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Abstract  
This work focuses on the development of a data driven model, based on Convolutional Neural Networks (CNNs), for the real-time 
detection of disruptive events at JET. The predictor exploits the ability of CNNs in learning relevant spatiotemporal information straight 
from 1D plasma profiles, avoiding hand-engineered feature extraction procedures. In this paper, the radiation profiles from both the 
bolometer horizontal and vertical cameras have been considered among the predictor inputs, with the aim of discriminating between 
the core radiation due to impurity accumulations and the outboard radiation phenomena. Moreover, an innovative predictor architecture 
is proposed, where two separate CNNs are trained to focus on events with different timescales, that is, the destabilization of radiation, 
electron density and temperature profiles, and the mode-locking and current profile variations. The outputs of the two CNNs are 
combined with a logic OR function to provide the disruption alarm trigger. The advantages of this data fusion approach impact on the 
predictor performance, with a very limited number of false alarms (only 1 in the considered test set), and on the model output 
interpretability as the two different branches are triggered by different types of events. 

1. Introduction 

Plasma disruptions pose considerable risks to the 
operation of high-power nuclear fusion devices. In fact, 
very stringent requirements apply to next-generation 
tokamaks in terms of the allowable number of 
unmitigated disruptions. In addition, the scientific 
community is currently actively working on the task of 
disruption avoidance, aiming to determine the 
mechanism that causes sudden discharge termination. 
The goal is to enable a recovery action or safe 
termination of the experiment without Massive Gas 
Injection (MGI). Data-driven methods have proven to be 
very powerful in fault prediction, and many approaches, 
such as Fully Connected Neural Networks (FC), Support 
Vector Machines (SVM), Self-Organizing Maps (SOM) 
and Generative Topographic Mapping (GTM), 
Classification and Regression Trees (CART) and 
Random Forests (RF), have been employed in disruption 
prediction models at JET [1]–[8], ASDEX Upgrade [9]–
[11], EAST [12], J-TEXT [13], DIIID [14] and Alcator 
C-Mod [12]. Moreover, research is moving toward the 
objective of linking the physical phenomena involved in 
disruptive processes to the inputs of the data-driven 
prediction models, especially in case of predictive 
models designed to enable disruption avoidance [6], 
[15]–[18]. Recently, deep Convolutional Neural 
Networks (CNNs) have been adopted in several 
applications and became the state of the art for image 
processing and computer vision. In fact, they are able to 
automatically extract features from images, overcoming 
the need for hand-engineered feature extraction [19]–
[21]. In [8] the authors proposed a disruption predictor 
based on a Convolutional Neural Network (CNN) for 
JET tokamak. The CNN processes an image obtained 

from a set of 1D profile data and 0D signals and returns 
two likelihoods: the disruptive one (in red in Figure 1a) 
and the non-disruptive one (in green in the same 
Figure 1a). The predictor was trained and tested on data 
spanning several years, showing overall good 
performances. However, a study of the performances 
evolution over the different campaigns revealed the 
predictor ageing, with an accuracy degradation, mainly 
in the false alarm number ([8], Table 3). Indeed, during 
the 2020 JET high power experiments, researchers 
observed the appearance of localized radiation in the 
Low Field Side (LFS) [22]. Since the previously 
developed predictor was only analysing the information 
from the bolometer horizontal camera, the CNN could 
not correctly locate the radiation source in these cases, 
hence triggering a false alarm. Figure 1 reports a false 
alarm triggered by the predictor in [8] on pulse #96893. 
As can be noted, at around 10.5 s, despite a non-
disruptive behaviour shown by the HRTS profiles and 
the 0D signals, high radiation seen from the central lines 
of sight of the bolometer horizontal camera (Figure 1d) 
triggers an alarm, highlighted with a black dashed line 
in Figure 1a-f. This behaviour, observed in 4 other 
pulses, motivated the development of a new version of 
the predictor, also including the information from the 
vertical bolometer camera among the set of images.  
This paper is structured as follows: Section 2 reports the 
Database used for this study; Section 3 explains the 
predictor architecture; Section 4 reports the training of 
the predictor model; Section 5 details the results. 
Finally, in Section 6 the conclusions of the study are 
discussed. 



 

 

 
Figure 1: False alarm triggered by the predictor in [8] on the regularly terminated discharge #96893. (a) CNN likelihood 
curves, where the green line is the regularly termination likelihood and the red line is the disruption likelihood; (b) internal 
inductance in green and mode lock normalized by the plasma current in blue; (c) radiated power from the bolometer 
vertical camera; (d) radiated power from the bolometer horizontal camera; (e) electron temperature from the HRTS; (f) 
electron density from the HRTS. The dashed black line indicates the CNN alarm time. 

2. Database 

In this work, an upgraded version of the disruption 
predictor based on the CNN architecture presented in [8] 
is proposed. For sake of comparison, the database used 
to train and test the predictor is the same as in [8]. 
Precisely, the model has been trained using the same 85 
disrupted and 70 regularly terminated discharges used in 
[7], [8], selected from the 2011-2013 JET campaigns. 
Then, the model was tested on 108 disruptive and 149 
regularly terminated subsequent pulses from the 2011-
2013 (42 disrupted /45 non-disrupted), 2016 (29/41), 
and 2019-2020 (37/63) JET campaigns. The pulses are 
analysed in the flat-top phase. For each selected 
discharge, the flat-top starting time is the first time 
instant where the plasma is in X-point configuration. 
The flat-top ending time tend, is the last available time 
instant in the flat-top for the non-disrupted discharges, 
while for the disrupted ones, tend is the minimum time 
between the valve activation time for mitigated 
discharges, and the disruption time (tD), for the 
unmitigated ones. The predictor architecture has been 
designed to optimize the performance according to the 
new set of inputs. The 1D plasma profile data, from the 
High-resolution Thomson Scattering and the bolometer 
horizontal and vertical cameras were sorted to preserve 
the spatial ordering of the channels, resampled to 
maintain a common time basis, and pre-processed to 
remove outliers and unreliable channels. Afterwards, the 
input images to be fed to the CNN were extracted using 
a 200 ms sliding window. Then by using the maximum 
and the minimum values from each diagnostic in the 
training set, the four different images are normalized and 
vertically stacked, as shown in Figure 2.  

3.Predictor architecture 

In general, the architecture of a CNN contains several 
layers of blocks, connected in cascade, which filter an 
input image for feature extraction purposes [19]. Each 
filtering layer is interconnected with the following one 
by a nonlinear block (usually a rectified linear unit). 
Finally, a multi-layer perceptron combines the extracted 
features to produce the output of the CNN. A dropout 
layer may be included to improve the generalization of 
the model. Figure 3 shows the architecture of the 
predictor proposed in this work. It consists of two 
branches, each one being a separate CNN. The top 
branch, which processes the images of the 1D profiles, 
has two convolutional units (CU1, CU2) followed by a 
max pooling layer (Pmax) and an average pooling layer 
(Pavg) respectively. The CU1 and Pmax blocks, filter out 
vertically (spatial dimension) the input image by 
reducing its size from 154 × 101 to 18 × 101. The 
other blocks (CU2, Pavg) filter out horizontally (time 
dimension) the resulting image by reducing the image 
size to 18 × 20. Each convolutional unit consists of 
three layers: a convolutional layer (Ck), a batch 
normalization layer (Nk) and a rectified linear unit 
(ReLU) activation layer (Ak). The first convolutional 
layer has a single filter (1-channel kernel) of size 5 × 1, 
while the second one has one of size 1 × 11. The output 
of the 2nd convolutional unit is then a 18 × 20 image. 
The lower branch processes the stacked signals of the 
internal inductance 𝑙௜    and the normalized Locked Mode 
𝑀𝐿௡௢௥௠ signals. It consists of a separate Convolutional 
Unit (CU3) with 4 filters (4-channel kernel) of size 1 × 5 
with dilation 1 × 5 and stride 1 × 1, which process the 



 

 

0D dimensional data along the horizontal direction. The 
block is followed by a max pooling layer with size and 
stride 1 × 5, which also down samples the features 
along the horizontal direction. The extracted features 
have a size of 2 × 16 × 4. On both branches, the 
features are flattened and fed into a Fully Connected 

(FC) block, which combines them before a SoftMax 
layer (S). Before the two fully connected layers, a 
dropout layer with dropout probability of 20% reduces 
the overfitting on the training set and improves the 
model generalization.

  
Figure 2: Sketch of the pre-processing steps applied to pulse #96745 to generate the input images for the predictor left) Pre-processed 
data are converted into images; Right) Input data for the CNN model, obtained by normalizing the data with the training set ranges and 
by vertically stacking the different diagnostics.

 

 
Figure 3: CNN architecture, where: I is the image input; CUk 
is the kth convolutional unit, composed by the cascade of a 
convolutional layer (Ck), a batch-normalization layer (Nk) and 
a nonlinear activation layer with ReLU functions (Ak); Pmax 
and Pavg are the max-pooling and average-pooling layers, 
respectively; D is a dropout layer; FC is a fully-connected 
layer; S and CO are the SoftMax and classification output 
layers, respectively. Finally, an OR logic block activates the 
predictor whether one of the two branches output is 1. 

The SoftMax layer produces the likelihood of the input 
segment to belong to a disrupted discharge. As an 
example, Figure 4a shows the SoftMax outputs for the 
JET disrupted pulse #96998, where the blue line refers 
to the disruptive likelihood from the top branch and the 
magenta line that one from the bottom branch. Finally, 
for each branch, a final classification layer (CO) simply 
thresholds the disruptive likelihood to perform the 
image classification. For each branch, a threshold on 
the likelihood is optimized by minimising the errors of 
the entire predictor on the training set, as detailed in 
Section 4. Figure 4b shows the branch binary outputs, 
which are obtained by setting to 1 the membership 
values greater than or equal to their own optimized 
threshold, and by setting to 0 the remaining ones. A 
disruptive behaviour is detected by a branch when its 
binary output equals 1 (blue curve for top branch and 

magenta curve for the bottom branch in Figure 4b). The 
logic OR function produces the final disruption trigger.  

 

 
Figure 4: Disrupted pulse #96998 a) Disruptive membership 
functions for each predictor branch, where the blue line is the 
top branch one, and the magenta line is the bottom branch 
membership; b) Logic output for each branch (blue for the top 
branch, magenta for the bottom one) for the same pulse. The 
dashed purple line indicates the tpre-disr, the dashed black line 
indicates the mode-locking time. 

4 Predictor training 
Since the CNN is employed in a supervised learning 
framework, it is necessary to explicitly label the time 
windows (or time slices) in the training dataset. In this 
work, the non-disrupted time slices are selected from 
the non-disrupted discharges, while the disrupted ones 
are obtained by identifying specific time windows 
within the disrupted discharges. Since the two CNNs 
were trained independently from each other, two 
different criteria have been adopted for defining the 



 

 

disruptive phase. The reason for adopting a different 
definition is the training of two specialized CNN 
branches, where each of them is focusing on events 
with different timings. In particular, the destabilization 
of the profiles at JET is usually due to the process of 
impurity accumulation or to the edge cooling [23], 
revealable by the plasma radiated power and density 
profiles, and it is exhibited at longer timescales than the 
insurgence of the locked mode. Hence, the two 
branches aim to increase the performance of the entire 
model exploiting the different information carried out 
by the profiles and the 0D signals. For the 1D profile 
images, the onset of disrupted phase is defined by the 
automatically identified pre-disruptive times 
𝑡௣௥௘ିௗ௜௦௥  as in [7], [8], whereas, for the 0D signal 

images, the onset of disrupted phase is defined by the 
mode locking time (tML). To this purpose, a threshold 
has been optimized, resulting in 2·10-4 mT/MA, on the 
Locked Mode signal normalized by the plasma current. 
The time interval [tML, min(tML+0.3s, tend)] has been 
labelled as disruptive phase.  
Due to the unbalance between the number of non-
disrupted and disrupted samples, caused by the 
different duration of the two pre-disrupted phases, 
different subsampling strategies for the 200 ms sliding 
window have been adopted for the training. For the 
CNN top branch, one image every 24 ms has been 
sampled from the disrupted discharges in the timespan 
after 𝑡௣௥௘ିௗ௜௦௥, whereas one image every 150 ms has 

been extracted from the non-disrupted discharges. This 
choice is motivated by the low resolution of the HRTS, 
which has a 50 ms sampling period. Instead, for the 0D 
signals every segment of pre-disrupted phase (i.e., one 
every 2ms) is considered for the training, whereas one 
segment every 200 ms is sampled from the regularly 
terminated discharges. In the test instead, the sliding 
window has a stride of 2ms, so that every sample of all 
the test discharges (regularly terminated and disrupted) 
has been classified. The alarm thresholds of the CO 
layers have been chosen by optimizing the full 
predictor performances on the training data. In the 
disruption prediction literature, the following metrics 
are generally considered when comparing different 
predictors: 

 Successful predictions (SP): pulses that are 
correctly predicted (hence, an alarm is triggered in 
disruptive pulses and no alarm is raised in non-
disruptive discharges). 

 Missed alarms (MAs): pulses which disrupt where 
the predictor does not trigger an alarm. 

 False alarms (FAs): non-disruptive discharges 
where the model triggers an alarm.  

Considering these metrics, the single branch thresholds 
have been selected by minimizing the sum of the full 
predictor MAs and FAs, and then the distance between 
the alarm times and the 𝑡௣௥௘ିௗ௜௦௥  on the training 

discharges. In fact, firstly a scan of the different 
thresholds identifies the combinations where the sum of 
the FAs and MAs is minimized. In this subset, the 
thresholds which minimize the mean distance between 
alarm times and 𝑡௣௥௘ିௗ௜௦௥  are selected. The optimized 

thresholds result in 0.99 for the top branch and 0.925 
for the bottom one. 

5. Results and discussion 

The results of the predictor are reported and compared 
with [8] in Table 1. The new model performs better 
both in the training and in the test sets. In particular, the 
predictor allows to greatly reduce the number of false 
alarms in the test set (from 14 to 1). 

Table 1: Predictor performance 

Dataset SP MA FA 

Train 98.71% 0% 2.85% 
Train [8] 98.00% 0% 4.28% 

Test 98.83% 1.87% 0.67% 
Test [8] 93% 3.7% 9.4% 

Another important metric for evaluating disruption 
predictors designed for avoidance and/or mitigation 
purposes is the warning time distribution, used to 
statistically evaluate the available time from the 
predictor alarm before the tend. An early warning time 
could allow the adoption of automatic procedures to try 
to recover the disruptive plasma state or to safely 
terminate the experiment, while with a short warning 
time the disruption is generally mitigated. However, to 
allow the adoption of disruption avoidance strategies, 
the model should also provide information on the type 
of instability which is destabilizing the discharge. 
Figure 5 reports the warning times of the top branch 
(blue line), bottom branch (green line), and full 
predictor (black line) in the test dataset. If both 
branches are triggered in the same discharge, only the 
first alarm is plotted. Note that the top branch CNN, 
which processes the 1D profile data, can provide larger 
warning times than the bottom one, which instead 
detects the mode-locking phase. The separation of the 
two different mechanisms makes the predictor alarm 
more interpretable, in view of the development of 
avoidance schemes. Finally, the vertical red dashed line 
highlights that disruptions should be identified at least 
10 ms in advance to adopt mitigation actions at JET. 
Detections with a warning time shorter than 10 ms are 
late or tardy alarms. The predictor can detect different 
disruptive patterns, as visible in Figure 6 which refers 



 

 

to the disrupted test pulse #96998 (outside the training 
range). 

 
Figure 5: CNN model warning time distributions in the test 
set for the top branch (blue line), the bottom one (green line) 
and full predictor (black line). Only the first alarm is reported. 
The vertical red dashed line allows to identify tardive 
detections. 

The top branch of the predictor in Figure 6a (blue line) 
triggers an alarm at around 14.10 s, coherently with the 
change of the plasma profiles shown in Figures 6c-f and 
in correspondence of the 𝑡௣௥௘ିௗ௜௦௥, identified by a 

dashed line. In fact, the electron temperature flattens 
(Figure 6e) and the electron density peaks (Figure 6f). 
This phenomenon is synchronous with strong radiation 
from the central channels of the horizontal and vertical 
bolometer (Figures 6c-d). On the other hand, the 
bottom branch of the predictor in Figure 6a (magenta 
line) triggers an alarm at around 15.7s close to the end 
of the discharge, in correspondence with the rise of 𝑙𝑖 
and 𝑀𝐿௡௢௥௠  signals. Hence, the top-branch is trained to 
detect destabilizations in the 1D profiles distributions, 
while the bottom branch on detecting the onset of a 
locked-mode and a late disruption pattern. Figure 7 
shows the regularly terminated pulse #96893, which 

was detected as disruptive in [8]. In this case, the 
predictor does not trigger an alarm, because the high 
radiation pattern at chords #13-16 of the horizontal 
bolometer is not coincident with a high radiation from 
the central lines of sight of the vertical bolometer 
camera. 

6. Conclusions 

In this work, a disruption predictor based on CNNs has 
been developed using data from 2011-2013 campaigns 
at JET. The test of the model included more recent JET 
discharges and high power experiments up to the 2020 
experimental campaigns. First, the vertical bolometer 
camera is added to the set of 1D plasma profile features 
considered in [8]. Then, two different CNN classifiers, 
whose thresholds are optimized to achieve the best full 
predictor performance, are trained to detect different 
destabilizing events. The automatic detection of the 
pre-disruptive phase of disruptions is used to train the 
top branch CNN, while an automatically identified 
locked mode time is employed for training the bottom 
branch of the model. The model can correctly identify 
the local perturbations of the 1D plasma profiles, 
leading to about, 98.87% of SPs, 0.67% of FAs and 
1.87% of MA, considering a test set with 108 disruptive 
and 149 non-disruptive discharges. Moreover, the 
proposed approach allows to associate the predictor 
alarm with the destabilizing mechanism of the 
discharge. The automatic classification of the different 
profile instabilities, for instance distinguishing between 
temperature hollowing and edge cooling [23], would be 
another step forward towards the implementation of 
machine learning aided avoidance schemes.

 

 
Figure 6: JET disrupted discharge #96998. (a) CNN logic output curves, where the blue line is the top branch logic output, and the 
magenta line is the bottom branch logic output.; (b) internal inductance, in green, and mode lock normalized by the plasma current, in 



 

 

blue; c) radiated power from the bolometer vertical camera; (d) radiated power from the bolometer horizontal camera; (e) electron 
temperature from the HRTS; (f) electron density from the HRTS. The dashed purple line indicates the 𝑇௣௥௘ିௗ௜௦௥

 

Figure 7: JET regularly terminated discharge #96893. (a) CNN logic output curves, where the blue line is the top branch logic output, 
and the magenta line is the bottom branch logic output.; (b) internal inductance, in green, and mode lock normalized by the plasma 
current, in blue; c) radiated power from the bolometer vertical camera; (d) radiated power from the bolometer horizontal camera; (e) 
electron temperature from the HRTS; (f) electron density from the HRTS.
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