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Abstract. In the framework of algebras with infinitary operations, the equational theory

of
∨

κ-complete Heyting algebras or Heyting κ-frames is studied. A Hilbert style calculus

algebraizable in this class is formulated. Based on the infinitary structure of Heyting κ-

frames, an equational type completeness theorem related to the 〈∨, ∧, →, 0〉-structure of

frames is also obtained.
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Introduction

The notion of frame is a lattice theoretic approach to the open subsets of
a topological space when finite intersections and arbitrary unions of open
sets are considered. This idea of regarding frames as generalized topologi-
cal spaces was studied by several authors [3,11,16–18,24]. Frames define a
category, denoted by Frm, whose objects are complete lattices satisfying
the distributive law x ∧ ∨

S =
∨{x ∧ s : s ∈ S} and whose arrows, called

frame-homomorphisms, are lattice order homomorphisms preserving arbi-
trary supremum. Charles Ehresmann called these lattices local lattices but
it was Clifford Dowker who first introduced the terminology frame to refer
to these mathematical objects. The lattice ordered structure of a frame A
implicitly defines an implication “→” given by a → b =

∨{x ∈ A : x∧a ≤ b}
which is the residuum of the meet. In this way, frames are naturally endowed
with a complete Heyting algebra structure. Further, frames and complete
Heyting algebras determine the same class of lattices. However, a frame-
homomorphism is not, in general, a Heyting homomorphism because it does
not necessarily preserve the implication.1

1 There are special cases of frame-homomorphisms preserving implication and all meets.
They are called open since these correspond to open continuous functions between topo-
logical spaces.
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This work is motivated by the equational theory related to the underly-
ing 〈∨,∧,→, 0〉-Heyting structure of frames defining a category H∞ whose
arrows are 〈∨,∧,→, 0〉-preserving maps.

For infinitary structures, the condition of equational definability is usu-
ally treated in a categorical way (see for example [17, § II] and [26, § 1]) and,
in the particular case of H∞, this approach becomes very useful in topology.
However, this categorical framework may not be the most suitable from the
algebraic logic viewpoint. One of the crucial logical problem with respect to
the infinitary algebraic structures is that we deal with proper class of oper-
ations giving rise to languages of algebras, or term algebras, that are proper
classes too. A structure of this type, involving a proper class of operations,
is difficult to approach with the usual universal algebra techniques. Despite
this fact, in the particular case of H∞, the problem mentioned above can
be indirectly dealt from infinity structures whose language of algebras can
be described by a set. Indeed: We first note that

∨
is not an operation. By

fixing an infinite cardinal number κ, the supremum of the sets of cardinality
κ, denoted by

∨
κ, defines an infinitary operation of arity κ. Then, an equa-

tional presentation for H∞ can be formulated taking into account the proper
class of operations 〈(∨κ)ω≤κ∈Card,∧,→, 0〉 where Card is the class of car-
dinal numbers [26, p. 69]. If, for each cardinal number κ ≥ ω, the reduct
〈∨κ,∧,→, 0〉 is considered, then it is an algebra with an infinitary operation
defined by a proper set of operations giving the possibility to define a lan-
guage of algebras described by a set. In each frame, the 〈∨κ,∧,→, 0〉-reduct
is a Heyting algebra admitting κ-joins or, equivalently, a κ-frame [22,23] in
which the Heyting residuum of ∧ is defined. These kinds of κ-frames define
a category Hκ whose arrows are 〈∨κ,∧,→, 0〉-preserving maps. In order to
emphasize the preservation of these operations by homomorphisms, we refer
to the objects of Hκ as Heyting κ-frames.

Thus, in addition to the interest in itself of the Heyting κ-frames, these
algebras will allow to describe the equational theory of H∞. In this perspec-
tive, the first aim of this paper is to study the equational theory of Heyting
κ-frames in the framework of algebras with infinitary operations. Secondly,
we will study the basic properties of the class Hκ adapting several techniques
of the universal algebra. Among these topics we will focus on congruences,
direct indecomposability, a Glivenko type theorem, amalgamation and injec-
tive objects. The subclass of subdirect irreducible Heyting κ-frames is also
characterized since the equational completeness of Hκ with respect to the
mentioned subclass of algebras can be proved in this particular infinitary
structure.
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The paper is structured as follows. In Section 1 we recall some basic
notions about algebras with infinitary operations. In Section 2 Heyting κ-
frames are introduced as an equational class of algebras. We devote Section
3 to expose the theory of filters and congruences for Heyting κ-frames and
H∞-algebras. Conditions for the validity of the congruence extension prop-
erty (CEP) are also introduced. In Section 4 the direct idecomposability is
studied. In Section 5 a Glivenko type theorem for Heyting κ-frames is es-
tablished. The Gödel negative translation of terms in the language of Hω

is specially treated. Moreover a kind of amalgamation property, related to
regular elements of Heyting κ-frames, is given. In Section 6 injective objects
of Hκ and H∞ are characterized. In Section 7 an infinitary Hilbert-style
calculus is introduced obtaining a strong completeness theorem for the class
Hκ. In Section 8 an equational completeness theorem for Heyting κ-frames is
established. Based on the equational theory of Heyting κ-frames, in Section
9, an equational type completeness theorem for H∞ is formulated.

In Section 10 a relation between Heyting κ-frames and algebraic struc-
tures, whose study is motivated by the intuitionistic predicate logic, is es-
tablished. Finally, in Section 11, some concluding remarks and topics to be
studied about the structure of Heyting κ-frames are suggested.

1. Basic Notions

The first development on abstract algebras with infinitary operations has
been formulated by S�lomiński [31]. In the mentioned article it can be seen
that many results on classical universal algebra can be generalized to classes
of algebras admitting infinitary operations. In this generalized framework,
properties related to the cardinality of the algebraic structures become rel-
evant. We denote by ON the class of ordinal numbers. Since a cardinal is
an ordinal number α such that no ordinal smaller than α is equipotent to
α, then Card ⊆ ON as classes of sets. For each set A we use the notation
|A| to indicate the cardinal number of A. The following proposition provides
two useful results about cardinal arithmetic.

Proposition 1.1. Let κ, μ be cardinals. Suppose that at least one of them
is infinite. Then

1. κ + μ = max{κ, μ}.
2. If we assume that neither κ nor μ are equal to 0 then κμ = max{κ, μ}.
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An infinite cardinal κ is said to be regular iff for each family of cardinal
numbers (λi)i∈I such that λi < κ and |I| < κ, then

∑
i∈I λi < κ. An infinite

cardinal that is not regular is called singular. The successor cardinal κ+ of
κ is the least cardinal > κ.

Proposition 1.2. Let κ be an infinite cardinal. Then:

1. κ is a limit ordinal;

2. κ+ is a regular cardinal;

3. if (αi)i∈κ is a set of ordinal numbers such that for each i ∈ κ, αi < κ+

then
⋃

i∈κ αi is an ordinal number such that
⋃

i∈κ αi < κ+.

Proof. (1), (2) They are well known properties about cardinals numbers.
(3) It is also well known that the union of a nonempty set of ordinals numbers
is an ordinal number too. Thus,

⋃
i∈κ αi is an ordinal number. Suppose that

κ+ ≤ ⋃
i∈κ αi. Since |αi| < κ+, κ < κ+ and κ+ is a regular cardinal, by

item 2, κ+ ≤ |⋃i∈κ αi| ≤ ∑
i∈κ |αi| < κ+ which is a contradiction. Hence

our claim.

In what follows we introduce and adapt from [31] some basic notions
about algebras with infinitary operations.

Let A be a non-empty set and κ be a cardinal number. If f is a function
with domain Aκ and a = (ai)i∈κ ∈ Aκ then, f(a) represents the value
f(a0, a1, . . . ai, . . .) where i ∈ κ. A type is a set τ of operation symbols where
cardinal numbers represent the arities. If ϕ ∈ τ then, arity(ϕ) denotes the
arity of ϕ. We denote by τ0 the subset of τ given by τ0 = {ϕ ∈ τ : arity(ϕ) =
0} i.e. the set of constant operation symbols. Let τ be a type. An algebra of
type τ is a pair 〈A, τA〉 where A is a non-empty set and τA = {ϕA : ϕ ∈ τ}
is a set of operations on A such that each element ϕA ∈ τA has the form
ϕA : Aarity(ϕ) → A. An algebra A is trivial iff it has one element only.

Let A and B be two algebras of type τ . We say that B is a subalgebra
of A iff B ⊆ A and for every ϕ ∈ τ , ϕB is ϕA restricted to B. Let S ⊆ A.
If there exists a smallest subalgebra of A that contains S then it is called
the subalgebra of A generated by S. A function f : A → B is said to be a τ -
homomorphism iff for each operation symbol ϕ ∈ τ with arity κ and for each
indexed subset (ai)i∈κ of A, then f(ϕA(a0, a1, . . .)) = ϕB(f(a0), f(a1), . . .).

An equivalence relation θ on A is a τ -congruence iff θ satisfies the fol-
lowing compatibility property: for each operation symbol ϕ ∈ τ of arity κ
and indexed sets a = (ai)i∈κ, b = (bi)i∈κ of elements of A, if (ai, bi) ∈ θ for
each i ∈ κ then (ϕ(a), ϕ(b)) ∈ θ. It is clear that the diagonal relation Δ on
A and A2, denoted by ∇, are τ -congruences. The set of all τ -congruences
on A is denoted by Conτ (A) and 〈Conτ (A),⊆〉 is a complete lattice. A is
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simple iff Conτ (A) = {Δ,∇}. If θ ∈ Conτ (A) then the quotient algebra of
A by θ is the algebra whose universe is the quotient set A/θ and whose
operations satisfy ϕA/θ(a0/θ, a1/θ, . . .) = ϕA(a0, a1, . . .)/θ, where ϕ ∈ τ
has arity κ and (ai)i∈κ ∈ Aκ. Note that A/θ is a τ -algebra and the nat-
ural map pθ : A → A/θ is a surjective τ -homomorphism. If f : A → B
is a τ -homomorphism then Ker(f) = {(a, b) ∈ A2 : f(a) = f(b)} is a
τ -congruence.

The direct product of a set of algebras (Ai)i∈I of type τ , denoted by∏
i∈I Ai, is the algebra of type τ obtained by endowing the set-theoretical

Cartesian product with the operation of type τ , defined pointwise. For each
j ∈ I the jth-projection πj is a τ -homomorphism onto Aj . The algebra A is
directly indecomposable iff A is not τ -isomorphic to a direct product of two
non trivial algebras of type τ .

A class A of algebras of type τ is said to be a variety iff it is closed with
respect to direct products, subalgebras and homomorphic images.

Let τ be a type of algebras, ϕ ∈ τ and t = (ti)i∈arity(ϕ) be a arity(ϕ)-
tuple of symbols. Then the expresion ϕ(t) is a syntactic abbreviation of
ϕ(to, t1, . . . , ti, . . .).

Let X be a set, called set of variables, τ be a type of algebras and we
always assume that X ∩ τ = ∅. We say that a set T is (X, τ)-closed iff
X ∪ τ0 ⊆ T and ϕ(t) ∈ T whenever ϕ ∈ τ − τ0 and t ∈ T arity(ϕ). In order to
establish the existence of (X, τ)-closed sets we first introduce the following
family, ordered by ordinal numbers:

X0 = X ∪ τ0, (1)

Xγ =
⋃

j∈γ

Xj ∪
⋃

ϕ∈τ

{ϕ(t) : t is a arity(ϕ)-tuple taken in
⋃

j∈γ Xj}.

Proposition 1.3. Let X be a set of variables, τ be a type of algebras and
(Xi)i be the family introduced in Eq. (1). Let us consider the cardinal num-
ber

γτ = min{κ ∈ Card : ∀ϕ ∈ τ, arity(ϕ) ≤ κ}.

Then the set Tγ+
τ

=
⋃

i∈γ+
τ

Xi is (X, τ)-closed.

Proof. We first note that γτ exists since Card is a well order class. By
definition of Tγ+

τ
, it is immediate that X ∪ τ0 ⊆ Tγ+

τ
. Let ϕ ∈ τ − τ0 and

t = (ti)i∈arity(ϕ) ∈ T
arity(ϕ)

γ+
τ

. Then, for each i ∈ arity(ϕ), there exists an
ordinal number αi < γ+

τ such that ti ∈ Xαi
. If α =

⋃
i∈arity(ϕ) αi then

ti ∈ Xα for each i ∈ arity(ϕ) and, by Proposition 1.2-3, α is an ordinal
number satisfying α < γ+

τ . By Proposition 1.2-2, α + 1 < γ+
τ where α + 1
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is the successor ordinal of α. Therefore ϕ(t) ∈ Xα+1 ⊆ Tγ+
τ

and Tγ+
τ

is
(X, τ)-closed.

The well ordering of Card and the Proposition 1.3 allow us to introduce
the following definition.

Definition 1.4. Let X be a set of variables, τ be a type of algebras and
(Xi)i be the family introduced in Eq. (1). Let us consider the cardinal num-
ber

γ
X,τ

= min

{

κ ∈ Card :
⋃

i∈κ

Xi is (X, τ)-closed

}

. (2)

Then we define the set of τ -terms over X as

Termτ (X) =
⋃

i∈γ
X,τ

Xi.

If t ∈ Termτ (X) we use the notation t(x) to indicate that the variables
occurring in t are among x = {xi}i. We can introduce a notion of complexity
of terms as a function of the form Comp : Termτ (X) → γ

X,τ
such that:

Comp(t) = 0 iff t ∈ X0,

Comp(t) = γ iff t ∈ Xγ and t �∈ Xi for all i < γ. (3)

Let us notice that Termτ (X) has a natural algebraic structure of type τ
given by 〈Termτ (X), τTermτ (X)〉 where for each ϕ ∈ τ

Termτ (X)arity(ϕ) � t �→ ϕTermτ (X)(t) = ϕ(t).

The algebra 〈Termτ (X), τTermτ (X)〉 is called the absolutely free algebra of
type τ over X.

Let A be an algebra of type τ and X be a non-empty set of variables. A
valuation in A is a function v : X → A. By transfinite induction on Comp(t),
any valuation v in A can be uniquely extended to a τ -homomorphism v̂ :
Termτ (X) → A. In view of this and, when there is no possible ambiguity,
we adopt the following identification v̂ ∼= v̂/X = v.

Let t(x) ∈ Termτ (X) where x = {xi}i and v : Termτ (X) → A be
a valuation. Then, we use the notation tA(a), where a = {ai}i ⊆ A, to
indicate the value v(t) where v(xi) = ai. An equation of type τ over X is
an expression of the form t = s where t, s ∈ Termτ (X). An algebra A of
type τ satisfies an equation t = s, indistinctly abbreviated as A |= t = s or
|=A t = s, iff for each valuation v : X → A, v(t) = v(s). Let A be a class
of algebras of type τ . Then, the equation t = s is satisfied in A, indistinctly
abbreviated as A |= t = s or |=A t = s, iff for each A ∈ A, A |= t = s.
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Let E be a class of equations of type τ . We denote by Algτ (E) the
class of algebras of type τ satisfying the equations in E. A is said to be
equationally definable iff there exists a class E of equations of type τ such
that A = Algτ (E).

If A is an equationally definable class of algebras of type τ and t = s is
an equation such that t, s ∈ Termτ (X) then, for the sake of simplicity, we
denote by A ∪ {t = s} the equational subclass of algebras of A satisfying
the equation t = s.

Let A be a category whose objects are algebras of type τ and whose
arrows, called A-homomorphism, are τ -homomorphisms between algebras
of A. An A-homomorphism f is said to be a monomorphism iff f ◦ g =
f ◦ h implies g = h for any A-homomorphism g, h. A V-formation in the

category A is a scheme of A-monomorphisms of the form B
i←↩ A

j
↪→ C. An

amalgam of this V-formation is a scheme of A-monomorphisms of the form

C
k

↪→ D
h←↩ B such that hi = kj. The amalgam is strong if, in addition,

Imag(k) ∩ Imag(h) = Imag(kj) = Imag(hi). The category A has the
(strong) amalgamation property iff every V-formation in A can be (strongly)
amalgamated. An algebra A ∈ A is said to be injective object iff for every
A-monomorphism f : B → C and every A-homomorphism g : B → A there
exists a A-homomorphism h : C → A such that hf = g. An algebra A in A
is said to be free over A iff there exists a subset S ⊆ A generating A and, if
B ∈ A and f : S → B is a function then there exists a uniquely determined
A-homomorphism g : A → B such that f = g/S. More precisely, we refer to
the algebra A as a free algebra on X generator.

Theorem 1.5. Let A be an equationally definable category of algebras of
the same type. Then:

1. Monomorphisms in A are exactly injective homomorphisms [26, § 1].

2. A is a variety [31, § 7].

2. The Equational Theory of Heyting κ-Frames

In order to introduce and study our main algebraic structure, i.e. Heyting κ-
frames, we first need some basic notions about Heyting algebras. A Heyting
algebra is an algebra 〈A,∨,∧,→, 0〉 of type 〈2, 2, 2, 0〉 satisfying the following
equations:

H1. 〈A,∨,∧, 0〉 is a lattice with universal lower bound 0,

H2. x ∧ y = x ∧ (x → y),
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H3. x ∧ (y → z) = x ∧ ((x ∧ y) → (x ∧ z)),

H4. z ∧ ((x ∧ y) → x) = z.

We denote by H the variety of Heyting algebras. In accordance with the
usual H-algebraic operations we define ¬x = x → 0 and 1 = ¬0. Let us recall
that if A is a Heyting algebra then the lattice order is given by x ≤ y iff
1 = x → y and the reduct 〈A,∨,∧, 0, 1〉 is a bounded distributive lattice. It
is well known that in each Heyting algebra H, a → b =

∨{x ∈ H : x∧a = b}.
Boolean algebras are Heyting algebras where x → y = ¬x ∨ y. Moreover the
variety of Boolean algebras B can be indistinctly defined as

B = H ∪ {x → y = ¬x ∨ y} = H ∪ {¬¬x = x} = H ∪ {¬x ∨ x = 1}. (4)

Let A be a totally ordered set with first element 0 and last element 1. If
we consider the natural lattice order structure 〈A,∨,∧, 0, 1〉 then

x → y =

{
1, if x ≤ y,

y, otherwise
(5)

is the unique operation making 〈A,∨,∧,→, 0〉 a Heyting algebra. These
algebras are called totally ordered Heyting algebras.

Proposition 2.1. In each Heyting algebra A the following relations are
satisfied:

1. x ∧ y ≤ z iff x ≤ y → z,

2. if x ≤ y then, t → x ≤ t → y and y → t ≤ x → t,

3. x → (y ∧ z) = (x → y) ∧ (x → z),

4. (x ∧ y) → z = x → (y → z),

5. x ∨ t ≤ (x → t) → t,

6. if x ≤ y → t then (x → t) → t ≤ y → t,

7. ¬¬(x ∧ y) = ¬¬x ∧ ¬¬y,

8. ¬(x → y) = ¬¬x ∧ ¬y,

9. ¬¬(x → y) = ¬¬x → ¬¬y.

Moreover if
∨

i∈I xi exists in A then:

10. x ∧ ∨
i∈I xi =

∨
i∈I(x ∧ xi),

11. (
∨

i∈I xi) → x =
∧

i∈I(xi → x),

12. ¬¬∨
i∈I xi = ¬¬∨

i∈I ¬¬xi = ¬ ∧
i∈I ¬xi.
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Proof. We only prove items 5 and 6 because the other items are well known
results about Heyting algebras (see [2, §IX] and [15, §IV]). (5) By H2 we
have that x ∧ (x → t) = x ∧ t ≤ t. Then, by item 1, x ≤ (x → t) → t. We
also note that t ∧ (x → b) ≤ t and, by item 1, t ≤ (x → t) → t. It proves
that x∨ t ≤ (x → t) → t. (6) Suppose that x ≤ y → t. By item 1, y ≤ x → t.
Then, by item 2, (x → t) → t ≤ y → t.

The condition expressed in Proposition 2.1-1 says that Heyting algebras
are residuated lattices in the sense of [15] and the operation → is also called
the residuum of ∧.

Let A be a Heyting algebra. An element a ∈ A is called regular iff ¬¬a = a
and it is called dense iff ¬a = 0. The set of regular elements of A will be
denoted by Reg(A) and the set of dense elements will be denoted by Ds(A).
For each x ∈ A it is well known that ¬¬x ∈ Reg(A), xd = ¬¬x → x ∈ Ds(A)
and x can be expresed as

x = ¬¬x ∧ xd. (6)

The following proposition provides some useful properties about dense
and regular elements.

Proposition 2.2. Let A be a Heyting algebra and x ∈ A. Then:

1. if r ∈ Reg(A) and y ≤ x → r then ¬¬y ≤ x → r,

2. if r ∈ Reg(A) then x → r = ¬¬x → r,

3. if x → y ∈ Ds(A) then, x → ¬¬y = 1 and x → y = x → yd,

4. if
∨

i∈I xi exists and (xi → y)i∈I ⊆ Ds(A) then
∧

i∈I(xi → y) ∈ Ds(A).

Proof. (1) If r ∈ Reg(A) and y ≤ x → r then, by Proposition 2.1-9,
¬¬y ≤ ¬¬(x → r) = ¬¬x → ¬¬r = ¬¬x → r. By Proposition 2.1-2
¬¬x → r ≤ x → r because x ≤ ¬¬x. Hence ¬¬y ≤ x → r.

(2) Since x ≤ ¬¬x, by Proposition 2.1-2, ¬¬x → r ≤ x → r. For the
other inequality, ¬¬x ∧ (x → r) ≤ ¬¬x ∧ ¬¬(x → r) = ¬¬x ∧ (¬¬x →
¬¬r) = ¬¬x ∧ (¬¬x → r) = ¬¬x ∧ r ≤ r. Then, by Proposition 2.1-1,
x → r ≤ ¬¬x → r.

(3) By item 2 and Proposition 2.1-3 we have that x → y = x → (¬¬y ∧
yd) = (x → ¬¬y) ∧ (x → yd) ≤ x → ¬¬y. Since ¬¬y ∈ Reg(A) and
x → y ∈ Ds(A), by item 1, we have 1 = ¬¬(x → y) ≤ x → ¬¬y and then
x → y = x → yd.

(4) Let us suppose that
∨

i∈I xi exists and let (xi → y)i∈I be a subset of
Ds(A). By item 3, for each i ∈ I, xi → y = xi → yd. Thus, by Proposition
2.1-(8 and 11),
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¬
∧

i∈I

(xi → y) = ¬
∧

i∈I

(xi → yd) = ¬((
∨

i∈I

xi) → yd) = ¬¬
∨

i∈I

xi ∧ ¬yd

= ¬¬
∨

i∈I

xi ∧ 0 = 0.

Hence,
∧

i∈I(xi → y) ∈ Ds(A).

Let us notice that if A is a class of algebras with an underlying Heyting
structure then these algebras are residuated too and a characterization of
equations of A is given by

A |= t = s iff A |= (t → s) ∧ (s → t) = 1. (7)

Therefore we can safely assume that all A-equations are of the form t = 1.
A complete Heyting algebra is a Heyting algebra which is complete as a

lattice.

Theorem 2.3. [2] Each Heyting algebra A can be embedded into a complete
Heyting algebra preserving all existing joins and meets in A.

We now introduce the class of Heyting κ-frames.

Definition 2.4. Let κ be a cardinal number such that ω ≤ κ. A Heyting κ-
frame is an algebra 〈A,

⊔
,∧,→, 0〉 of type 〈κ, 2, 2, 0〉 such that, upon defining

x ∨ y =
⊔

(x, y, 0, 0, · · · ) and
⊔

i∈κ xi =
⊔

(x0, x1, . . . , xi, . . .) for each string
(xi)i∈κ ∈ Aκ, satisfies the following.

κ1. 〈A,∨,∧,→, 0〉 is a Heyting algebra,

κ2. 1 = xi → ⊔
i∈κ xi,

κ3. y ∧ ⊔
i∈κ xi =

⊔
i∈κ(y ∧ xi).

We denote by Hκ the category whose objects are Heyting κ-frames and
whose arrows are functions preserving the operations

⊔
,→,∧, 0. These ar-

rows are called Hκ-homomorphisms. In the same way we denote by H∞ the
category whose objects are frames (or indistinctly complete Heyting alge-
bras) and whose arrows are 〈∨,→,∧, 0〉-preserving functions.

In this work several results on Heyting κ-frames are extended to H∞. In
order to do this and for the sake of clarity we adopt the following convention:
we use the notation ω ≤ κ ≤ ∞ to indicate that a certain property will
be studied in the category H∞ and in the category of Heyting κ-frames
Hκ (κ �= ∞) for each infinity cardinal number. Further, when there is no
ambiguity, we identify the category Hκ with the class of their objects for
ω ≤ κ ≤ ∞.
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For a set of variables X we denote by Termκ(X) the set of terms built
up from X and the operation symbols 〈⊔κ,∧,→, 0〉 that define the language
of Hκ on X variables. Since Hκ is equationally definable, by Theorem 1.5,
the monomorphisms in Hκ are exactly injective Hκ-homomorphisms and it
is a variety.

The next proposition shows that the equational system introduced in
Definition 2.4 axiomatizes the class of Heyting algebras admitting κ-joins.

Proposition 2.5. Let κ be a cardinal number such that ω ≤ κ.

1. If A is a Heyting κ-frame then A is a Heyting algebra having κ-joins
where

∨
i∈κ xi =

⊔
i∈κ xi.

2. Let A be a Heyting algebra having κ-joins. If we define the κ-operation⊔
: Aκ → A such that

⊔
i∈κ xi =

∨
i∈κ xi then 〈A,

⊔
,∧,→, 0〉 is a Heyting

κ-frame.

3. A ∈ H∞ iff 〈A,
∨

|A|,∧,→, 0〉 is a Heyting |A|-frame iff for each κ ≥ |A|,
〈A,

∨
κ,∧,→, 0〉 is a Heyting κ-frame.

4. f : A → B is a H∞-homomorphism iff f is a H|A|-homomorphism iff for
each κ ≥ |A|, f is a Hκ-homomorphism.

Proof. (1) Suppose that A is a Heyting κ-frame and let (xi)i∈κ be a family
in A. By axiom κ2,

⊔
i∈κ xi is an upper bound of the family (xi)i∈κ. Let t be

an upper bound of the family (xi)i∈κ. By axiom κ3,
⊔

i∈κ xi =
⊔

i∈κ(t∧xi) =
t ∧ ⊔

i∈κ xi ≤ t. Thus
∨

i∈κ xi =
⊔

i∈κ xi and A is a Heyting algebra having
κ-joins.

(2) Let us suppose that A is a Heyting algebra having κ-joins and we
define the operation

⊔
i∈κ xi =

∨
i∈κ xi. Note that κ2 is immediately satisfied

and , by Proposition 2.1-10, κ3 also holds. Hence, 〈A,
⊔

,∧,→, 0〉 is a Heyting
κ-frame.

(3) If A ∈ H∞ then the supremum
∨

|A| trivially satisfies κ2 and κ3. Thus,
〈A,

∨
|A|,∧,→, 0〉 is a Heyting |A|-frame. In this case, by a simple argument

of cardinality, for each cardinal number κ ≥ |A| we have that
∨

|A| =
∨

κ.
Hence 〈A,

∨
κ,∧,→, 0〉 is a Heyting κ-frame. By a simple argument of car-

dinality again, the converse is immediate.
(4) Immediately follows by item (3).

Remark 2.6. By the above proposition we can see that if A is a Heyting
κ-frame then the reduct 〈A,

⊔
i∈κ,∧〉 is a κ-frame [22].

Proposition 2.7. Let A be a Heyting κ-frame and let (xi)i∈κ ⊆ A. Then:

1. The infimum
∧

i∈κ ¬¬xi exists in A,
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2. If (xi)i∈κ ⊆ Reg(A) then
∧

i∈κ xi ∈ Reg(A).

Proof. (1) By Proposition 2.1-11, we have
∧

i∈κ ¬¬xi =
∧

i∈κ(¬xi → 0) =
(
∨

i∈κ ¬xi) → 0. Then
∧

i∈κ ¬¬xi exists in A.
(2) Since ¬¬xi = xi for each i ∈ κ, by item 1,

∧
i∈κ xi exists in A.

Note that ¬¬∧
i∈κ xi ≤ ¬¬xi = xi. Then ¬¬∧

i∈κ xi ≤ ∧
i∈κ xi. Thus∧

i∈κ xi ∈ Reg(A).

For each cardinal number κ such that ω ≤ κ ≤ ∞ we denote by Bκ the
category of κ-complete Boolean algebras whose arrows are Boolean homo-
morphisms preserving κ-joins. Let us notice that, by Eq. (4), we have:

Bκ = Hκ ∪ {x → y = ¬x ∨ y} = Hκ ∪ {¬¬x = x} = Hκ ∪ {¬x ∨ x = 1}.

(8)

We also denote by 2κ the Boolean algebra of two elements interpreted as a
κ-complete structure in Bκ ⊆ Hκ for each cardinal number ω ≤ κ ≤ ∞.

Let A be a Heyting κ-frame and X be a non-empty subset of A. The sub
Heyting κ-frame of A generated by X, denoted by GA(X), always exists and
it is the intersection of sub Heyting κ-frames of A containing X. Clearly
it is the minimum subalgebra of A containing X. The infinitary algebra
GA(X) can be concretely realized in a similar way as in standard universal
algebra. Indeed, let us define the following family of subsets of A indexed
by ordinals:

E0(X) = X ∪ {0},

Eα(X) =
⋃

i∈α

Ei(X) ∪ {x → y : x, y ∈
⋃

i∈α

Ei(X)}

∪{x ∧ y : x, y ∈
⋃

i∈α

Ei(X)} ∪ {
⊔

i∈κ

xi : xi ∈
⋃

i∈α

Ei(X)}. (9)

Proposition 2.8. Let A be a Heyting κ-frame, X be non-empty subset of
A and let us consider the family of subsets of A defined in Eq. (9). Then,

1. GA(X) =
⋃

α∈κ+ Eα(X),

2. |GA(X)| ≤ min{κ+ · |X|, |A|}.
Proof. (1) Let E =

⋃
α∈κ+ Eα(X). It is immediate to see that E is Heyting

sub algebra of A. We shall prove that E is closed under
⊔

i∈κ. Let (xi)i∈κ be
a subset of E. Then, for each i ∈ κ there exists an ordinal number αi < κ+

such that xi ∈ Eαi
(X). Taking into account that κ+ is a regular cardinal,

by Proposition 1.2-3, it follows that α =
⋃

i∈κ αi < κ+. Then, the successor
ordinal α+1 < κ+ because κ+ is an ordinal limit. By definition of Eα+1(X),
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we have that
⊔

i∈κ xi ∈ Eα+1(X) ⊂ E and E is closed under
⊔

i∈κ. It proves
that E is a sub Heyting κ-frame of A. Thus GA(X) ⊆ E because E contains
X. Let B be a sub Heyting κ-frame of A containing X. It is not very hard
to see that for each α < γ, if Eα(X) ⊆ B then

⋃
α∈γ Eα(X) ⊆ B. Thus, by

transfinite induction, E ⊆ B. It proves that GA(X) = E as required.
(2) We first note that |E0(X)| = |X| ≤ κ+|X|. By inductive hypothesis,

if |Eα(X)| ≤ κ+ · |X| for each α ∈ κ+ then, by Proposition 1.1-2,

|
⋃

α∈κ+

Eα(X)| ≤
∑

α∈κ+

|Eα(X)| ≤
∑

α∈κ+

κ+ · |X| = κ+ · (κ+ · |X|)

= κ+ · |X|.
Since GA(X) ⊆ A then, |GA(X)| ≤ |A| and |GA(X)| ≤ min{κ+ · |X|, |A|}.

By the proposition above and by Proposition 2.5-3 the following result is
immediate.

Corollary 2.9. Let A ∈ H∞ and X ⊆ A. Then GA(X) =
⋃

α∈|A| Eα(X)
defines the subalgebra of A generated by X which also belongs to H∞.

3. Filters and Congruences

The aim of this section is to study the filter theory and congruences in Hκ

and H∞. For this we first recall some basic results about filters on Heyting
algebras.

Let A be a Heyting algebra. A non empty subset F ⊆ A is a filter or
Heyting filter to avoid confusion, iff it is satisfies the following two condi-
tions:

1 ∈ F, if x ∈ F and x → y ∈ F then y ∈ F . (10)

It is easy to verify that the non-empty subset F is a Heyting filter iff it is
an increasing set (i.e., if a ∈ F and a ≤ b then b ∈ F ) and if a, b ∈ F then
a ∧ b ∈ F . The Heyting filter F is said to be proper iff 0 does not belong
to F . We shall denote by FiltH(A) the set of all Heyting filters in A. Since
the intersection of any family of Heyting filters of A is a Heyting filter of
A, 〈FiltH(A),⊆〉 is a complete lattice. We denote by 〈X〉H the Heyting
filter generated by X ⊆ A, i.e., the intersection of all Heyting filters of A
containing X. It is well known that:

〈X〉H = {x ∈ A : ∃ x1 . . . xn ∈ X such that x ≥ x1 ∧ . . . ∧ xn}. (11)
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We abbreviate 〈a〉H when X = {a} and, in this case, 〈a〉H is called principal
filter associated to a. Note that 〈a〉H = [a) = {x ∈ A : a ≤ x}. To avoid
confusion, a congruence on the Heyting algebra A is referred as Heyting
congruence and its congruences lattice is denoted by ConH(A). For any
Heyting filter F of A, θF = {(x, y) ∈ A2 : x → y ∈ F, y → x ∈ F} is
a Heyting congruence on A and F = {x ∈ A : (x, 1) ∈ θF }. Conversely,
if θ ∈ ConH(A) then, Fθ = {x ∈ A : (x, 1) ∈ θ} is a Heyting filter and,
(x, y) ∈ θ iff (x → y, 1) ∈ θ and (y → x, 1) ∈ θ. Thus, the correspondence
F → θF is an order isomorphism from FiltH(A) onto ConH(A).

Let A be a Heyting κ-frame. A κ-congruence on A is a Heyting con-
gruence in the underlying Heyting structure of A satisfying the following
compatibility condition:

(
∨

i∈κ

xi,
∨

i∈κ

yi

)

∈ θ whenever for each i ∈ κ, (xi, yi) ∈ θ. (12)

We denote by Conκ(A) the set of all κ-congruences. Let us notice that
Conκ(A) is ordered by inclusion and Conκ(A) ⊆ ConH(A). Let θ ∈ Conκ(A).
By Theorem 1.5-2, the quotient algebra A/θ is a Heyting κ-frame and the
natural application pθ : A → A/θ is a Hκ-homomorphism. Consequently, for
each family (xi)i∈κ in A we have that

∨
i∈κ(xi/θ) = (

∨
i∈κ xi)/θ.

Remark 3.1. In [22, § 5] a notion of congruence on a κ-frame A is intro-
duced. It is an equivalence relation θ ⊆ A × A which is also a sub κ-frame
of A × A. In this way, for a Heyting κ-frame A, θ is a κ-congruence on A
iff it is a congruence in the κ-frame reduct 〈A,∧,

⊔
i∈κ〉 compatible with the

operation →.

Definition 3.2. Let A be a Heyting κ-frame. A non-empty subset F ⊆ A
is a κ-filter iff

1. F is a Heyting filter of the underlying Heyting structure of A.

2. If (xi → y)i∈κ is a subset of F then (
∨

i∈κ xi) → y ∈ F .

We denote by Filtκ(A) the set of all κ-filters of A. Let us notice that
Filtκ(A) is ordered by inclusion and Filtκ(A) ⊆ FiltH(A).

Proposition 3.3. Let A be a Heyting κ-frame and F be a κ-filter. Then,

1. The second condition in Definition 3.2 is equivalent to
∧

i∈κ(xi → y) ∈ F
whenever (xi → y)i∈κ ⊆ F .

2. If (xi)i∈κ ⊆ F then
∧

i∈κ ¬¬xi ∈ F .
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Proof. (1) Follows by Proposition 2.1-11. (2) Since F is an increasing
set and xi ≤ ¬¬xi we have that ¬¬xi = ¬xi → 0 ∈ F . Thus, by item 1,∧

i∈κ ¬¬xi =
∧

i∈κ(¬xi → 0) = (
∨

i∈κ ¬xi) → 0 ∈ F .

By Proposition 3.3-2 immediately follows that if A ∈ Bκ and F is a
Heyting filter of the underlying Heyting structure of A then, F is a κ-filter
iff it is closed under

∧
κ infima.

Example 3.4. Let A be a Heyting κ-frame.

a. If a ∈ A then the principal Heyting filter [a) is a κ-filter.

b. Since Ds(A) is a Heyting filter, by Proposition 2.2-4, it immediately
follows that Ds(A) is a κ-filter.

c. If A is a totally ordered Heyting algebra then, each Heyting filter of
A is a κ-filter. Indeed: We first note that a filter in a totally ordered
Heyting algebra can be either principal (and then it is a κ-filter) or it
has the form F = {x ∈ A : a < x} for some a ∈ A. In this second
case we shall prove that F is a κ-filter. Let (xi → y)i∈κ be a subset of
F . Let us consider two possible cases: Case: y ≤ a) By Eq. (5), it is
clear that xi ≤ y otherwise xi → y = y �∈ F . Thus xi → y = 1 and
(
∨

i∈κ xi) → y =
∧

i∈κ(xi → y) = 1 ∈ F . Case: y > a) By Eq. (5),
xi → y ∈ {y, 1} and then a < y ≤ ∧

i∈κ(xi → y) = (
∨

i∈κ xi) → y. It
proves that (

∨
i∈κ xi) → y ∈ F and F is a κ-filter.

d. If f : A → B is a Hκ-homomorphism, Ker(f) = {x ∈ A : f(x) =
1} is a κ-filter. Indeed: We first note that Ker(f) is a Heyting filter.
Suppose that xi → y ∈ Ker(f) for each i ∈ κ. Thus, 1 = f(xi →
y) = f(xi) → f(y) and, by Proposition 2.1-1, f(xi) ≤ f(y). Since f
preserves κ-joins, f(

∨
i∈κ xi) =

∨
i∈κ f(xi) ≤ f(y). Then, f(

∨
i∈κ xi →

y) = f(
∨

i∈κ xi) → f(y) = 1 and
∨

i∈κ xi → y ∈ Ker(f). Hence,
Ker(f) is a κ-filter.

Theorem 3.5. Let A be a Heyting κ-frame. Then, the maps F �→ θF and
θ �→ Fθ are mutually inverse order isomorphisms between Conκ(A) and
Filtκ(A).

Proof. We first prove that if F ∈ Filtκ(A) then θF ∈ Conκ(A). Since
θF ∈ ConH(A), we have to prove that if (xi, yi)i∈κ is an indexed subset of
θF then (

∨
i∈κ xi,

∨
i∈κ yi) ∈ θF . Indeed: Let us notice that for each i ∈ κ,

xi → yi ∈ F and yi → xi ∈ F . Since xi ≤ ∨
i∈κ xi, by Proposition 2.1-2,

yi → xi ≤ yi → ∨
i∈κ xi and then, yi → ∨

i∈κ xi ∈ F because F is an
increasing set. Thus (

∨
i∈κ yi) → (

∨
i∈κ xi) ∈ F since F is a κ-filter. With
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the same argument we can prove that (
∨

i∈κ xi) → (
∨

i∈κ yi) ∈ F . Hence
θF ∈ Conκ(A).

Now let us suppose that θ ∈ Conκ(A). Since Fθ ∈ FiltH(A), we shall
prove that if (xi → y)i∈κ is a family in Fθ then (

∨
i∈κ xi) → y ∈ Fθ.

Indeed: Let us notice that for each i ∈ κ, (xi → y, 1) ∈ θ and (xi, xi) ∈ θ.
Then, by H2, we have that (xi ∧ y, xi) = (xi ∧ (xi → y), xi ∧ 1) ∈ θ. Thus
(y ∧∨

i∈κ xi,
∨

i∈κ xi) = (
∨

i∈κ(xi ∧ y),
∨

i∈κ xi) ∈ θ. Since (y, y) ∈ θ then we
have that

(1, (
∨

i∈κ

xi) → y) = ((y ∧
∨

i∈κ

xi) → y, (
∨

i∈κ

xi) → y) ∈ θ

and, consequently, (
∨

i∈κ xi) → y ∈ Fθ. Hence Fθ ∈ Filtκ(A).
Finally, taking into account that F �→ θF and θ �→ Fθ are mutually

inverse order isomorphisms between ConH(A) and FiltH(A), the theorem
follows immediately.

Since there is a one-to-one correspondence between the set Conκ(A) and
the set Filtκ(A), for each F ∈ Filtκ(A) we denote by A/F the quotient
algebra A/θF

and by [x]F the equivalence class of x modulo θF for x ∈ A. In
order to study quotient algebras in H∞ we can take advantage of the above
results. Indeed: Let A ∈ H∞. We say that θ ⊆ A2 is a ∞-congruence on A
iff θ is a κ-congruence for each cardinal number κ. A cardinality argument
show that θ is a ∞-congruence iff θ is a |A|-congruence. Since A/θ is a |A|-
frame and |A/θ| ≤ |A| then A/θ ∈ H∞. Thus, if we denote by Con∞(A) the
set of ∞-congruences of A we have that Con∞(A) = Con|A|(A).

A set F ⊆ A is a ∞-filter iff F is a κ-filter for each cardinal number κ.
Similarly we can prove that F is a ∞-filter iff F is a |A|-filter. If we denote
by Filt∞(A) the set of ∞-filters of A we have that Filt∞(A) = Filt|A|(A).
Thus, by Proposition 3.5, we can establish the following identification

Con|A|(A) = Con∞(A) ≈ Filt∞(A) = Filt|A|(A). (13)

Proposition 3.6. The algebra 2κ is the only simple algebra in Hκ for ω ≤
κ ≤ ∞.

Proof. It follows from Proposition 3.5 and Example 3.4-c because each
non-zero element in a Heyting κ-frame determines a non trivial κ-filter.

Let A be a Heyting κ-frame. Observe that the intersection of any family
of κ-filters of A is a κ-filter of A. Thus 〈Filtκ(A),⊆〉 is a complete lattice. Let
X be a non-empty subset of A. We denote by 〈X〉κ the κ-filter generated
by X, i.e., the intersection of all κ-filters of A containing X. Note that
if X = {a} then, 〈a〉κ = 〈a〉H = [a). As we will see in Proposition 3.7
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the generated κ-filter 〈X〉κ can be realized through the following family of
subsets of A indexed by ordinals:

F0(X) = 〈X〉H ,

Fα+1(X) =
〈
{(

∨

i∈κ

(xi → y)) → y : y ∈ A and xi ∈ Fα(X)}
〉

H
,

Fγ(X) =
⋃

α<γ

Fα(X) if γ is a limit ordinal. (14)

Proposition 3.7. Let A be a Heyting κ-frame, X be a non-empty subset
of A and let us consider the ordinal sequence of Heyting filters defined in
Eq. (14). Then,

1. If α ≤ β then Fα(X) ⊆ Fβ(X).

2. For each ordinal α, Fα(X) is a Heyting filter.

3. There exists an ordinal number α ≤ |A| such that Fα(X) = Fβ(X) for
each β > α, i.e. (Fα(X))α is an ascending stationary chain of Heyting
filters in A.

Proof. (1) Clearly we only need to prove that Fα(X) ⊆ Fα+1(X). Let
x ∈ Fα(X). Since x = (x → x) → x then it immediately follows that
x ∈ Fα+1(X).

(2) We use transfinite induction. The cases F0(X) and Fα+1(X) follow
immediate from Eq. (14). If γ is a limit ordinal, by item 1, (Fα(X))α<γ

is an up-directed family of Heyting filters under set-inclusion. Then, it is
immediate to see that Fγ(X) =

⋃
α<γ Fα(X) is a Heyting filter. Hence our

claim.
(3) Let us suppose that (Fα(X))α is not stationary for any ordinal ≤ |A|.

Then, by an argument of cardinality, there exists a sub family (Fαi
(X))i∈I

such that I is a totally ordered set, |I| > |A| and Fαi
(X) � Fαj

(X) whenever
i < j in I. Consequently, there exists a family (xi)i∈I ⊆ A such that xi ∈
Fαi

(X) and xi �= xj whenever i �= j which is a contradiction since |A| <
|I| = |(xi)i∈I | ≤ |A|. Hence, there exists an ordinal number α ≤ |A| such
that Fα(X) = Fβ(X) for each β > α.

Let A be a Heyting κ-frame, X be a non-empty subset of A and let us
consider the ordinal sequence of Heyting filters introduced in Eq. (14). Then,
by Proposition 3.7-3, we define:

αX = min{α ∈ ON : if β > α then Fα(X) = Fβ(X) }. (15)

Proposition 3.8. Let A be a Heyting κ-frame X be a non-empty subset of
A and a family (Fα(X))α of Heyting filters as defined in Eq. (14). Let us
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consider the ordinal αX introduced in Eq. (15). Then:

〈X〉κ = FαX
(X).

Proof. We first prove that FαX
(X) is a κ-filter. Indeed: By Proposition

3.7 we first note that FαX
(X) is a Heyting filter of A. Let (ai → y)i∈κ be an

indexed subset of elements of FαX
(X). By definition of FαX

(X) for each i ∈ κ
there exists xi ∈ Fαi

(X) such that xi ≤ ai → y and αi < αX . By Proposition
2.1-6 we also have that (xi → y) → y ≤ ai → y. Thus,

( ∨
i∈κ(xi →

y)
) → y =

∧
i∈κ

(
(xi → y) → y

) ≤ ∧
i∈κ(ai → y) = (

∨
i∈κ ai) → y

and (
∨

i∈κ ai) → y ∈ FαX+1(X) because of Eq. (14). By Proposition 3.7-3,
FαX

(X) = FαX+1(X) and consequently (
∨

i∈κ ai) → y ∈ FαX
(X). Hence

FαX
(X) is a κ-filter of A.

Now we prove that FαX
(X) = 〈X〉κ. Since X ⊆ FαX

(X) then 〈X〉κ ⊆
FαX

(X). Conversely, let F be a κ-filter containing X. By transfinite induc-
tion, we shall prove that for each ordinal α, Fα(X) ⊆ F .

Since F is a Heyting filter we have that F0(X) ⊆ F . Let us assume that
Fα(X) ⊆ F . If x ∈ Fα+1(X) then there exist n indexed sets contained in
Fα(X) of the form (x1

i )i∈κ, . . . , (xn
i )i∈κ such that w =

∧n
j=1

( ∨
i∈κ(xj

i →
yj) → yj

) ≤ x. Since xj
i ≤ (xj

i → yj) → yj , (xj
i → yj) → yj ∈ F and, taking

into account that F is a κ-filter, we have that
( ∨

i∈κ(xj
i → yj)

) → yj ∈ F
for each 1 ≤ j ≤ n. Therefore, w ∈ F and, consequently, x ∈ F . The case
in which γ is a limit ordinal is immediate. Thus, for each ordinal number α,
Fα(X) ⊆ F and then FαX

(X) ⊆ F . It proves that FαX
(X) ⊆ 〈X〉κ.

Proposition 3.9. Let A be a Heyting κ-frame and X be a non-empty subset
of A closed under κ-meets. Then,

〈X〉κ = {x ∈ A : ∃(xi)i≤κ ⊆ X such that
∧

i∈κ

xi ≤ x}.

Proof. It is straightforward to see that the set G = {x ∈ A : ∃(xi)i≤κ ⊆
X such that

∧
i∈κ xi ≤ x} is an increasing set closed under finite meets i.e.,

it is a Heyting filter. Since X is closed under κ-meets, by Proposition 3.3, G
is a κ-filter too. Let F be a κ-filter such that X ⊆ F . It is also not difficult
to show that G ⊆ F because X is closed under κ-meets. It proves that G is
the minimum filter containing the X. Hence our claim.

Proposition 3.10. Let A be a Heyting κ-frame and X be a non-empty
subset of A. If a ∈ Reg(A) ∩ 〈X〉κ then there exists a family (xi)i≤κ ⊆ X
such that

∧
i∈κ ¬¬xi ≤ a.

Proof. We use transfinite induction in the family (Fα(X))α introduced
in Eq. (14). If a ∈ F0(X) it is immediate from the definition of generated
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Heyting filter (see Eq. 11). Let us assume that the result holds for a ∈ Fα(X).
If a ∈ Fα+1(X) then there exist n indexed sets contained in Fα(X) of the
form (x1

i )i∈κ, . . . , (xn
i )i∈κ such that

∧n
j=1

∧
i∈κ

(
(xj

i → yj) → yj

) ≤ a. Since
a ∈ Reg(A), by Proposition 2.1-(7 and 9) we have that

a ≥ ¬¬
n∧

j=1

∧

i∈κ

(
(xj

i → yj) → yj

)
=

n∧

j=1

¬¬
∧

i∈κ

(
(xj

i → yj) → yj

)

=
n∧

j=1

¬¬(
(
∨

i∈κ

xj
i → yj) → yj

)
=

n∧

j=1

(¬¬(
∨

i∈κ

xj
i → yj) → ¬¬yj

)

=
n∧

j=1

(¬¬(
∨

i∈κ

¬¬xj
i → ¬¬yj) → ¬¬yj

)
.

Since ¬¬yj ∈ Reg(A), by Proposition 2.2-2,

¬¬(
∨

i∈κ

¬¬xj
i → ¬¬yj) → ¬¬yj = (

∨

i∈κ

¬¬xj
i → ¬¬yj) → ¬¬yj .

Therefore, by Proposition 2.1-5,

a ≥
n∧

j=1

(
∨

i∈κ

¬¬xj
i → ¬¬yj) → ¬¬yj =

n∧

j=1

∧

i∈κ

(¬¬xj
i → ¬¬yj) → ¬¬yj

≥
n∧

j=1

∧

i∈κ

¬¬xj
i .

Note that ¬¬xj
i is a regular element belonging to Fα(X). Then, by inductive

hypothesis, for each pair i, j there exists an indexed set (xi,j,s)s≤κ in X

such that
∧

s∈κ ¬¬xi,j,s ≤ ¬¬xj
i . Taking into account that |(xi,j,s)i,j,s| ≤ κ,∧

i,j,s ¬¬xi,j,s exists and it is less than a. Suppose that the result holds for
each Fα(X) such that α ≤ γ where γ is a limit ordinal. By definition of
Fγ(X), if a ∈ Reg(A)∩Fγ(X) then there exists α < γ such that a ∈ Fα(X).
Thus, by inductive hypothesis

∧
i∈κ ¬¬xi ≤ a for some family (xi)i≤κ in X.

In what follows we establish a necessary and sufficient condition so that
a subset of a Heyting κ-frame is able to generate a proper κ-filter. For this
we first introduce some terminology.

Let X be a subset of a Heyting κ-frame A. We say that X has the κ-
meet property iff each subset Y ⊆ X such that |Y | ≤ κ admits infimum and∧

Y > 0. We also define the set ¬¬X as ¬¬X = {¬¬x : x ∈ X}.
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Proposition 3.11. Let A be a Heyting κ-frame and X be a non-empty
subset of A. Then the following sentences are equivalent:

1. ¬¬X has the κ-meet property,

2. 〈X〉κ is a proper κ-filter.

Proof. Let us assume that ¬¬X has the κ-meet property. Suppose that
0 ∈ 〈X〉κ. Since 0 ∈ Reg(A) ∩ 〈X〉κ, by Proposition 3.10, there exists an
indexed set (xi)i∈κ ⊆ X such that

∧
i∈κ ¬¬xi ≤ 0 which is a contradiction

because ¬¬X has the κ-meet property. Hence 〈X〉κ is a proper κ-filter. By
Proposition 3.3-2 the other direction is immediate.

The rest of the section is devoted to establish some results about the
extension of κ-filters.

Let A be a sub Heyting κ-frame of B where ω ≤ κ ≤ ∞. We say that
FA ∈ Filtκ(A) can be extended, or has an extension on B, iff there exists a
FB ∈ Filtκ(B) such that FA = FB ∩A. We then refer to FB as an extension
of FA on B. We say that B has the congruence extension property (CEP) iff,
for every sub Heyting κ-frame A of B, each FA ∈ Filtκ(A) has an extension
to B. A subclass of Hκ has the CEP iff every algebra in this subclass satisfies
CEP. In what follows 〈FA〉B

κ denotes the κ-filter generated by FA in B.

Proposition 3.12. Let A be a sub Heyting κ-frame of B where ω ≤ κ ≤ ∞
and FA ∈ Filtκ(A). Then,

〈FA〉B
κ ∩ Reg(A) = FA ∩ Reg(A).

Proof. Let us notice that if κ = ∞ then 〈FA〉B
∞ = 〈FA〉B

|B|. Thus, the case
κ = ∞ becomes a particular case in H|B|. In this way we can confine our
proof to κ < ∞. Suppose that A is a sub Heyting κ-frame of B. Let x ∈
〈FA〉B

κ ∩ Reg(A). By Proposition 3.10 there exists an indexed set (xi)i∈κ ⊆
FA such that

∧
i∈κ ¬¬xi ≤ x. Since FA is a κ-filter, by Proposition 3.3,

∧
i∈κ ¬¬xi ∈ FA and then x ∈ FA. Thus, 〈FA〉B

κ ∩ Reg(A) ⊆ FA ∩ Reg(A).
The other inclusion is immediate.

Theorem 3.13. Let A be a sub Heyting κ-frame of B and FA ∈ Filtκ(A)
where ω ≤ κ ≤ ∞. Then the following assertions are equivalent:

1. FA has an extension on B.

2. 〈FA〉B
κ is an extension of FA on B.

3. 〈FA〉B
κ ∩ Ds(A) = FA ∩ Ds(A).

Proof. Like the proof of Proposition 3.12, the case κ = ∞ becomes a
particular case in H|B|. Thus we also confine our proof to κ < ∞.
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(1) =⇒ (2) Let FB be an extension of FA on B i.e., FA = FB ∩ A. Since
FB is a κ-filter of B containing FA, then we have that FA ⊆ 〈FA〉B

κ ⊆ FB.
Thus, FA = FA ∩ A ⊆ 〈FA〉B

κ ∩ A ⊆ FB ∩ A = FA. Hence, 〈FA〉B
κ is an

extension of FA on B.
(2) =⇒ (3) By hypothesis we have that 〈FA〉B

κ ∩ A = FA. Thus, 〈FA〉B
κ ∩

Ds(A) = 〈FA〉B
κ ∩ A ∩ Ds(A) = FA ∩ Ds(A).

(3) =⇒ (1) Let us assume that 〈FA〉B
κ ∩ Ds(A) = FA ∩ Ds(A). Let

x ∈ 〈FA〉B
κ ∩ A. By Eq. (6), x = ¬¬x ∧ xd where ¬¬x ∈ Reg(A) and

xd ∈ Ds(A). Since x ≤ ¬¬x, ¬¬x ∈ 〈FA〉B
κ ∩ Reg(A) and, by Proposition

3.12, ¬¬x ∈ FA. Since x ≤ xd, xd ∈ 〈FA〉B
κ ∩ Ds(A) and, by hypothesis,

xd ∈ FA. Thus, x = ¬¬x ∧ xd ∈ FA and 〈FA〉B
κ ∩ A ⊆ FA. Since the other

inclusion is immediate we have that 〈FA〉B
κ is an extension of FA on B.

The above theorem shows that the extension of a κ-filters depends only
on the dense elements contained in the κ-filter.

Example 3.14. Let A be a sub Heyting κ-frame of B and FA ∈ Filtκ(A)
where FA is proper.

a. Let a ∈ A and the principal κ-filter [a)A. Then, it is immediate to see
that [a)B = {x ∈ B : a ≤ x} is an extension of [a)A on B.

b. If Ds(A) ⊆ FA then 〈FA〉B
κ is an extension of FA on B. Indeed: It is

immediate to see that 〈FA〉B
κ ∩ Ds(A) = Ds(A) = FA ∩ Ds(A). Then, by

Theorem 3.13, this claim follows. In particular, since Ds(A) is a κ-filter
of A (see Example 3.4-b), it admits an extension on B.

c. Let us notice that in a Heyting κ-frame, in general, the existence of max-
imal κ-filters is not guaranteed. However we can prove that if FA is a
maximal κ-filter in A then 〈FA〉B

κ is an extension of FA on B. In order
to do this we prove that Ds(A) ⊆ FA. Indeed: Let us suppose that there
exists x ∈ Ds(A) such that x �∈ F (A). By the maximality of F (A) we
have that 〈F (A)∪{x}〉κ = A. Thus, by Proposition 3.11, ¬¬(F (A)∪{x})
does not have the κ-meet property. It implies that there exists an indexed
subset (xi)i∈κ of FA such that 0 = ¬¬x ∧ ∧

i∈κ ¬¬xi = 1 ∧ ∧
i∈κ ¬¬xi =∧

i∈κ ¬¬xi which is a contradiction since FA is a proper κ-filter. Thus,
Ds(A) ⊆ FA and, by the item above, 〈FA〉B

κ is an extension of FA on B.

d. Let us suppose that FA = 〈X〉A
κ where X is closed under κ-meets. Then

〈FA〉B
κ is an extension of FA to B. Indeed: By Proposition 3.9 FA has the

form FA = {x ∈ A : ∃(xi)i∈κ ⊆ X such that
∧

i∈κ xi ≤ x} and 〈FA〉B
κ =

{x ∈ B : ∃(xi)i∈κ ⊆ X such that
∧

i∈κ xi ≤ x}. Clearly FA ⊆ 〈FA〉B
κ ∩ A.

To see the converse, let a ∈ 〈FA〉B
κ ∩ A. Then there exists (xi)i∈κ ⊆ X
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such that
∧

i∈κ xi ≤ a. Since
∧

i∈κ xi ∈ X ⊂ FA and FA is upward closed,
it follows that a ∈ FA. Hence our claim.

e. If FA is closed under κ-meets then 〈FA〉B
κ is an extension of FA to B.

Indeed: Since FA = 〈FA〉A
κ then FA is generate by a set closed under

κ-meets. Hence, by item d, our claim.

f. If FA is a κ-filter generated by a set of regular elements of A then 〈FA〉B
κ

is an extension of FA to B. Indeed: Let us suppose that 〈X〉A
κ = FA where

X ⊆ Reg(A). By Proposition 3.3-2 we have that for each set (xi)i∈κ ⊆ X,∧
i∈κ xi =

∧
i∈κ ¬¬xi ∈ FA. If we consider the set X1 = {∧

i∈α xi :
(xi)i∈α≤κ ⊆ X} then X ⊆ X1 ⊆ FA and, consequently, 〈X1〉A

κ = FA.
Hence, by item d, 〈FA〉B

κ is an extension of FA to B because X1 is closed
under κ-meets.

Note that for each A ∈ Bκ, Ds(A) = {1}. Then, Theorem 3.13 allows us
to establish the following well known result:

Corollary 3.15. Bκ satisfies CEP for ω ≤ κ ≤ ∞.

4. Direct Indecomposabilty

In this section we study the direct decomposition of Heyting κ-frames. We
first recall some basic results about direct decomposition of Heyting alge-
bras. Let A be a Heyting algebra. An element z ∈ A is called a Boolean
or central element of A iff z ∨ ¬z = 1. We denote by B(A) the set of all
boolean elements of A which is also called the center of A. It is well known
that 〈B(A),∨,∧,¬, 0, 1〉 is a Boolean subalgebra of A. Let z ∈ B(A) and
let us consider the segment (z]. If we define the binary operation →z in (z]
by the formula x →z y = z ∧ (x → y) then [0, z]H = 〈(z],∧,∨,→z, 0, z〉 is a
Heyting algebra. The map

B(A) � z �→ θz = {(x, y) ∈ A2 : x ∧ z = y ∧ z} (16)

is a Boolean isomorphism between B(A) and the Boolean sub lattice of
ConH(A) of factor congruences. The correspondence x/θz

�→ x ∧ z defines
a Heyting isomorphism from A/θz

onto [0, z]H and x �→ (x ∧ z, x ∧ ¬z)
defines a Heyting isomorphism from A onto [0, z]H × [0,¬z]H . Conversely,
if f : A → A1 × A2 is a Heyting-isomorphism, the element z ∈ A such
that f(z) = (1, 0) is the unique element in B(A) such that A1 is Heyting
isomorphic to [0, z]H and A2 is Heyting isomorphic to [0,¬z]H . In this way, a
Heyting algebra A is directly idecomposable iff B(A) = {0, 1}. We denote by
DI(H) the class of directly idecomposable Heyting algebras and by DI(Hκ)
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the class of directly idecomposable Heyting κ-frames. In what follows we
shall establish analogous results for Heyting κ-frames.

Proposition 4.1. Let A be a Heyting κ-frame and z ∈ B(A). Then:

1. The structure [0, z]κ = 〈(z],
∨

i∈κ,∧,→z, 0, z〉 is a Heyting κ-frame.

2. θz = {(x, y) ∈ A2 : x ∧ z = y ∧ z} ∈ Conκ(A) and the correspondence
x/θz �→ x ∧ z defines an Hκ-isomorphism from A/θz

onto [0, z]κ.

3. x �→ (x ∧ z, x ∧ ¬z) defines an Hκ-isomorphism from A onto the direct
product [0, z]κ × [0,¬z]κ.

Proof. (1) Immediate. (2) Taking into account that θz is a Heyting-congru-
ence, we only need to prove that if (xi, yi) ∈ θz, for each i ∈ κ, then
(
∨

i∈κ xi,
∨

i∈κ yi) ∈ θz. Since xi∧z = yi∧z then we have that (
∨

i∈κ xi)∧z =∨
i∈κ(xi ∧ z) =

∨
i∈κ(yi ∧ z) = (

∨
i∈κ yi) ∧ z. Hence (

∨
i∈κ xi,

∨
i∈κ yi) ∈ θz

and θz ∈ Conκ(A). Thus, A/θz
is a Heyting κ-frame. Since x/θz

�→ x ∧ z
defines a Heyting-isomorphism from A/θz

onto [0, z]κ, it preserves κ-joins.
Hence, it is a Hκ-isomorphism. (3) Follows from items 2 and 3.

An immediate consequence of Proposition 4.1 and Eq. (13) is the following
characterization of direct indecomposability on Hκ.

Theorem 4.2. DI(Hκ) = Hκ ∩ DI(H) for ω ≤ κ ≤ ∞.

Hence, direct indecomposable algebras in Hκ where ω ≤ κ ≤ ∞ are
exactly the algebras in which the underlying Heyting structure is direct
indecomposable in H i.e., its center is {0, 1}. An immediate consequence of
this is that 2κ is the unique direct indecomposable algebra in Bκ.

5. Glivenko Type Theorem and Regular Amalgamation in Hκ

The purpose of this section is to formulate a version of Glivenko theorem
extended to Heyting κ-frames and, at the same time, to study some conse-
quences thereof. The Glivenko theorem reads that if A is a Heyting algebra
then 〈Reg(A),∨R ,∧,→, 0〉 where x ∨R y = ¬¬(x ∨ y) is a Boolean alge-
bra isomorphic to A/Ds(A). Furthermore, the double negation ¬¬ defines a
surjective Heyting homomorphism of the form

¬¬ : A → Reg(A) (17)

where Reg(A) ≈ A/Ds(A).
If we consider the inclusion functor B ↪→ H then it has a left adjoint i.e,

a reflector H R→ B, which assigns to every Heyting algebra A the boolean
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algebra R(A) = Reg(A) and to every Heyting homomorphism f : A → B the
corresponding restriction R(f) = f/Reg(A). Moreover R preserves injective
Heyting homomorphisms. In this way B is a reflective subcategory of H.
By Proposition 2.1-12 we can easily establish the following Glivenko type
theorem for Hκ where κ �= ∞:

Theorem 5.1. Let A ∈ Hκ. Then, the structure 〈Reg(A),
∨

R

i∈κ,∧,→, 0〉,
where

∨
R

i∈κ xi = ¬¬∨
i∈κ xi, belongs to Bκ.

Proof. Let (xi)i∈κ be an indexed set in Reg(A). We prove that
∨

R

i∈κ xi is
the supremum of the family in Reg(A). We first note that, for each i ∈ κ,
xi ≤ ∨

i∈κ xi ≤ ¬¬∨
i∈κ xi =

∨
R

i∈κ xi. Let a ∈ Reg(A) be an upper bound
of (xi)i∈κ. Then

∨
R

i∈κ xi = ¬¬∨
i∈κ xi ≤ ¬¬a = a. Thus

∨
R

i∈κ defines
the κ-supremum in Reg(A). Since

∨
R

i∈κ coincides with ∨R for finite subsets
of Reg(A) then, by the Glivenko theorem for Heyting algebras, we have
Reg(A) ∈ Bκ.

Let us notice that the restriction R/Hκ
defines a functor Hκ

R→ Bκ which
is the reflector of the inclusion functor Bκ ↪→ Hκ. Moreover R/Hκ

also
preserves injective Hκ-homomorphisms. By Example 3.4-b we also have that
the double negation ¬¬ defines a Hκ-homomorphism of the form ¬¬ : A →
R(A) = Reg(A) for each A ∈ Hκ where Reg(A) ≈ A/Ds(A).

Proposition 5.2. Let A ∈ Hκ and t(x) ∈ Termκ(X) where x = (xi)i∈α≤κ.
Then for each indexed set a = (ai)i∈α≤κ in A we have that

¬¬tA(a) = tReg(A)(¬¬a)

where ¬¬a = (¬¬ai)i∈α≤κ.

Proof. We use induction on the notion of complexity of terms introduced
in Eq. (3). If Comp(t) = 0 then t(x) ∈ X i.e., t is a variable. Thus the result
is immediate. By inductive hypothesis let us assume that the proposition
hold for Comp(t) < γ. If Comp(t) = γ then we have to consider the cases
t(x) = t1(x) ∧ t2(x), t(x) = t1(x) → t2(x) and t(x) =

∨
i∈κ ti(x).

By Proposition 2.1-7 and inductive hypothesis we have that

¬¬tA(a) = ¬¬(
tA1 (a) ∧ tA2 (a)

)
= ¬¬tA1 (a) ∧ ¬¬tA2 (a)

= t
Reg(A)
1 (¬¬a) ∧ t

Reg(A)
2 (¬¬a) = tReg(A)(¬¬a).

By an analogous argument, considering Proposition 2.1-9 and the induc-
tive hypothesis, we can also prove the case t(x) = t1(x) → t2(x).
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By Proposition 2.1-12, Theorem 5.1 and inductive hypothesis we have
that

¬¬tA(a) = ¬¬
∨

i∈κ

tAi (a) = ¬¬
∨

i∈κ

¬¬tAi (a)

= ¬¬
∨

i∈κ

t
Reg(A)
i (¬¬a) =

∨

i∈κ

R

t
Reg(A)
i (¬¬a)

= tReg(A)(¬¬a).

Hence our claim.

The result above allows us to establish the following version of the neg-
ative Gödel translation for Heyting κ-frames:

Proposition 5.3. Let t ∈ Termκ(X) where κ �= ∞. Then

Bκ |= t = 1 iff Hκ |= ¬¬t = 1.

Proof. Let us assume thar Bκ |= t = 1 but suppose that Hκ �|= ¬¬t = 1.
Clearly we can suppose that t has the form t(x) where x = (xi)i∈α≤κ

are the variables occurring in t. Thus, there exists an indexed set a =
(ai)i∈α≤κ in A such that ¬¬tA(a) �= 1. Then, by Proposition 5.2, we also
have tReg(A)(¬¬a) �= 1 which is a contradiction since ¬¬a = (¬¬ai)i∈α≤κ is
an idexed set in Reg(A) ∈ Bκ. Now let us assume that Hκ |= ¬¬t = 1. Since
Bκ ⊆ Hκ we have that Bκ |= ¬¬t = 1. Consequently Bκ |= t = 1 because
¬¬t = t in Bκ.

An interesting instance of the negative Gödel translation related to σ-
frames [4,6,22] endowed with the residuum of ∧ i.e. the class Hω can be
established. In order to do this we use the famous Loomis-Sikorski Theorem,
proved independently by Loomis [21] and Sikorski [30]. We first recall the
following notion. A σ-field of sets related to a nonempty set X is a set of
the form T ⊆ 2X endowed the σ-complete Boolean structure inhered from
2X .

Theorem 5.4. [Loomis-Sikorski] Let A be a σ-complete Boolean algebra.
Then there exists a σ-field of sets T and a surjective Bω-homomorphism
f : T → A.

Proposition 5.5. Let t ∈ Termω(X). Then:

2ω |= t = 1 iff Hω |= ¬¬t = 1.

Proof. Let t(x) ∈ Termω(X). With regard to the non-trivial direction let
us assume that 2ω |= t(x) = 1. Let us notice that for each σ-field of sets T we
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have that T |= t(x) = 1 because T is a σ-complete Boolean algebra that can
be

∨
κ-embedded into a direct product of the form

∏
I 2ω. Let A ∈ Bω and

v : Termω(X) → A be a valuation such that v(x) = a. By Theorem 5.4 there
exists a σ-field of sets T and a surjective Bω-homomorphism f : T → A. Thus
there exists a sequence m in T such that f(m) = a because f is surjective.
Since tT (m) = 1 then v(t(x)) = tA(a) = f(tT (m)) = f(1) = 1. It proves
that A |= t(x) = 1 and the equation holds in Bω. Then, by Proposition 5.3,
Hω |= ¬¬t(x) = 1.

Theorem 5.1 also enables us to establish a kind of strong amalgamation
property related to regular elements.

Proposition 5.6. Let C
g←↩ A

f
↪→ B be a V-formation in Hκ for ω ≤ κ ≤

∞. Then there exist Hκ-homomorphisms C
gr→ E

fr← B such that:

1. The restictions fr/Reg(B) and gr/Reg(C) are injectives,

2. frf/Reg(A) = grg/Reg(A),

3. Imag(fr/Reg(B)) ∩ Imag(gr/Reg(C)) = Imag(frf/Reg(A)).

Proof. Suppose that κ �= ∞. By Eq. (17) let us consider the Bκ-homomor-
phisms

Reg(C)
R(g)← Reg(A)

R(f)→ Reg(B). (18)

Since f , g are injectives and R preserves injective Hκ-homomorphisms, R(f)
and R(g) are injective Bκ-homomorphisms defining a V-formation in Bκ. In
[20] it is proved that Bκ satisfies the strong amalgamation property. Then
we can consider a strong amalgam Reg(C) ic→ E

iB← Reg(B) in Bκ for the
V-formation given in Eq. (18). Let us consider the following diagram

�

� �

������

��� � �
�

A B

C

Reg(B)Reg(A)

Reg(C) E

f

g R(f)

¬¬B¬¬A

¬¬C

R(g) iB

iC

(19)
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Since the restriction ¬¬X/Reg(X) is injective for X ∈ {A,B,C} , the Hκ-
homomorphisms fr = iB ◦ ¬¬B and gr = iC ◦ ¬¬C satisfy the properties
enunciated in the proposition.

Now let us consider the case κ = ∞. By Proposition 2.5-4 we have

that the V-formation C
g←↩ A

f
↪→ B in H∞ is a V-formation in Hκ where

κ = max{|A|, |B|, |C|}. Since each Boolean algebra can be embedded into
a complete Boolean algebra preserving all existing meets and joins, we can
assume that E is a complete Boolean algebra in the diagram of Figure (19).
Thus, the above diagram is a diagram in H∞ and the proposition holds in
H∞.

6. Injective Objects in Hκ and H∞

In this section we characterize the injective objects in the categories Hκ for
ω ≤ κ ≤ ∞. For this we need following results:

Theorem 6.1.

1. Bκ has only trivial injective objects for ω ≤ κ �= ∞ [27].

2. B∞ has only trivial injective objects [5].

Let A ∈ Hκ where ω ≤ κ ≤ ∞. It is immediate to see that Ds(A) ∪ {0}
is a sub Hκ-algebra of A. Let us consider an order extension of Ds(A)∪{0}
by adding a new bottom ⊥. In this way 〈Ds(A) ∪ {0,⊥},≤〉 is an ordered
set in which ⊥ < 0 and 0 is the unique atom. Ds(A) ∪ {0,⊥} has a

∨
κ-

complete lattice ordered structure inherited from Ds(A) ∪ {0}. Moreover, if
we define the operation → in Ds(A) ∪ {0,⊥} as

x → y =

⎧
⎪⎨

⎪⎩

x → y, if x, y ∈ Ds(A) ∪ {0},

⊥, if x �= ⊥, y = ⊥,

1, if x = ⊥.

then the following algebra

D⊥(A) = 〈Ds(a) ∪ {0},
∨

κ

,∧,→,⊥, 1〉 (20)

belongs to Hκ and 0 is the minimum dense element in D⊥(A).

Theorem 6.2. Hκ has only trivial injective objects for ω ≤ κ ≤ ∞.

Proof. Let us suppose that A is an injective object in Hκ for ω ≤ κ ≤ ∞.
Note that A can not be a Boolean algebra, otherwise A would be injective
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object in Bκ which is a contradiction by Theorem 6.1. Thus, Ds(A) �= {1}.
We first prove that there exists d = min Ds(A). Let us consider the algebra
Ds(A) ∪ {0} in Hκ and the Hκ-embeddings ι : Ds(A) ∪ {0} → A and
ι1 : Ds(A) ∪ {0} → D⊥(A). Since A is an injective object in Hκ then
there exists an Hκ-homomorphism f : D⊥(A) → A such that the following
diagram is commutative:

�

� �
��≡

Ds(A) ∪ {0} A

D⊥(A)

ι

ι1
f

Note that 0 is the minimum dense element in D⊥(A). Then f(0) ∈ Ds(A)
and, by the commutativity of the above diagram, f(0) ≤ x for each x ∈
Ds(A). It proves that d = f(0) = min Ds(A). Thus, ⊥ < 0 < d in D⊥(A).
By the commutativity of the above diagram d = f(0) = f(d). Therefore
d = f(0) = f(d → 0) = f(d) → f(0) = d → d = 1 which is a contradiction.
Hence A is a trivial algebra.

7. Hilbert Style Calculus for Heyting κ-Frames

The development of infinitary languages was encouraged by Tarski and
Henkin who organized a seminar on this topic at Berkeley in the fall of
1956. The interest of Tarski in this area led to a series of new developments
in set theory that grew out of William Hanf’s work on models of infinitary
languages at the beginning of the 1960s [14]. In the same decade Carol Karp
published his book where an infinitary Hilbert style calculus for a classical
propositional system was introduced [19, § 5]. In this section we develop an
infinitary Hilbert style calculus for Hκ for κ �= ∞.

Taking into account the operation symbols 〈⊔κ,∧,→, 0〉 defining
Termκ(X) (see Definition 1.4) we formally introduce the following syntactic
abbreviations:

p ∨ q is a syntactic abbreviation of
⊔

κ

(p, q, 0, 0, . . .),

¬p is a syntactic abbreviation of p → 0,

1 is a syntactic abbreviation of 0 → 0.

A term t ∈ Termκ(X) is a tautology iff Hκ |= t = 1. Each subset T ⊆
Termκ(X) is referred to as a theory. If v is a valuation, v(T ) = 1 means
that for each t ∈ T , v(t) = 1. We use the notation T |=Hκ

t, read as t is a
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semantic consequence of T , to indicate that for each valuation v, v(T ) = 1
implies v(t) = 1.

Definition 7.1. The calculus 〈Termκ(X),�〉 is given by the following set
of axioms:

HK1. 0 → p,

HK2. p → (q → p),

HK3. (p → (q → r)) → ((p → q) → (p → r)),

HK4. (p ∧ q) → p,

HK5. (p ∧ q) → q,

HK6. (p → q) → ((r → q) → ((p ∨ r) → q)),

HK7. p → (q → r) → ((p ∧ q) → r),

HK8. ((p ∧ q) → r) → (p → (q → r)),

HK9. pi → ⊔
i∈κ pi,

HK10. (p ∧ ⊔
i∈κ qi) → ⊔

i∈κ(p ∧ qi),

and the following inference rules:
p,p→q

q modus ponens (MP)
(pi→q)i∈κ

(
⊔

i∈κ pi)→q

⊔ −rule

We introduce the concept of κ-proof that generalizes the usual notion of
proof in the standard Hilbert style calculus for intuitionistic logic. Let T be
a theory in Termκ(X). A κ-proof from T is a subset of Termκ(X) ordered
by ordinal numbers t0 . . . tα . . . tβ such that for each α ≤ β, tα is either, an
axiom or is inferred from earlier formulas tγ , γ < α by modus ponens or⊔

-rule. T � t means that t is κ-provable from T , that is, t is the last member
of a proof from T . If T = ∅ we use the notation � t and, in this case, we
will say that t is a κ-theorem of the calculus 〈Termκ(X),�〉. A theory T
is inconsistent iff T � 0; otherwise it is consistent. By Axiom HK1 we can
show that T is inconsistent iff T � t for each t ∈ Termκ(X).

Theorem 7.2. [Soundness] Let T be theory in Termκ(X). Then:

T � t =⇒ T |=Hκ
t.

Proof. Let q ∈ Termκ(X). Note that if q is an axiom HK1 . . . HK10 then
for each possible valuation v, v(q) = 1. It is clear that modus ponens pre-
serves valuations equal to 1. We have to prove that the

⊔
-rule preserves valu-

ations equal to 1. Suppose that 1 = v(pi → q) = v(pi) → v(q) for each i ∈ κ.
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Then v((
⊔

i∈κ pi) → q) = (
⊔

i∈κ v(pi)) → v(q) =
∧

i∈κ(v(pi) → v(q)) = 1.
Thus the

⊔
-rule preserves valuations equal to 1. Hence the theorem is easily

proved using transfinite induction.

With the usual argument used in intuitionistic logic we can establish the
following technical result.

Lemma 7.3. Let T be theory in Termκ(X). Then:

1. � p → p,

2. � p → (q → (p ∧ q)),

3. � p → (p ∨ q) and � q → (p ∨ q),

4. if T � p and T � q then T � p ∧ q,

5. if T � p then T � q → p for each q ∈ Termκ(X).

The proof of the above lemma is a repetition of the proofs given in [12]
with the obvious corrections due to the differences between both axiomatic
systems.

The following theorem provides a version of the Deduction Theorem for
the calculus 〈Termκ(X),�〉 taking into account the presence of an infinitary
connective

⊔
i∈κ.

Theorem 7.4. [Deduction Theorem] Let T be a theory in Termκ(X) and
p, q be terms in Termκ(X). Then:

T ∪ {p} � q iff T � p → q.

Proof. Let t1 . . . tα . . . q be a κ-proof of q from T ∪ {p}. Let us prove, by
transfinite induction, that T � p → tα for each tα in the κ-proof. Note that
t1 must be either in T or an axiom or p itself. The first two cases follow
by HK2. The third case follows by Lemma 7.3-1. Thus T � p → t1. Let
us assume that T � p → tα for α < β. If tβ is an axiom or tβ ∈ T ∪ {p},
then T � p → tβ follows as in the case t1. If tβ follows by modus ponens
from some tα and tγ where α < β and γ < β, then T � p → tβ follows by
inductive hypothesis and HK2 as in the standard intuitionistic calculus. We
have to discuss the case of the

⊔
-rule. Suppose tβ has the form (

⊔
i∈κ pi) → t

and T ∪ {p} � pi → t. Then:

(1) T � p → (pi → t) by inductive hypothesis

(2) T � (p ∧ pi) → t by MP 1, HK7

(3) T � (
⊔

i∈κ(p ∧ pi)) → t by
⊔
-rule, 2

(4) T � (p ∧ ⊔
i∈κ pi) → (

⊔
i∈κ(p ∧ pi)) → t) by Lemma 7.3-5
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(5) � [(p ∧ ⊔
i∈κ pi) → (

⊔
i∈κ(p ∧ pi)) → t)] →

[((p ∧ ⊔
i∈κ pi) → ⊔

i∈κ(p ∧ pi)) → ((p ∧ ⊔
i∈κ pi) → t)] HK3

(6) T � ((p ∧ ⊔
i∈κ pi) → ⊔

i∈κ(p ∧ pi)) → ((p ∧ ⊔
i∈κ pi) → t) by MP 4,5

(7) T � (p ∧ ⊔
i∈κ pi) → t by MP 6, HK 10

(8) T � p → ((
⊔

i∈κ pi) → t) by MP 7, HK 8

The converse is immediate. It proves that T ∪ {p} � q iff T � p → q.

Lemma 7.5. Let T be a theory in Termκ(X). Then:

1. if T � p → q and T � q → r then T � p → r,

2. if T � p → q and T � r → s then T � (p ∧ r) → (q ∧ s),

3. � ⊔
i∈κ(p ∧ qi) → (p ∧ ⊔

i∈κ qi).

Proof. (1) Immediate from Theorem 7.4. (2) By HK4 and Theorem 7.4 it
is immediate that T ∪ {p ∧ r} � q and T ∪ {p ∧ r} � s. Then, by Lemma
7.3-4 and Theorem 7.4, T � (p ∧ r) → (q ∧ s). (3)

(1) � qi → ⊔
i∈κ qi HK9

(2) � p → p by Lemma 7.3-1

(3) � (p ∧ qi) → (p ∧ ⊔
i∈κ qi) by 1,2 and item 2

(4) � ⊔
i∈κ(p ∧ qi) → (p ∧ ⊔

i∈κ qi) by
⊔
-rule in 3

Theorem 7.6. Let T be a theory in Termκ(X). Consider the following re-
lation in Termκ(X):

p ≡
T

q iff T � (p → q) ∧ (q → p).

Then ≡
T

is an equivalence relation in Termκ(X). Moreover if we define the
following operations in the quotient LT (X) = Termκ(X)/≡T

:

[α]
T

∧ [β]
T

= [α ∧ β]
T
, [p]

T
→ [q]

T
= [p → q]

T
,

⊔
i∈κ[pi]T = [pi]T , 0 = [0]

T
,

then:

1. T � t if and only if [t]
T

= 1,

2. 〈LT (X),
⊔

i∈κ,∧,→, 0〉 is a Heyting κ-frame,

3. 〈L∅(X),
⊔

i∈κ,∧,→, 0〉 is a free object in Hκ on X generators.

Proof. It is immediate that ≡
T

is symmetric. By Lemma 7.3-1 and Lemma
7.5-1, it is reflexive and transitive. Thus ≡

T
is an equivalence relation in

Termκ(X).
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(1) Immediate from Lemma 7.3-(1 and 5).
(2) With the same argument used in intuitionistic logic we can see that

∧ and → are well defined in LT (X). We have to prove that
⊔

is well defined
in LT (X). Suppose that [pi]T = [qi]T for each i ∈ κ.

(1) T � pi → qi by hypothesis

(2) � qi → ⊔
i∈κ qi HK9

(3) T � pi → ⊔
i∈κ qi by 1,2 and Lemma7.5-1

(4) T � (
⊔

i∈κ pi) → ⊔
i∈κ qi

⊔
-rule in 3

Analogously we can prove that T � (
⊔

i∈κ qi) → ⊔
i∈κ pi. Therefore

⊔
i∈κ

is well defined in LT (X). Now we prove that LT (X) is a Heyting κ-frame.
Note that Axioms HK1 . . . HK6, HK9 plus Lemma 7.3-3 define the usual in-
tuitinistic calculus. Then 〈LT (X),∨,∧,→, 0〉 is a Heyting algebra. By HK9
and item 1 we have that 1 = [pi]T,X

→ ⊔
i∈κ[pi]T,X

thus LT (X) satis-
fies the axiom κ2 of Heyting κ-frames. By item 1, Lemma 7.5-4 and HK10,⊔

i∈κ([p]
T
∧[qi]T ) = [p]

T
∧⊔

i∈κ[qi]T i.e. LT (X) satisfies the axiom κ3 of Heyt-
ing κ-frames. It proves that 〈LT (X),

⊔
i∈κ,∧,→, 0〉 is a Heyting κ-frame.

(3) It is clear that we can identify the set X with {[x]∅ ∈ L∅(X) : x ∈ X}.
Let A be a Heyting κ-frame and f : X → A be a function. Then we can
extend f to a unique valuation vf : Termκ(X) → A. By Theorem 7.2
we can see that if � p then vf (p) = 1. Thus, if [p]∅ = [q]∅ i.e. � p → q
and � q → p then vf (p) = vf (q). This implies that the assignment L∅(X) �
[p]∅ �→ v([p]∅) = vf (p) is a well defined map of the form v : L∅(X) → A. Note
that v is a Hκ-homomorphism because vf is a valuation. Since vf uniquely
extends f to a Hκ-homomorphism then v is the unique Hκ-homomorphism
such that the following diagram commutes.

�

� �
��≡

X A

L∅(X)

f

1X

v

Hence, L∅(X) is a free object in Hκ on X generators.

Remark 7.7. Let us notice that in an equational class of infinitary algebras,
the free algebra on X generators always exists (see [31, Proposition 8.3]).
In our case, Proposition 7.6-3 provides a representation of the free Heyting
κ-frame on X generators built up from an infinitary Hilbert style calculus.

Theorem 7.8. [Completeness] Let X be a nonempty set, t ∈ Termκ(X)
and T ⊆ Termκ(X). Then:
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1. L∅(X) |= t = 1 iff Hκ |= t = 1.

2. T |=Hκ
t iff T � t.

Proof. (1) Suppose that L∅(X) |= t = 1. Assume that there exist a Heyting
κ-frame A and a valuation v : X → A such that v(t) �= 1. Since L∅(X) is a
free object then there exists an Hκ-homomorphisms v∗ : L∅(X) → A such
that the following diagram is commutative

�

� �
��≡

X A

L∅(X)

v

1X

v∗

Thus v∗([t]∅) �= 1 and [t]∅ �= 1 which is a contradiction. It proves that
Hκ |= t = 1. The other direction is trivial.

(2) Suppose that T |=Hκ
t but T �� t. Then v : X → LT (X) such that

v(x) = [x]
T

defines a valuation satisfying v(T ) = 1 and v(t) = [t]
T

�= 1
which is a contradiction. The converse is immediate.

Remark 7.9. In the standard algebraic logic in which only connectives with
finite arity are allowed, completeness type theorems like the one above are
formulated taking into account the Lindenbaum algebra generated by a de-
numerable set. The reason to privilege this algebra is due to the fact that
the quantity of variables in a term is finite. In the infinitary case, the validity
of an equation can be studied in a Lindenbaum algebra whose generators
contain all the variables that appear in the equation.

Theorem 7.10. Let A be a Heyting κ-frame. Then there exist a set X and
a theory T ⊆ Termκ(X) such that

A ∼= LT (X).

Proof. Let X be a subset of A generating A. Then the inclusion map
i : X → A defines a valuation i∗ : Termκ(X) → A. Let us consider the
following theory in Termκ(X):

T = {t ∈ Termκ(X) : i∗(t) = 1}.

We shall prove that f : LT (X) → A such that f([t]
T
) = i∗(t) is a Hκ-

isomorphism. Note that if [t]
T

= [q]
T

then, T � (t → q) ∧ (q → t) and
i∗((t → q) ∧ (q → t)) = 1. Thus i∗(t) = i∗(q) and f is well defined. If
i∗(t) = 1 then t ∈ T and [t]

T
= 1 in LT (X). This argument proves that f is

injective. Note that f is a Hκ-homomorphisms since i∗ is a valuation. Now
we prove that f is a surjective map. For this, by Proposition 2.8, we use
induction in the family Ei(X) introduced in Eq. (9). Let a ∈ A.
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If a ∈ X = E0(X) then f([a]
T
) = i∗(a) = a. Let γ be an ordinal num-

ber such that γ < κ. By inductive hypothesis let us assume that for each
a ∈ Ei(X) where i < γ, there exists [t]

T
∈ LT (X) such that f([t]

T
) = a.

Suppose that a ∈ Eγ(X). If a =
⊔

i∈κ bi such that (bi)i∈κ ⊆ ⋃
i∈γ Ei(X) then

there exists a family ([ti]T )i∈κ in LT (X) such that f([ti]T ) = bi. Therefore
[
⊔

i∈κ ti]T ∈ LT (X) and f([
⊔

i∈κ ti]T ) =
⊔

i∈κ f([ti]T ) =
⊔

i∈κ bi = a. With
the same argument we can see that there exists [t]

T
∈ LT (X) such that

f([t]
T
) = a when, a = b � c, {b, c} ⊆ ⋃

i∈γ Ei(X) and � ∈ {∧ →}. Thus f is
surjective. Hence f is a Hκ-isomorphism.

8. Equational Completeness for Heyting κ-Frames

Subdirectly irreducible algebras play a crucial role in many aspects of the
standard universal algebra. One of these is a natural completeness theo-
rem for equational classes of algebras arising from the Birkhoff’s Subdirect
Representation Theorem [9, Theorem 8.6]. In general, this argument could
be not valid for infinitary algebras because the Birkhoff theorem may not
be valid and the notion of subdirectly irreducible algebra becomes mean-
ingless in this extended algebraic framework. However, in this section, an
equational completeness theorem with respect to a subclass of subdirecly
irreducible Heyting algebras is obtained without resorting to the Birkhoff’s
theorem.

Theorem 8.1. [2, § IX, Theorem 5] A Heyting algebra is subdirectly irre-
ducible iff it has exactly one coatom.

We denote by SI(H) the class of subdirectly irreducibles Heyting alge-
bras. For the class Hκ where κ �= ∞ we define the following class

SI(Hκ) = Hκ ∩ SI(H).

Proposition 8.2. Let A,B be two Heyting κ-frames and f : A → B be a
function such that

⊔
i∈κ f(xi) ≤ f(

⊔
i∈κ xi), f(x)∧f(y) ≤ f(x∧y), f(0) = 0

and f(1) = 1. Let us consider the set

A ×f B = {(a, b) ∈ A × B : b ≤ f(a)}
endowed with the following operations

(a1, b1) ∧ (a2, b2) = (a1 ∧ a2, b1 ∧ b2),

(a1, b1) → (a2, b2) = (a1 → a2, (b1 → b2) ∧ f(a1 → a2)),
⊔

i∈κ(ai, bi) = (
⊔

i∈κ ai,
⊔

i∈κ bi),
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1 = (1, 1), 0 = (0, 0).

Then:

1. f is order preserving.

2. 〈A ×f B,∧,→,
⊔

i∈κ, 0, 1〉 is a Heyting κ-frame.

3. π
A

: A ×f B → A such that π
A
(a, b) = a is a Hκ-homomorphism.

Proof. (1) Let a, b ∈ A such that a ≤ b. Then f(a) ≤ f(a) ∨ f(b) ≤
f(a ∨ b) = f(b).

(2) We first prove that 〈A ×f B,
⊔

i∈κ,∧, 0, 1〉 is a bounded distributive∨
κ-complete lattice. For this we show that the operations 〈∧,

⊔
i∈κ〉 are

closed in A ×f B. Indeed:

Let (a1, b1), (a2, b2) be two elements in A ×f B, i.e. bi ≤ f(ai) for i = 1, 2.
Then b1 ∧ b2 ≤ f(a1) ∧ f(a2) ≤ f(a1 ∧ a2) and (a1 ∧ a2, b1 ∧ b2) ∈ A ×f B.
Thus ∧ is closed in A ×f B.

Let (ai, bi)i∈κ be a subset of A ×f B, i.e. bi ≤ f(ai) for each i ∈ κ. Then⊔
i∈κ bi ≤ ⊔

i∈κ f(ai) ≤ f(
⊔

i∈κ ai) and (
⊔

i∈κ ai,
⊔

i∈κ bi) ∈ A ×f B. Thus
⊔

i∈κ is closed in A ×f B.

In this way A×f B inherits the lattice order structure of the product A×B
proving that 〈A ×f B,

⊔
i∈κ,∧, 0, 1〉 is a bounded distributive

∨
κ-complete

lattice.
Now we prove that → is the residuum of ∧ in A ×f B. It is immediate to

see that → is a closed operation in A ×f B.
On the one hand let us suppose that (x, y) ∧ (a1, b1) ≤ (a2, b2). Since the

lattice order structure of A ×f B is componentwise, taking into account the
residuum of ∧ in A and in B respectively, we have that

x ≤ a1 → a2 and y ≤ b1 → b2. (21)

By item 1, f is order preserving and then, by Eq. (21), we have that f(x) ≤
f(a1 → a2). Thus y ≤ f(a1 → a2) because y ≤ f(x). Therefore, by Eq. (21),
y ≤ (b1 → b2) ∧ f(a1 → a2) proving that

(x, y) ≤ (a1 → a2, (b1 → b2) ∧ f(a1 → a2)) = (a1, b1) → (a2, b2).

On the other hand let us assume that (x, y) ≤ (a1, a2) → (b1, b2). Since
x ≤ a1 → b1, by residuation in A, it is immediate that x ∧ a1 ≤ b1. Since
y ≤ (b1 → b2) ∧ f(a1 → a2) ≤ b1 → b2, by residuation in B, we have that
y ∧ b1 ≤ b2. It proves that

(x, y) ∧ (a1, b1) ≤ (a2, b2).
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Hence → is the residuum of ∧ in A ×f B and 〈A ×f B,∧,→,
⊔

i∈κ, 0, 1〉 is a
Heyting κ-frame.

(3) Immediate.

Proposition 8.3. Let κ be an infinite cardinal and let us consider the free
algebra L∅(X) in Hκ introduced in Theorem 7.6-3. Then there exists an
Hκ-embedding iS : L∅(X) → A such that A ∈ SI(Hκ).

Proof. Let us consider the function f : L∅(X) → 2 such that

f(x) =

{
1, if x = 1
0, otherwise.

We prove that
⊔

i∈κ f(xi) ≤ f(
⊔

i∈κ xi). Suppose that
⊔

i∈κ f(xi) = 1. Then
there exists i0 ∈ κ such that f(xi0) = 1 and then xi0 = 1. Thus

⊔
i∈κ xi = 1

and f(
⊔

i∈κ xi) = 1. It proves that
⊔

i∈κ f(xi) ≤ f(
⊔

i∈κ xi).

Now we prove that f(x)∧ f(y) ≤ f(x∧ y). Suppose that f(x∧ y) = 0. Then
x ∧ y �= 1 and consequently, x �= 1 or y �= 1. Thus f(x) = 0 or f(y) = 0 and,
f(x) ∧ f(y) = 0 ≤ f(x ∧ y). It proves that f(x) ∧ f(y) ≤ f(x ∧ y).

Since f(0) = 0 and f(1) = 1, by Proposition 8.2-1, A = L∅(X) ×f 2 is a
Heyting κ-frame. By definition of L∅(X) ×f 2 we have that (t, 0) ∈ A for
each t ∈ L∅(X) and (t, 1) ∈ A iff 1 ≤ f(t) iff t = 1. Thus A has the form

A = {(t, 0) : t ∈ L∅(X)} ∪ {(1, 1)}
where (1, 0) is the unique coatom in A. Consequently, A ∈ SI(Hκ).

Let us consider the injective function i : X → A such that i(x) = (x, 0).
Since L∅(X) is a free object in Hκ, there exists an unique Hκ-homomorphism
iS : L∅(X) → A such that the following diagram is commutative:

�

� �
��≡

X A

L∅(X)

i

1X

iS

By Proposition 8.2-3, if we consider the Hκ-homomorphism π
L∅(X) then

the external diagram commutes.

�

� �
��≡

X L∅(X)

L∅(X)

1X

1X 1
L∅(X)

A

�

�

π
L∅(X)

iS
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Then π
L∅(X)iS = 1

L∅(X) since, by Proposition 7.6-3, L∅(X) is a free object
in Hκ. It proves that iS is injective. Hence our claim.

Theorem 8.4. Let κ be an infinite cardinal number and t ∈ Termκ(X).
Then,

SI(Hκ) |= t = 1 iff Hκ |= t = 1.

Proof. Let us assume that SI(Hκ) |= t = 1. Suppose that there exists
Hκ �|= t = 1. Then, by Theorem 7.8-1, L∅(X) �|= t = 1. By Proposition
8.3, L∅(X) can be Hκ-embedded into a Heying κ-frame A ∈ SI(Hκ). Thus
there exists a valuation v : Termκ(X) → A such that v(t) �= 1 which is a
contradiction. Hence Hκ |= t = 1. The converse is immediate.

Intuitionism requires that the disjunction of two sentences is provable iff
we can prove one of the two disjuncts. In algebraic terms it can be expresses
by saying that free Heyting algebras are well-connected [25] i.e., if x ∨ y = 1
in a free Heyting algebra then x = 1 or y = 1. Another interest consequence
of Proposition 8.3 is the following generalization of the property mentioned
above.

Proposition 8.5. Let (ti)i∈κ be a set of terms in Termκ(X). Then

1. If L∅(X) |= ⊔
i∈κ ti = 1 then there exists i0 ∈ κ such that L∅(X) |= ti0 =

1.

2. If � ⊔
i∈κ ti then there exists i0 ∈ κ such that � ti0 .

Proof. (1) Suppose that
⊔

i∈κ ti = 1 in L∅(X). By Proposition 8.3, there
exists a Hκ-embedding j : L∅(X) → A where A has a unique coatom c

A
.

Then, 1 = j(
⊔

i∈κ ti) =
⊔

i∈κ j(ti) > c
A
. It implies that there exists i0 ∈ κ

such that j(ti0) = 1 otherwise, c
A

would be an upper bound of (ti)i∈κ and⊔
i∈κ j(ti) < c

A
which is a contradiction. Hence ti0 = 1 in L∅(X) because j

is injective.
(2) Immediate from item 1 and Theorem 7.6-1.

9. Equational Type Completeness for H∞

In this section we provide an equational type completeness theorem for H∞
based on the Heyting κ-frame structure. For this we first introduce a lan-
guage suitable for the notion of term in H∞.

For each infinite cardinal number κ we define the following interval of
cardinal numbers

[ω, κ] = {η ∈ Card : ω ≤ η ≤ κ}.
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Let us noticed that the objects in H∞ can be seen as algebras of the form

〈A,∧,→, (
⊔

κ

)
ω≤κ∈Card

, 0〉 (22)

where, for each cardinal number κ ≥ ω, the reduct 〈A,∧,→,
⊔

κ, 0〉 defines
a Heyting κ-frame. If κ ≥ ω is a cardinal number then we denote by τκ

the type of algebras related to the reduct 〈∧,→, (
⊔

η)η∈[ω,κ]
Card

, 0〉 of the
frames. For each set of variables X and for each type of algebras τκ we
consider the set of terms Termτκ

(X) introduced in Definition 1.4. In this
way, the proper class Term∞(X) is introduced as follows:

t ∈ Term∞(X) iff ∃κ ∈ Card s.t., t ∈ Termτκ
(X). (23)

Recalling that the set Termτκ
(X) is built up from the family (Xτκ

γ )γ , in-
dexed by ordinals (see Eq. (1)), then we can observe that:

Termκ(X) ⊆ Termτκ
(X). (24)

Moreover, it is easy to check that X
τκ1
0 = X

τκ2
0 for all infinite cardinals

numbers κ1, κ2. In this way, and regardless of the cardinal κ, the elements
of Xτκ

0 are referred as atomic terms in the language of H∞.
In order to establish a completeness type theorem for TermH∞(X)-

equations in H∞ we first introduce a kind of translation terms map sending
each term of Term∞(X) on a term in Termκ(X) for an appropriate cardinal
number κ. The following concept will be crucial to establish the mentioned
translation terms map.

Definition 9.1. Let t ∈ TermH∞(X). By considering Eq. (23) then we
define the translation index η(t) of t as follows:

η(t) = min{k ∈ Card : t ∈ Termτk
}.

From all possible operation symbols
⊔

i∈− in t ∈ TermH∞(X), the trans-
lation index η(t) highlights the maximum of the arities of such operation
symbols.

Definition 9.2. Let t ∈ Term∞(X) and κ be cardinal number such that
η(t) ≤ κ. Then we define the κ-translation Nκ(t) of t as follows:

if t is an atomic term then Nκ(t) = t,

if t is of the form t1 � t2, Nκ(t) = Nκ(t1) � Nκ(t2) where � ∈ {∧,→},

if t is of the form
⊔

i∈α≤κ ti then Nκ(t) =
⊔

i∈κ t∗i where

t∗i =

{
Nκ(ti), if i < α

0, if α ≤ i ≤ κ.
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Let us notice that if t ∈ Term∞(X) then Nκ(t) ∈ Termκ(X).

Proposition 9.3. Let t ∈ TermH∞(X) such that η(t) ≤ κ. Then:

H∞ |= t = Nκ(t)

Proof. Let A ∈ H∞ and v : X → A be a valuation. We use transfinite in-
duction on the ordinal numbers γ for the family (Xτκ

γ )γ defining Termτκ
(X).

If t ∈ Xτκ
0 then it is immediate. By inductive hypothesis we assume that

the equation holds for t ∈ Xτκ
α where α < γ. If t ∈ Xτκ

γ we have to consider
two possible cases:

t is of the form t1 � t2 where � ∈ {∧ →}. Thus t1 ∈ Xτκ
α1

and t2 ∈ Xτκ
α2

,
where α1, α2 < γ. Then, by inductive hypothesis, v(Nκ(t)) = v(Nκ(t1)) �
v(Nκ(t2)) = v(t1) � v(t2) = v(t).

t is of the form
⊔

i∈β≤η(t)≤κ ti where ti ∈ Xτκ
αi

and αi < γ. By definition
of Nκ, we have that Nκ(t) =

⊔
i∈κ t∗i , where

t∗i =

{
Nκ(ti), if i ∈ β

0, if β ≤ i ≤ κ.

By inductive hypothesis, for i ∈ β, v(ti) = v(Nκ(ti)) because ti ∈ Xτκ
αi

and
αi < γ. Thus,

v(Nκ(
⊔

i∈β

ti)) =
∨

i∈β

v(Nκ(ti)) ∨
∨

β≤i<κ

v(0)

=
∨

i∈β

v(ti) = v(
⊔

i∈β

ti) = v(t).

Hence our claim.

By the above proposition we can see that the κ-translation transforms a
term t ∈ Term∞(X), where its infinitary operation symbols are of the form⊔

i∈α≤η(t)≤κ, into an equivalent term Nκ(t) written in the language of Hκ.

Theorem 9.4. Let t ∈ TermH∞(X) such that η(t) ≤ κ. Then

H∞ |= t = 1 iff Hκ |= Nκ(t) = 1.

Proof. =⇒) Let us assume H∞ |= t = 1. Therefore, by Proposition 9.3,
H∞ |= Nκ(t) = 1. Suppose that there exists a Heyting κ-frame A and a
valuation v : X → A such that v(Nκ(t)) �= 1. By Theorem 2.3, there exists
Â ∈ H∞ and a Hκ-embedding i : A → Â. Thus, the composition v ◦ i : X →
Â defines a valuation in the algebra Â ∈ H∞ such that v ◦ i(Nκ(t)) �= 1
which is a contradiction. Hence Hκ |= Nκ(t) = 1.

⇐=) Suppose that Hκ |= Nκ(t) = 1. Since H∞ is a subclass of Hκ, we
have that H∞ |= Nκ(t) = 1 and, by Proposition 9.3, H∞ |= t = 1.
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The above theorem says that the equational theory of H∞ where ar-
bitrary supremum are taken into account can be captured in the classes
{Hκ}ω≤κ∈Card where the types of algebras are sets. Furthermore, in this
perspective and by Theorem 8.4, the equational theory of H∞ is ruled by
the classes {SI(Hκ)}ω≤κ∈Card.

10. Heyting κ-Frames and Heyting Algebras with a Quantifier

In algebraic logic there exists a kind of algebraic structures whose study
is motivated by predicate logic. Its origin lies in a seminal work of Hal-
mos dating back to 1955 [13] where the notion of monadic algebra is intro-
duced. Concretely, a monadic algebra is a Boolean algebra with an additional
unary operation whose interpretation represents the algebraic counterpart
of a quantifier. Various further investigations have been carried out since
[13]. For example, Monteiro and Varsavsky, in 1957, introduced the notion
of monadic Heyting algebras [28] to serve the same purpose for the monadic
intuitionistic predicate calculus. Soon after the notion of quantifiers on dis-
tributive lattices were considered for the first time by Servi [29] but it was
Cignoli in [10] who studied them as algebras, which he named Q-distributive
lattices. In this framework, a natural generalization of these lattices, called
Heyting algebras with a quantifier, were introduced by Abad et al. in [1]. In
this section we study a relation between these Heyting algebras and Heyting
κ-frames.

A Heyting algebras with a quantifier, or Q-Heyting algebra for short,
is an algebra 〈H,∨,∧,→,∃, 0〉 of type 〈2, 2, 2, 1, 0〉 satisfying the following
conditions:

1. 〈H,∨,∧,→, 0〉 is a Heyting algebra,

2. ∃0 = 0,

3. x ≤ ∃x,

4. ∃∃x = ∃x,

5. ∃(x ∨ y) = ∃x ∨ ∃y,

6. ∃(x ∧ ∃y) = ∃x ∧ ∃y.

Monadic Heyting algebras [8,28] are the simplest examples of Q-Heyting
algebras. However, from Heyting κ-frames, we can built an interesting family
of examples of Q-Heyting algebras. Indeed:



Heyting κ-Frames

Let X be a set such that |X| ≤ κ and H ∈ Hκ. Let us consider the set of
all functions HX = {f : X → H} endowed with the following operations:

f ∨ g such that (f ∨ g)(x) = f(x) ∨ g(x),

f ∧ g such that (f ∧ g)(x) = f(x) ∧ g(x),

f → g such that (f → g)(x) = f(x) → g(x),

∃f such that (∃f)(x) =
∨

y∈X

f(y),

0 such that 0(x) = 0. (25)

In an analogous way as in [13] and [28] we can see that the resulting algebra
〈HX ,∨,∧,→,∃, 0〉 is a Q-Heyting algebra.

These kinds of functional algebras were first defined by considering H ∈
H∞ i.e., a complete Heyting algebra, and X an arbitrary set. In this frame-
work another unary operator, whose interpretation represents the algebraic
counterpart of the universal quantifier ∀, is also consider. Concretely, for
each f ∈ HX we define (∀f)(x) =

∧
y∈X f(y). In [8], based on these func-

tional algebras with two quantifiers, a representation theorem for monadic
Heyting algebras is obtained.

Summarizing, Heyting k-frames are also related to the algebras motivated
by the intuitionistic monadic predicate logic.

11. Concluding Remarks

This article is an attempt to contribute to the study of algebraic structures
with infinitary operations. Specifically, by adapting several techniques of
universal algebra to algebras with infinitary operations, the class of Heyt-
ing κ-frames is studied. In this perspective, basic properties of these in-
finitary algebras such as, congruences, direct indecomposability, subdirect
representations, injective objects, etc. were obtained. Furthermore, an in-
finitary Hilbert style calculus with a corresponding completeness theorem
is obtained. We also note that the structure of Heyting κ-frames allowed to
establish an equational type completeness theorem for H∞ if its language
of algebras defined a proper class.

To conclude, we would like to note that there are still interesting topics
to be studied about the structure of Heyting κ-frames, such as the charac-
terisation of the projective objects in H∞, the amalgamation property in
Hκ for 0 ≤ κ ≤ ∞, the functors between the categories of Heyting κ-frames
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for different cardinals κ ecc. It would also be interesting to study possible
applications of these infinitary algebras to other mathematical structures.
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