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Abstract

This paper provides a Nyström method for the numerical solution
of Volterra integral equations whose kernels contain singularities of al-
gebraic type. It is proved that the method is stable and convergent
in suitable weighted spaces. An error estimate is also given as well as
several numerical tests are presented.
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1 Introduction

In this paper we introduce a new Nyström method for solving weakly singular
Volterra integral equations of the second kind of the form

f(y) +

∫ y

−1
k(x, y)f(x)(y − x)α(1 + x)βdx = g(y), y ∈ (−1, 1), (1)
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where α, β > −1, f is the unknown solution and k and g are given functions.
In the case −1 < α < 0, β = 0, i.e. the simplest form of second kind

Abel-type integral equation, (1) is a model for many applications, arising
in mathematical physics, electrochemistry, crystal growth, biophysics, vis-
coelasticity, heat transfer model, analysis of thin sections in transmission
electron microscopy and in the solution of BVP. For the large variety of
applications, a great attention has been posed in the literature and several
numerical methods for solving these equations have been proposed. For an
extensive bibliography the interested reader can consult the survey paper
[1, 2, 22] (see also [6]). In the case α = β = 0 we recall the iterated colloca-
tion methods [5, 26, 32, 36] and the spectral collocation methods [21, 33, 35].
For a complete bibliography, we refer to [6, Chapter 2] and the reference
therein.

As it is known, for negative values of α, the weak singularity along the
boundary y = x and along the side y = −1 is inherited by the solution f ,
even if the right-hand side function g is smooth (see, for instance, [6, Chapter
6], [31], [10]).

In the present paper, besides to consider α > −1, we approach the cases
of functions k and g smooth inside the open sets Ḋ := (−1, 1)× (−1, 1) and
(−1, 1), respectively, but possibly presenting algebraic singularities on the
border ∂D and/or at the endpoints ±1. Hence, these equations have usually
solutions whose derivatives are unbounded at the left endpoint of the inte-
gration interval. By virtue of this peculiarity, they could be better handled
in weighted spaces of functions to “absorb" the endpoints singularities of the
solution. Hence, denoted by u(x) = (1 − x)γ(1 + x)δ a Jacobi weight with
γ, δ ≥ 0, in this paper we study the equation in the space Cu of functions f
that are locally continuous in (−1, 1) and such that fu ∈ C0([−1, 1]). The
weighted Nyström method we develop employs a product integration rule
that exactly integrates the singular factor (y − x)α, and only the kernel k is
approximated in Cu. The final linear system we obtain allows to construct
the weighted Nyström interpolant. We study stability, convergence and well
conditioning of the system, providing error estimates in suitable subspaces
of Cu. The accuracy of the method is confirmed by some numerical tests
too. Comparisons with other recent methods [18, 22] are also presented. We
point out that a relevant advantage of a Nyström scheme w.r.t. to a collo-
cation approach, is a faster convergence even if the right–hand side g in (1)
is not so smooth. Roughly speaking, the effective speed of convergence of
Nyström methods is “more" dependent on the smoothness of the kernel k,
than on the one of g.

The approach we propose represents a not negligible contribution in the
framework of numerical methods devoted to solving this kind of equation.
Indeed, numerical methods usually developed in C0([−1, 1]) require addi-
tional smoothing transformations to improve their performance. This is for
instance the approach proposed in [24], where a piecewise polynomial colloca-
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tion method is introduced. The same happens in the more recent paper [18],
where a projection method based on Lagrange interpolation in C0([−1, 1])
is proposed. According to our knowledge, a such kind of study has never
been proposed before. Indeed, a Nyström method has been developed in
[4, 20] but for other classes of Volterra integral equations. In [4] weakly sin-
gular equations with non-compact operators have been considered, and in
[20] Volterra equations with highly oscillatory kernels have been studied. In
both cases, the methods were analyzed in un-weighted spaces of functions.

We remark that the numerical treatment of several other kinds of inte-
gral equations in weighted spaces has been widely proposed in many recent
papers. Among them we recall: second kind Fredholm integral equations
[11, 19, 30], integro-differential equations [7, 13, 14], Cauchy singular equa-
tions [9, 8, 23, 28, 12], Mellin-type integral equations [16, 17, 25].

The paper is structured as follows. In Section 2 we collect some pre-
liminaries, useful in the sequel. In Section 3 we gather new basic results
necessary to introduce the Nyström method developed in Section 4. In Sec-
tion 5 we show our numerical examples and in Section 6 we give the proofs
of the main results.

2 Notations and preliminary results

Throughout the paper we use C in order to denote a positive constant,
which may have different values at different occurrences, and we write C ̸=
C(n, f, . . .) to mean that C > 0 is independent of n, f, . . ..

For a given bivariate function k(x, y), we will write ky (or kx) to regard
it as function of the only variable x (or y).

2.1 Function spaces

Let u be the Jacobi weight defined as

u(x) = vγ,δ(x) := (1− x)γ(1 + x)δ, x ∈ (−1, 1), γ, δ ≥ 0.

We denote by Cu the Banach space of the functions f ∈ C0((−1, 1)) s. t.
fu ∈ C0([−1, 1]) and lim

x→1
(fu)(x) = 0 if γ > 0 as well as lim

x→−1
(fu)(x) = 0 if

δ > 0, equipped with the norm

∥f∥Cu := ∥fu∥∞ = max
|x|≤1

|(fu)(x)| .

The limit conditions are necessary to assure that (see for instance [27])

lim
m→∞

Em(f)u = 0, ∀f ∈ Cu

where, denoted by Pm the space of all algebraic polynomials of degree at
most m,

Em(f)u := inf
P∈Pm

∥f − P∥Cu
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is the error of best polynomial approximation of f ∈ Cu.

To deal with smoother functions, with λ ∈ R+ we consider the Zygmund
type space

Zλ(u) =

{
f ∈ Cu : sup

t>0

Ωk
φ(f, t)u

tλ
< ∞, k ≥ 1, k > λ

}
,

where, setting φ(x) =
√
1− x2, the main part of the φ-modulus of smooth-

ness Ωk
φ(f, t)u is defined as [15, p. 90]

Ωk
φ(f, t)u = sup

0<h≤t
∥(∆k

hφf)u∥Ikh , Ikh = [−1 + (2kh)2, 1− (2kh)2],

with

∆k
hφf(x) =

k∑
i=0

(−1)i
(
k

i

)
f

(
x+

hφ(x)

2
(k − 2i)

)
.

The space Zλ(u) is endowed with the norm

∥f∥Zλ(u) = ∥fu∥∞ + sup
t>0

Ωk
φ(f, t)u

tλ
.

Zygmund spaces are strictly connected with the Sobolev space of order
r ∈ N, r ≥ 1 defined as

Wr(u) =
{
f ∈ Cu : f (r−1) ∈ AC(−1, 1),

∥f∥Wr(u) = ∥fu∥∞ + ∥f (r)φru∥∞ < ∞
}
,

being AC(−1, 1) the set of the functions which are absolutely continuous on
every closed subinterval of (−1, 1). Indeed,

W⌊λ⌋+1 ⊂ Zλ ⊂ W⌊λ⌋

being ⌊λ⌋ the smallest integer greater than or equal toλ>0 .
Finally, to estimate Em(f)u, we recall the following weak-Jackson in-

equality

Em(f)u ≤ C
∫ 1

m

0

Ωk
φ(f, t)u

t
dt, ∀f ∈ Cu, (2)

and the Favard inequality (see, e.g., [27, p. 172])

Em(f)u ≤ C
mr

∥f∥Wr(u), ∀f ∈ Wr(u),

where, in both cases, C ̸= C(m, f).
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2.2 Lagrange interpolating polynomials

Let
w(x) = vα,β(x) = (1− x)α(1 + x)β, α, β > −1,

and denote by {pm(w)}∞m=0 the sequence of the corresponding orthonormal
polynomials with positive leading coefficients.

For a given f ∈ Cu, let Lw
m(f) ∈ Pm−1 be the Lagrange polynomial

interpolating f at the zeros {xk}mk=1 of pm(w), i.e.

Lw
m(f, x) =

m∑
i=1

ℓm,i(x)f(xi), ℓm,i(x) = λm,i(w)

m−1∑
j=0

pj(w, x)pj(w, xi), (3)

where λm,k(w) are the Christoffel numbers w.r.t. w. Let us now recall
the conditions under which the sequence of Lebesgue constants {∥Lw

m∥u}m
associated to the previous interpolating process in Cu, i.e.

∥Lw
m∥u := ∥Lw

m∥Cu→Cu = max
|x|≤1

u(x)

m+1∑
k=1

|ℓm,k(x)|
u(xk)

,

has a logarithmic growth.

Theorem 2.1. [27, p.272] Given two Jacobi weights u = vγ,δ with γ, δ ≥ 0
and w = vα,β with α, β > −1, then

∥Lw
m∥u ∼ logm,

if and only if

max

{
0,

α

2
+

1

4

}
≤ γ ≤ α

2
+

5

4
, max

{
0,

β

2
+

1

4

}
≤ δ ≤ β

2
+

5

4
,

are satisfied.

We conclude by recalling a theorem useful to prove convergence and
stability of the product quadrature rule that we will introduce in Section 3.

Theorem 2.2. [29], [27, p.348] Let u = vγ,δ, w = vα,β and φ = v
1
2
, 1
2 .

Assume

sup
y∈[−1, 1]

∫ 1

−1

|d(x, y)|
u(x)

log

(
2 +

|d(x, y)|
u(x)

)
dx < ∞.

Then, for any f ∈ Cu, we have

sup
−1≤y≤1

∫ 1

−1
|Lw

m(f, x)d(x, y)|dx ≤ C ∥fu∥∞, C ̸= C(m, f)

if and only if

sup
y∈[−1, 1]

∫ 1

−1

|d(x, y)|√
w(x)φ(x)

dx < ∞,

∫ 1

−1

√
w(x)φ(x)

u(x)
dx < ∞.
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3 Auxiliary results

Setting

(Vf)(y) =
∫ y

−1
f(x)k(x, y)(y − x)α(1 + x)βdx, (4)

equation (23) can be rewritten in the form

(I + V)f = g.

3.1 Solvability of equation (1) in Cu

The first problem we approach is to assure equation (1) is uniquely solvable
in Cu.

Theorem 3.1. Assume that γ < 1 + α, δ < 1 + β and

k̃(y) := v−γ,1+α+β(y) sup
x∈[−1, 1]

|k(x, y)| ∈ Zλ(u). (5)

For any g ∈ Cu equation (1) admits a unique solution in Cu.

Remark 3.2. Note that even if k̃ is singular at y = 1, k̃u it is not.

Now we propose some examples of kernels k satisfying (5) for suitable weights
u.

• k(x, y) ≡ c, c ∈ R (see e.g.[24, Example 1]). Assuming 1 + α+ β ≥ 0,
(5) is satisfied with 0 < λ ≤ 2(1 + α+ β + δ).

• k(x, y) = exy(1 + y)2, and α = β = −3
4 . Setting γ = 0, one has

k̃(y) = e1+yv0,
3
2 (y), and (5) is fulfilled with λ = 3 + 2δ.

• k(x, y) = (x+ y2 + 1) sin(x+ y) and α = 0, β = 1/4. In this case

k̃(y) = v−γ, 5
4 (y) sup

x∈[−1, 1]

(
(x+ y2 + 1) sin(x+ y)

)
∼ v−γ, 5

4 (y),

and k̃ ∈ Z 5
2
+2δ(u), for any u = vγ,δ.

3.2 A product integration rule

Now we introduce a product rule on which the weighted Nyström method is
based. The rule has been obtained by approximating the function kyf in (4)
by the Lagrange polynomial Lw

m(kyf), i.e.

(Vf)(y) = (Vmf)(y) + Em(f, y),
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where Em denotes the remainder term and

(Vmf)(y) =

m∑
k=1

ck(y)k(xk, y)f(xk), (6)

with

ck(y) =

∫ y

−1
ℓm,k(x)(y − x)α(1 + x)βdx

= λm,k(w)
m−1∑
j=0

pj(w, xk)

∫ y

−1
pj(w, x)(y − x)α(1 + x)βdx, (7)

being ℓm,k defined in (3).
Next theorem states conditions under which the integration rule in (6) is

stable and convergent.

Theorem 3.3. Assume that the function k satisfies (18), ky ∈ Cu and the
weights u = vγ,δ and w = vα,β fulfill the following conditions

0 ≤γ < min

{
α+ 1,

α

2
+

5

4

}
(8)

max {0,−(1 + α+ β)} ≤δ < min

{
β + 1,

β

2
+

5

4

}
.

Then formula (6) is stable, i.e.

sup
y∈[−1,1]

sup
m

u(y)
m∑
k=1

|ck(y)|
u(xk)

< ∞, (9)

and for each f ∈ Cu

lim
m→∞

∥[(V − Vm)fu∥ = 0.

4 The Nyström method

In order to approximate the solution of (1), we introduce here a weighted
Nyström method. Considering the sequence

{
(Vmf)(y)

}
m

, with (Vmf)(y)
defined in (6), we introduce the following finite-dimensional equation

(I + Vm)fm = g, (10)

in the unknown fm. Then, multiplying both sides of the previous equation
by the weight u and collocating at the zeros {xi}mi=1 of pm(w), we get the
following linear system

m∑
j=1

[
δij + cj(xi)

u(xi)

u(xj)
k(xj , xi)

]
aj = (gu)(xi), i = 1, ...,m (11)
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where aj = (fmu)(xj) are the unknowns and

cj(xi) = λm,j

m−1∑
k=0

pk(w, xj)

∫ xi

−1
pk(w, x)(xi − x)α(1 + x)βdx

=

(
1 + xi

2

)1+α+β

λm,j

m−1∑
k=0

pk(w, xj)

∫ 1

−1
pk(w, γxi(x))v

α,β(x)dx

=

(
1 + xi

2

)1+α+β

λm,j

m−1∑
k=0

pk(w, xj)

m∑
s=1

λm,spk(w, γxi(xs)),

with γx(t) =

(
1 + x

2

)
t+

x− 1

2
.

A matrix representation of system (11) is given by

(Im +DmKmD−1
m )a = b, (12)

where a = (a1, . . . , am)T , b = (b1, . . . , bm)T with bi = u(xi)g(xi), Im is the
identity matrix of order m and

Dm = diag(u(x1), . . . , u(xm)), (Km)ij = cj(xi)k(xj , xi).

System (12) is equivalent to the finite-dimensional equation (10). In
fact, the solution a∗ of (12), if it exists, allow one to costruct the weighted
Nyström interpolant

(fmu)(y) = (gu)(y)− u(y)

m∑
j=1

cj(y)

u(xj)
k(xj , y) a

∗
j (13)

which is the solution of (10). Vice-versa, the latter furnishes a solution to
(12). Merely evaluate (13) at the nodes xi, i = 1, . . . ,m.

Next theorem states the convergence of the above described Nyström
method.

Theorem 4.1. Assume that

max

{
0,

α

2
+

1

4

}
≤γ < min

{
α+ 1,

α

2
+

5

4

}
, (14)

max

{
0,−(1 + α+ β),

β

2
+

1

4

}
≤δ < min

{
β + 1,

β

2
+

5

4

}
, (15)

and
k̃(y) := v−γ,1+α+β(y) sup

x∈[−1, 1]
|k(x, y)| ∈ Zλ(u).

Then, for m sufficiently large, the operators (I + Vm)−1 exist and are uni-
formly bounded, and system (12) is well conditioned.
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Moreover, denoted by f∗ and f∗
m the unique solution of equation (1) and

(10) respectively, if g ∈ Zλ(u) the following convergence estimate holds true

∥(f∗ − f∗
m)u∥∞ = O

(
1

mλ

)
. (16)

About the error estimate, we remark once again that the Nyström inter-
polant converges to the exact solution with the same order of convergence
of the quadrature formula (see, for instance, Theorem 6.4) that is estimated
by the error of best polynomial approximation of kyf (see, estimate (20)).

Moreover, system (12) is well-conditioned that is its condition number is
bounded by a constant which does not depend on the size of the system m
and the magnitude of such a constant depends on the condition nummber of
the operator I + Vm.

Remark 4.2. Let us note that for α > −1, we can always choose a parameter
γ according to (14), while there are cases for which the parameter δ does not
satisfy the condition δ > −(1 + α + β). Certainly, this does not happen if
1 + α+ β ≥ 0 or β > −5

6 −
2
3α. Indeed, in these two cases max

{
0, β2 + 1

4

}
,

coincides with 0 and β
2 + 1

4 , respectively.

5 Numerical Tests

In this section, we apply the proposed Nyström method to solve numerically
equations of the type (1). For increasing m, we will report in the tables the
weighted maximum errors

ϵm = max
i=1:1000

|(f − fm)(yi)u(yi)|

where fm is the Nyström interpolant defined in (13), f is the exact solution
and (yi)i=1,...,1000 are equally spaced points of (−1, 1). In the case f is
unknown, we consider exact the approximated solution fM , for M sufficiently
large, declaring M in each test. In these cases, we will denote the errors by
ϵMm .

Moreover, for each example we report the condition number of system
(12), i.e. cond(Im +DmKmD−1

m ), computed in infinity norm, and the esti-
mated order of convergence

EOCm =
log (ϵm/ϵ2m)

log 2
.

All the numerical experiments were performed using Matlab R2021a in
double precision on an Intel Core i7-2600 system (8 cores), under the Debian
GNU/Linux operating system.
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Example 5.1. Let us consider the following equation

f(y) +

∫ y

−1
ex+yf(x)(y − x)−

1
3dx = g(y)

with
g(y) = ey + 2−

2
3 e3y

(
Γ

(
2

3

)
− Γ

(
2

3
, 2(1 + y)

))
.

Here Γ(z) is the Euler Gamma function and Γ(a, z) is the incomplete Gamma
function. The unique solution is the smooth function f(y) = ey. Since
α = −1/3, β = 0, according to (14)-(15), we can fix γ = δ = 1/2. Either g
and k are analytical functions and also k̃ in (5) is it. The results are reported
in Table 1. As we could expect, the convergence is very fast. Indeed, almost
the machine precision is attained by solving a square system of order 32.

Table 1: Numerical results for Example 5.1

m ϵm cond(Im +DmKmD−1
m ) EOCm

4 5.79e-02 5.75e+00 11.57
8 1.90e-05 7.50e+00 29.59
16 2.35e-14 8.70e+00 2.41
32 4.44e-15 9.82e+00

Example 5.2. The aim of this example is to give a comparison of perfor-
mance between the proposed Nyström method and the projection method
developed by the same authors in [18]. Moreover we want to asses the main
advantages obtained by treating the equation in weighted spaces of contin-
uous functions by our Nyström method instead of the collocation method
proposed there. Consider the equation [18, Example 3.1 and Example 4.1]

f(y) +

∫ y

−1
exy sin (

√
1 + x)f(x)

√
1 + x dx = e(1+y)

1
3 .

According to the assumptions of Theorem 4.1, we look for the solution in
Cu with u(x) = v

1
2
, 4
5 (x). The expected theoretical order of convergence is

O(m− 34
15 ), since g ∈ Z34/15(u) and k satisfies (5) with λ = 23/5 ∼ 4.6. By

Table 2, easily we can see that Nyström method turns out to be accurate.
The numerical errors as well as the EOCm are slightly better than the theo-
retical estimate, suggesting that the constant in the error term is significantly
small. Moreover, the linear systems (12) are always well conditioned.

Let us now compare the results presented here with those achieved by
the collocation method developed in [18]. We just recall that the method
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proposed there improves its performance after introducing the smoothing
transformation

ϕq(z) = 21−q(1 + z)q − 1, q ∈ N (17)

and as q increases more relevant benefits are produced if the involved func-
tions or their derivatives present singularities at the endpoint −1 of the
interval [−1, 1]. For the convenience of the reader, we report in Table 3 the
errors ẽ700m = max

i=1,2,...103
|(f̃700 − f̃m)(yi)|, being f̃m the approximate solution

of the collocation method, computed for different choices of q.
By Table 3, we can assert that the proposed Nyström method furnishes

very satisfactory results especially if compared with the projection method
in the case when no smoothing techniques are applied (q = 1) or if the
transformation (17) is employed with q = 2. If q = 3, by solving a system of
order m = 512 the Nyström method gives one more correct digit.

Table 2: Numerical results for Example 5.2

m ϵ700m cond(Im +DmKmD−1
m ) EOCm

4 3.38e-03 2.95e+00
8 1.75e-04 3.70e+00 4.03
16 1.07e-05 4.06e+00 3.78
32 7.83e-07 4.21e+00 3.78
64 5.70e-08 4.29e+00 3.74
128 4.26e-09 4.31e+00 3.74
256 3.19e-10 4.32e+00 4.19
512 1.75e-11 4.33e+00

Table 3: Numerical results for Example 5.2 achieved in [18]

m q ϵ̃700m q ϵ̃700m q ϵ̃700m

4 1 1.14e-02 2 1.29e-02 3 4.94e-02
8 8.29e-03 1.30e-03 5.59e-03
16 4.39e-03 9.44e-04 3.14e-05
32 1.46e-03 2.89e-04 7.96e-10
64 4.58e-04 8.41e-05 8.52e-10
128 1.68e-04 2.41e-05 8.53e-10
256 3.77e-05 7.75e-06 7.67e-10
512 2.58e-05 3.09e-06 9.47e-10
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Example 5.3. Consider the following equation

f(y)−
√
2

2

∫ y

−1
f(x) (y − x)−1/2 dx =

√
1 + y

2
− π

4
(1 + y).

The solution is f(y) =

√
1 + y

2
. By fixing u(x) = v

2
5
,1(x), g ∈ W3(u). The

expected convergence order O
(
m−3

)
is confirmed by the weighted errors

and the EOCm values displayed in Table 4 . The conditioning of the linear
system grows a little bit, remaining acceptable. We point out that the same
equation has been considered in [22, Example 4.1]. In that paper the authors
apply two different approaches for Volterra equations in [0, 1], in the case
β = 0. In details, they propose an interpolation postprocessing technique
to the collocation solution under graded mesh, and an hybrid collocation
solution under “looser”graded mesh. So, the methods presented in [22] belong
to a different family of methods with respect to our global approximation
method. Therefore, the comparison can be performed only by observing the
values stated in the tables given there. It seems that our approach provides
satisfactory results.

Table 4: Numerical results for Example 5.3

m ϵm cond(Im +DmKmD−1
m ) EOCm

4 1.96e-01 2.09e+02
8 2.17e-02 5.51e+02 3.07
16 2.58e-03 9.58e+02 3.02
32 3.18e-04 1.45e+03 3.01
64 3.96e-05 2.02e+03 3.00
128 4.94e-06 2.67e+03 3.00
256 6.18e-07 3.39e+03 3.00
512 7.72e-08 4.20e+03 3.00
1024 9.65e-09 5.07e+03

Example 5.4. Consider

f(y) +

∫ y

−1
log (x+ y + 2)f(x)(y − x)

1
2 (1 + x)

1
2dx = (y2 + 1)| sin y|

7
2 .

According to (14)-(15), the equation can be considered in Cu with u =

v
3
4
, 3
4 . The function k satisfies (5) with λ = 11/2 and g ∈ Z7/2(u). Con-

sequently, we expect a convergence of the order O(m−7/2). However, the
numerical results given in Table 5 are better than the theoretical expecta-
tions. Finally, for m increasing all the systems (12) are well conditioned.
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Figure 1: Numerical and theoretical errors of Example 5.4

Table 5: Numerical results for Example 5.4

m ϵ1024m cond(Im +DmKmD−1
m ) EOCm

4 5.31e-03 2.42e+00
8 5.37e-05 2.77e+00 4.51
16 2.35e-06 2.96e+00 4.58
32 9.84e-08 3.01e+00 4.47
64 4.45e-09 3.02e+00 4.46
128 2.02e-10 3.03e+00 4.48
256 9.05e-12 3.03e+00 4.55
512 3.86e-13 3.03e+00

Example 5.5. Let us consider the equation

f(y) +

∫ y

−1
|x|

9
2 (xy + 5)f(x)(1 + x)

1
3dx =

ey−2

y2 + 1

in the space Cu with u = v
1
2
,1. In Table 6 we report our numerical errors

which are better than those we expect from our theoretical estimate that is
in this case O(m−9/2).

13



Table 6: Numerical results for Example 5.5

m ϵ1024m cond(Im +DmKmD−1
m ) EOCm

4 7.07e-03 6.99e+00
8 3.71e-04 1.34e+01 7.02
16 2.86e-06 1.94e+01 6.34
32 3.53e-08 2.35e+01 5.58
64 7.36e-10 2.65e+01 5.53
128 1.59e-11 2.85e+01 5.50
256 3.51e-13 2.98e+01 5.60
512 7.22e-15 3.06e+01

6 Proofs

Lemma 6.1. Assume that γ < 1 + α, δ < 1 + β and

Nk = sup
y∈[−1, 1]

(
v0,1+α+β+δ(y) sup

x∈[−1, 1]
|k(x, y)|

)
< ∞. (18)

Then, V : Cu → Cu is bounded.

Proof. For any y ∈ [−1, 1], if δ < β + 1 and γ < α+ 1, then

|(Vf)(y)u(y)| ≤ u(y)

∫ y

−1
|k(x, y)| |(fu)(x)| (y − x)α

(1− x)γ
(1 + x)β−δ dx

≤ ∥fu∥∞u(y) sup
x∈[−1, 1]

|k(x, y)|
∫ y

−1

(y − x)α

(1− x)γ
(1 + x)β−δ dx

≤ C ∥fu∥∞ sup
x∈[−1, 1]

|k(x, y)|u(y)v−γ,1+α+β(y)

∫ 1

−1
vα,β−δ(t)dt

≤ C ∥fu∥∞ sup
y∈[−1, 1]

(
v0,1+α+β+δ(y) sup

|x|≤1
|k(x, y)|

)
,

that is the thesis.

Lemma 6.2. Assume that γ < 1+α, δ < 1+β. Then, under the assumption
(5), V : Cu → Cu is compact.

Proof. Let us prove that for any f ∈ Cu,

Ωr
φ(Vf, t)u ≤ Ctλ∥fu∥∞. (19)

14



By (4) we have

|u(y)∆r
hφ(Vf)(y)|

≤ ∥fu∥∞u(y)

∣∣∣∣∆r
hφ(y)

(∫ y

−1
k(x, y)(y − x)α

(1 + x)β−δ

(1− x)γ
dx

)∣∣∣∣
≤ C∥fu∥∞u(y)

∣∣∣∣∣∆r
hφ(y)

(
sup
|x|≤1

|k(x, y)|v−γ,1+α+β(y)

)∣∣∣∣∣
∫ 1

−1
vα,β−δ(t)dt.

Then, taking the supremum on y ∈ Irh = [−1 + (2rh)2, 1 − (2rh)2] and
setting

k̃(y) = v−γ,1+α+β(y) sup
|x|≤1

|k(x, y)|

we have for 0 < h ≤ t,

sup
t>0

Ωr
φ(Vf, t)u

tλ
≤ C∥fu∥∞ sup

t>0

Ωr
φ(k̃, t)u

tλ
,

and thus estimate (19), by virtue of assumption (5).
In this way, by (2) we can assert that Em(Vf)u ≤ Cm−λ∥fu∥∞, from

which we deduce

lim
m

(
sup

∥f∥Cu=1
Em(Vf)u

)
= 0.

Hance, by virtue of [34, p. 44] and in view of the boundedness of the
operator, we can claim that V : Cu → Cu is compact.

Proof of Theorem 3.1. The theorem follows, by Lemmas 6.1 and 6.2, taking
into account that condition (5) implies (18) since ∥k̃u∥∞ = Nk.

Proof of Theorem 3.3. First, let us note that setting,

ṽ(x, y) =

{
(y − x)α(1 + x)β, y > x

0, y < x

under the assumptions (8), we can apply Theorem 2.2, deducing that

sup
|y|≤1

u(y)

∫ 1

−1
|Lw

m(kyf, x) ṽ(x, y)| dx ≤ C sup
|y|≤1

u(y)∥kyfu∥∞ C ̸= C(m, f, ky).

This allow us to state that the formula is stable in Cu.

15



Now, denoting by Pm−1(x, y) the best polynomial approximation of kyf ∈
Cu of degree m− 1 in both variables, we have

|[(Vf)(y)− (Vmf)(y)]u(y)| ≤ u(y)

[∫ 1

−1
|(kyf)(x)− Pm−1,y(x)| ṽ(x, y)dx+∫ 1

−1
|Lw

m(kyf − Pm−1,y, x) ṽ(x, y)| dx
]

≤ Cu(y)Em−1(kyf)u

∫ 1

−1

ṽ(x, y)

u(x)
dx

≤ C (1 + y)1+α+β+δ Em−1(kyf)u. (20)

Now, since for any f1, f2 ∈ Cω, ω = vρ,σ, ρ, σ ≥ 0 we have [27, p.384]

E2m(f1f2)ω ≤ C (∥f1ω∥∞Em(f2)ω + Em(f1)ω∥f2ω∥∞) ,

by the assumptions on k and (8) we can state that

|[(Vf)(y)− (Vmf)(y)]u(y)|

≤ C (1 + y)1+α+β+δ
[
∥kyu∥∞E[m−1

2
](f)u + ∥fu∥∞E[m−1

2
](ky)u

]
≤ C

[
NkE[m−1

2
](f)u + ∥fu∥∞ sup

|y|≤1

(
(1 + y)1+α+β+δ E[m−1

2
](ky)u

)]
. (21)

Then, being f, ky ∈ Cu, we deduce the convergence of the formula.

Next result is essential to prove the convergence of the introduced Nys-
tröm method.

Theorem 6.3. Under the assumptions of Theorem 3.3, Theorem 2.1 and
assuming that condition (5) is fulfilled, we have

lim
m→∞

∥(V − Vm)Vm∥Cu→Cu = 0.

Proof. By (21) with Vmf in place of f we get

|[(V − Vm)Vmf(y)]u(y)| ≤ C
[
NkE[m−1

2
](Vmf)u

+∥(Vmf)u∥∞ sup
|y|≤1

(
(1 + y)1+α+β+δ E[m−1

2
](ky)u

)]
(22)
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Let us now estimate E[m−1
2

](Vmf)u. By definitions (6) and (7), we can write

|u(y)∆r
hφ(Vmf)(y)|

≤ u(y)

m∑
k=1

f(xk)
∣∣∆r

hφ (ck(y)k(xk, y))
∣∣

≤ ∥fu∥∞
m∑
k=1

u(y)

u(xk)

∣∣∣∣∆r
hφ∥ky∥∞

(∫ y

−1
ℓm,k(x)(y − x)α(1 + x)βdx

)∣∣∣∣
≤ ∥fu∥∞

(
max
|x|≤1

m∑
k=1

|ℓm,k(x)u(x)|
u(xk)

)
u(y)

∣∣∣∣∆r
hφ

(
∥ky∥∞

∫ y

−1
(y − x)αv−γ,β−δ(x)dx

)∣∣∣∣ .
Therefore, by Theorem 2.1 and by proceeding as in the proof of Theorem
6.2, under the assumption (5), we get

sup
t>0

Ωr
φ(Vmf, t)u

tλ
≤ C logm ∥fu∥∞,

and thus by (2) we have

E⌊m−1
2

⌋(Vmf)u ≤ C logm
mλ

∥fu∥∞.

Then, by (22) and taking into account the stability of the formula (9), we
obtain the thesis.

In order to prove Theorem 4.1 we recall a well-know result (see, for
instance [3, Theorem 4.1.1 p. 106]

Theorem 6.4. Let X be a Banach space, K : X → X be a given bounded
compact operator and Km : X → X , m ∈ N be a given bounded operator with
lim

m→∞
∥Kf−Kmf∥ = 0 for all f ∈ X . Let us consider the operator equations

(I −K)f = g, (23)
(I −Km)fm = g, (24)

where I is the identity operator and g ∈ X . If lim
m→∞

∥(K − Km)Km∥ = 0,

then (I −Km)−1 exist and is uniformly bounded, with

∥(I −Km)−1∥ ≤ 1 + ∥(I −K)−1∥ ∥Km∥
1− ∥(I −K)−1∥ ∥(K −Km)Km∥

.

Morever, denoted by f∗ ∈ X and f∗
m ∈ X the unique solution of (23) and

(24), respectively, we have

∥f∗ − f∗
m∥ ≤ C∥(K −Km)f∗∥, C ̸= C(m, f∗, g).

17



Proof of Theorem 4.1. By Theorem 6.4, we can immediately deduce that
by virtue of Theorem 3.3 and Theorem 6.3 equations (24), admit a unique
solution. About the well conditioning, it can be proved by using the same
arguments as [3, p. 113] only by replacing the usual infinity norm with the
weighted uniform norm of the space Cu.

Let us now prove (16). By applying again Theorem 6.4, by (21) we can
assert

∥[f∗ − f∗
m]u∥∞ ≤ C

[
E[m−1

2
](f

∗)u +
1

mλ
∥f∗u∥∞

]
.

Hence, since by the assumptions on g and k, we have that f∗ is at least in
Zλ(u) we can deduce that

∥[f∗ − f∗
m]u∥∞ ≤ C

mλ
∥f∗∥Zλ(u).

7 Conclusions and future work

In this paper, we have proposed a Nyström method for weakly singular
Volterra integral equations, with kernels presenting singularities along the
diagonal y = x and/or at the side y = −1 of the square [−1, 1]2. These cases
are pathological since the solution inherits the singularities.

After the conditions assuring the equation is unisolvent in Cu, we have
proved the numerical method is stable and convergent, providing also error
estimates in Zygmund weighted spaces. The novelty of these results depends
on the analysis of the method, carried out in spaces of functions endowed
with weighted uniform norms. The choice of these spaces allows obtaining
better performance w.r.t. similar global procedures like projection methods.
Indeed, usually the latter require smoothing transformations to regularize
the solution, not required in our method. Hence, our procedure is lighter
and requires a lower computational cost.

The numerical experiments have confirmed the theoretical results, show-
ing the stability of the method, the well conditioning of the final linear
system we have to solve, and the theoretical order of convergence. In addi-
tion, a comparison between the proposed approach and the recent methods
developed in [18, 22] supports the satisfactory performance of the Nyström
method.

Finally, we would like to mention that the proposed approach can be also
extended to the nonlinear or multidimensional case [37, 38, 39]. This will be
the subject of a future research work.

18



Acknowledgements

L. Fermo is partially supported by Regione Autonoma della Sardegna re-
search project “Algorithms and Models for Imaging Science [AMIS]”
(RASSR57257, intervento finanziato con risorse FSC 2014-2020 - Patto per
lo Sviluppo della Regione Sardegna) and INdAM-GNCS 2020 project “Ap-
prossimazione multivariata ed equazioni funzionali per la modellistica nu-
merica”. D. Occorsio is partially supported by University of Basilicata (local
funds) and INdAM-GNCS 2020 project “Approssimazione multivariata ed
equazioni funzionali per la modellistica numerica”.

The research has been accomplished within “Research ITalian network on
Approximation" (RITA). Both autors are member of the INdAM Research
group GNCS and the TAA-UMI Research Group.

References

[1] R.S. Anderssen. Application and numerical solution of abel-type inte-
gral equations. MRC Tech. Summary Report, University of Wisconsin,
Madison, 1977.

[2] R.S. Anderssen, F.R. de Hoog, and M.A. Lukas. Application and Nu-
merical Solution of Integral Equations. Springer Netherlands, 1980.

[3] K.E. Atkinsons. The Numerical Solution of Integral Equations of the
second kind. Cambridge Monographs on Applied and Computational
Mathematics, Cambridge University Press, 1997.

[4] P. Baratella. A Nyström interpolant for some weakly singular linear
Volterra integral equations. Journal of Computational and Applied
Mathematics, 231(2):725–734, 2009.

[5] H. Brunner. Iterated collocation methods and their discretizations for
Volterra integral equations. SIAM Journal on Numerical Analysis,
21(6):1132–1145, 1984.

[6] H. Brunner. Collocation methods for Volterra integral and related func-
tional differential equations. Cambridge University Press, Cambridge,
2004.

[7] M. R. Capobianco, G. Criscuolo, P. Junghanns, and U. Luther. Uniform
convergence of the collocation method for Prandtl’s integro-differential
equation. The Anziam Journal, 42:151–168, 2000.

[8] M.R. Capobianco, P. Junghanns, U. Luther, and G. Mastroianni.
Weighted uniform convergence of the quadrature method for Cauchy
singular integral equations. In A. Böttcher and I. Gohberg, editors,

19



Singular Integral Operators and Related Topics, pages 153–181, Basel,
1996. Birkhäuser Basel.

[9] M.R. Capobianco and M.G. Russo. Uniform convergence estimates for
a collocation method for the Cauchy singular integral equation. J. of
Integr. Eq. and Appl., 9(1):21–44, 1997.

[10] D. Costarelli and R. Spigler. Solving Volterra integral equations of the
second kind by sigmoidal functions approximation. Journal of Integral
Equations and Applications, 25(2):193–222, 2013.

[11] M.C. De Bonis and G. Mastroianni. Projection methods and condition
numbers in uniform norm for Fredholm and Cauchy singular integral
equations. SIAM J. Numer. Anal., 44(4):1351–1374, 2006.

[12] M.C. De Bonis and G. Mastroianni. Direct methods for CSIE in
weighted Zygmund spaces with uniform norm. Riv. Math. Univ. Parma,
2:29–55, 2011.

[13] M.C. De Bonis and D. Occorsio. Quadrature methods for integro-
differential equations of Prandtl’s type in weighted spaces of continuous
functions. Applied Mathematics and Computation, 393:art.125721, 2021.

[14] M.C. De Bonis, D. Occorsio, and W. Themistoclakis. Filtered inter-
polation for solving Prandtl’s integro-differential equations. Numerical
Algorithms, page in press, 2021.

[15] Z. Ditzian and V. Totik. Moduli of smoothness. SCMG Springer-Verlag,
New York Berlin Heidelberg London Paris Tokyo, 1987.

[16] L. Fermo and C. Laurita. A Nyström method for a boundary inte-
gral equation related to the Dirichlet problem on domains with corners.
Numerische Mathematik, 130(1):35–71, 2015.

[17] L. Fermo and C. Laurita. A Nyström method for mixed boundary value
problems in domains with corners. Applied Numerical Mathematics,
149:65–82, 2020.

[18] L. Fermo and D. Occorsio. A projection method with smoothing trans-
formation for second kind Volterra integral equations. Dolomites Re-
search Notes on Approximation, 14:12–26, 2021.

[19] L. Fermo and M.G. Russo. Numerical methods for Fredholm integral
equations with singular right-hand sides. Adv. Comput. Math., 33:305–
330, 2010.

[20] L. Fermo and C. van der Mee. Volterra integral equations with highly
oscillatory kernels: a new numerical method with applications. Elec-
tronic Transactions on Numerical Analysis (ETNA), 54:333–354, 2021.

20



[21] H. Guo, H. Cai, and X. Zhang. A Jacobi-collocation method for second
kind Volterra integral equations with a smooth kernel. Abstract and
Applied Analysis, 7:1–10, 2014.

[22] Q. Huang and M. Wang. Superconvergence of interpolated collocation
solutions for weakly singular Volterra integral equations of the second
kind. Computational and Applied Mathematics, 40(3):18 pages, 2021.

[23] P. Junghanns and U. Luther. Cauchy singular integral equations in
spaces of continuous functions and methods for their numerical solution.
J. of Comput. and Appl. Math., 77:201–237, 1997.

[24] M. Kolk and A. Pedas. Numerical solution of Volterra integral equations
with singularities. Front. Math. China, 8:239–259, 2013.

[25] C. Laurita. A new stable numerical method for Mellin integral equations
in weighted spaces with uniform norm. Calcolo, 57(3), 2020.

[26] M. Mandal and G. Nelakanti. Superconvergence results of Legendre
spectral projection methods for Volterra integral equations of second
kind. Computational and Applied Mathematics, 37(4):4007–4022, 2018.

[27] G. Mastroianni and G. V. Milovanovic. Interpolation Processes Ba-
sic Theory and Applications. Springer Monographs in Mathematics.
Springer Verlag, Berlin, 2009.

[28] G. Mastroianni, M.G. Russo, and W. Themistoclakis. Numerical Meth-
ods for Cauchy Singular Integral Equations in Spaces of Weighted Con-
tinuous Functions, pages 311–336. Birkhäuser Basel, Basel, 2006.

[29] P. Nevai. Mean convergence of Lagrange interpolation. III. Trans. Amer.
Math. Soc., 282(2):669–698, 1984.

[30] D. Occorsio and M.G. Russo. A mixed collocation scheme for solving
second kind Fredholm integral equations in [−1, 1]. Electronic Transac-
tions on Numerical Analysis (ETNA), to appear, 2021.

[31] A. Pedas and G. Vainikko. Integral equations with diagonal and bound-
ary singularities of the kernel. Zeitschrift fur Analysis und ihre Anwen-
dung, 25(4):487–516, 2006.

[32] I.H. Sloan. Improvement by iteration for compact operator equations.
Mathematics of Computation, 30(136):758–764, 1976.

[33] T. Tang, X. Xu, and J. Cheng. On spectral methods for Volterra inte-
gral equations and the convergence analysis. Journal of Computational
Mathematics, 26(6):825–837, 2008.

21



[34] A. F. Timan. Theory of Approximation of functions of real variable.
Dover, New York, 1994.

[35] Y. Wei and Y. Chen. A Jacobi spectral method for solving multidimen-
sional linear Volterra integral equation of the second kind. Journal of
Scientific Computing, 79, 2019.

[36] Z. Xie, X. Li, and T. Tang. Convergence analysis of spectral Galerkin
methods for Volterra type integral equations. Journal of Scientific Com-
puting, 53(2):414–434, 2012.

[37] M.A. Zaky. Recovery of high order accuracy in Jacobi spectral colloca-
tion methods for fractional terminal value problems with non-smooth
solutions. Journal of Computational and Applied Mathematics, 357:103–
122, 2019.

[38] M.A. Zaky. An accurate spectral collocation method for nonlinear sys-
tems of fractional differential equations and related integral equations
with nonsmooth solutions. Applied Numerical Mathematics, 154:205–
222, 2020.

[39] M.A. Zaky and I.G. Ameen. A novel Jacobi spectral method for multi-
dimensional weakly singular nonlinear Volterra integral equations with
nonsmooth solutions. Engineering with Computers, 37(4):2623–2631,
2021.

22


	Introduction
	Notations and preliminary results
	Function spaces
	Lagrange interpolating polynomials

	Auxiliary results
	Solvability of equation (1) in Cu
	A product integration rule

	The Nyström method
	Numerical Tests
	Proofs
	Conclusions and future work

