	BD
\$4845399	1:154866093	KCNN3 (23.3)	intergenic	T/C	0.06	5.6E-08	8.2E-03	5	4.11	Druggable genome	Dequalinium, riluzole, tubocurarine, apamin	Yes	BD, SZ
s10737496	1:163745389	RP4-640E24.1 (6.5)	intergenic	T/C	-0.05	7.2E-09	1.4E-04	5	5.80	-	-	2	BD, SZ
\$4915346	1:199122192	RP11-382E9.1	ncRNA	A/G	-0.05	1.3E-05	6.6E-03	5	11.13	-	-	Yes	BD
\$733760	2:21534298	AC067959.1	ncRNA	T/G	-0.05	7.2E-08	4.5E-03	5	0.81	-	-	4	BD, SZ
\$2339519	2:22604140	AC068490.2:AC09657 0.2	ncRNA	A/G	0.05	1.9E-07	1.9E-03	6	5.46	-	-	4	BD, SZ, ADHD
\$1506536	2:28182006	MRPL33:BRE	intronic	T/C	-0.05	4.6E-07	9.6E-04	3a	18.95	-	-	1	BD, SZ
57681866	2:57975714	CTD-2026C7.1 (6.9)	intergenic	A/G	-0.10	2.3E-07	2.7E-03	5	18.49	-	-	5	BD, SZ
4619651	2:97416153	LMAN2L (10.4)	intergenic	A/G	-0.07	4.8E-11	5.1E-05	5	0.83	-	-	5	BD, SZ
s17183814	2:166152389	SCN2A	exonic	A/G	-0.10	2.7E-08	1.9E-03	5	19.83	Druggable genome	Chloroprocaine hydrochloride, BKTR-171, elpetrigine, mexiletine hydrochloride, ethotoin, hexylcaine hydrochloride, orphenadrine hydrochloride, evenamide, lidocaine hydrochloride, procaine hydrochloride	5	BD
s1869374	2:169481472	CERS6	intronic	T/G	-0.06	3.7E-08	1.7E-03	7	1.23	-	-	2	BD
s4972439	2:175261443	SCRN3	intronic	T/C	0.06	4.3E-07	8.0E-03	4	1.50	-	-	Yes	BD
s6433891	2:181969709	AC068196.1:AC10482 0.2	ncRNA	A/G	0.05	1.6E-07	3.1E-03	4	13.00	-	-	Yes	BD

Appendix Table 2. Functional characterization of independent genomic loci associated with bipolar disorder after conditioning on risk-taking propensity at condFDR < 0.01

rs1429423	2:185868877	ZNF804A (864.7)	intergenic	T/C	-0.06	3.9E-07	4.0E-04	6	2.29	-	Lithium	6	BD, SZ
rs13014947	2:193742999	PCGEM1 (101.4)	intergenic	A/G	-0.05	1.1E-07	7.5E-03	7	4.67	-	-	5	BD, SZ
rs2719164	2:194437889	AC074290.1 (157.4)	intergenic	A/G	0.05	4.8E-08	5.7E-03	5	0.30	-	-	5	BD, SZ
rs139272730	2:211182602	MYL1 (2.7)	intergenic	T/C	-0.17	1.7E-07	6.3E-03	6	0.08	-	-	Yes	BD, SZ
rs4676412	2:241553492	CAPN10:GPR35	intronic	A/G	0.06	7.6E-08	7.8E-03	4	0.11	Druggable genome	Metformin, tacrolimus, zaprinast, lodoxamide, bumetanide, furosemide, CHEMBL1256291, CHEMBL107513, luteolin, myricetin	Yes	BD
rs7644022	3:10510618	ATP2B2	intronic	A/C	0.05	2.5E-07	6.2E-03	5	3.51	Druggable genome	-	Yes	BD
rs4328757	3:36938180	TRANK1	intronic	T/C	0.07	8.4E-13	5.1E-08	5	1.09	-	-	5	BD, SZ
rs59212827	3:44769620	ZNF501 (1.5)	intergenic	A/G	-0.05	4.0E-07	8.1E-03	7	0.03	-	-	1	BD
rs2276834	3:52325759	GLYCTK-AS1	splicing	A/G	0.06	2.1E-11	2.5E-06	2b	14.80	-	-	7	BD, SZ
rs6806239	3:70488207	<i>RP11-231113.2</i> (126.4)	intergenic	T/G	0.07	2.6E-08	7.1E-04	6	2.78	-	-	2	BD, SZ
rs4452341	3:85787986	CADM2	intronic	A/G	-0.05	1.1E-06	8.8E-04	5	1.26	-	Alcohol	8	BD, SZ, ADHD
rs7621447	3:86684769	<i>RP11-331K15.1</i> (138.6)	intergenic	A/C	0.04	4.0E-05	8.0E-03	7	0.33	-	-	8	BD, SZ, ADHD
rs696366	3:107757060	<i>CD</i> 47 (5.1)	intergenic	A/C		4.5E-08	7.0E-05	5	1.80	Druggable genome	ALX-148, magrolimab, ABT-150	5	BD, SZ
rs78104110	3:114133266	ZBTB20	intronic	T/C	-0.13	2.1E-07	1.4E-03	5	5.22	-	-	Yes	BD
rs67428377	3:155354340	PLCH1	intronic	A/C	-0.05	2.2E-05	5.8E-03	5	1.18	Druggable genome	-	Yes	BD, SZ
rs10937241	3:185822774	ETV5	intronic	A/G		4.3E-06	9.8E-03	5	0.67	Druggable genome	Trametinib	9	BD
rs535066	4:46240287	<i>RP11-320H14.1</i> (5.3)	intergenic	T/G	0.05	1.7E-06	1.2E-03	6	0.33	-	-	Yes	BD, SZ
rs2651566	4:101507968	EMCN (68.1)	intergenic	A/G	-0.04	4.3E-06	9.0E-03	7	2.23	-	-	Yes	BD
rs2647256	4:106201556	<i>TET2</i> (0.6)	downstrea m	T/C	0.05	6.1E-06	2.7E-03	4	3.36	-	Decitabine, azacitidine, hydrochlorothiazide	Yes	BD, SZ
rs2635209	4:118425913	AC092661.1	ncRNA	T/C	-0.05	6.1E-08	8.0E-03	7	0.65	-	-	10	BD
rs112481526	4:123076007	KIAA1109	intronic	A/G		1.9E-09	7.0E-04	5	2.04	-	-	2	BD
rs11737121	4:147268639	SLC10A7	intronic	A/G	-0.06	1.8E-05	5.0E-03	5	3.38	-	-	Yes	BD, SZ
rs28565152	5:7542911	ADCY2	intronic	A/G	0.07	2.0E-09	1.7E-04	5	0.43	Druggable genome	CHEMBL401844, colfrosin, aurothioglucose, capecitabine	5	BD
rs6865469	5:78849505	Y_RNA (18.7)	intergenic	T/G	0.06	1.7E-08	4.6E-03	5	4.46	-	-	2	BD
rs6887473	5:80961069	SSBP2	intronic	A/G	-0.06	8.8E-09	2.7E-03	6	3.07	-	-	5	BD
rs12519857	5:113733109	KCNN2	intronic	T/G	0.04	2.6E-05	6.8E-03	7	2.10	Druggable genome	Apamin, tubocurarine, dequalinium	Yes	BD, SZ
rs13169274	5:137855305	ETF1	intronic	T/C	-0.04	2.0E-05	5.5E-03	7	1.38	-	-	2	BD, SZ

rs75623709	5:145870577	TCERG1	intronic	T/G	-0.07	5.9E-06	3.2E-03	6	2.71	-	-	Yes	BD, SZ
rs4958592	5:152288222	AC091969.1	ncRNA	A/G	-0.04	8.3E-06	9.4E-03	5	0.02	-	-	10	BD, SZ
rs7702334	5:165701326	<i>CTB-63M22.1</i> (108.0)	intergenic	T/G	-0.04	4.5E-06	6.2E-03	7	5.72	-	-	3	BD
rs72841199	5:169284998	DOCK2	intronic	A/G	0.06	2.9E-11	3.2E-05	6	15.42	-	-	2	BD
rs829473	6:72440951	RNU4-66P (78.6)	intergenic	A/C	-0.04	1.6E-05	5.5E-03	6	1.00	-	-	5	BD, SZ
rs13208578	6:98572976	RP11-436D23.1	intronic	T/C	0.07	4.7E-13	2.3E-08	5	13.04	-	-	1	BD, SZ
rs9371601	6:152790573	SYNE1	intronic	T/G	0.05	7.0E-08	4.0E-03	6	0.81	-	-	11	BD, SZ
rs6927659	6:153397299	RGS17	intronic	T/G	0.05	1.5E-06	1.1E-03	7	2.06	-	-	11	BD, SZ
rs6456095	6:166984094	RPS6KA2	intronic	T/C	-0.06	5.6E-09	2.0E-03	6	3.62	Druggable genome	CHEMBL573107	5	BD
rs12154473	7:1982181	MADILI	intronic	A/G	-0.06	2.4E-09	6.7E-04	4	1.36	-	Paclitaxel, carboplatin	12	BD, SZ, ADHD
rs113779084	7:11871787	THSD7A	UTR5	A/G	0.08	1.4E-13	5.6E-06	4	16.30	-	-	5	BD
rs6954854	7:21492589	SP4	intronic	A/G	-0.06	5.9E-10	4.2E-05	7	5.05	-	-	2	BD
rs12672003	7:24647222	MPP6	intronic	A/G	-0.09	2.7E-09	2.9E-05	6	1.30	-	-	2	BD, SZ
rs11770210	7:29993998	SCRN1	intronic	A/G	0.07	6.4E-08	8.6E-03	5	1.14	-	-	Yes	BD
rs10487648	7:82583609	PCLO	exonic	A/C	-0.06	7.8E-07	9.3E-03	6	13.19	Clinically actionable	-	13	BD, SZ
rs117450257	7:100446237	SLC12A9:RP11- 126L15.4	ncRNA	A/G	-0.11	2.6E-06	1.6E-03	5	0.14	Druggable genome	-	1	BD, SZ
rs11764361	7:105043229	SRPK2 (3.5)	intergenic	A/G	0.06	3.5E-09	1.6E-04	5	14.76	Druggable genome	Purvalanol B, adenine	5	BD, SZ
rs62474680	7:115016799	<i>RP11-222023.1</i> (126.6)	intergenic	A/G			9.9E-05	5	2.81	-	-	Yes	BD, SZ
rs6946056	7:131870597	PLXNA4	intronic	A/C	-0.05	3.7E-08	3.4E-03	4	0.12	-	-	2	BD, SZ
rs10255167	7:140676153	<i>CCT4P1</i> (21.6)	intergenic	A/G	0.07	1.6E-08	2.8E-03	4	0.94	-	-	5	BD, SZ
rs6557904	8:26106100	RP11-98P2.1 (6.3)	intergenic	T/C	-0.10	4.0E-05	8.0E-03	2b	0.39	-	-	Yes	BD, SZ
rs73560982	8:34214305	<i>RP1-84015.2</i> (10.1)	intergenic	T/C			1.8E-03	5	1.54	-	-	2	BD, SZ
rs7813444	8:65437506	RP11-21C4.4 (29.3)	intergenic	A/G	0.04	3.5E-05	7.5E-03	6	5.15	-	-	Yes	BD, SZ
rs34853464	8:143363277	TSNARE1	intronic	T/C	0.04	1.6E-05	4.7E-03	5	1.07	-	-	14	BD, SZ
rs6992333	8:144993377	PLEC	exonic	A/G	-0.06	1.6E-09	9.0E-04	4	3.77	-	-	2	BD
rs10973223	9:37121837	ZCCHC7	intronic	T/C	-0.06	2.2E-07	5.4E-03	3a	0.37	-	-	2	BD, SZ
rs10869262	9:76102010	RP11-404E6.1 (11.0)	intergenic	A/G	0.05	7.8E-08	9.0E-03	7	1.19		-	Yes	BD
rs11137399	9:141068624	TUBBP5	ncRNA	T/C	-0.07	2.9E-08	1.4E-04	4	2.51	Druggable genome	-	2	BD
rs10828679	10:18711288	CACNB2	intronic	A/G	0.08	6.2E-08	5.8E-03	4	1.14	-	Isradipine, nimodipine, felodipine, nisoldipine, gabapentin, bepridil hydrochloride, nifedipine, nilvadipine, atagabalin, imagabalin	2	BD, SZ

imagabalin

rs2154393	10:62326687	ANK3	intronic	T/C	0.12	1.2E-11	6.2E-06	5	0.77	-	-	5	BD
rs10761661	10:64525135	ALDH7A1P4 (24.0)	intergenic	T/C	0.05	4.6E-08	2.9E-03	5	0.05	-	-	2	BD, SZ
rs2496038	10:106511954	SORCS3	intronic	T/G	0.05	2.6E-06	1.6E-03	6	1.83	-	-	10	BD, SZ, ADHD
rs2273738	10:111648659	XPNPEP1	intronic	T/C	0.09	1.6E-11	7.2E-06	6	1.85	-	Tosedostat	5	BD
rs1351522	11:13268386	ARNTL (29.8)	intergenic	T/C	-0.04	2.4E-06	1.5E-03	7	1.12	-	-	8	BD, SZ
rs1482742	11:23250967	<i>RP11-266A24.1</i> (26.3)	intergenic	T/G	-0.04	2.3E-05	9.6E-03	7	2.52	-	-	Yes	BD, SZ
rs144225206	11:45844797	CTD-2210P24.6	ncRNA	A/G	0.08	5.0E-06	3.1E-03	5	2.45	-	-	Yes	BD, SZ
rs174594	11:61619829	FADS2	intronic	A/C	-0.07	4.4E-13	5.9E-06	5	2.05	-	Linolenic acid	5	BD
rs4672	11:64009879	FKBP2	exonic	A/G	0.10	3.4E-09	9.1E-04	4	20.50	-	-	2	BD
rs12577917	11:66182417	RP11-867G23.10	ncRNA	T/C	0.05	3.7E-08	2.8E-04	2b	0.65	-	-	5	BD, SZ
rs11602121	11:70559878	SHANK2	intronic	T/C	-0.06	2.2E-10	8.9E-05	2b	2.85	-	-	5	BD
rs12289486	11:79092527	TENM4	intronic	T/C	0.08	3.3E-08	2.5E-03	5	6.82	-	-	15	BD
rs308800	11:88230512	<i>GRM5-AS1:GRM5</i> (7.2)	intergenic	T/C	0.06	2.5E-06	3.0E-03	5	0.33	-	Dipraglurant, CHEMBL292065, LY54694, raseglurant, basimglurant, CHEMBL88612, CHEMBL381055, acamprosate, AZD2066, rufinamide	3	BD, SZ
rs12806504	11:99089993	CNTN5	intronic	A/G	0.06	1.0E-06	2.7E-03	6	6.33	-	-	3	BD, SZ
rs10848637	12:2316554	CACNAIC	intronic	A/C	0.07	5.5E-14	2.3E-08	7	7.76	-	Verapamil, nicardipine, amlodipine besylate, elpetrigine, benidipine, imagabalin, isradipine, nifedipine, felodipine, atagabalin	5	BD, SZ
rs75888683	12:79478068	SYT1	intronic	T/G	0.12	1.1E-07	6.3E-03	6	3.32	-	Cocaine	Yes	BD
rs17680262	12:110354536	ТСНР	UTR3	T/C	0.09	2.7E-07	9.5E-03	5	0.53	-	-	4	BD, SZ
rs4075692	13:31323342	ALOX5AP	intronic	A/G	0.05	1.3E-07	1.7E-04	6	0.70	-	Fiboflapon	Yes	BD, SZ
rs4884463	13:54035129	AL450423.1 (93.0)	intergenic	A/G	-0.05	2.9E-07	1.1E-03	2b	2.66	-	-	3	BD
rs7982263	13:80061074	NDFIP2	intronic	T/C	-0.05	5.2E-08	3.8E-04	4	0.08	-	-	Yes	BD, SZ
rs35306827	13:113869045	CUL4A	intronic	A/G	-0.07	3.6E-09	1.1E-03	4	1.15	Clinically actionable	Lenalidomide, thalidomide, pomalidomide	2	BD
rs11844034	14:33420212	NPAS3	intronic	A/G	0.05	1.2E-05	4.0E-03	5	5.67	-	1	16	BD, SZ, ADHD
rs10131905	14:62425610	CTD-2277K2.1	ncRNA	A/C	-0.05	8.9E-07	7.5E-04	7	2.88	-	-	Yes	BD, SZ
rs2693698	14:99719219	BCL11B	intronic	A/G	-0.05	2.0E-08	4.6E-03	2b	8.09	-	-	2	BD, SZ
rs12892189	14:104319989	LINC00637	ncRNA	A/C	0.05	8.2E-07	7.0E-04	4	1.95	-	-	1	BD, SZ
rs35958438	15:38973793	RP11-275I4.2	ncRNA	A/G	-0.06	3.8E-08	7.4E-04	5	0.71	-	-	2	BD
rs4447398	15:42904904	STARD9	intronic	A/C	0.08	2.6E-09	2.2E-05	4	0.04	-	-	5	BD, SZ
rs72743329	15:74048178	C15orf59 (3.1)	intergenic	T/C	-0.04	1.5E-05	6.7E-03	4	3.05	-	-	Yes	BD, SZ
rs62011735	15:83581018	HOMER2	intronic	A/C	-0.06	2.1E-08	3.2E-03	3a	0.41	-	-	2	BD, SZ

rs748455	15:85149575	ZSCAN2	intronic	T/C	0.07	5.0E-11	4.1E-06	5	3.27	-	-	5	BD, SZ
rs4702	15:91426560	FURIN	UTR3	A/G	-0.06	3.5E-09	8.0E-06	4	17.36	Druggable genome	Decanoic acid, pirfenidone	2	BD, SZ
rs28455634	16:9230816	C16orf72 (15.3)	intergenic	A/G	-0.06	2.6E-10	2.5E-04	5	4.35	-	-	2	BD, SZ
rs7201930	16:9958655	GRIN2A	intronic	T/C	-0.06	1.9E-08	2.3E-04	3a	0.79	Druggable genome	Neboglamine, amantadine, acamprosate calcium, neramexane mesylate, dizocilpine, N-Methyl- D-Aspartic Acid, dextromethorphan polistirex, indantadol, apimostinel, AV-101	5	BD, SZ
rs17808510	16:23821996	PRKCB (25.3)	intergenic	A/G	-0.06	3.3E-05	7.3E-03	7	1.41	Druggable genome	GSK-690693, enzastaurin, midostaurin, ruboxistaurin, CEP- 2563, quercetin, balanol, sotrastaurin, CHEMBL1236539, UCN-01	17	BD, SZ
rs11644048	16:29885698	SEZ6L2	intronic	A/G	-0.05	5.8E-07	2.3E-03	4	0.44	-	-	Yes	BD, SZ
rs8043792	16:61660554	CDH8 (20.6)	intergenic	T/C	-0.04	2.0E-06	3.3E-03	6	4.88	-	-	Yes	BD
rs35251956	16:89654800	CPNE7	intronic	T/C	-0.06	7.2E-08	1.2E-03	4	0.50	-	-	2	BD
rs9896486	17:1252843	YWHAE	intronic	T/G	0.05	5.9E-08	8.9E-05	5	1.95	-	Insulin, Phenethylisothiocyanate, CHEMBL4244843	18	BD, SZ
rs4790841	17:1835482	RTN4RL1 (2.5)	intergenic	T/C	0.07	3.1E-08	3.1E-03	4	0.15	Druggable genome	-	2	BD, SZ
rs61554907	17:38220432	THRA	intronic	T/G	0.09	1.6E-08	9.9E-04	4	15.25	Druggable genome	Liothyronine sodium, dextrothyroxine, sobetirome, liothyronine, liotrix, tiratricol, dextrothyroxine sodium, levothyroxine, dronedarone, lithium	12	BD
rs12940636	17:53400110	HLF	UTR3	T/C	-0.05	2.9E-06	2.2E-03	4	20.30	Clinically actionable	-	5	BD, SZ
rs4788865	17:73115508	ARMC7	intronic	T/G		2.3E-07	6.8E-03	4	3.35	-	-	Yes	BD
rs8090457	18:51539487	AC090666.1 (73.5)	intergenic	A/G	-0.05	6.6E-08	7.8E-03	6	7.75	-	-	3	BD
rs28865701	18:77620911	KCNG2 (2.8)	intergenic	A/G	-0.04	7.6E-06	6.9E-03	5	0.20	-	Tedisamil, dalfampridine, nerispiridine, Guanidine hydrochloride	8	BD, SZ
rs1736195	19:2786557	THOP1	intronic	T/C	0.05	1.3E-05	4.2E-03	4	5.18	Druggable genome	Nemonoxacin, icofungipen, karenitecin	Yes	BD, SZ
rs7408675	19:13089890	DAND5 (4.3)	intergenic	A/G	0.05	3.2E-07	7.7E-03	5	0.48	-	Methyldopa	1	BD
rs112219496	19:19358086	NCAN	intronic	A/G	0.07	6.4E-08	3.3E-03	5	0.38	-	Hyalunorate sodium, dextrose, thiodigalactoside	5	BD, SZ
rs67712855	20:43682551	STK4	intronic	T/G	0.07	4.2E-11	2.5E-06	3a	1.49	Druggable genome	Bosutinib, cerdulatinib, hesperadin	5	BD, SZ
rs1569723	20:44742064	<i>CD40</i> (4.9)	intergenic	A/C	-0.05	3.9E-07	9.2E-04	1f	1.50	Druggable genome	Teneliximab, dacetuzumab, iscalimab, PG-102, hydroquinone,	4	BD, SZ

											fludarapine, ravagalimab, streptozocin, APX-005M, bleselumab		
rs237460	20:48033127	KCNB1	intronic	T/C	0.06	4.3E-09	1.1E-03	5	0.41	-	Tedisamil, guanidine	2	BD, SZ
											hydrochloride, dalfampridine,		
											nerispirdine		
rs13044225	20:60865815	OSBPL2	intronic	A/G	-0.05	8.5E-09	2.0E-03	5	3.84	-	SNAP-7941, CHEMBL178707,	2	BD
											CHEMBL214957,		
											CHEMBL2110360, haloperidol,		
											BMS-830216		
rs6519227	22:41119899	MCHR1 (41.1)	intergenic	A/G	0.05	2.9E-08	3.4E-03	3a	3.71	-	-	5	BD, SZ
rs2038061	22:43397861	PACSIN2	intronic	A/G	-0.05	6.3E-08	2.3E-03	2b	0.15	-	Mercaptopurine, methotrexate	3	BD, SZ

The table reports functional characterization for the linkage-disequilibrium independent genomic loci associated with bipolar disorder conditioning on risk-taking propensity at a condFDR < 0.01. Nearest gene and functional category have been annotated using FUMA (for SNPs located in intergenic regions, distance in Kb from the nearest gene is also reported). Beta BD shows the direction of effect of the A1 allele in the original GWAS dataset. The RegBD rank (from 1 to 7, with 1 being associated with highest evidence of functional effects) was calculated using RegulomeDB based on known and predicted regulatory elements including regions of DNase hypersensitivity, binding sites of transcription factors and promoter regions that regulate transcription. The CADD score, which predicts how deleterious a variant is on protein structure/function was computed in FUMA. Higher scores indicate more deleterious SNP, with a suggested threshold of 12.37 for a SNP to be considered deleterious. Nearest genes were located were searched in DGIdb in order to assess whether they are part of the druggable genome (druggable categories) or known targets of drugs (drug-gene interactions). In case more than 10 drug-gene interactions were found, the top 10 based on their interaction score in DGIdb are reported. The 'novel' column indicates whether the genomic loci are novel or have been found to be associated with BD by previous studies indicated in supplementary references. Abbreviations: ADHD, attention deficit hyperactivity disorder; BD, bipolar disorder; SNP, single nucleotide polymorphism; RegBD, Regulome DB; SZ, schizophrenia

Appendix Table 3. Functional characterization of inde	pendent ger	enomic loci associated v	with risk-taking pro	pensity conditioning	on BD at condFDR < 0.01

SNP	Position	Nearest gene (Kb)	Functional category	A1 / A2	beta risk	p risk	condFDR risk BD	RegDB Rank	CADD Score	Druggable categories	Drug-gene interactions	Novel	Specific
rs785272	1:33311507	S100PBP	intronic	T/C	0.01	1.4E-05	4.5E-03	5	6.36	-	_	19	BD, SZ, ADHD
s10914678	1:33767228	<i>ZNF362:AL513327.1</i> (0.9)	downstream	T/G	0.01	3.5E-08	3.0E-04	1b	0.15	-	-	19	BD, SZ, ADHD
s11210630	1:42852612	RIMKLA	intronic	T/C	0.01	3.0E-06	2.8E-03	3a	1.15	-	-	19	BD, SZ
s4649972	1:73444790	RP4-660H19.1 (80.0)	intergenic	A/C	-0.01	6.8E-08	1.3E-04	5	1.82	-	-	Yes	BD, SZ, ADHD
s2595944	1:204966749	NFASC	intronic	A/G	0.01	1.0E-06	8.7E-03	5	0.05	-	-	19	BD
s984983	1:208034955	Clorf132	ncRNA	T/C	-0.02	4.2E-07	2.8E-03	4	2.82	-	-	19	BD, SZ, ADHD
s58560561	1:243537729	SDCCAG8	intronic	T/G	-0.01	2.3E-10	1.8E-06	5	3.38	-	-	19	BD, SZ, ADHD
s11124322	2:22442392	AC068490.2	ncRNA	A/G	0.01	3.2E-06	1.8E-03	5	5.08	-	-	Yes	BD, SZ, ADHD
s71437484	2:23595043	AC012506.4 (3.1)	intergenic	T/C	0.02	5.5E-07	3.5E-03	5	0.93	-	-	19	BD, SZ
s12617392	2:27336827	CGREF1	intronic	A/C	-0.01	2.8E-08	6.7E-04	4	0.70	Druggable genome	-	19	BD, SZ, ADHD
s564207	2:45136742	RP11-89K21.1 (10.6)	intergenic	T/C	-0.01	2.9E-07	7.2E-03	6	3.19	-	-	19	BD
s359243	2:60475509	AC007381.3 (102.2)	intergenic	T/C	-0.01	2.9E-08	6.2E-03	5	5.73	-	-	19	BD, SZ, ADHE
s1868402	2:68409037	RP11- 474G23.1:PPP3R1	intronic	A/G	-0.01	8.3E-07	3.6E-03	1f	0.15	-	Myristic acid, voclosporin	Yes	BD
s977950	2:145746816	TEX41	ncRNA	A/C	-0.01	1.6E-06	5.4E-03	5	0.08	-	_	19	BD, ADHD
s545200731		AC062032.1	ncRNA	T/C	0.04	5.3E-06	5.8E-03	6	1.08	-	_	Yes	BD
s34288552	2:171661486	ERICH2 (6.0)	intergenic	A/G	0.01	2.0E-07	5.8E-03	5	7.33	-	_	Yes	BD
s1014959	2:185472113	ZNF804A	intronic	A/G	-0.01	4.0E-05	8.3E-03	7	0.50	-	Lithium	Yes	BD
s35811586	2:233743794	NGEF	UTR3	T/C	0.02	7.7E-07	8.2E-03	4	10.99	-	_	Yes	BD, SZ
s283914	3:17330649	TBC1D5	intronic	T/C	0.01	1.0E-08	7.3E-04	5	2.78	-	_	19	BD, SZ, ADHE
s6793141	3:25202977	AC133680.1	ncRNA	A/G	-0.01	7.6E-08	4.4E-03	7	0.27	-	_	Yes	BD, SZ, ADHE
s7649685	3:82538109	<i>RP11-260018.1</i> (25.3)	intergenic	A/G	-0.01	4.8E-07	6.0E-03	7	0.85	-	-	Yes	BD, ADHD
s17516683	3:85585431	CADM2	intronic	A/G	-0.02	4.2E-29	4.5E-08	7	2.72	-	Alcohol	19	BD, SZ, ADHE
s326353	3:107853648	RP11-861A13.4	ncRNA	T/C	-0.01	6.0E-06	2.7E-03	3a	3.28	-	-	Yes	BD
s7628391	3:163680497	RP11-208P4.1 (38.9)	intergenic	T/C	0.01	5.8E-06	4.0E-03	5	0.33	-	-	Yes	BD
s4434184	3:181422854	SOX2-OT	ncRNA	A/G	-0.02	1.4E-10	9.0E-07	3a	20.30	Clinically actionable	-	19	BD, SZ, ADHI
s279846	4:46329886	GABRA2	intronic	T/C	-0.01	4.1E-08	9.1E-05	7	1.81	Druggable genome	Halazepam, bromazapem, isoguvacine, primidone, diazepam, picrotoxin, AZD7325, talbutal, hexobarbital, quazepam	19	BD, SZ
s992493	4:106180264	TET2	intronic	T/C	0.02	2.2E-10	1.3E-06	5	4.44	Clinically actionable	Decitabine, azacitidine, hydrochlorothiazide	19	BD, SZ, ADHI
s4696294	4:152713089	<i>RP11-424M21.1</i> (7.6)	intergenic	A/C	-0.01	2.9E-06	9.6E-03	6	0.02	-	-	Yes	BD

rs3849046	5:137851192	ETF1	intronic	T/C	0.01	5.2E-06	2.5E-03	4	1.90	-	-	19	BD, SZ
rs76157183	5:145833478	TCERG1	intronic	T/C	0.02	5.1E-05	9.6E-03	5	0.08	-	-	Yes	BD
rs2195450	5:152871009	GRIA1	intronic	A/G	0.01	5.7E-06	3.8E-03	4	16.32	Druggable genome	Zonampanel, MK-8777, selurampanel, mibampator, becampanel, cyclothiazide, NBQX, CX516, sevoflurane, desflurane	Yes	BD
rs852960	6:72205635	<i>RP1-288M22.2</i> (37.1)	intergenic	A/G	0.01	1.6E-05	5.7E-03	5	5.28	-	-	Yes	BD
rs1487445	6:98565211	RP11-436D23.1	ncRNA	T/C	0.01	1.1E-05	3.8E-03	5	3.27	-	-	19	BD, SZ
rs4027745	6:109131493	<i>RP3-354J5.3</i> (7.4)	intergenic	T/C	0.01	1.3E-08	4.1E-03	5	1.16	-	-	19	BD, SZ, ADHD
rs7758002	6:153440770	RGS17	intronic	T/G	-0.01	7.1E-07	1.3E-03	7	1.06	-	-	Yes	BD
rs117450257	7:100446237	SLC12A9:RP11- 126L15.4	ncRNA	A/G	-0.02	2.1E-05	5.6E-03	5	0.14	Druggable genome	-	Yes	BD
rs2470939	7:104581510	RP11-325F22.2	ncRNA	A/G	0.01	2.0E-05	5.5E-03	4	2.86	-	-	19	BD, SZ
rs10262103	7:114091844	FOXP2	intronic	A/C	0.02	8.5E-13	2.2E-06	5	5.22	-	-	19	BD, SZ, ADHD
rs4275159	7:115067269	<i>RP11-222023.1</i> (76.2)	intergenic	A/G	-0.01	2.8E-09	1.1E-05	5	1.21	-	-	19	BD, SZ, ADHD
rs2351138	7:137071390	DGKI	UTR3	T/C	-0.01	2.7E-05	6.5E-03	5	1.05	-	-	Yes	BD, SZ
rs80206917	7:140159389	MKRN1	intronic	T/C	0.01	2.3E-05	6.5E-03	2b	5.92	-	-	Yes	BD
rs17055053	8:26088094	RP11-98P2.1 (24.3)	intergenic	T/C	-0.02	5.1E-05	9.5E-03	4	14.95	-	-	Yes	BD
rs7829912	8:33479228	RP11-317N12.1	ncRNA	T/C	0.01	6.3E-08	1.4E-03	5	4.15	-	-	20	BD, SZ, ADHD
rs7845911	8:38135412	WHSC1L1	intronic	T/C	0.01	2.8E-05	6.7E-03	5	0.20	Clinically actionable	-	Yes	BD, SZ
rs62519839	8:65497573	BHLHE22 (1.4)	intergenic	T/C	-0.02	6.8E-11	3.9E-05	4	11.71	-	-	19	BD, SZ, ADHD
rs1051920	8:81438420	ZBTB10	UTR3	T/C	0.02	1.5E-10	5.3E-05	5	0.70	-	-	19	BD, SZ, ADHD
rs34819186	8:143363229	TSNARE1	intronic	A/C	0.01	6.4E-08	1.3E-04	5	0.00	-	-	Yes	BD, SZ, ADHD
rs12115650	9:126367705	DENND1A	intronic	A/G	-0.01	1.4E-07	5.6E-03	5	11.68	-	-	19	BD, ADHD
rs7871821	9:128992756	<i>RP11-343J18.1</i> (39.6)	intergenic	T/C	0.01	5.5E-06	6.9E-03	5	1.18		-	Yes	BD
rs10823790	10:73338253	CDH23	intronic	A/G	0.01	7.2E-08	5.3E-03	5	0.76	-	Methylphenidate	Yes	BD, SZ, ADHD
rs9630089	10:98968967	ARHGAP19-SLIT1	intronic	A/G	-0.01	2.3E-08	3.2E-04	5	0.57	-	etoposide, hydrochlorothiazide	19	BD, SZ, ADHD
rs12244388	10:104640052	C10orf32- ASMT:AS3MT	intronic	A/G	0.01	1.5E-05	4.7E-03	5	1.83	-	Melatonin, ademetionine	Yes	BD, SZ, ADHD
rs12761679	10:106512727	SORCS3	intronic	A/C	0.01	4.1E-06	2.1E-03	6	4.17	-	-	Yes	BD, SZ
rs3901919	11:13237023	ARNTL (61.2)	intergenic	A/C	0.01	3.9E-06	2.1E-03	2b	0.09	-	-	19	BD
rs7126178	11:29016502	RP11-115J23.1	ncRNA	A/G	-0.01	6.5E-08	7.0E-03	5	0.87	-	-	20	BD, SZ, ADHD
rs7111300	11:45806624	<i>CTD-2210P24.4</i> (12.7)	intergenic	T/G	0.02	3.0E-05	7.0E-03	5	1.34	-	-	Yes	BD
rs11227478	11:66173400	(1217) RP11-867G23.10 (3.2)	intergenic	A/G	-0.01	1.3E-06	1.0E-03	5	0.31	-	-	Yes	BD, SZ
rs11827676	11:88263465	GRM5	intronic	A/C	0.01	3.7E-05	8.0E-03	6	3.66	Druggable genome	Dipraglurant, CHEMBL292065, Ly545694, raseglurant, basimglurant, CHEMBL88612, CHEMBL381055,	Yes	BD

rs11226321 11:10422179 <i>RP11-880D15.1</i> intergenic 1°C -0.02 2.8E-08 4.3E-03 7 1.84 - - 19 BD, SZ, ADHD rs61909095 12:2301189 CACNALC intronic TC -0.01 1.6E-06 1.2E-03 3a 0.13 - Vergamil, nicardipine, angobalin Ps BD, SZ, ADHD rs8805707 13:3131455 AL0X5AP intronic TC -0.01 6.7E-00 2.9E-03 4 2.17 - Fibodiapon, magabalin, israpidian, srapidalin Fibodiapon, magabalin Fibodiapon, magabalin Yers BD, SZ, ADHD rs800521 14:63409812 MPAS3 intronic TC -0.01 4.2E-05 8.6E-03 4 0.33 - - - BD BD, SZ rs8756642 14:498556611 RP11-610.1 ncRNA AG 0.01 1.2E-03 7.0 0.41 - - - 19 BD, SZ rs875060 16:1032562 18/40623 mcConoo -												acamprosate, AZD2066, rufinamide		
rs81900005 12:2301189 CACNAIC intronic TC -0.01 1.6E-06 1.2E-03 3a 0.13 - Venapamil, nicardipine, micardipine, micardipine, migabilin, israpidine, m	rs11226321	11:104221759		intergenic	T/C	-0.02	2.8E-08	4.3E-03	7	1.84	-	-	19	BD, SZ, ADHD
rs888907 13:31314455 ALOXSAP intronic AC 0.01 67-00 2.9E-03 4 2.17 - Fiboflapon Yes BD rs8806507 14:33409812 APA33 intronic TC -0.01 1.5E-07 2.4E-04 4 0.33 - - - Ves BD, ZA, ADHD rs800521 14:62458832 STT16 intronic TC -0.01 4.2E-05 8.6E-03 4 0.33 - - - Wes BD, SZ, ADHD rs8755642 14:9856621 R/11-610.1. ncRNA A/C 0.01 1.3E-07 2.2E-04 4 1.09 - - - BD, SZ ADHD rs657600 12:4454.5 R/14.543.45.4 NCO 0.01 3.2E-07 7.E-03 4 4.63 progable genome - - - - - - - - - - - - - - - - - -	rs61909095	12:2301189		intronic	T/C	-0.01	1.6E-06	1.2E-03	3a	0.13	-		19	BD, SZ
rs389307 13:13:1455 ALO X5AP intronic A.C -001 6.7E-06 2.9E-03 4 2.17 Fibofiapon Yes BD rs36063234 14:3340912 NPAS3 intronic T/C -0.01 4.2E-05 8.6E-03 4 0.33 - - - Yes BD rs300521 14:6245882 STT6 intronic T/C -0.01 1.5E-07 2.4E-04 4 0.33 - - - - BD BD SZ rs300521 14:6245882 STT6 mRNA A/C -0.01 1.5E-07 2.8E-03 7 0.41 - - - 19 BD, SZ rs60575642 14:10432294 <i>INC06037:CTD-</i> ncRNA A/C 0.01 1.3E-07 2.8E-03 1f 9.51 progenome - - - 0.0 SZ 2.8E-03 1f 9.51 progenome - - ND SZ												imagabalin, israpidine, nifedipine,		
rs36063234 14:33409812 NPAS3 intronic TC -0.01 1.5E-07 2.4E-04 4 3.51 - - - Yes BD, SZ, ADHD rs3005321 14:62458832 STT16 intronic TG -0.01 1.5E-03 6 0.70 - - - BD, SZ rs3783845 14:89857842 149855642 RP11-610.1 ncRNA A/G -0.01 2.0E-08 5.7E-03 7 0.41 - - - 19 BD, SZ rs6575606 14:104322394 LNC00637:CTD- 21345.4 ncRNA A/G 0.01 2.EE-05 4.0E-03 1f 9.51 Druggable genome - - 19 BD, SZ rs4924675 15:42681057 RP11- 64113.1:CAPN3 ncRNA A/G 0.02 1.2E-05 6.4E-03 6 0.00 - - Yes BD, SZ rs12442456 15:78751962 REB2 intronic T/G 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ, ADHD rs2352759 16:10215483	rs3885907	13:31314455	ALOX5AP	intronic	A/C	-0.01	6.7E-06	2.9E-03	4	2.17	_		Yes	BD
rs8005321 14:62458832 SYT16 intronic T.G -0.01 4.2E-05 8.6E-03 4 0.33 - - Yes BD rs8783845 14:3986748 POXN3:RP11- 33N162 ncRNA T/C -0.01 1.5E-06 1.1E-03 6 0.70 - - - 19 BD, SZ rs6575642 14:9855662 RP11-6101.1 ncRNA A/G -0.01 1.3E-07 2.2E-04 4 1.09 - - - 19 BD, SZ, ADHD rs692675 15:42681057 RP11- 1641131:CAPN3 ncRNA A/G 0.02 1.2E-05 4.0E-03 If 1.09 - - - 19 BD, SZ rs492675 15:42681057 RP11- 1641131:CAPN3 ncRNA A/G 0.02 1.2E-05 4.0E-03 If Druggable genome Enoblituzumab 19 BD, SZ rs2071382 15:7912820 IREB2 intronic T/G 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:79142819 RGIN2A									4		-			
rs3783845 l.48986748 <i>FGXN3:RP11-</i> 33/16.2 ncRNA T/C 0.01 1.5E-06 1.1E-03 6 0.70 - - 19 BD, SZ rs6575642 14:9855661 <i>RP11-610.1</i> ncRNA A/G 0.01 2.0E-08 5.7E-03 7 0.41 - - - 19 BD, SZ rs6576006 14:104322394 <i>LIC00637:CTD-</i> 21345.4 ncRNA A/G 0.01 1.3E-07 2.2E-04 4 1.09 - - - 19 BD, SZ rs4924675 15:42681057 <i>RP11-</i> <i>I64113.1:CAPN3</i> ncRNA A/G 0.01 3.2E-05 7.7E-03 4 4.63 Druggabe - neblitzumab 19 BD, SZ rs1244256 15:78751962 <i>IREB2</i> intronic T/G 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ, ADHD rs2352759 16:10215483 <i>GRIN2A</i> intronic T/C 0.01 5.6E-07 6.0E-04 4 10.02 pruggabe fesoratin, lorlatinb, fostamatinb, festamatinb, festamatinb, festamatinb, festamatinb, festamatinb, f									4		_	_		, ,
33NI6.2 rs657642 14:98556621 PD1-6101.1 ncRNA A/C 0.01 2.0E-08 5.7E-03 7 0.41 - - - 19 BD, SZ, ADHD rs6576006 14:10432349 L/LC00037.CTD. 2134A5.4 ncRNA A/C 0.01 1.3E-07 2.2E-04 4 1.09 - - - - Pageabaa - Pageabaa - - Pageabaa - Pageabaa - Pageabaa - - Pageabaa - Pageabaa - - - Pageabaa - - Pageabaa - Pageabaa - - - - - Pageabaa - - Pageabaa - - - - - - Pageabaa - - - - Pageabaa - - - - -									6		_			
rs6576006 14:104322394 LINC00637:CTD- 2134A5.4 ncRNA A/C 0.01 1.3E-07 2.2E-04 4 1.09 - - - 19 BD, SZ rs4924675 15:42681057 ZP:4012895 CD276 (6.0) intergenic T/C 0.01 3.5E-05 7.7E-03 4 4.63 Druggable genome Enoblituzumab 19 BD rs12442456 15:78751962 <i>IREB2</i> intronic T/G 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C 0.01 4.8E-05 9.2E-03 4 10.02 Druggable genome Memantine, philantotoxin 34, dizocipine, dextromethorphan polistrice, tencoyclidine, felbamate, dextromethorphan polistrice, felbamate	155765615	11.09007101		nord (r r	1/0	0.01	1.5 1 00	1.12 05	0	0.70			17	55,52
21343.4 rs4924675 15:42681057 <i>RP11</i> - (<i>fA4J13.1:CAPN3</i> (<i>fA4J13.1:CAPN3</i>) ncRNA A/G 0.02 1.2E-05 4.0E-03 If 9.51 Druggable genome Enoblitzumab 19 BD, SZ rs7164399 15:7401289 <i>CD276</i> (6.0) intergenic T/C 0.01 3.5E-05 7.7E-03 4 4.63 Druggable genome Enoblitzumab 19 BD, SZ rs12442456 15:78751962 <i>IREB2</i> intronic T/C 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C 0.01 3.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C 0.01 4.8E-05 9.2E-03 4 7.46 Druggable genome Memantine, philantotoxin 343, diccipline, detxromethorphan polistives, tenocyclidine, felbamate, detxromethorphan hydrobromide, genome Siccipline, detxromethorphan hydrobromide, genome Siccipline, detxromethorphan polistives, tenocyclidine, felbamate, detxromethorphan hydrobromide, genome Siccipline, detxromethorphan Siccipline, detxromethorphan S	rs6575642	14:98556621	RP11-6101.1	ncRNA	A/G	-0.01	2.0E-08	5.7E-03	7	0.41	-	-	19	BD, SZ, ADHD
21343.4 rs4924675 15:42681057 RP11- (A4J13.1:CAPN3 (A4J13.1:CAPN3 cRNA A/C 0.02 1.2E-05 A.0E-03 1f 9.51 Druggable genome genome Follow Yes BD, SZ rs7164399 15:74012895 CD276 (6.0) intergenic T/C 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs12442456 15:78751962 IREB2 intronic T/C 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 FES intronic T/C 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ, ADHD rs205759 16:10215483 GR/N2A intronic T/C 0.01 4.8E-05 9.2E-03 4 7.46 Druggable 	rs6576006	14:104322394	LINC00637:CTD-	ncRNA	A/C	0.01	1.3E-07	2.2E-04	4	1.09	-	-	19	BD, SZ
I64J13.1:CAPN3 Intergenic T/C 0.01 3.5E-05 7.7E-03 4 A.63 Druggabic genome Inobilizuzmab 19 BD rs12442456 15:78751962 <i>IKB22</i> intronic T/G 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C 0.01 4.8E-05 9.2E-03 4 10.02 Druggabic genome Meantine, philantoxin 343, Yes BD, SZ, ADHD rs2352759 16:10215483 <i>GRIN2A</i> intronic T/C 0.01 4.8E-05 9.2E-03 4 7.46 Druggabic genome Meantine, philantoxin 343, Yes BD, ADHD rs129267162 16:10215483 <i>GRIN2A</i> ncRNA A/G -0.01 1.9E-06 4.9E-03 5 0.02 - - 19 BD, SZ, ADHD rs129267161 16:71374211 <i>ACI06736.1</i> (9.0.) intregenic A/G <td< td=""><td></td><td></td><td>2134A5.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			2134A5.4											
rs7164399 15:74012895 CD276 (6.0) intergenic T/C 0.01 3.5E-05 7.7E-03 4 4.63 Druggable genome Enoblitzumab 19 BD rs12442456 15:78751962 <i>IREB2</i> intronic T/C 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C 0.01 5.6E-07 6.0E-04 4 10.02 Druggable genome Memantine, foldatinib, fost matinib, fost ma	rs4924675	15:42681057	RP11-	ncRNA	A/G	0.02	1.2E-05	4.0E-03	1f	9.51	Druggable	-	Yes	BD, SZ
rs12442456 15:78751962 <i>IREB2</i> intronic T/G 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C -0.01 5.6E-07 6.0E-04 4 10.02 Druggable genome Hesperadin, lorlatinib, fostmanih, linifanib, SP-600125, dasatinib Yes BD, SZ, ADHD rs2352759 16:10215483 <i>GRIN2A</i> intronic T/C 0.01 4.8E-05 9.2E-03 4 7.46 Druggable genome Memantine, philantotoxin 343, dizocilpine, dextromethorphan polistirex, tenocyclidine, febbrane, dextromethorphan hydrobromide, glycine, selfotel, phencyclidine BD, ADHD rs12927162 16:52684916 <i>CASC16</i> ncRNA A/G -0.01 1.9E-06 4.9E-03 5 21.80 - - Yes BD, SZ, ADHD rs12927162 16:571374211 AC106736.1 (9.0) intergenic A/G -0.01 1.9E-06 4.9E-03 5 0.02 - Issuit, phenethylisothiocyanate, extromethorphan hydrobromide, glycine, selfotel, phencyclidine BD SZ, ADHD rs12926961 16:71374211 AC106736.1 (9.0) intronic <td></td> <td></td> <td>164J13.1:CAPN3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>genome</td> <td></td> <td></td> <td></td>			164J13.1:CAPN3								genome			
rs12442456 15:78751962 <i>IREB2</i> intronic T/G 0.01 2.5E-05 6.4E-03 6 0.00 - Yes BD, SZ rs2071382 15:91428197 <i>FES</i> intronic T/C -0.01 5.6E-07 6.0E-04 4 10.02 Druggable genome Hesperadin, lorlatinib, fostamatinib, lorlatinib, fostamatinib, linifanib, SP-600125, dastinib Yes BD, ADHD rs2352759 16:10215483 <i>GRIN2A</i> intronic T/C 0.01 4.8E-05 9.2E-03 4 7.46 Druggable genome Memantine, philantoxin 343, ventoxin 344, v	rs7164399	15:74012895	CD276 (6.0)	intergenic	T/C	0.01	3.5E-05	7.7E-03	4	4.63	Druggable	Enoblituzumab	19	BD
rs207138215:91428197FESintronicT/C $\cdot 0.01$ $5.6E \cdot 07$ $6.0E \cdot 04$ 4 10.02 Druggable genomeHesperadin, lorlatinib, fostamatinib, linifanib, SP-600125, dasatinibYesBD, SZ, ADHDrs2352759 $16:10215483$ GRIN2AintronicT/C 0.01 $4.8E \cdot 05$ $9.2E \cdot 03$ 4 7.46 Druggable genomeHesperadin, lorlatinib, fostamatinib, linifanib, SP-600125, dasatinibMemantine, philantotxin 343, dizoclipine, dektromethorphan polistirex, tencocyclidineBD, ADHDrs12927162 $16:52684916$ CASC16ncRNAA/G -0.01 $1.9E \cdot 06$ $4.9E \cdot 03$ 5 21.80 $$ $-$ YesBDrs12927162 $16:71374211$ AC106736.1 (9.0)intergenic intronicA/G -0.01 $1.9E \cdot 05$ $8.8E \cdot 03$ 5 0.102 $ -$ YesBD, SZ, ADHDrs4790082 $17:1278700$ YWHAEintronicA/G -0.01 $1.9E \cdot 05$ $8.8E \cdot 03$ 4 3.93 $-$ Insulin, phenethylisothiocyanate, CHEMBL4244843YesBD, SZ, ADHDrs7240986 $17:16245333$ PIGLintronicA/G -0.01 $2.9E \cdot 08$ 5 3.67 $ -$ <											genome			
rs2352759 16:10215483 <i>GRIN2A</i> intronic T/C 0.01 4.8E-05 9.2E-03 4 7.46 Druggable genome linifanib, SP-600125, dasatinib Memantine, philantotoxin 343, dizocilpine, dextromethorphan polistirex, tenocyclidine BD, ADHD rs12927162 16:52684916 CASC16 ncRNA A/G -0.01 1.9E-06 4.9E-03 5 21.80 - - Yes BD rs12927162 16:52684916 CASC16 ncRNA A/G -0.01 1.9E-06 4.9E-03 5 0.02 - - Yes BD rs12926961 16:71374211 AC106736.1 (9.0) intergenic A/G -0.01 1.2E-05 8.8E-03 4 3.93 - Insulin, phenethylisothiocyanate, CHEMBL4244843 Yes BD, SZ, ADHD rs4790082 17:1278700 YWHAE intronic A/G -0.01 2.9E-08 5.9E-03 5 3.67 - - 19 BD, SZ, ADHD rs72841389 17:61437939 TANC2 intronic A/G 0.01 5.4E-05 7 6.45 - - - 19 <td>rs12442456</td> <td>15:78751962</td> <td>IREB2</td> <td>intronic</td> <td>T/G</td> <td>0.01</td> <td>2.5E-05</td> <td>6.4E-03</td> <td>6</td> <td>0.00</td> <td>-</td> <td></td> <td>Yes</td> <td>BD, SZ</td>	rs12442456	15:78751962	IREB2	intronic	T/G	0.01	2.5E-05	6.4E-03	6	0.00	-		Yes	BD, SZ
rs2352759 16:10215483 <i>GRIN2A</i> intronic T/C 0.01 4.8E-05 9.2E-03 4 7.46 Druggable genome Memantine, philantotoxin 343, dizocilpine, dextromethorphan polistirex, tenocyclidine, felbamate, dextromethorphan polistirex, tenocyclidine, felbamate, dextromethorphan polistirex, tenocyclidine, glycine, selfotel, phencyclidine BD, ADHD rs12927162 16:52684916 CASCI6 ncRNA A/G -0.01 1.9E-06 4.9E-03 5 21.80 - - Yes BD rs12926961 16:71374211 AC106736.1 (9.0) intergenic A/G -0.01 1.9E-05 8.8E-03 5 0.02 - - Yes BD, ADHD rs4790082 17:1278700 YWHAE intronic A/G -0.01 1.2E-05 8.8E-03 5 0.02 - - Yes BD, SZ, ADHD rs4790082 17:1278700 YWHAE intronic A/G -0.01 1.2E-05 8.8E-03 5 0.02 - - Hexatine, philantotoxin 343, Yes BD, SZ, ADHD rs4790082 17:16245333 PIGL intronic A/G -0.01 2.9E-08 5.9E-03	rs2071382	15:91428197	FES	intronic	T/C	-0.01	5.6E-07	6.0E-04	4	10.02	Druggable	Hesperadin, lorlatinib, fostamatinib,	Yes	BD, SZ, ADHD
rs1292716216:52684916CASC16ncRNAA/G-0.011.9E-064.9E-03521.80dizocilpine, dextromethorphan polistirex, tenocyclidine, felbamate, dextromethorphan hydrobromide, glycine, selfotel, phencyclidiners1292716216:52684916CASC16ncRNAA/G-0.011.9E-064.9E-03521.80YesBDrs1292696116:71374211AC106736.1 (9.0)intergenicA/G-0.011.4E-078.8E-0350.02-19BD, SZ, ADHDrs47908217:1278700YWHAEintronicA/G-0.011.2E-058.8E-0350.02-Insulin, phenethylisothiocyanate, CHEMBL4244843YesBD, SZ, ADHDrs7284138917:61437339PIGLintronicA/G0.015.4E-0553.6719BD, SZ, ADHDrs724098618:53195249TCF4intronicA/G0.015.4E-0576.4519BD, SZ, ADHDrs601773320:44712815NCOA5intronicA/G0.011.1E-085.4E-0576.4519BD, SZ, ADHDrs724098618:53195249TCF4intronicA/G0.011.1E-085.4E-0576.4519BD, SZ, ADHDrs601773320:44712815NCOA5intronicA/G0.011.1E-085.4E-0576.45<											0			
rs12927162 16:52684916 CASC16 ncRNA A/G -0.01 1.9E-06 4.9E-03 5 21.80 - - Yes BD rs12926961 16:71374211 AC106736.1 (9.0) intergenic A/G -0.01 1.9E-06 4.9E-03 5 0.02 - - Yes BD rs4790082 17:1278700 YWHAE intronic A/G -0.01 1.2E-05 8.8E-03 4 3.93 - Insulin, phenethylisothiocyanate, CHEMBL4244843 Yes BD, SZ, ADHD rs4790082 17:16245333 PIGL intronic A/G -0.01 2.9E-08 5.9E-03 5 3.67 - - 19 BD, SZ, ADHD rs72841389 17:16245333 PIGL intronic A/G 0.01 5.4E-06 4.7E-03 7 4.83 - - 19 BD, SZ, ADHD rs72841389 17:61437939 TANC2 intronic A/G 0.01 5.4E-05 7 6.45 - - 19 BD, SZ, ADHD rs7240986 18:53195249 TCF4 intronic <td>rs2352759</td> <td>16:10215483</td> <td>GRIN2A</td> <td>intronic</td> <td>T/C</td> <td>0.01</td> <td>4.8E-05</td> <td>9.2E-03</td> <td>4</td> <td>7.46</td> <td></td> <td>Memantine, philantotoxin 343,</td> <td></td> <td>BD, ADHD</td>	rs2352759	16:10215483	GRIN2A	intronic	T/C	0.01	4.8E-05	9.2E-03	4	7.46		Memantine, philantotoxin 343,		BD, ADHD
rs12927162 16:52684916 CASC16 ncRNA A/G -0.01 1.9E-06 4.9E-03 5 21.80 - - Yes BD rs12926961 16:71374211 AC106736.1 (9.0) intergenic A/G -0.01 4.4E-07 8.8E-03 5 0.02 - 19 BD, SZ, ADHD rs4790082 17:1278700 YWHAE intronic A/G -0.01 1.2E-05 8.8E-03 4 3.93 - Insulin, phenethylisothiocyanate, CHEMBL4244843 Yes BD, SZ, ADHD rs72841389 17:16245333 PIGL intronic A/G -0.01 2.9E-08 5.9E-03 5 3.67 - - 19 BD, SZ, ADHD rs72841389 17:16245333 PIGL intronic A/G 0.01 5.4E-06 4.7E-03 7 4.83 - - 19 BD, SZ, ADHD rs7240986 18:53195249 TCF4 intronic A/G 0.01 1.1E-08 5.4E-05 7 6.45 - - - 19 BD, SZ, ADHD rs7240986 18:53195249 T											genome			
rs12927162 16:52684916 CASC16 ncRNA A/G -0.01 1.9E-06 4.9E-03 5 21.80 - - Yes BD rs12926961 16:71374211 AC106736.1 (9.0) intergenic A/G -0.01 4.4E-07 8.8E-03 5 0.02 - 19 BD, SZ, ADHD rs4790082 17:1278700 YWHAE intronic A/G -0.01 1.2E-05 8.8E-03 4 3.93 - Insulin, phenethylisothiocyanate, CHEMBL4244843 Yes BD, SZ, ADHD rs8071515 17:16245333 PIGL intronic A/G -0.01 2.9E-08 5.9E-03 5 3.67 - - 19 BD, SZ, ADHD rs72841389 17:61437939 TANC2 intronic A/G 0.01 5.4E-06 4.7E-03 7 4.83 - - - 19 BD, SZ, ADHD rs7240986 18:53195249 TCF4 intronic A/G 0.01 1.1E-08 5.4E-05 7 6.45 - - 19 BD, SZ, ADHD rs6017733 20:44712815 N														
rs12927162 16:52684916 CASC16 ncRNA A/G -0.01 1.9E-06 4.9E-03 5 21.80 - - Yes BD rs12926961 16:71374211 AC106736.1 (9.0) intergenic A/G -0.01 4.4E-07 8.8E-03 5 0.02 - 19 BD, SZ, ADHD rs4790082 17:1278700 YWHAE intronic A/G -0.01 1.2E-05 8.8E-03 4 3.93 - Insulin, phenethylisothiocyanate, CHEMBL4244843 Yes BD, SZ, ADHD rs8071515 17:16245333 PIGL intronic A/G -0.01 2.9E-08 5.9E-03 5 3.67 - - 19 BD, SZ, ADHD rs72841389 17:61437939 TANC2 intronic A/G 0.01 5.4E-06 4.7E-03 7 4.83 - - 19 BD, SZ, ADHD rs72841389 17:61437939 TANC2 intronic A/G 0.01 1.1E-08 5.4E-05 7 6.455 - - 19 BD, SZ, ADHD rs6017733 20:44712815 NCOA5														
rs12926961 16:71374211 AC106736.1 (9.0) intergenic A/G -0.01 4.4E-07 8.8E-03 5 0.02 - 19 BD, SZ, ADHD rs4790082 17:1278700 YWHAE intronic A/G -0.01 1.2E-05 8.8E-03 4 3.93 - Insulin, phenethylisothiocyanate, CHEMBL4244843 Yes BD, SZ, ADHD rs8071515 17:16245333 PIGL intronic A/G -0.01 2.9E-08 5.9E-03 5 3.67 - - 19 BD, SZ, ADHD rs72841389 17:61437939 TANC2 intronic A/G 0.01 5.4E-06 4.7E-03 7 4.83 - - 19 BD, SZ, ADHD rs7240986 18:53195249 TCF4 intronic A/G 0.01 1.1E-08 5.4E-05 7 6.45 - - 19 BD, SZ, ADHD rs6017733 20:44712815 NCOA5 intronic A/G -0.01 2.2E-06 5.7E-03 6 6.25 - CHEMBL12324455 Yes BD	rs12927162	16:52684916	CASC16	ncRNA	A/G	-0.01	1.9E-06	4.9E-03	5	21.80	-	-	Yes	BD
rs4790082 17:1278700 YWHAE intronic A/G -0.01 1.2E-05 8.8E-03 4 3.93 - Insulin, phenethylisothiocyanate, CHEMBL4244843 Yes BD, SZ rs8071515 17:16245333 PIGL intronic A/G -0.01 2.9E-08 5.9E-03 5 3.67 - - 19 BD, SZ, ADHD rs72841389 17:61437939 TANC2 intronic A/G 0.01 5.4E-06 4.7E-03 7 4.83 - - 19 BD, SZ, ADHD rs7240986 18:53195249 TCF4 intronic A/G 0.01 1.1E-08 5.4E-05 7 6.45 - - 19 BD, SZ, ADHD rs6017733 20:44712815 NCOA5 intronic A/G -0.01 2.2E-06 5.7E-03 6 6.25 - CHEMBL1232445 Yes BD											-			
CHEMBL4244843 rs8071515 17:16245333 PIGL intronic A/G -0.01 2.9E-08 5.9E-03 5 3.67 - - 19 BD, SZ, ADHD rs72841389 17:61437939 TANC2 intronic A/G 0.01 5.4E-06 4.7E-03 7 4.83 - - Yes BD rs7240986 18:53195249 TCF4 intronic A/G 0.01 1.1E-08 5.4E-05 7 6.45 - - 19 BD, SZ, ADHD rs6017733 20:44712815 NCOA5 intronic A/G -0.01 2.2E-06 5.7E-03 6 6.25 - CHEMBL1232445 Yes BD				U							-	Insulin, phenethylisothiocyanate.		, ,
rs72841389 17:61437939 TANC2 intronic A/G 0.01 5.4E-06 4.7E-03 7 4.83 - - Yes BD rs7240986 18:53195249 TCF4 intronic A/G 0.01 1.1E-08 5.4E-05 7 6.45 - - 19 BD, SZ, ADHD rs6017733 20:44712815 NCOA5 intronic A/G -0.01 2.2E-06 5.7E-03 6 6.25 - CHEMBL1232445 Yes BD									-					,~_
rs7240986 18:53195249 <i>TCF4</i> intronic A/G 0.01 1.1E-08 5.4E-05 7 6.45 19 BD, SZ, ADHD rs6017733 20:44712815 <i>NCOA5</i> intronic A/G -0.01 2.2E-06 5.7E-03 6 6.25 - CHEMBL1232445 Yes BD	rs8071515	17:16245333	PIGL	intronic	A/G	-0.01	2.9E-08	5.9E-03	5	3.67	-	-	19	BD, SZ, ADHD
rs6017733 20:44712815 NCOA5 intronic A/G -0.01 2.2E-06 5.7E-03 6 6.25 - CHEMBL1232445 Yes BD	rs72841389	17:61437939	TANC2	intronic	A/G	0.01	5.4E-06	4.7E-03	7	4.83	-	-	Yes	BD
	rs7240986	18:53195249	TCF4	intronic	A/G	0.01	1.1E-08	5.4E-05	7	6.45	-	-	19	BD, SZ, ADHD
rs28520003 22:46411969 <i>CITF22-92A6.1</i> (0.6) downstream A/G -0.01 4.0E-08 6.1E-03 3a 1.15 19 BD, SZ	rs6017733	20:44712815	NCOA5	intronic	A/G	-0.01	2.2E-06	5.7E-03	6	6.25	-	CHEMBL1232445	Yes	BD
	rs28520003	22:46411969	CITF22-92A6.1 (0.6)	downstream	A/G	-0.01	4.0E-08	6.1E-03	3a	1.15	-	-	19	BD, SZ

The table reports functional characterization for the 79 linkage disequilibrium independent genomic loci associated with risk-taking propensity conditioning on bipolar disorder at a condFDR < 0.01. Nearest gene and functional category have been annotated using FUMA (for SNPs located in intergenic regions, distance in Kb from the nearest gene is also reported). Beta risk shows the direction of effect of the A1 allele in the original risk-taking propensity GWAS dataset. The RegBD rank and the RegBD score were calculated using RegulomeDB based on known and predicted regulatory elements including regions of DNase hypersensitivity, binding sites of transcription factors and promoter regions that regulate transcription. RegulomeDB attributes to each SNP a rank (from 1 to 7, with 1 being associated with highest evidence of functional effects) as well as a probability score (from 0 to 1, with 1 being most likely to be a regulatory variant). The CADD score, which predicts how deleterious a variant is on protein structure/function was computed in FUMA, based on 63 annotations. Higher scores indicate more deleterious SNP, with a suggested threshold of 12.37 for a SNP to be considered deleterious. Nearest genes were located were searched in DGIdb in order to assess whether they are part of the druggable

genome (druggable categories) or known targets of drugs (drug-gene interactions). In case more than 10 drug-gene interactions were found, the top 10 based on their interaction score in DGIdb are reported. The Novel column indicates whether the genomic loci are novel or have been found to be associated with risk-taking propensity by previous studies indicated in supplementary references, while the Specific column indicates whether the locus was only identified conditioning risk-taking propensity on BD or also conditioning on other traits. Abbreviations: ADHD, attention deficit hyperactivity disorder; BD, bipolar disorder; SNP, single nucleotide polymorphism; RegBD, Regulome DB; SZ, schizophrenia

Brain region	Gene	Chr	Start	Stop	NSNPs	NPARAM	Z	р	adj p
Amygdala	ZNF501	3	44771098	44778575	58	3	4.72	1.2E-06	2.3E-02
	ITIH4	3	52847006	52864717	298	6	6.80	5.2E-12	1.0E-07
	TMEM110	3	52870772	52931597	2	1	4.71	1.2E-06	2.4E-02
	PLEC	8	144989321	145050913	33	1	5.25	7.7E-08	1.5E-03
	C15orf40	15	83657715	83681050	223	7	4.67	1.5E-06	2.9E-02
	TSSK6	19	19625028	19626469	7	1	4.66	1.6E-06	3.1E-02
Anterior cingulate	KCNN3	1	154669938	154842754	31	2	4.91	4.5E-07	8.7E-03
	GLYCTK	3	52321836	52329272	55	3	6.93	2.2E-12	4.2E-08
	GNL3	3	52719936	52728513	15	1	7.19	3.1E-13	6.1E-09
	ITIH4	3	52847006	52864717	151	6	5.40	3.3E-08	6.4E-04
	PCDHA7	5	140213969	140391929	47	1	4.69	1.4E-06	2.7E-02
	PCDHA13	5	140261854	140391929	175	7	4.84	6.5E-07	1.3E-02
	PCDHB10	5	140571952	140575213	90 16	5	4.68	1.4E-06	2.7E-02
	FADS1 MED24	11 17	61567097	61584529	46	2	7.14	4.6E-13	9.0E-09
	MED24 CD40	20	38175350 44746899	38210889 44758384	44 10	3 1	4.63 4.81	1.8E-06 7.7E-07	3.5E-02 1.5E-02
Caudate	TMEM127	20	96915946	96931751	8	1	4.81	4.8E-07	9.2E-03
Caudade	LMAN2L	2	97371666	97405813	22	1	6.11	4.8E-10	9.4E-06
	GNL3	3	52719936	52728513	180	2	6.32	4.3E-10	2.5E-06
	ITIH4	3	52847006	52864717	423	12	6.84	4.0E-12	7.8E-08
	KIAA1109	4	123073488	123283914	50	2	5.00	2.9E-07	5.6E-03
	C4orf33	4	130014829	130034487	283	- 11	4.61	2.0E-06	4.0E-02
	PCDHB8	5	140557371	140560081	84	5	4.61	2.0E-06	3.9E-02
	PCDHB10	5	140571952	140575213	49	3	4.74	1.0E-06	2.0E-02
	FTSJ2	7	2273830	2281840	256	10	5.85	2.5E-09	4.8E-05
	MRPS33	7	140705961	140714781	78	4	4.64	1.7E-06	3.4E-02
	CCDC25	8	27590833	27630170	413	11	4.69	1.4E-06	2.7E-02
	PLEC	8	144989321	145050913	31	2	5.25	7.8E-08	1.5E-03
	GPT	8	145729465	145732555	7	1	4.95	3.8E-07	7.4E-03
	MFSD3	8	145733161	145736596	2	1	5.01	2.7E-07	5.2E-03
	ADD3	10	111765627	111895323	22	1	6.51	3.8E-11	7.4E-07
	FADS1	11	61567097	61584529	29	2	6.44	6.0E-11	1.2E-06
	PPP1R13B	14	104200088	104315116	39	1	4.62	1.9E-06	3.8E-02
	LRRC57	15	42834720	42841002	20	3	5.56	1.3E-08	2.6E-04
	GOLGA6L10	15	82632347	82641706	255	13	4.65	1.7E-06	3.3E-02
	C15orf40	15	83657715	83681050	303	15	5.00	2.8E-07	5.5E-03
	WDR73	15	85185607	85197521	122	4	5.57	1.2E-08	2.4E-04
	NMB	15	85198360	85201802	273	5	6.31	1.4E-10	2.7E-06
	SPG7	16	89574802	89624174	6	1	4.73	1.1E-06	2.1E-02
	SLC12A5	20	44650329	44688789	13	1	4.84	6.6E-07	1.3E-02
	ARFGAP3	22	43192530	43253408	284	4	4.94	4.0E-07	7.7E-03
<u></u>	TTLL1	22	43435522	43485434	71	4	4.72	1.2E-06	2.3E-02
Cerebellar hemisphere	VPS45	1	150039350	150117505	146	1	4.82	7.3E-07	1.4E-02
	PLEKHO1	1	150122170	150131825	7	1	4.71	1.3E-06	2.4E-02
	DCST2	1	154991003	155006257	93 7	5	4.81	7.5E-07	1.5E-02
	TMEM127	2	96915946	96931751	7	1	4.82	7.2E-07	1.4E-02

UBE2E3	2	181845112	181928154	38	2	4.75	1.0E-06	2.0E-02
ZNF197	3	44666511	44689963	225	6	4.78	8.9E-07	1.7E-02
ZNF502	3	44754135	44765323	106	5	4.94	4.0E-07	7.7E-03
ZNF501	3	44771098	44778575	261	6	4.91	4.4E-07	8.6E-03
KIAA1143	3	44790236	44803173	367	10	5.42	3.0E-08	5.7E-04
PPM1M	3	52279782	52284615	400	7	6.53	3.3E-11	6.5E-07
GNL3	3	52719936	52728513	341	5	6.77	6.6E-12	1.3E-07
NEK4	3	52744796	52804965	213	4	6.20	2.8E-10	5.4E-06
ITIH4	3	52847006	52864717	354	15	5.45	2.5E-08	4.9E-04
SFMBT1	3	52933221	53080089	74	2	4.73	1.1E-06	2.2E-02
NDST3	4	118955500	119179789	84	8	4.69	1.3E-06	2.6E-02
SSBP2	5	80713179	81047072	84	8	4.74	1.1E-06	2.1E-02
TMCO6	5	140019012	140024989	557	11	4.58	2.3E-06	4.5E-02
PCDHA9	5	140227357	140391929	408	9	4.64	1.8E-06	3.4E-02
PCDHA13	5	140261854	140391929	516	10	5.04	2.4E-07	4.6E-03
PCDHB16	5	140560980	140566710	164	9	5.27	6.9E-08	1.3E-03
PCDHB10	5	140571952	140575213	120	8	4.84	6.4E-07	1.2E-02
FTSJ2	7	2273830	2281840	212	11	5.16	1.2E-07	2.4E-03
PLEKHA8	7	30067977	30157961	207	5	4.73	1.1E-06	2.2E-02
PLEC	8	144989321	145050913	149	4	5.64	8.3E-09	1.6E-04
CACNA1B	9	140772241	141019076	53	5	4.85	6.2E-07	1.2E-02
CDHR1	10	85954391	85979377	30	4	4.66	1.6E-06	3.0E-02
ADD3	10	111765627	111895323	514	12	6.45	5.5E-11	1.1E-06
FADS1	11	61567097	61584529	97	6	6.93	2.0E-12	4.0E-08
FADS3	11	61640998	61659006	57	3	6.97	1.5E-12	3.0E-08
BBS1	11	66278077	66301084	23	1	5.20	9.9E-08	1.9E-03
C11orf80	11	66512207	66613997	60	4	4.74	1.0E-06	2.0E-02
PC	11	66615993	66725847	16	2	5.06	2.1E-07	4.2E-03
CACNA1C	12	2079952	2807115	99	4	7.48	3.8E-14	7.4E-10
PROZ	13	113812968	113826698	118	2	5.44	2.6E-08	5.1E-04
STARD9	15	42867857	43013196	49	5	4.81	7.7E-07	1.5E-02
GOLGA6L10	15	82632347	82641706	457	21	5.86	2.3E-09	4.4E-05
C15orf40	15	83657715	83681050	337	16	5.14	1.4E-07	2.7E-03
YJEFN3	19	19639670	19648393	141	3	4.77	9.2E-07	1.8E-02
ACTR5	20	37376933	37401089	85	3	4.57	2.5E-06	4.8E-02
PLEKHO1	1	150122170	150131825	203	3	4.74	1.0E-06	2.0E-02
RPRD2	1	150336624	150449042	209	5	5.14	1.4E-07	2.7E-03
SEMA6C	1	151104161	151119146	190	9	4.59	2.2E-06	4.4E-02
DCST2	1	154991003	155006257	119	7	4.67	1.5E-06	2.9E-02
DCST1	1	155006256	155023406	83	4	4.68	1.4E-06	2.8E-02
ADRA2B	2	96778623	96782281	74	8	4.96	3.4E-07	6.7E-03
LMAN2L	2	97371666	97405813	21	1	5.59	1.1E-08	2.2E-04
CNNM4	2	97426639	97477628	16	2	5.50	1.9E-08	3.7E-04
UBE2E3	2	181845112	181928154	232	3	4.84	6.6E-07	1.3E-02
LRRFIP2	3	37094117	37217992	2	1	5.75	4.5E-09	8.7E-05
ZNF502	3	44754135	44765323	116	5	4.91	4.4E-07	8.6E-03
ZNF501	3	44771098	44778575	50	3	4.66	1.6E-06	3.1E-02
KIAA1143	3	44790236	44803173	243	7	4.82	7.1E-07	1.4E-02
PPM1M	3	52279782	52284615	382	5	6.58	2.4E-11	4.6E-07

Cerebellum

GLYCTK	3	52321836	52329272	495	11	7.15	4.2E-13	8.2E-09
SEMA3G	3	52467268	52479112	5	2	5.36	4.1E-08	8.0E-04
GNL3	3	52719936	52728513	507	7	7.22	2.5E-13	4.9E-09
NEK4	3	52744796	52804965	275	3	6.43	6.3E-11	1.2E-06
ITIH4	3	52847006	52864717	294	12	5.55	1.4E-08	2.7E-04
SFMBT1	3	52933221	53080089	273	7	5.75	4.5E-09	8.7E-05
RFT1	3	53122499	53164480	299	11	4.72	1.2E-06	2.3E-02
NDST3	4	118955500	119179789	98	8	4.91	4.5E-07	8.7E-03
SSBP2	5	80713179	81047072	88	7	5.17	1.1E-07	2.2E-03
PCDHA9	5	140227357	140391929	202	16	5.01	2.7E-07	5.2E-03
PCDHB16	5	140560980	140566710	94	5	4.72	1.2E-06	2.2E-02
PCDHB10	5	140571952	140575213	98	6	4.68	1.4E-06	2.8E-02
PCDHB14	5	140603078	140605860	97	5	4.73	1.1E-06	2.2E-02
FTSJ2	7	2273830	2281840	248	9	5.29	6.0E-08	1.2E-03
PLEKHA8	7	30067977	30157961	215	5	4.75	1.0E-06	2.0E-02
CCDC25	8	27590833	27630170	399	11	4.71	1.2E-06	2.4E-02
PLEC	8	144989321	145050913	152	4	5.65	7.8E-09	1.5E-04
CDHR1	10	85954391	85979377	9	3	4.58	2.4E-06	4.6E-02
BLOC1S2	10	102033035	102046469	131	6	4.58	2.3E-06	4.5E-02
ADD3	10	111765627	111895323	303	11	6.71	1.0E-11	2.0E-07
FADS1	11	61567097	61584529	126	10	7.11	5.8E-13	1.1E-08
FADS3	11	61640998	61659006	54	3	7.14	4.7E-13	9.2E-09
SF3B2	11	65819264	65836382	130	13	4.72	1.2E-06	2.3E-02
C11orf80	11	66512207	66613997	94	8	5.02	2.5E-07	4.9E-03
PC	11	66615993	66725847	80	6	5.75	4.6E-09	8.9E-05
LRFN4	11	66624558	66627946	45	4	5.48	2.2E-08	4.2E-04
CACNAIC	12	2079952	2807115	97	4	7.57	1.8E-14	3.5E-10
PROZ	13	113812968	113826698	135	3	5.44	2.7E-08	5.3E-04
CUL4A	13	113862507	113919392	47	1	5.01	2.7E-07	5.3E-03
CDAN1	15	43015760	43029417	316	12	4.95	3.8E-07	7.3E-03
GOLGA6L10	15	82632347	82641706	492	23	5.73	5.0E-09	9.7E-05
C15orf40	15	83657715	83681050	352	18	5.09	1.8E-07	3.5E-03
ALPK3	15	85359911	85416713	61	2	5.96	1.2E-09	2.4E-05
DCST2	1	154991003	155006257	103	5	4.74	1.1E-06	2.1E-02
PBX1	1	164528597	164821067	73	2	4.56	2.5E-06	4.9E-02
FAHD2B	2	97749320	97760603	513	19	5.01	2.7E-07	5.2E-03
TRANK1	3	36868308	36986548	16	2	6.25	2.1E-10	4.0E-06
GLYCTK	3	52321836	52329272	37	3	6.86	3.5E-12	6.7E-08
NT5DC2	3	52558385	52569093	40	5	5.34	4.6E-08	8.9E-04
GNL3	3	52719936	52728513	66	2	7.08	7.4E-13	1.4E-08
SPCS1	3	52739792	52742198	2	1	6.11	5.0E-10	9.7E-06
NEK4	3	52744796	52804965	9	1	6.57	2.6E-11	5.1E-07
ITIH4	3	52847006	52864717	567	12	7.20	3.0E-13	5.8E-09
KIAA1109	4	123073488	123283914	55	2	4.83	6.7E-07	1.3E-02
C4orf33	4	130014829	130034487	257	9	4.67	1.5E-06	2.9E-02
PCDHB10	5	140571952	140575213	112	7	4.83	6.7E-07	1.3E-02
FTSJ2	7	2273830	2281840	126	8	4.88	5.2E-07	1.0E-02
WIPF3	7	29846170	29956682	54	6	5.22	8.9E-08	1.7E-03
PLEC	8	144989321	145050913	141	3	5.65	7.9E-09	1.5E-04

Cortex

	FADS1	11	61567097	61584529	58	3	7.11	5.8E-13	1.1E-08
	HRASLS2	11	63320242	63330855	7	1	4.91	4.6E-07	8.9E-03
	PACS1	11	65837747	66012218	170	5	5.12	1.5E-07	2.9E-03
	LRRC57	15	42834720	42841002	16	1	5.58	1.2E-08	2.4E-04
	GOLGA6L10	15	82632347	82641706	352	18	5.65	8.2E-09	1.6E-04
	C15orf40	15	83657715	83681050	316	16	5.07	2.0E-07	3.8E-03
	WDR73	15	85185607	85197521	134	5	5.91	1.7E-09	3.4E-05
	DUS2	16	68056847	68113226	342	9	4.76	9.6E-07	1.9E-02
	MED24	17	38175350	38210889	67	4	4.71	1.3E-06	2.5E-02
	ARFGAP3	22	43192530	43253408	289	3	4.92	4.3E-07	8.4E-03
	PACSIN2	22	43265772	43411184	118	4	4.97	3.3E-07	6.4E-03
	TTLLI	22	43435522	43485434	167	5	4.97	3.3E-07	6.3E-03
Frontal cortex	HTR6	1	19991780	20006055	8	2	4.68	1.5E-06	2.8E-02
	VPS45	1	150039350	150117505	206	3	4.75	1.0E-06	2.0E-02
	DCST2	1	154991003	155006257	9 7	4	4.73	1.1E-06	2.1E-02
	ZNF502	3	44754135	44765323	232	6	4.80	7.9E-07	1.5E-02
	ZNF501	3	44771098	44778575	153	5	4.71	1.3E-06	2.4E-02
	GNL3	3	52719936	52728513	54	3	7.21	2.8E-13	5.4E-09
	SPCS1	3	52739792	52742198	80	2	6.18	3.1E-10	6.1E-06
	ITIH4	3	52847006	52864717	254	9	5.60	1.1E-08	0.1E-00 2.1E-04
	SFMBT1	3	52933221	53080089	1	1	4.61	2.1E-06	4.0E-02
	PCDHA13	5	140261854	140391929	1	1 7	4.01	2.1E-00 6.1E-07	4.0E-02 1.2E-02
	CCDC25	8	27590833	27630170	337	10	4.63	1.9E-06	3.7E-02
	PLEC	8	144989321	145050913	131		4.02 5.66	7.6E-09	1.5E-04
	CACNA1B	8 9			32	3 3	4.79		
			140772241	141019076				8.4E-07	1.6E-02
	ADD3 TMEM258	10	111765627	111895323	145	3	6.36 7.01	9.9E-11	1.9E-06
	TMEM258 FADS1	11	61556602	61560085	34 47	3	7.01	1.2E-12	2.3E-08
		11	61567097	61584529	47	2	7.13	5.1E-13	9.9E-09
	PACS1	11	65837747	66012218	131	5	5.22	9.2E-08	1.8E-03
	GOLGA6L10	15	82632347	82641706	254	12	4.80	7.9E-07	1.5E-02
	C15orf40	15	83657715	83681050	293	12	4.88	5.3E-07	1.0E-02
	BTBD1	15	83685175	83736106	202	10	4.69	1.3E-06	2.6E-02
	CD40	20	44746899	44758384	10	1	4.81	7.7E-07	1.5E-02
	PACSIN2	22	43265772	43411184	144	2	5.01	2.7E-07	5.2E-03
	TTLL1	22	43435522	43485434	171	5	4.97	3.3E-07	6.4E-03
Hippocampus	GLYCTK	3	52321836	52329272	43	3	6.32	1.3E-10	2.5E-06
	GNL3	3	52719936	52728513	18	1	6.79	5.7E-12	1.1E-07
	ITIH4	3	52847006	52864717	329	15	5.59	1.1E-08	2.2E-04
	C4orf33	4	130014829	130034487	270	10	4.70	1.3E-06	2.5E-02
	PCDHA13	5	140261854	140391929	50	2	4.74	1.1E-06	2.1E-02
	PCDHB8	5	140557371	140560081	45	2	4.58	2.4E-06	4.6E-02
	PCDHB10	5	140571952	140575213	4	1	4.70	1.3E-06	2.5E-02
	PCDHB12	5	140587914	140592143	81	4	4.57	2.4E-06	4.7E-02
	DFNA5	7	24737974	24797639	205	13	5.24	8.0E-08	1.6E-03
	CCDC25	8	27590833	27630170	288	6	4.78	8.9E-07	1.7E-02
	FADS1	11	61567097	61584529	58	3	7.18	3.4E-13	6.6E-09
	PACS1	11	65837747	66012218	6	1	5.61	1.0E-08	2.0E-04
	PROZ	13	113812968	113826698	109	2	5.45	2.6E-08	5.0E-04
	WDR73	15	85185607	85197521	74	1	6.17	3.5E-10	6.7E-06

	MED24	17	38175350	38210889	36	3	4.71	1.2E-06	2.4E-02
	SLC12A5	20	44650329	44688789	20	2	4.87	5.5E-07	1.1E-02
	CD40	20	44746899	44758384	11	1	4.90	4.7E-07	9.1E-03
	ARFGAP3	22	43192530	43253408	278	3	4.91	4.6E-07	8.9E-03
Hypothalamus	KCNN3	1	154669938	154842754	76	2	4.60	2.1E-06	4.1E-02
	ZNF502	3	44754135	44765323	107	3	4.67	1.5E-06	2.9E-02
	ZNF501	3	44771098	44778575	26	2	4.64	1.7E-06	3.4E-02
	GNL3	3	52719936	52728513	237	2	6.39	8.1E-11	1.6E-06
	ITIH4	3	52847006	52864717	453	10	7.11	5.7E-13	1.1E-08
	PCDHB8	5	140557371	140560081	42	2	4.57	2.5E-06	4.8E-02
	FTSJ2	7	2273830	2281840	100	6	4.65	1.7E-06	3.3E-02
	PLEC	8	144989321	145050913	144	3	5.66	7.7E-09	1.5E-04
	CACNA1B	9	140772241	141019076	8	2	5.37	4.0E-08	7.8E-04
	FADS1	11	61567097	61584529	50	2	7.15	4.2E-13	8.2E-09
	PACSI	11	65837747	66012218	25	2	5.34	4.7E-08	9.1E-04
	C15orf40	15	83657715	83681050	264	11	4.91	4.5E-07	8.7E-03
	DPEP1	16	89679716	89707216	15	3	5.26	7.4E-08	1.4E-03
	NT5C	17	73126320	73127890	23	1	4.76	9.6E-07	1.9E-02
	XPNPEP3	22	41253085	41328823	20	2	4.61	2.0E-06	3.9E-02
Nucleus accumbens	HTR6	1	19991780	20006055	63	6	4.80	8.1E-07	1.6E-02
	KCNN3	1	154669938	154842754	29	1	4.71	1.2E-06	2.4E-02
	DCST2	1	154991003	155006257	98	4	4.77	9.1E-07	1.8E-02
	LMAN2L	2	97371666	97405813	30	3	6.27	1.8E-10	3.5E-06
	CNNM4	2	97426639	97477628	22	1	6.11	4.8E-10	9.4E-06
	ZNF197	3	44666511	44689963	238	9	4.97	3.4E-07	6.6E-03
	GNL3	3	52719936	52728513	20	2	7.33	1.2E-13	2.2E-09
	GLT8D1	3	52728500	52740099	101	2	6.10	5.3E-10	1.0E-05
	ITIH4	3	52847006	52864717	378	14	6.11	5.0E-10	9.8E-06
	C4orf33	4	130014829	130034487	256	10	4.73	1.1E-06	2.2E-02
	PCDHA9	5	140227357	140391929	76	4	4.74	1.1E-06	2.1E-02
	PCDHB8	5	140557371	140560081	70	3	4.58		4.5E-02
	FTSJ2	7	2273830	2281840	113	7	4.65	1.6E-06	3.2E-02
	SP4	7	21467689	21554440	9	1	5.11	1.6E-07	3.1E-03
	CCDC25	8	27590833	27630170	427	12	4.79	8.1E-07	1.6E-02
	PLEC	8	144989321	145050913	6	1	5.82	2.9E-09	5.6E-05
	C11orf80	11	66512207	66613997	31	4	5.13	1.4E-07	2.8E-03
	LRRC57	15	42834720	42841002	47	2	5.16	1.4E 07	2.3E-03
	GOLGA6L10	15	82632347	82641706	290	13	5.78	3.8E-09	2.5E-05 7.5E-05
	C15orf40	15	83657715	83681050	279	13	4.65	1.7E-06	3.2E-02
	UBE2Q2L	15	84841138	84854921	16	12	4.66	1.6E-06	3.1E-02
	WDR73	15	85185607		67		6.13	4.3E-10	3.1E-02 8.4E-06
	WDR75 MED24	13 17		85197521 38210889	67 64	1 5	6.13 4.78	4.3E-10 8.8E-07	8.4E-00 1.7E-02
			38175350 43880880						
Dutomon	SLPI	20	43880880	43883205	118	3	4.85	6.1E-07	1.2E-02
Putamen	DCST2	1	154991003	155006257	60 26	5	4.96	3.5E-07	6.8E-03
	LMAN2L	2	97371666	97405813	26	3	6.23	2.3E-10	4.5E-06
	ZNF501	3	44771098	44778575	71	4	4.74	1.1E-06	2.1E-02
	POCIA	3	52109249	52188720	217	2	6.13	4.5E-10	8.8E-06
	GNL3	3	52719936	52728513	313	4	6.90	2.6E-12	5.0E-08
	GLT8D1	3	52728500	52740099	6	1	5.80	3.3E-09	6.5E-05

	ITIH4	3	52847006	52864717	515	9	7.48	3.9E-14	7.5E-10
	C4orf33	4	130014829	130034487	227	11	4.65	1.7E-06	3.3E-02
	PCDHA7	5	140213969	140391929	77	3	4.87	5.6E-07	1.1E-02
	PCDHA13	5	140261854	140391929	412	8	4.60	2.1E-06	4.2E-02
	PCDHB8	5	140557371	140560081	84	5	4.59	2.2E-06	4.2E-02
	FTSJ2	7	2273830	2281840	89	5	4.63	1.9E-06	3.6E-02
	CCDC25	8	27590833	27630170	318	9	4.71	1.2E-06	2.4E-02
	PLEC	8	144989321	145050913	111	2	5.61	9.9E-09	1.9E-04
	CACNA1B	9	140772241	141019076	17	3	4.95	3.6E-07	7.0E-03
	TMEM258	11	61556602	61560085	32	1	7.10	6.2E-13	1.2E-08
	FADS1	11	61567097	61584529	54	2	7.10	6.1E-13	1.2E-08
	BBS1	11	66278077	66301084	13	2	4.89	5.1E-07	1.0E-02
	PPP1R13B	14	104200088	104315116	23	2	4.58	2.3E-06	4.4E-02
	CDANI	15	43015760	43029417	86	2	4.60	2.1E-06	4.0E-02
	GOLGA6L10	15	82632347	82641706	335	13	5.80	3.3E-09	6.4E-05
	C15orf40	15	83657715	83681050	259	11	4.79	8.3E-07	1.6E-02
	BTBD1	15	83685175	83736106	160	5	4.61	2.0E-06	4.0E-02
	NME2	17	49242796	49249105	130	8	4.61	2.0E-06	3.9E-02
	CILP2	19	19649057	19657468	140	2	4.79	8.3E-07	1.6E-02
	SLPI	20	43880880	43883205	86	2	4.59	2.2E-06	4.3E-02
	ARFGAP3	22	43192530	43253408	268	3	4.92	4.3E-07	8.4E-03
Spinal cord	KCNN3	1	154669938	154842754	61	1	4.57	2.4E-06	4.6E-02
	FANCD2	3	10068113	10143614	1	1	5.10	1.7E-07	3.3E-03
	PPM1M	3	52279782	52284615	28	2	5.40	3.4E-08	6.5E-04
	ITIH4	3	52847006	52864717	136	5	5.38	3.7E-08	7.1E-04
	C4orf33	4	130014829	130034487	300	11	4.62	1.9E-06	3.7E-02
	PCDHB8	5	140557371	140560081	44	2	4.58	2.3E-06	4.5E-02
	PLEC	8	144989321	145050913	71	2	5.64	8.7E-09	1.7E-04
	FADS1	11	61567097	61584529	17	1	6.95	1.9E-12	3.6E-08
	LRFN4	11	66624558	66627946	17	2	4.69	1.3E-06	2.6E-02
	C15orf40	15	83657715	83681050	180	4	4.59	2.2E-06	4.3E-02
	ARFGAP3	22	43192530	43253408	135	2	4.59	2.2E-06	4.2E-02
Substantia nigra	LMAN2L	2	97371666	97405813	14	1	5.09	1.8E-07	3.4E-03
	PPMIM	3	52279782	52284615	2	1	6.11	5.0E-10	9.7E-06
	ITIH4	3	52847006	52864717	91	3	5.07	2.0E-07	4.0E-03
	PCDHA13	5	140261854	140391929	41	1	4.66	1.6E-06	3.1E-02
	TTLL1	22	43435522	43485434	118	3	5.04	2.3E-07	4.5E-03
Whole blood	HTR6	1	19991780	20006055	114	10	5.09	1.8E-07	3.5E-03
	CIAO1	2	96931884	96939917	430	20	4.85	6.1E-07	1.2E-02
	LMAN2L	2	97371666	97405813	19	3	6.45	5.8E-11	1.1E-06
	CNNM4	2	97426639	97477628	48	5	5.36	4.2E-08	8.1E-04
	UBE2E3	2	181845112	181928154	696	18	4.96	3.5E-07	6.8E-03
	PLCL1	2	198669426	199014608	726	11	4.60	2.2E-06	4.2E-02
	ZKSCAN7	3	44596667	44624975	259	15	5.19	1.0E-07	2.0E-03
	ZNF197	3	44666511	44689963	433	13	5.25	7.7E-08	1.5E-03
	ZNF502	3	44754135	44765323	434	13	5.24	8.1E-08	1.6E-03
	ZNF501	3	44771098	44778575	129	7	4.95	3.7E-07	7.2E-03
	KIAA1143	3	44790236	44803173	632	21	5.66	7.5E-09	1.5E-04
	GLYCTK	3	52321836	52329272	613	13	7.58	1.7E-14	3.3E-10

NT5DC2	3	52558385	52569093	612	15	7.03	1.0E-12	1.9E-08
SPCS1	3	52739792	52742198	139	1	6.22	2.5E-10	4.8E-06
ITIH3	3	52828784	52843025	154	3	6.12	4.8E-10	9.3E-06
ITIH4	3	52847006	52864717	1014	23	7.78	3.7E-15	7.2E-11
MUSTNI	3	52867131	52869235	575	11	7.29	1.6E-13	3.0E-09
TMEM110	3	52870772	52931597	522	9	7.02	1.1E-12	2.1E-08
SFMBT1	3	52933221	53080089	523	7	7.33	1.1E-13	2.2E-09
CD47	3	107761941	107809935	69	5	4.64	1.8E-06	3.4E-02
KDM3B	5	137688285	137772716	7	2	4.71	1.2E-06	2.4E-02
WDR55	5	140044384	140051930	317	9	4.64	1.7E-06	3.4E-02
FTSJ2	7	2273830	2281840	157	9	5.14	1.3E-07	2.6E-03
SCRN1	7	29959719	30029905	194	4	4.67	1.5E-06	2.9E-02
PLEKHA8	7	30067977	30157961	213	7	4.61	2.0E-06	3.9E-02
ZDHHC2	8	17013836	17080241	43	6	4.85	6.3E-07	1.2E-02
NRBP2	8	144915755	144924200	27	3	5.23	8.3E-08	1.6E-03
PLEC	8	144989321	145050913	258	11	5.96	1.2E-09	2.4E-05
PARP10	8	145051320	145060635	214	10	5.59	1.1E-08	2.2E-04
GRINA	8	145064226	145067596	144	3	5.65	8.2E-09	1.6E-04
SPATC1	8	145086582	145102015	134	3	5.66	7.4E-09	1.4E-04
ALDH1A1	9	75515578	75653633	215	11	4.84	6.5E-07	1.3E-02
ANXA1	9	75766721	75785309	272	11	4.95	3.7E-07	7.1E-03
ADO	10	64564516	64568239	101	5	4.73	1.1E-06	2.2E-02
XPNPEP1	10	111624524	111683311	162	8	6.36	1.0E-10	2.0E-06
ADD3	10	111765627	111895323	222	7	6.36	1.0E-10	1.9E-06
MYRF	11	61520121	61555990	105	11	5.36	4.2E-08	8.2E-04
TMEM258	11	61556602	61560085	67	3	7.17	3.7E-13	7.2E-09
FADS1	11	61567097	61584529	66	4	7.06	8.5E-13	1.6E-08
FADS2	11	61583675	61634826	231	24	6.97	1.6E-12	3.1E-08
NAA40	11	63706442	63724799	169	5	4.66	1.6E-06	3.1E-02
COX8A	11	63742079	63744015	123	3	4.59	2.2E-06	4.3E-02
SF3B2	11	65819264	65836382	246	21	5.09	1.8E-07	3.5E-03
PACS1	11	65837747	66012218	196	8	5.13	1.4E-07	2.8E-03
KLC2	11	66024765	66035332	24	3	5.02	2.6E-07	5.1E-03
RAB1B	11	66036056	66044963	76	2	5.19	1.1E-07	2.1E-03
YIF1A	11	66052051	66056638	32	2	4.81	7.4E-07	1.4E-02
RIN1	11	66099535	66104000	296	- 17	5.16	1.3E-07	2.4E-03
DPP3	11	66247484	66277130	348	15	4.67	1.5E-06	2.9E-02
ACTN3	11	66314312	66330799	55	3	5.38	3.8E-08	7.3E-04
CTSF	11	66330935	66336047	436	23	7.03	1.0E-12	2.0E-08
CCS	11	66360630	66373490	275	13	4.89	5.1E-07	1.0E-02
RCE1	11	66610883	66614003	209	11	5.60	1.1E-07	2.1E-04
LRFN4	11	66624558	66627946	377	20	6.03	8.0E-10	2.1E-04 1.6E-05
PROZ	11	113812968	113826698	134	20 3	6.05 5.45	2.5E-08	1.0E-03 4.9E-04
FROZ KLC1	13 14	104095525	104167888	134 561	3 16	3.43 4.99	2.3E-08 3.0E-07	
XRCC3	14 14	104095525	104187888	501	10	4.99 4.72	3.0E-07 1.2E-06	5.8E-03
LRRC57	14 15		42841002	26	13 2	4.72 4.93	1.2E-06 4.0E-07	2.3E-02
		42834720						7.9E-03
C15orf40 NMB	15 15	83657715	83681050 85201802	407 100	20 4	5.16 6.30	1.2E-07	2.4E-03
NMB EES	15	85198360	85201802	190 78	4	6.30	1.5E-10	3.0E-06
FES	15	91427665	91439006	78	12	4.57	2.5E-06	4.8E-02

NFATC3	16	68118654	68263162	458	14	4.99	3.0E-07	5.8E-03
ORMDL3	17	38077294	38083884	591	14	4.82	7.3E-07	1.4E-02
NT5C	17	73126320	73127890	10	2	4.69	1.4E-06	2.6E-02
DIRAS1	19	2714565	2721390	157	10	4.61	2.0E-06	3.9E-02
YJEFN3	19	19639670	19648393	197	6	4.89	5.1E-07	1.0E-02
LPAR2	19	19734464	19739039	441	18	4.61	2.0E-06	3.9E-02
GMIP	19	19740285	19754457	159	5	4.75	1.0E-06	2.0E-02
ACTR5	20	37376933	37401089	205	10	4.90	4.9E-07	9.5E-03
PI3	20	43803540	43805185	192	3	4.76	9.9E-07	1.9E-02
SEMG1	20	43835605	43838414	199	3	4.80	8.1E-07	1.6E-02
KCNJ15	21	39601837	39675043	285	11	4.65	1.7E-06	3.2E-02
ARFGAP3	22	43192530	43253408	343	6	5.02	2.6E-07	5.1E-03
PACSIN2	22	43265772	43411184	409	9	4.84	6.3E-07	1.2E-02

Brain region	Gene	Chr	Start	Stop	NSNPs	NPARAM	Z	р	adj p
Amygdala	CENPV	17	16245831	16256812	270	3	4.81	7.4E-07	1.4E-02
Anterior cingulate	ERICH2	2	171627528	171655481	5	1	4.82	7.1E-07	1.4E-02
	CASP1	11	104896235	104905884	10	1	4.75	1.0E-06	2.0E-02
	MARVELD3	16	71660056	71675868	1	1	4.58	2.4E-06	4.6E-02
	ZSWIM7	17	15879874	15903006	275	3	4.79	8.5E-07	1.7E-02
	CENPV	17	16245831	16256812	300	5	4.89	5.1E-07	9.9E-03
	TRPV2	17	16318856	16340317	155	8	5.04	2.3E-07	4.5E-03
Caudate	SDCCAG8	1	243419307	243663393	27	1	5.92	1.6E-09	3.2E-05
	CADM2	3	85008133	86123579	107	6	5.66	7.6E-09	1.5E-04
	PPP1R13B	14	104200088	104315116	39	1	5.03	2.4E-07	4.7E-03
	KIF26A	14	104605060	104647235	36	3	4.96	3.5E-07	6.8E-03
	ADORA2B	17	15848231	15879210	9	1	4.69	1.4E-06	2.6E-02
	ZSWIM7	17	15879874	15903006	270	3	4.78	8.9E-07	1.7E-02
	CENPV	17	16245831	16256812	296	5	4.89	5.1E-07	9.9E-03
Cerebellar hemisphere	RGS17	6	153332026	153452389	30	3	4.60	2.1E-06	4.0E-02
	SND1	7	127292043	127732659	169	7	5.11	1.6E-07	3.1E-03
	ARHGAP19	10	98981930	99052430	12	1	4.84	6.6E-07	1.3E-02
	CARD16	11	104912053	104916051	332	7	4.56	2.5E-06	4.9E-02
	CACNAIC	12	2079952	2807115	99	4	4.65	1.7E-06	3.3E-02
	XRCC3	14	104163945	104181823	203	11	4.75	1.0E-06	2.0E-02
	ZSWIM7	17	15879874	15903006	284	3	4.76	9.6E-07	1.9E-02
	CENPV	17	16245831	16256812	270	3	4.81	7.7E-07	1.5E-02
Cerebellum	ZNF362	1	33721908	33766321	1	1	4.65	1.7E-06	3.2E-02
Cerebenum	SDCCAG8	1	243419307	243663393	1	5	4.05 5.89	1.9E-09	3.7E-02
	DPYSL5	2	27070969	27173219	316	5	4.59	2.2E-06	4.4E-02
	SIX3	2	45169037	45173216	20	4	4.77	2.2E-00 9.4E-07	1.8E-02
					20 106				
	RGS17	6 10	153332026	153452389		7	4.88	5.4E-07	1.0E-02
	ARHGAP19	10	98981930	99052430	78	2	4.81	7.7E-07	1.5E-02
	CASP1	11	104896235	104905884	14	1	4.82	7.2E-07	1.4E-02
	CARD16	11	104912053	104916051	247	5	4.85	6.2E-07	1.2E-02
	CACNAIC	12	2079952	2807115	97	4	4.66	1.6E-06	3.0E-02
	XRCC3	14	104163945	104181823	142	6	5.01	2.7E-07	5.2E-03
	ZSWIM7	17	15879874	15903006	298	5	4.84	6.6E-07	1.3E-02
	CENPV	17	16245831	16256812	279	4	4.83	6.8E-07	1.3E-02
Cortex	SDCCAG8	1	243419307	243663393	58	2	6.15	4.0E-10	7.7E-06
	DPYSL5	2	27070969	27173219	338	6	4.63	1.8E-06	3.6E-02
	KHK	2	27309611	27323619	26	1	4.74	1.1E-06	2.1E-02
	GABRA2	4	46246470	46392056	82	4	4.92	4.4E-07	8.5E-03
	FAM184A	6	119280992	119470552	68	4	4.61	2.0E-06	3.9E-02
	LY6D	8	143866298	143868008	339	9	4.80	8.0E-07	1.6E-02
	XRCC3	14	104163945	104181823	77	3	4.90	4.7E-07	9.1E-03
	ZSWIM7	17	15879874	15903006	294	4	4.82	7.3E-07	1.4E-02
	PIGL	17	16120509	16230098	1	1	5.17	1.2E-07	2.3E-03
	CENPV	17	16245831	16256812	285	4	4.81	7.5E-07	1.5E-02
	TRPV2	17	16318856	16340317	149	8	5.09	1.8E-07	3.6E-03

Appendix Table 5. eQTL-informed gene-based analysis on variants associated with risk-taking propensity

Frontal cortex	SDCCAG8	1	243419307	243663393	46	2	5.71	5.7E-09	1.1E-04
	FRAT2	10	99092254	99094458	139	6	4.70	1.3E-06	2.5E-02
	ZSWIM7	17	15879874	15903006	275	3	4.79	8.2E-07	1.6E-02
	CENPV	17	16245831	16256812	273	3	4.81	7.7E-07	1.5E-02
	TRPV2	17	16318856	16340317	121	7	4.93	4.0E-07	7.9E-03
Hippocampus	SDCCAG8	1	243419307	243663393	50	2	5.71	5.8E-09	1.1E-04
	CADM2	3	85008133	86123579	168	13	6.17	3.4E-10	6.6E-06
	APOPT1	14	104029299	104057236	122	6	4.59	2.2E-06	4.4E-02
	PIGL	17	16120509	16230098	17	1	5.33	4.8E-08	9.4E-04
	CENPV	17	16245831	16256812	274	3	4.82	7.2E-07	1.4E-02
Hypothalamus	CADM2	3	85008133	86123579	58	3	6.26	1.9E-10	3.8E-06
	GABRA2	4	46246470	46392056	19	1	4.85	6.3E-07	1.2E-02
	ZSWIM7	17	15879874	15903006	269	3	4.76	9.7E-07	1.9E-02
	CENPV	17	16245831	16256812	270	3	4.81	7.5E-07	1.5E-02
	TRPV2	17	16318856	16340317	128	8	4.91	4.6E-07	8.9E-03
Accumbens	KHK	2	27309611	27323619	55	2	4.78	8.6E-07	1.7E-02
	CADM2	3	85008133	86123579	162	11	6.11	5.0E-10	9.7E-06
	ZSWIM7	17	15879874	15903006	275	3	4.79	8.2E-07	1.6E-02
	CENPV	17	16245831	16256812	309	5	4.79	8.5E-07	1.7E-02
	TRPV2	17	16318856	16340317	88	6	4.91	4.7E-07	9.1E-03
Putamen	SDCCAG8	1	243419307	243663393	42	3	5.79	3.6E-09	7.0E-05
	CADM2	3	85008133	86123579	165	8	5.27	7.0E-08	1.4E-03
	APOPT1	14	104029299	104057236	312	9	4.99	3.0E-07	5.8E-03
	PPP1R13B	14	104200088	104315116	23	2	4.94	3.9E-07	7.5E-03
	ZSWIM7	17	15879874	15903006	266	3	4.77	9.0E-07	1.8E-02
	CENPV	17	16245831	16256812	277	3	4.82	7.3E-07	1.4E-02
Spinal cord	SDCCAG8	1	243419307	243663393	49	1	5.72	5.4E-09	1.1E-04
	CADM2	3	85008133	86123579	175	11	5.29	6.0E-08	1.2E-03
	CENPV	17	16245831	16256812	292	5	4.88	5.4E-07	1.0E-02
Substantia nigra	DPYSL5	2	27070969	27173219	315	5	4.60	2.1E-06	4.0E-02
	CADM2	3	85008133	86123579	65	2	5.27	6.8E-08	1.3E-03
	TTC19	17	15902694	15932723	20	1	4.86	5.9E-07	1.1E-02
	CENPV	17	16245831	16256812	272	3	4.79	8.4E-07	1.6E-02
Whole blood	CEP170	1	243287730	243419284	136	5	6.15	3.8E-10	7.4E-06
	SDCCAG8	1	243419307	243663393	295	15	6.27	1.9E-10	3.6E-06
	FUT10	8	33228057	33330664	732	30	5.60	1.1E-08	2.1E-04
	STK32C	10	133996038	134145377	364	26	4.81	7.5E-07	1.5E-02
	BAG5	14	104022881	104029151	109	4	5.04	2.3E-07	4.5E-03
	KLC1	14	104095525	104167888	561	16	5.91	1.7E-09	3.2E-05
	XRCC3	14	104163945	104181823	513	13	5.72	5.4E-09	1.1E-04
	TDRD9	14	104394776	104519004	394	18	4.71	1.2E-06	2.4E-02
	WWP2	16	69796187	69975644	177	4	4.65	1.6E-06	3.2E-02
	ADORA2B	17	15848231	15879210	359	9	4.75	1.0E-06	2.0E-02
	TTC19	17	15902694	15932723	345	7	4.94	3.8E-07	7.4E-02
	NCOR1	17	15933408	16118874	363	, 7	4.88	5.3E-07	1.0E-02
	PIGL	17	15955408 16120509	16230098	63	2	4.88 5.09	1.7E-07	3.4E-03
	CENPV	17	16245831	16256812	309	6	4.97	1.7E-07 3.4E-07	6.6E-03
		17	10270001	10230012	207	0	7.71	5. TL 07	0.01-05

Bibliography

- 1. Who Mental Health. 26 April 2020]; Available from: <u>https://www.who.int/mental_health/management/en</u>.
- 2. Vigo, D., G. Thornicroft, and R. Atun, *Estimating the true global burden of mental illness*. Lancet Psychiatry, 2016. **3**(2): p. 171-8.
- 3. WHO mental disorders. 25 April 2020]; Available from: <u>https://www.who.int/news-room/fact-sheets/detail/mental-disorders</u>.
- 4. Owen, M.J., A. Sawa, and P.B. Mortensen, *Schizophrenia*. Lancet, 2016. **388**(10039): p. 86-97.
- 5. Vieta, E., et al., *Bipolar disorders*. Nat Rev Dis Primers, 2018. **4**: p. 18008.
- 6. Lieberman, J.A., et al., *Effectiveness of antipsychotic drugs in patients with chronic schizophrenia*. N Engl J Med, 2005. **353**(12): p. 1209-23.
- 7. Rush, A.J., et al., *Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report.* Am J Psychiatry, 2006. **163**(11): p. 1905-17.
- 8. Thase, M.E., *STEP-BD and bipolar depression: what have we learned?* Curr Psychiatry Rep, 2007. **9**(6): p. 497-503.
- 9. Manchia, M., et al., *Challenges and Future Prospects of Precision Medicine in Psychiatry*. Pharmgenomics and Personalized Medicine, 2020(13): p. 127-140.
- 10. Jameson, J.L. and D.L. Longo, *Precision medicine--personalized, problematic, and promising.* N Engl J Med, 2015. **372**(23): p. 2229-34.
- 11. Fusar-Poli, P., et al., *The Science of Prognosis in Psychiatry: A Review*. JAMA Psychiatry, 2018. **75**(12): p. 1289-1297.
- 12. June, C.H., et al., *CAR T cell immunotherapy for human cancer*. Science, 2018. **359**(6382): p. 1361-1365.
- 13. Le Tourneau, C., et al., *Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial.* Lancet Oncol, 2015. **16**(13): p. 1324-34.
- 14. Micale, V., et al., Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther, 2022: p. 108279.
- 15. Corponi, F., C. Fabbri, and A. Serretti, *Pharmacogenetics in Psychiatry*. Adv Pharmacol, 2018. **83**: p. 297-331.
- Pisanu, C., et al., Understanding the molecular mechanisms underlying mood stabilizer treatments in bipolar disorder: Potential involvement of epigenetics. Neurosci Lett, 2018. 669: p. 24-31.
- 17. Hicks, J.K., et al., *Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors.* Clin Pharmacol Ther, 2015. **98**(2): p. 127-34.
- 18. Hicks, J.K., et al., *Clinical pharmacogenetics implementation consortium guideline (CPIC)* for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin Pharmacol Ther, 2017. **102**(1): p. 37-44.
- 19. Phillips, E.J., et al., *Clinical Pharmacogenetics Implementation Consortium Guideline for HLA Genotype and Use of Carbamazepine and Oxcarbazepine: 2017 Update.* Clin Pharmacol Ther, 2018. **103**(4): p. 574-581.
- 20. Mullins, N., et al., *Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology*. Nat Genet, 2021. **53**(6): p. 817-829.
- 21. Trubetskoy, V., et al., *Mapping genomic loci implicates genes and synaptic biology in schizophrenia*. Nature, 2022. **604**(7906): p. 502-508.

- 22. Howard, D.M., et al., *Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions.* Nat Neurosci, 2019. **22**(3): p. 343-352.
- 23. Alda, M., *Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics*. Mol Psychiatry, 2015. **20**(6): p. 661-70.
- 24. Yatham, L.N., et al., *Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) 2018 guidelines for the management of patients with bipolar disorder.* Bipolar Disord, 2018. **20**(2): p. 97-170.
- 25. Duffy, A., et al., A consecutive series of treated affected offspring of parents with bipolar disorder: is response associated with the clinical profile? Can J Psychiatry, 2007. **52**(6): p. 369-76.
- Grof, P., et al., *Is response to prophylactic lithium a familial trait?* J Clin Psychiatry, 2002.
 63(10): p. 942-7.
- 27. Schulze, T.G., et al., *The International Consortium on Lithium Genetics (ConLiGen): an initiative by the NIMH and IGSLI to study the genetic basis of response to lithium treatment.* Neuropsychobiology, 2010. **62**(1): p. 72-8.
- 28. International Consortium on Lithium, G., et al., Association of Polygenic Score for Schizophrenia and HLA Antigen and Inflammation Genes With Response to Lithium in Bipolar Affective Disorder: A Genome-Wide Association Study. JAMA Psychiatry, 2018. **75**(1): p. 65-74.
- 29. Amare, A.T., et al., Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Mol Psychiatry, 2021. **26**(6): p. 2457-2470.
- 30. Schubert, K.O., et al., *Correction: Combining schizophrenia and depression polygenic risk* scores improves the genetic prediction of lithium response in bipolar disorder patients. Transl Psychiatry, 2022. **12**(1): p. 278.
- Squassina, A., et al., Telomere attrition and inflammatory load in severe psychiatric disorders and in response to psychotropic medications. Neuropsychopharmacology, 2020. 45(13): p. 2229-2238.
- 32. Pisanu, C., et al., *Investigation of genetic loci shared between bipolar disorder and risktaking propensity: potential implications for pharmacological interventions*. Neuropsychopharmacology, 2021. **46**(9): p. 1680-1692.
- 33. Liu, N.H., et al., *Excess mortality in persons with severe mental disorders: a multilevel intervention framework and priorities for clinical practice, policy and research agendas.* World Psychiatry, 2017. **16**(1): p. 30-40.
- 34. Nordentoft, M., et al., *Excess mortality, causes of death and life expectancy in 270,770 patients with recent onset of mental disorders in Denmark, Finland and Sweden.* PLoS One, 2013. **8**(1): p. e55176.
- 35. Chesney, E., G.M. Goodwin, and S. Fazel, *Risks of all-cause and suicide mortality in mental disorders: a meta-review*. World Psychiatry, 2014. **13**(2): p. 153-60.
- 36. Roshanaei-Moghaddam, B. and W. Katon, *Premature mortality from general medical illnesses among persons with bipolar disorder: a review.* Psychiatr Serv, 2009. **60**(2): p. 147-56.
- 37. De Hert, M., et al., Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur Psychiatry, 2009. **24**(6): p. 412-24.
- 38. Lawrence, D., S. Kisely, and J. Pais, *The epidemiology of excess mortality in people with mental illness*. Can J Psychiatry, 2010. **55**(12): p. 752-60.
- 39. Newcomer, J.W. and C.H. Hennekens, *Severe mental illness and risk of cardiovascular disease*. JAMA, 2007. **298**(15): p. 1794-6.

- 40. Walker, E.R., R.E. McGee, and B.G. Druss, *Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis.* JAMA Psychiatry, 2015. **72**(4): p. 334-41.
- 41. Goodwin, R.D., K.W. Davidson, and K. Keyes, *Mental disorders and cardiovascular disease among adults in the United States.* J Psychiatr Res, 2009. **43**(3): p. 239-46.
- 42. WHO report. 25 April 2020]; Available from: <u>http://www.euro.who.int/ data/assets/pdf file/0009/342297/Comorbidity-report E-</u> <u>web.pdf</u>.
- 43. Lima, C.N.C. and G.R. Fries, *Epigenetic aging in psychiatry: clinical implications and therapeutic opportunities.* Neuropsychopharmacology, 2022.
- 44. Lima, C.N.C., et al., *Epigenetic GrimAge acceleration and cognitive impairment in bipolar disorder*. Eur Neuropsychopharmacol, 2022. **62**: p. 10-21.
- 45. Fries, G.R., et al., *Accelerated hippocampal biological aging in bipolar disorder*. Bipolar Disord, 2019.
- 46. Hajek, T., et al., *Brain Age in Early Stages of Bipolar Disorders or Schizophrenia*. Schizophr Bull, 2019. **45**(1): p. 190-198.
- 47. Nenadic, I., et al., *BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.* Psychiatry Res Neuroimaging, 2017. **266**: p. 86-89.
- 48. Shahab, S., et al., *Brain structure, cognition, and brain age in schizophrenia, bipolar disorder, and healthy controls.* Neuropsychopharmacology, 2019. **44**(5): p. 898-906.
- 49. Van Gestel, H., et al., *Brain age in bipolar disorders: Effects of lithium treatment*. Aust N Z J Psychiatry, 2019. **53**(12): p. 1179-1188.
- 50. Squassina, A., C. Pisanu, and R. Vanni, *Mood Disorders, Accelerated Aging, and Inflammation: Is the Link Hidden in Telomeres?* Cells, 2019. **8**(1).
- 51. Giardini, M.A., et al., *Telomere and telomerase biology*. Prog Mol Biol Transl Sci, 2014. **125**: p. 1-40.
- Shay, J.W., *Role of Telomeres and Telomerase in Aging and Cancer*. Cancer Discov, 2016.
 6(6): p. 584-93.
- 53. Rode, L., B.G. Nordestgaard, and S.E. Bojesen, *Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population*. J Natl Cancer Inst, 2015. **107**(6): p. djv074.
- 54. Jacobs, E.G., et al., *Relationship between leukocyte telomere length, telomerase activity, and hippocampal volume in early aging.* JAMA Neurol, 2014. **71**(7): p. 921-3.
- 55. King, K.S., et al., *Effect of leukocyte telomere length on total and regional brain volumes in a large population-based cohort.* JAMA Neurol, 2014. **71**(10): p. 1247-54.
- 56. Staffaroni, A.M., et al., *Telomere attrition is associated with declines in medial temporal lobe volume and white matter microstructure in functionally independent older adults.* Neurobiol Aging, 2018. **69**: p. 68-75.
- 57. Wikgren, M., et al., *Shorter telomere length is linked to brain atrophy and white matter hyperintensities.* Age Ageing, 2014. **43**(2): p. 212-7.
- 58. Shivakumar, V., et al., *Telomere length and its association with hippocampal gray matter volume in antipsychotic-naive/free schizophrenia patients*. Psychiatry Res Neuroimaging, 2018. **282**: p. 11-17.
- 59. Darrow, S.M., et al., *The Association Between Psychiatric Disorders and Telomere Length: A Meta-Analysis Involving 14,827 Persons.* Psychosom Med, 2016. **78**(7): p. 776-87.
- 60. Zhang, J., et al., Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Res Rev, 2016. 25: p. 55-69.
- 61. Bauer, M.E. and A.L. Teixeira, *Inflammation in psychiatric disorders: what comes first?* Ann N Y Acad Sci, 2019. **1437**(1): p. 57-67.
- 62. Felger, J.C., *Imaging the Role of Inflammation in Mood and Anxiety-related Disorders*. Curr Neuropharmacol, 2018. **16**(5): p. 533-558.

- 63. Pfau, M.L., C. Menard, and S.J. Russo, *Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities*. Annu Rev Pharmacol Toxicol, 2018. **58**: p. 411-428.
- 64. Capuron, L. and N. Castanon, *Role of Inflammation in the Development of Neuropsychiatric Symptom Domains: Evidence and Mechanisms*. Curr Top Behav Neurosci, 2017. **31**: p. 31-44.
- 65. Felger, J.C., et al., *What does plasma CRP tell us about peripheral and central inflammation in depression?* Mol Psychiatry, 2018.
- 66. Felger, J.C. and M.T. Treadway, *Inflammation Effects on Motivation and Motor Activity: Role of Dopamine*. Neuropsychopharmacology, 2017. **42**(1): p. 216-241.
- 67. Haroon, E. and A.H. Miller, *Inflammation Effects on Glutamate as a Pathway to Neuroprogression in Mood Disorders*. Mod Trends Pharmacopsychiatry, 2017. **31**: p. 37-55.
- 68. Coutts, F., et al., *The polygenic nature of telomere length and the anti-ageing properties of lithium*. Neuropsychopharmacology, 2019. **44**(4): p. 757-765.
- 69. Martinsson, L., et al., *Long-term lithium treatment in bipolar disorder is associated with longer leukocyte telomeres.* Transl Psychiatry, 2013. **3**: p. e261.
- 70. Squassina, A., et al., *Leukocyte telomere length positively correlates with duration of lithium treatment in bipolar disorder patients*. Eur Neuropsychopharmacol, 2016. **26**(7): p. 1241-7.
- 71. Wolkowitz, O.M., et al., *Resting leukocyte telomerase activity is elevated in major depression and predicts treatment response*. Mol Psychiatry, 2012. **17**(2): p. 164-72.
- 72. Hough, C.M., et al., *Leukocyte telomere length predicts SSRI response in major depressive disorder: A preliminary report.* Mol Neuropsychiatry, 2016. **2**(2): p. 88-96.
- 73. Manchia, M., et al., A multidisciplinary approach to mental illness: do inflammation, telomere length and microbiota form a loop? A protocol for a cross-sectional study on the complex relationship between inflammation, telomere length, gut microbiota and psychiatric disorders. BMJ Open, 2020. **10**(1): p. e032513.
- 74. Souery, D., G.I. Papakostas, and M.H. Trivedi, *Treatment-resistant depression*. J Clin Psychiatry, 2006. **67 Suppl 6**: p. 16-22.
- 75. Kane, J., et al., *Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine.* Arch Gen Psychiatry, 1988. **45**(9): p. 789-96.
- 76. Manchia, M., et al., Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report. PLoS One, 2013. 8(6): p. e65636.
- 77. First, M.B., et al., *Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition.* 2002: New York: Biometrics Research, New York State Psychiatric Institute.
- 78. Cantara, S., et al., *Telomere abnormalities and chromosome fragility in patients affected by familial papillary thyroid cancer.* J Clin Endocrinol Metab, 2012. **97**(7): p. E1327-31.
- 79. Kushner, I., D. Rzewnicki, and D. Samols, *What does minor elevation of C-reactive protein signify?* Am J Med, 2006. **119**(2): p. 166 e17-28.
- 80. Macy, E.M., T.E. Hayes, and R.P. Tracy, Variability in the measurement of C-reactive protein in healthy subjects: implications for reference intervals and epidemiological applications. Clin Chem, 1997. **43**(1): p. 52-8.
- 81. Morley, J.J. and I. Kushner, *Serum C-reactive protein levels in disease*. Ann N Y Acad Sci, 1982. **389**: p. 406-18.
- 82. Faugere, M., et al., *High C-reactive protein levels are associated with depressive symptoms in schizophrenia.* J Affect Disord, 2018. **225**: p. 671-675.
- 83. Fond, G., et al., *C-Reactive Protein as a Peripheral Biomarker in Schizophrenia. An Updated Systematic Review.* Front Psychiatry, 2018. **9**: p. 392.
- 84. Sicras-Mainar, A., et al., *C-reactive protein as a marker of cardiovascular disease in patients with a schizophrenia spectrum disorder treated in routine medical practice.* Eur Psychiatry, 2013. **28**(3): p. 161-7.

- 85. Wysokinski, A., et al., *Levels of C-reactive protein (CRP) in patients with schizophrenia, unipolar depression and bipolar disorder*. Nord J Psychiatry, 2015. **69**(5): p. 346-53.
- 86. Lindqvist, D., et al., *Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging.* Neurosci Biobehav Rev, 2015. **55**: p. 333-64.
- 87. Russo, P., et al., Shorter telomere length in schizophrenia: Evidence from a real-world population and meta-analysis of most recent literature. Schizophr Res, 2018. 202: p. 37-45.
- 88. Li, Z., et al., Association of telomere length and mitochondrial DNA copy number with risperidone treatment response in first-episode antipsychotic-naive schizophrenia. Sci Rep, 2015. 5: p. 18553.
- 89. Lu, A.T., et al., *DNA methylation-based estimator of telomere length*. Aging (Albany NY), 2019. **11**(16): p. 5895-5923.
- 90. Rao, S., et al., Accelerated leukocyte telomere erosion in schizophrenia: Evidence from the present study and a meta-analysis. J Psychiatr Res, 2016. **79**: p. 50-56.
- 91. Yu, W.Y., et al., Short telomeres in patients with chronic schizophrenia who show a poor response to treatment. J Psychiatry Neurosci, 2008. **33**(3): p. 244-7.
- 92. Osler, M., et al., Stressful life events and leucocyte telomere length: Do lifestyle factors, somatic and mental health, or low grade inflammation mediate this relationship? Results from a cohort of Danish men born in 1953. Brain Behav Immun, 2016. **58**: p. 248-253.
- 93. Chamberlain, S.R., et al., *Treatment-resistant depression and peripheral C-reactive protein*. Br J Psychiatry, 2019. **214**(1): p. 11-19.
- 94. Ruland, T., et al., *Molecular serum signature of treatment resistant depression*. Psychopharmacology (Berl), 2016. **233**(15-16): p. 3051-9.
- 95. Strawbridge, R., et al., *Inflammatory profiles of severe treatment-resistant depression*. J Affect Disord, 2019. **246**: p. 42-51.
- 96. Cattaneo, A., et al., Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline 'predictors' and longitudinal 'targets'. Neuropsychopharmacology, 2013. **38**(3): p. 377-85.
- 97. Haroon, E., et al., Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology, 2018. **95**: p. 43-49.
- 98. Raison, C.L., et al., A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry, 2013. **70**(1): p. 31-41.
- 99. Pinna, M., et al., *Clinical and biological predictors of response to electroconvulsive therapy* (*ECT*): *a review*. Neurosci Lett, 2018. **669**: p. 32-42.
- 100. Hestad, K.A., et al., *Raised plasma levels of tumor necrosis factor alpha in patients with depression: normalization during electroconvulsive therapy.* J ECT, 2003. **19**(4): p. 183-8.
- 101. Yrondi, A., et al., *Electroconvulsive therapy, depression, the immune system and inflammation: A systematic review.* Brain Stimul, 2018. **11**(1): p. 29-51.
- Wang, L., et al., Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav Immun, 2019. 79: p. 24-38.
- 103. Muneer, A. and F.A. Minhas, *Telomere Biology in Mood Disorders: An Updated, Comprehensive Review of the Literature.* Clin Psychopharmacol Neurosci, 2019. **17**(3): p. 343-363.
- 104. Ridout, K.K., et al., *Depression and telomere length: A meta-analysis.* J Affect Disord, 2016. **191**: p. 237-47.
- 105. Pisanu, C., et al., Leukocyte telomere length is reduced in patients with major depressive disorder. Drug Dev Res, 2019.

- 106. Powell, T.R., et al., *Telomere Length and Bipolar Disorder*. Neuropsychopharmacology, 2018. **43**(2): p. 454.
- 107. Salarda, E.M., et al., *Mini-review: The anti-aging effects of lithium in bipolar disorder*. Neurosci Lett, 2021. **759**: p. 136051.
- 108. Pisanu, C., et al., *Differences in telomere length between patients with bipolar disorder and controls are influenced by lithium treatment.* Pharmacogenomics, 2020.
- 109. Smeland, O.B., et al., *Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence.* Mol Psychiatry, 2020. **25**(4): p. 844-853.
- 110. Bulik-Sullivan, B., et al., *An atlas of genetic correlations across human diseases and traits*. Nat Genet, 2015. **47**(11): p. 1236-41.
- 111. Smeland, O.B., et al., *Discovery of shared genomic loci using the conditional false discovery rate approach*. Hum Genet, 2020. **139**(1): p. 85-94.
- 112. Andreassen, O.A., et al., Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet, 2013. 9(4): p. e1003455.
- 113. PleioFDR. 18 March 2021]; Available from: <u>https://github.com/precimed/pleiofdr</u>.
- 114. McIntyre, R.S., et al., *Bipolar disorders*. Lancet, 2020. **396**(10265): p. 1841-1856.
- 115. Chakrabarty, T., et al., Cognitive subgroups in first episode bipolar I disorder: Relation to clinical and brain volumetric variables. Acta Psychiatr Scand, 2021. **143**(2): p. 151-161.
- 116. Depp, C.A., et al., *Meta-analysis of the association between cognitive abilities and everyday functioning in bipolar disorder*. Bipolar Disord, 2012. **14**(3): p. 217-26.
- 117. Kjaerstad, H.L., et al., *Aberrant cognition in newly diagnosed patients with bipolar disorder and their unaffected relatives*. Psychol Med, 2020. **50**(11): p. 1808-1819.
- 118. Kuswanto, C., et al., Shared and divergent neurocognitive impairments in adult patients with schizophrenia and bipolar disorder: Whither the evidence? Neurosci Biobehav Rev, 2016. **61**: p. 66-89.
- 119. Roshani, F., et al., *Comparison of cognitive flexibility, appropriate risk-taking and reaction time in individuals with and without adult ADHD.* Psychiatry Res, 2020. **284**: p. 112494.
- 120. Dekkers, T.J., et al., *Decision-Making Deficits in Adolescent Boys with and without Attention-Deficit/Hyperactivity Disorder (ADHD): an Experimental Assessment of Associated Mechanisms.* J Abnorm Child Psychol, 2020. **48**(4): p. 495-510.
- 121. Posner, J., G.V. Polanczyk, and E. Sonuga-Barke, *Attention-deficit hyperactivity disorder*. Lancet, 2020. **395**(10222): p. 450-462.
- 122. Adida, M., et al., *Trait-related decision-making impairment in the three phases of bipolar disorder*. Biol Psychiatry, 2011. **70**(4): p. 357-65.
- 123. Shakeel, M.K., D.C. Hodgins, and V.M. Goghari, A Comparison of Self-Reported Impulsivity in Gambling Disorder and Bipolar Disorder. J Gambl Stud, 2019. **35**(1): p. 339-350.
- 124. Sicilia, A.C., et al., *Decision-making and risk in bipolar disorder: A quantitative study using fuzzy trace theory.* Psychol Psychother, 2020. **93**(1): p. 105-121.
- 125. Strakowski, S.M., et al., *Characterizing impulsivity in mania*. Bipolar Disord, 2009. **11**(1): p. 41-51.
- 126. American Psychiatric Association, *Diagnostic and statistical manual of mental disorders 4*. text revision (DSM-IV-TR) ed. 2000, Washington, DC: American Psychiatric Press, Inc.
- 127. Substance Abuse and Mental Health Services Administration (US). *Impact of the DSM-IV to DSM-5 Changes on the National Survey on Drug Use and Health.* 2016 [cited 2020 2 December]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK519704/table/ch3.t9/.
- 128. Papolos, D., J. Hennen, and M.S. Cockerham, *Factors associated with parent-reported suicide threats by children and adolescents with community-diagnosed bipolar disorder*. J Affect Disord, 2005. **86**(2-3): p. 267-75.

- 129. Reinharth, J., R. Braga, and M. Serper, *Characterization of Risk-Taking in Adults With Bipolar Spectrum Disorders*. J Nerv Ment Dis, 2017. **205**(7): p. 580-584.
- 130. Ramirez-Martin, A., et al., *Impulsivity, decision-making and risk-taking behaviour in bipolar disorder: a systematic review and meta-analysis.* Psychol Med, 2020. **50**(13): p. 2141-2153.
- 131. Scholz, V., et al., *Dysfunctional decision-making related to white matter alterations in bipolar I disorder*. J Affect Disord, 2016. **194**: p. 72-9.
- 132. Mason, L., et al., Attentional Bias Predicts Increased Reward Salience and Risk Taking in Bipolar Disorder. Biol Psychiatry, 2016. **79**(4): p. 311-9.
- 133. Xia, Y., et al., *Emotion-related brain structures associated with trait creativity in middle children*. Neurosci Lett, 2017. **658**: p. 182-188.
- 134. Cortese, B.M., et al., *Region-specific alteration in brain glutamate: possible relationship to risk-taking behavior.* Physiol Behav, 2010. **99**(4): p. 445-50.
- 135. Hermens, D.F., et al., *Hippocampal glutamate is increased and associated with risky drinking in young adults with major depression.* J Affect Disord, 2015. **186**: p. 95-8.
- 136. Pittaras, E., et al., *Individual behavioral and neurochemical markers of unadapted decisionmaking processes in healthy inbred mice.* Brain Struct Funct, 2016. **221**(9): p. 4615-4629.
- 137. Tondo, L., G.H. Vazquez, and R.J. Baldessarini, *Prevention of suicidal behavior in bipolar disorder*. Bipolar Disord, 2021. **23**(1): p. 14-23.
- 138. Shaltiel, G., et al., Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry, 2008. **13**(9): p. 858-72.
- 139. Zhou, Z., et al., Chronic treatment with mood stabilizer lithium inhibits amphetamineinduced risk-taking manic-like behaviors. Neurosci Lett, 2015. 603: p. 84-8.
- 140. Kollmann, B., et al., *Cognitive variability in bipolar I disorder: A cluster-analytic approach informed by resting-state data.* Neuropharmacology, 2019. **156**: p. 107585.
- 141. Hidiroglu, C., et al., *Can risk-taking be an endophenotype for bipolar disorder? A study on patients with bipolar disorder type I and their first-degree relatives.* J Int Neuropsychol Soc, 2013. **19**(4): p. 474-82.
- 142. Bipolar, D., et al., *Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes.* Cell, 2018. **173**(7): p. 1705-1715 e16.
- 143. Stahl, E.A., et al., *Genome-wide association study identifies 30 loci associated with bipolar disorder*. Nat Genet, 2019. **51**(5): p. 793-803.
- 144. Karlsson Linner, R., et al., Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat Genet, 2019. **51**(2): p. 245-257.
- 145. Brainstorm, C., et al., Analysis of shared heritability in common disorders of the brain. Science, 2018. **360**(6395).
- 146. Wu, Y., et al., *Multi-trait analysis for genome-wide association study of five psychiatric disorders*. Transl Psychiatry, 2020. **10**(1): p. 209.
- 147. Lee, P.H., Y.A. Feng, and J.W. Smoller, *Pleiotropy and Cross-Disorder Genetics Among Psychiatric Disorders*. Biol Psychiatry, 2021. **89**(1): p. 20-31.
- 148. O'Connell, K.S., et al., *Identification of genetic overlap and novel risk loci for attentiondeficit/hyperactivity disorder and bipolar disorder*. Mol Psychiatry, 2019.
- 149. Mullins, N., et al., Genome-wide association study of over 40,000 bipolar disorder cases provides novel biological insights. 2020: p. 2020.09.17.20187054.
- 150. Schizophrenia Working Group of the Psychiatric Genomics, C., *Biological insights from* 108 schizophrenia-associated genetic loci. Nature, 2014. **511**(7510): p. 421-7.
- 151. Demontis, D., et al., *Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder*. Nat Genet, 2019. **51**(1): p. 63-75.

- 152. Uffelmann, E. and D. Posthuma, *Emerging Methods and Resources for Biological Interrogation of Neuropsychiatric Polygenic Signal.* Biol Psychiatry, 2021. **89**(1): p. 41-53.
- 153. Smeland, O.B., et al., *Identification of Genetic Loci Jointly Influencing Schizophrenia Risk* and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function. JAMA Psychiatry, 2017. **74**(10): p. 1065-1075.
- 154. Smeland, O.B., et al., Genome-wide Association Analysis of Parkinson's Disease and Schizophrenia Reveals Shared Genetic Architecture and Identifies Novel Risk Loci. Biol Psychiatry, 2021. **89**(3): p. 227-235.
- 155. Smeland, O.B., et al., Genetic Overlap Between Schizophrenia and Volumes of Hippocampus, Putamen, and Intracranial Volume Indicates Shared Molecular Genetic Mechanisms. Schizophr Bull, 2018. **44**(4): p. 854-864.
- 156. Watanabe, K., et al., *Functional mapping and annotation of genetic associations with FUMA*. Nat Commun, 2017. **8**(1): p. 1826.
- 157. Rentzsch, P., et al., *CADD: predicting the deleteriousness of variants throughout the human genome*. Nucleic Acids Res, 2019. **47**(D1): p. D886-D894.
- 158. Dong, S. and A.P. Boyle, *Predicting functional variants in enhancer and promoter elements using RegulomeDB*. Hum Mutat, 2019. **40**(9): p. 1292-1298.
- 159. Consortium, G.T., *The GTEx Consortium atlas of genetic regulatory effects across human tissues.* Science, 2020. **369**(6509): p. 1318-1330.
- 160. Liao, Y., et al., *WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs.* Nucleic Acids Res, 2019. **47**(W1): p. W199-W205.
- 161. Cotto, K.C., et al., *DGIdb 3.0: a redesign and expansion of the drug-gene interaction database*. Nucleic Acids Res, 2018. **46**(D1): p. D1068-D1073.
- 162. Zhang, Y., et al., *Local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits.* 2020: p. 2020.05.08.084475.
- 163. Genomes Project, C., et al., An integrated map of genetic variation from 1,092 human genomes. Nature, 2012. **491**(7422): p. 56-65.
- 164. Gerring, Z.F., et al., A gene co-expression network-based analysis of multiple brain tissues reveals novel genes and molecular pathways underlying major depression. PLoS Genet, 2019. **15**(7): p. e1008245.
- 165. de Leeuw, C.A., et al., *MAGMA: generalized gene-set analysis of GWAS data*. PLoS Comput Biol, 2015. **11**(4): p. e1004219.
- 166. Brunton, L.L., R. Hilal-Dandan, and B.C. Knollmann, *Goodman & Gilman's: The Pharmacological Basis of Therapeutics, Thirteenth Edition*
- 2018: McGraw-Hill Education.
- 167. Mosheva, M., et al., Association between CANCA1C gene rs1034936 polymorphism and alcohol dependence in bipolar disorder. J Affect Disord, 2020. **261**: p. 181-186.
- 168. Jaffe, A.E., et al., *Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk.* Nat Neurosci, 2020. **23**(4): p. 510-519.
- 169. Hamidian, S., et al., *How obsessive-compulsive and bipolar disorders meet each other? An integrative gene-based enrichment approach.* Ann Gen Psychiatry, 2020. **19**: p. 31.
- 170. Ehlinger, D.G. and K.G. Commons, *Cav1.2L-type calcium channels regulate stress coping behavior via serotonin neurons*. Neuropharmacology, 2019. **144**: p. 282-290.
- 171. Bastos, C.R., et al., *The role of CACNA1C gene and childhood trauma interaction on bipolar disorder*. Prog Neuropsychopharmacol Biol Psychiatry, 2020. **101**: p. 109915.
- 172. Dedic, N., et al., Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol Psychiatry, 2018. 23(3): p. 533-543.

- 173. Clark, M.B., et al., Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Mol Psychiatry, 2020. **25**(1): p. 37-47.
- 174. Harrison, P.J., et al., Cellular calcium in bipolar disorder: systematic review and metaanalysis. Mol Psychiatry, 2019.
- Andreopoulos, S., et al., Chronic lithium treatment of B lymphoblasts from bipolar disorder patients reduces transient receptor potential channel 3 levels. Pharmacogenomics J, 2004. 4(6): p. 365-73.
- 176. Dubovsky, S.L., et al., *Intracellular calcium signalling in peripheral cells of patients with bipolar affective disorder*. Eur Arch Psychiatry Clin Neurosci, 1994. **243**(5): p. 229-34.
- 177. Mertens, J., et al., *Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder*. Nature, 2015. **527**(7576): p. 95-9.
- 178. Higgins, G.A., et al., *A glutamatergic network mediates lithium response in bipolar disorder as defined by epigenome pathway analysis.* Pharmacogenomics, 2015. **16**(14): p. 1547-63.
- 179. McCarthy, M.J., et al., *Calcium channel genes associated with bipolar disorder modulate lithium's amplification of circadian rhythms*. Neuropharmacology, 2016. **101**: p. 439-48.
- 180. Garza-Trevino, E.S., J.E. Overall, and L.E. Hollister, *Verapamil versus lithium in acute mania*. Am J Psychiatry, 1992. **149**(1): p. 121-2.
- 181. Pal Singh, G., A double-blind comparative study of clinical efficacy of verapamil versus lithium in acute mania. Int J Psychiatry Clin Pract, 2008. **12**(4): p. 303-8.
- 182. Wisner, K.L., et al., *Verapamil treatment for women with bipolar disorder*. Biol Psychiatry, 2002. **51**(9): p. 745-52.
- 183. Cipriani, A., et al., A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development. Mol Psychiatry, 2016. **21**(10): p. 1324-32.
- 184. Atkinson, L.Z., et al., *The Oxford study of Calcium channel Antagonism, Cognition, Mood instability and Sleep (OxCaMS): study protocol for a randomised controlled, experimental medicine study.* Trials, 2019. **20**(1): p. 120.
- 185. Hayes, J.F., et al., Association of Hydroxylmethyl Glutaryl Coenzyme A Reductase Inhibitors, L-Type Calcium Channel Antagonists, and Biguanides With Rates of Psychiatric Hospitalization and Self-Harm in Individuals With Serious Mental Illness. JAMA Psychiatry, 2019. **76**(4): p. 382-390.
- 186. Zink, C.F., et al., Nimodipine improves cortical efficiency during working memory in healthy subjects. Transl Psychiatry, 2020. **10**(1): p. 372.
- Vahdani, B., et al., Adjunctive Raloxifene and Isradipine Improve Cognitive Functioning in Patients With Schizophrenia: A Pilot Study. J Clin Psychopharmacol, 2020. 40(5): p. 457-463.
- 188. Yoshimizu, T., et al., *Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons*. Mol Psychiatry, 2015. **20**(2): p. 162-9.
- 189. Koh, T.W. and H.J. Bellen, *Synaptotagmin I, a Ca2+ sensor for neurotransmitter release*. Trends Neurosci, 2003. **26**(8): p. 413-22.
- 190. Flores, R., 3rd, et al., *DISC1 regulates synaptic vesicle transport via a lithium-sensitive pathway*. Neurosci Res, 2011. **71**(1): p. 71-7.
- 191. Yoshino, Y. and Y. Dwivedi, Non-Coding RNAs in Psychiatric Disorders and Suicidal Behavior. Front Psychiatry, 2020. 11: p. 543893.
- 192. Hou, L., et al., *Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study.* Lancet, 2016. **387**(10023): p. 1085-1093.
- 193. Kang, H.J., et al., Genetic Markers for Later Remission in Response to Early Improvement of Antidepressants. Int J Mol Sci, 2020. 21(14).
- 194. Wang, Y., et al., *Metformin exerts antidepressant effects by regulated DNA hydroxymethylation*. Epigenomics, 2019. **11**(6): p. 655-667.

- 195. Michaelson, J.J., et al., Neuronal PAS Domain Proteins 1 and 3 Are Master Regulators of Neuropsychiatric Risk Genes. Biol Psychiatry, 2017. **82**(3): p. 213-223.
- 196. Kamnasaran, D., et al., *Disruption of the neuronal PAS3 gene in a family affected with schizophrenia.* J Med Genet, 2003. **40**(5): p. 325-32.
- 197. Pickard, B.S., et al., Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. Am J Med Genet B Neuropsychiatr Genet, 2005. 136B(1): p. 26-32.
- 198. Pickard, B.S., et al., *Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder*. Mol Psychiatry, 2009. **14**(9): p. 874-84.
- 199. Nurnberger, J.I., Jr., et al., *Identification of pathways for bipolar disorder: a meta-analysis*. JAMA Psychiatry, 2014. **71**(6): p. 657-64.
- 200. Huang, J., et al., *Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression.* Am J Psychiatry, 2010. **167**(10): p. 1254-63.
- 201. Sha, L., et al., *Transcriptional regulation of neurodevelopmental and metabolic pathways by NPAS3*. Mol Psychiatry, 2012. **17**(3): p. 267-79.
- 202. Brunskill, E.W., et al., *Abnormal neurodevelopment, neurosignaling and behaviour in Npas3-deficient mice.* Eur J Neurosci, 2005. **22**(6): p. 1265-76.
- 203. Codd, V., et al., *Polygenic basis and biomedical consequences of telomere length variation*. Nat Genet, 2021. **53**(10): p. 1425-1433.
- 204. Codd, V., et al., *Identification of seven loci affecting mean telomere length and their association with disease*. Nat Genet, 2013. **45**(4): p. 422-7, 427e1-2.
- 205. Palmos, A.B., et al., *Genetic Risk for Psychiatric Disorders and Telomere Length*. Front Genet, 2018. **9**: p. 468.
- 206. Mutz, J. and C.M. Lewis, *Telomere length associations with clinical diagnosis, age and polygenic risk scores for anxiety disorder, depression and bipolar disorder.* Biological Psychiatry Global Open Science, 2022.
- 207. Bulik-Sullivan, B.K., et al., *LD Score regression distinguishes confounding from polygenicity in genome-wide association studies.* Nat Genet, 2015. **47**(3): p. 291-5.
- 208. Bigdeli, T.B., et al., *Genome-Wide Association Studies of Schizophrenia and Bipolar Disorder in a Diverse Cohort of US Veterans.* Schizophr Bull, 2021. **47**(2): p. 517-529.
- 209. Ni, H., et al., The GWAS Risk Genes for Depression May Be Actively Involved in Alzheimer's Disease. J Alzheimers Dis, 2018. 64(4): p. 1149-1161.
- 210. Blue, E.E., et al., Non-coding variants in MYH11, FZD3, and SORCS3 are associated with dementia in women. Alzheimers Dement, 2021. 17(2): p. 215-225.
- 211. Reitz, C., *The role of intracellular trafficking and the VPS10d receptors in Alzheimer's disease*. Future Neurol, 2012. **7**(4): p. 423-431.
- 212. Reitz, C., *The role of the retromer complex in aging-related neurodegeneration: a molecular and genomic review.* Mol Genet Genomics, 2015. **290**(2): p. 413-27.
- 213. Frey, L., et al., *Mammalian VPS45 orchestrates trafficking through the endosomal system*. Blood, 2021. **137**(14): p. 1932-1944.
- 214. Goldstein, B.I., et al., *The burden of obesity among adults with bipolar disorder in the United States.* Bipolar Disord, 2011. **13**(4): p. 387-95.
- 215. Vancampfort, D., et al., *Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis.* World Psychiatry, 2015. **14**(3): p. 339-47.
- 216. Calkin, C.V., et al., *The relationship between bipolar disorder and type 2 diabetes: more than just co-morbid disorders.* Ann Med, 2013. **45**(2): p. 171-81.
- 217. Pisanu, C., et al., Evidence that genes involved in hedgehog signaling are associated with both bipolar disorder and high BMI. Transl Psychiatry, 2019. **9**(1): p. 315.
- 218. Bahrami, S., et al., Shared Genetic Loci Between Body Mass Index and Major Psychiatric Disorders: A Genome-wide Association Study. JAMA Psychiatry, 2020. 77(5): p. 503-512.

- 219. Rodevand, L., et al., *Extensive bidirectional genetic overlap between bipolar disorder and cardiovascular disease phenotypes*. Transl Psychiatry, 2021. **11**(1): p. 407.
- 220. Rodevand, L., et al., *Polygenic overlap and shared genetic loci between loneliness, severe mental disorders, and cardiovascular disease risk factors suggest shared molecular mechanisms*. Transl Psychiatry, 2021. **11**(1): p. 3.
- 221. Torgersen, K., et al., *Shared genetic loci between depression and cardiometabolic traits*. PLoS Genet, 2022. **18**(5): p. e1010161.
- 222. Chella Krishnan, K., M. Mehrabian, and A.J. Lusis, *Sex differences in metabolism and cardiometabolic disorders*. Curr Opin Lipidol, 2018. **29**(5): p. 404-410.
- 223. Pulit, S.L., et al., *Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry*. Hum Mol Genet, 2019. **28**(1): p. 166-174.
- 224. Wolter, J.M., et al., Cellular Genome-wide Association Study Identifies Common Genetic Variation Influencing Lithium-Induced Neural Progenitor Proliferation. Biol Psychiatry, 2023. 93(1): p. 8-17.
- 225. Pisanu, C., et al., Investigating the Role of Leukocyte Telomere Length in Treatment-Resistant Depression and in Response to Electroconvulsive Therapy. J Pers Med, 2021. 11(11).