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Abstract: The introduction of machine learning in digital pathology has deeply impacted the field,
especially with the advent of whole slide image (WSI) analysis. In this review, we tried to elucidate the
role of machine learning algorithms in diagnostic precision, efficiency, and the reproducibility of the
results. First, we discuss some of the most used tools, including QuPath, HistoQC, and HistomicsTK,
and provide an updated overview of machine learning approaches and their application in pathology.
Later, we report how these tools may simplify the automation of WSI analyses, also reducing manual
workload and inter-observer variability. A novel aspect of this review is its focus on open-source tools,
presented in a way that may help the adoption process for pathologists. Furthermore, we highlight the
major benefits of these technologies, with the aim of making this review a practical guide for clinicians
seeking to implement machine learning-based solutions in their specific workflows. Moreover, this
review also emphasizes some crucial limitations related to data quality and the interpretability of the
models, giving insight into future directions for research. Overall, this work tries to bridge the gap
between the more recent technological progress in computer science and traditional clinical practice,
supporting a broader, yet smooth, adoption of machine learning approaches in digital pathology.

Keywords: machine learning; digital pathology; whole slide imaging

1. Introduction

Histopathology, based on the examination of tissue sections placed on a glass slide
under a microscope, is generally considered the gold standard for the diagnosis of multiple
human diseases, including cancer [1–3]. The goal of pathologists involved in research
or clinical practice is the identification of numerous relevant features useful for the di-
agnosis and monitoring of human diseases. As a consequence of the complexity of the
multiple and differently associated features that characterize human diseases, including
multiple cancer types in different organs, only expert pathologists with years of training
are able to perform a correct diagnosis, which is necessary for deciding on the correct
therapeutic strategy to achieve patient health. Taken together, these observations show that
histopathological analysis is a very complex process that requires in-depth knowledge of
multiple diseases obtained through time-consuming training in different fields of human
pathology. Moreover, studies on diagnostic concordance among pathologists regarding
the interpretation of pathological specimens have revealed relevant interindividual vari-
ability in the interpretation of biopsy specimens [4,5]. In order to avoid these problems,
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multiple algorithmic solutions have been developed in recent years, focused on finding
new ways for digitizing histological specimens to produce high-resolution images. The
aim of these studies was to aid histopathologists in performing reproducible, accurate, and
efficient histopathological diagnoses [6]. The recent introduction of digital pathology into
the clinical setting represents one of the most intriguing applications in the routine working
environment of surgical pathologists involved in histopathological diagnosis [7]. The role
of digital pathology in clinical practice has been underlined by the introduction of powerful
whole slide scanners in pathology departments, which allow for the digitalization of tissue
samples followed by whole slide analysis [8]. A milestone in this process was the validation
of whole slide imaging for diagnostic purposes in pathology from the College of American
Pathologists [9], followed by approval from the Food and Drug Administration (FDA) [10].
The introduction of digital pathology in clinical histopathology, with the automated analy-
sis of tissue morphology, has immediately evidenced potential in decreasing the workload
of pathologists (and also reducing the time required for the reporting of histopathological
diagnoses), especially as a consequence of the automatic quantification of histopathological
and immunohistochemical features and other biomarkers [11]. Because of the relevance
of cancer diagnosis in surgical pathologist practice, the vast majority of studies based
on the application of artificial intelligence were focused on different tumors, including
colorectal cancer [12], with particular attention being paid to the automated analysis of
tumor budding (epithelial-to-mesenchymal transition of tumor cells) [13] and outcome and
prognosis prediction [14]. The aim of this review is to describe the various open-source
machine learning solutions for digital pathology applications proposed in recent years,
focusing specifically on those tools more useful for the extraction of diagnostic information
from whole slide images, thus improving the productivity, accuracy, and reproducibility
of pathological diagnoses. On the other hand, it is essential to acknowledge that several
recent reviews opened up a more general discussion over the impact of the adoption of
artificial intelligence in digital pathology [15–18].

2. Whole Slide Imaging

The introduction of digital pathology technologies and, in particular, whole slide
imaging has significantly improved the efficiency of modern clinical pathology departments
by facilitating the storage, viewing, processing, and sharing of digital scans of tissue glass
slides. The application of deep learning feature extraction methods for whole slide imaging
(WSI) may improve, in the near future, the productivity, accuracy, and reproducibility
of pathological diagnoses [19–25]. Whole slide imaging represents the digital equivalent
of histological specimens scanned using digital scanners. High-resolution images are
generated by digital scanners that can apply multiple magnifications and focal planes
at different resolution levels. The workflow of WSI systems requires good histological
technology to overcome practical challenges such as poor staining and tissue folds, which
may negatively affect the quality of the scanned slides. In order to avoid these challenges,
preparing glass slides for scanning requires a standardized approach to tissue sample
fixation, embedding, sectioning, and staining [26]. Moreover, digital scanners may differ
according to the methodology used to focus high-quality scanners on a range of depths
across each tile, which is a time-consuming process [27]. From a practical point of view,
surgical pathology slides require scanning at X 20 magnification, whereas cytology slides
require scanning at X 40 magnification, which is necessary to ensure higher cytological
diagnostic accuracy [28]. WSI-based analysis may be subdivided into four sequential
steps as follows: (i) image acquisition, (ii) image storage, (iii) image processing, and
(iv) image visualization.

3. Artificial Intelligence, Machine Learning, and Deep Learning in Digital Pathology

In the context of this review, it is crucial to make the terminology used around this
recent topic clear to the reader. Understanding the distinctions and overlaps of these
technical terms is essential for recognizing their roles in digital pathology. Artificial intelli-
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gence encompasses all the applications aiming to create software (or machines) capable
of performing tasks that typically require human intelligence. For example, in digital
pathology, artificial intelligence is used to develop systems that can assist in computational
histopathology analysis and AI-assisted diagnostics [15,29]. Machine learning is a subset of
artificial intelligence, and it mainly focuses on the development of algorithms that enable
computers to improve their performance on a specific task by learning directly from data.
In digital pathology, machine learning algorithms are trained on large datasets of medical
images and have been used to implement pattern recognition tasks and to predict disease
states [30,31]. Deep learning refers to a specific subset of machine learning algorithms that
make use of neural networks (typically organized into many layers) to model complex
patterns in data (see Figure 1). Recently, in digital pathology, deep learning approaches
have been shown to be effective for analyzing complex histopathological images and, in
some specific applications, for providing accurate clinical-related insights [8,19,32]. In brief,
both machine learning and deep learning are subsets of artificial intelligence, deep learning
models represent a specific type of machine learning algorithms, and all machine learning
approaches are part of the broader artificial intelligence systems. In conclusion, while
artificial intelligence provides the overall goal of creating intelligent systems, machine
learning offers methods for data-driven learning, and deep learning provides advanced
techniques for the analysis of high-dimensional data. To date, all these technologies have
played a crucial role in driving fundamental innovations in human digital pathology.
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Figure 1. A schematic representation of the relationship among artificial intelligence, machine
learning, and deep learning.

4. New Tools for Digital Pathology in the Era of Artificial Intelligence

As already stated, machine learning approaches have transformed the field of digital
pathology, especially for whole slide image (WSI) analysis and processing. Traditional
manual analysis is time-consuming and may also increase the risk of introducing errors [33].
Machine learning tools, specifically developed for WSI analysis, have been shown to
enhance the whole diagnostic process and allow the achievement of more consistent and
reproducible results. As we discuss in the following sections, these tools, offering relevant
insights into a very complex diagnostic task, provide valid support for detecting patterns
that may be missed by humans. The integration of these tools into standard workflows can
reduce the workload of pathologists, allowing them to focus mainly on cases that are more
complex. In our opinion, to date, the development and the introduction of these advanced
tools into the practical clinical workflow is crucial and may represent a further step towards
advancing precision medicine and eventually improving patient outcomes. In the last few
years, several tools have been developed, allowing us to easily approach the application of
machine learning algorithms to digital pathology. Here, we discuss some of the most used
tools (see Table 1) and their more relevant applications in digital pathology.
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Table 1. A list of tools analyzed in the present review. The number of citations refers to that
available in Google Scholar on 20 May 2024. The tools are listed and discussed in chronological order,
considering the publication date.

Name Link License Citations Original Work

QuPath https://qupath.github.io/ (accessed on 21 May 2024) Open source 4731

HistomicsTK https://github.com/DigitalSlideArchive/HistomicsTK
(accessed on 21 May 2024) Open source 152

HistoQC https://github.com/choosehappy/HistoQC (accessed
on 21 May 2024) Open source 246

MONAI https://monai.io/ (accessed on 21 May 2024) Open source 246
PathML https://pathml.org/ (accessed on 21 May 2024) Open source 15

Histolab https://github.com/histolab/histolab (accessed on
21 May 2024) Open source 15

SliDL https://github.com/markowetzlab/slidl-tutorial
(accessed on 21 May 2024) Open source 3

SISH https://github.com/mahmoodlab/SISH (accessed on
21 May 2024) Open source 62

4.1. QuPath

QuPath is one of the most widely used open-source bioimage analysis software. It was
developed to visualize and analyze whole slide images comprehensively, offer pathologists
a useful tool for the identification of human tumors, and provide histopathologists with
batch-processing and scripting functionalities. Moreover, QuPath is an extensible platform
with which pathologists can share algorithms to analyze complex images. According to
this original flexible design, to date, QuPath appears to be a suitable tool for a wide range
of additional image analysis applications over multiple biomedical research fields [34].
The impact of QuPath in delivering highly impactful research is summarized in a recent
review [35] specifically dedicated to this software. Probably the most relevant key point of
QuPath is linked with its inherent flexibility, which is demonstrated by its application to a
wide range of human pathology research and clinical areas. QuPath has been successfully
utilized for computer-assisted tumor grading, PD-L1 scoring, and quantification of CD8-
positive immune cell density in urothelial carcinoma [36] and to detect and measure cell
morphology. Another study [37] used QuPath to identify MLH1-deficient inflammatory
bowel disease-associated colorectal cancers from tissue microarray. In this case, the software
demonstrated high sensitivity and specificity in detecting MLH1 expression and improving
diagnostic accuracy (100% sensitive and 98.25% specific). QuPath was also used to analyze
whole slide images for the identification of islets of Langerhans [38] and define their
composition and essential morphological characteristics, showing that QuPath can identify
immune cell populations and accurately quantify immune infiltrates in the pancreas.

4.2. DSA and HistomicsTK

The DSA (Digital Slide Archive) is an open-source web-based platform for digital
pathology that was developed for the management, integration, and analysis of histological
images. The tool includes cell segmentation, stain color deconvolution, and normalization
and augmentation [39] for cancer research. HistomicsTK is a companion library of image
analysis algorithms providing image analysis capabilities for the DSA. As reported in the
original study, the DSA and HistomicsTK provide cancer researchers with a free digital
pathology platform, avoiding the need for costly commercial software, which is sometimes
also expensive to scale. HistomicsTK was used for the extraction of pathomic features in a
study on tumor-infiltrating lymphocyte classification in breast cancer (the best performance
was obtained by Random Forest with an ROC AUC of 0.86) [40]. Another study used
HistomicsTK in the context of image analysis for renal allograft evaluation and fibrosis
quantification [41]. In 2022, a study [42] used HistomicsTK for nucleus classification and
segmentation in breast cancer to manage data and annotations. The positive pixel counting
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https://monai.io/
https://pathml.org/
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https://github.com/mahmoodlab/SISH


Algorithms 2024, 17, 254 5 of 12

function included in this tool was used to correlate age-related cognitive impairment with
neuropathologic features using WSI images (a mean AUC of 0.63 and a mean balanced
accuracy of 0.59 were found in the hippocampus) [43]. Moreover, nuclear size, shape,
staining intensity, boundary complexity, edges (chromatin clumping), and texture were
extracted using HistomicsTK to investigate a digital histologic biomarker for the prognosis
of invasive breast cancer [44].

4.3. HistoQC

HistoQC is a Python-based algorithm developed for the quality control of whole slide
images that also enables the detection of artifacts and the identification of batch effects
(such as slides with darker staining compared with the other slides), making use of the
inspection of color distribution, edge, and smoothness detectors. Moreover, HistoQC
provides an interactive and user-friendly interface, which allows for the exploration of
data [45]. HistoQC was used to assess the role of tissue quality in the application of
deep learning approaches in computational pathology [46]. HistoQC was also used to
automatically detect image artifacts in comparison with a manual review of WSI images
in the context of renal histomorphometry [47]. Another study [48], aiming to quantify
peritubular capillary attributes using conventional and whole slide images, used HistoQC
to identify WSI images that represented outliers within a cohort and to identify artifact-free
regions (the normalized peritubular capillary aspect ratio was below 0.6; a 0.1 increase in
the normalized aspect ratio was significantly associated with disease progression, with a
hazard ratio of 1.28).

4.4. MONAI

MONAI (Medical Open Network for Artificial Intelligence) is an extension Python
library that was developed as a framework for performing deep learning on medical
images. It supports the tiling of whole slide images and model evaluation metrics, as
well as providing support for neural network architectures, optimizers, and AI-assisted
annotation [49]. MONAI was used for a variety of different applications on medical images,
including deep learning segmentation of fetal brain MRI [50], evaluation of the diagnostic
performance of traditional and deep learning CAD systems in children trained with adult
data for the detection of lung nodules on chest CT scans [51], and segmentation of the liver
from publicly available CT scan [52].

4.5. PathML

This is a tool specifically designed for the application of machine learning in cancer
research. PathML is a Python library that can support the tiling of whole slide images and
implement classical approaches to artifact and foreground detection. PathML also provides
a variety of pre-processing methods, including stain normalization. Nevertheless, PathML
was not designed to perform any post-processing steps [53]. PathML was to understand
how mesenchymal cell states mediate prostate cancer progression [54] and investigate
the mechanisms of acquired resistance to immune checkpoint inhibitors in patients with
non-small cell lung cancer [55].

4.6. Histolab

Histolab is a Python library that provides a set of functions for classical image analysis
and facilitates tissue detection and the removal of artifacts. Histolab also allows for the
tiling of whole slide images and the random extraction of tiles according to tissue detection
scores [56]. Histolab has been successfully used to perform rapid artifact removal and
H&E-stained tissue segmentation [57] and to investigate the cross-scale association between
radiological scans and digitalized pathology images for immunotherapy-treated non-small
cell lung cancer patients [58].
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4.7. SliDL

SliDL is a Python toolbox developed for processing whole slide images using deep
learning methods. It is characterized by excellent performance and aims to reduce the
workload of pathologists drastically. This tool makes whole slide image data handling
easy and bridges the gap between standard histological image analysis and whole slide
image analysis. Moreover, SliDL provides tile extraction for model evaluation and tissue
extraction [59]. SliDL was used for the early detection and risk prediction of esophageal
cancer [60].

4.8. SISH

SISH (Self-supervised Image Search for Histology) is an open-source tool developed
in the Pathology Department of Brigham and Women’s Hospital in Boston, which requires
only slide-level annotations for training and allows for a fast and scalable search for whole
slide images. Recently, SISH was evaluated on very large databases of over 22,000 patients,
including a vast set of disease subtypes and rare cancer types. SISH also provides solutions
to many open challenges in whole slide imaging, such as accuracy, speed, and scalability,
and it shows strong performance on diverse datasets [61]. It has been used in rare diseases
that are often difficult to diagnose, making predicting the best course of treatment chal-
lenging for clinicians [62]. It has also been used to search for similar images in archives of
histology and histopathology images [63].

4.9. Other Tools

PathEX [64] is a framework that integrates intersection over tile (IoT) and background
over tile (BoT) algorithms for tile image extraction at the boundaries of annotated regions
while excluding blank tiles within these regions. It can be used to set the thresholds for IoT
and BoT to facilitate tile image extraction, providing valuable guidance for tile image extrac-
tion in digital pathology applications. SVPath [65] uses deep learning to extract and analyze
the stria vascularis and its associated capillary bed from whole temporal bone histopathol-
ogy slides. Slideflow [66] is a deep learning library for histopathology, supporting a wide
variety of deep learning approaches, that includes a whole slide interface for deploying
trained models. HistoMIL [67] is a Python package for training multiple instance learning
models on histopathology slides designed to streamline the implementation, training, and
inference process of MIL-based algorithms for computational pathologists.

5. Discussion
5.1. Main Findings and Limitations

From this review, it emerges that machine learning algorithms have improved diagnos-
tic accuracy by providing an excellent tool for the identification of anomalies in whole slide
images (WSIs) that may be missed, in some cases, by human pathologists. For example,
recent studies have demonstrated improved accuracy in tumor grading and biomarker
scoring, such as PD-L1 and CD8+ cell density measurements in cancer tissues [36,37].
The adoption of these tools drastically reduced the time for manual review, allowing
pathologists to focus on those cases that are inherently more complex [37,38].

The most important aspect concerns the fact that machine learning algorithms simpli-
fied the quantitative analysis of complex histopathological images, also providing more
consistent and reproducible results and reducing inter-observer variability [38,39]. Finally,
these tools have shown good performance in detecting and classifying various cell types
and tissues, which is of paramount importance for understanding diseases and their pro-
gression. Despite these undeniable positive aspects, there is a list of limitations that need to
be discussed.

First, the performance of machine learning algorithms is strongly affected by the qual-
ity and quantity of data. Obtaining such big datasets can be challenging because of manual
annotation (which is time-consuming) and variability in image quality. Moreover, for
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deep learning approaches, high-performance computing infrastructures are an important
prerequisite, and this issue can represent an obstacle for several institutions.

Second, there are issues related to the need for pathologists to adapt to new technolo-
gies despite the fact that these tools may indirectly hinder traditional clinical practices. In
our opinion, considering that the internal mechanism of these tools is usually hidden from
the user, the most relevant limitation is probably related to interpretability, which makes it
difficult to understand how final decisions are made [68]. In fact, in some machine learning
systems, such as linear models and decision trees, it can be relatively straightforward to
explain the algorithm’s outcomes based on the image features used. However, the most
effective algorithms for medical image analysis today are often based on deep learning
models. These models are considered “black boxes” because their decision-making pro-
cesses are typically hidden (even to their developers). Even the specific image features
extracted by these algorithms are not always clear, making it difficult to understand why
a particular decision was made. This lack of interpretability is particularly concerning in
medicine, as it is crucial for the physician to comprehend the rationale behind algorithmic
decisions, both to avoid errors and ensure patient safety.

Third, an effect to consider when using machine learning models, especially deep
learning models, is system bias. Bias in deep learning models refers to the tendency to
produce skewed or unfair outcomes because of underlying biases in the training data. This
effect can result from unbalanced or non-representative training data, leading to unequal
performance in medical image characterization and potentially exacerbating healthcare
disparities. A typical example is when a demographic group is overrepresented in the
training dataset, causing unequal performance across different demographic groups and
further contributing to healthcare disparities [69,70].

5.2. Comparison with Traditional Methods and Impact on Pathologists

The adoption of artificial intelligence in pathology departments worldwide and the
routine creation of large repositories of whole slide images in different fields of human
pathology will represent a revolution in surgical pathology, with a complete transformation
of daily pathology practice. Digital pathology technologies, including routine digitalization
of tissue glass slides, i.e., classical histological specimens, are significantly improving all
aspects of modern clinical practices, ranging from storing to reviewing, processing, diag-
nosing, and sharing digital scans or better whole slide images. In short, machine learning
approaches are forcing the automation of significant parts of pathology workflows, thus
improving the clinical abilities of histopathologists, cytopathologists, biologists, and techni-
cians involved in clinical practice and research. The WSI-based approach is characterized
by the following goals: (i) high speed in searching databases of digitized pathology reports,
allowing the identification of WSIs with morphological features similar to those of the
case of interest; (ii) accuracy in the interpretation of histological and immunohistochemical
images, finding cases with similar morphology and learning how their mentors would
diagnose the case of interest [71]; (iii) strong performance in reaching a “good” diagnosis in
different fields of human pathology, identifying tumors that share specific features useful
for clinical correlations and predicting outcome, including rare diseases; and (iv) fusing
histopathology and genomic features, allowing for the identification of genomic changes
associated with peculiar morphologies, useful for cancer diagnosis, therapy and prog-
nosis [72]. In short, deep learning methods applied to the analysis of WSIs will allow
pathologists to perform excellently in all fields of human pathology, with a substantial
reduction in their daily workload. One of the most important applications of this new
vision for pathologists working without a microscope at hand is the training of young
pathologists. Pathologists in training might utilize the large repositories of WSIs to compu-
tationally identify images with similar morphological and immunohistochemical features
and easily learn the fundamentals from the interpretation of biopsies, thus ending with
the correct interpretation of biopsies and a correct and fast diagnosis of the case of interest.
This new approach should require marked modifications in supervised training. The speed
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of algorithms when searching WSIs with similar morphologies compared to the case of
interest will indicate the field to which the differential diagnosis should be restricted, facili-
tating the diagnostic process by the pathologist in training [73]. Artificial intelligence-based
pathology has been shown to help pathologists in multiple fields of complexity in daily
clinical practice, such as the identification of origins for cancers of unknown primary [74].
The supervision of expert pathologists might be restricted to the diagnosis of complex cases
or to rare cases of human pathology not included in the algorithm yet. Scalability is a critical
challenge for the adoption of the WSI-based approach in the daily practice of pathology
departments worldwide. WSIs are characterized by a computationally prohibitive size, and
WSI retrieval systems need a growing number of slides, each consisting of billions of pixels
and measuring several gigabytes in size. This represents a challenge for the adoption of
machine learning methods applied to histopathological image analysis [75].

6. Conclusions

Different from other fields of medicine, such as radiology and clinical laboratory,
which have been characterized by a recent technical revolution in terms of automatiza-
tion, surgical pathology has been characterized by the persistence of old techniques and
approaches. Nowadays, histopathological diagnosis, the gold standard for the correct
diagnosis and therapy of human diseases, is based on the manual evaluation of colored
tissue sections mounted on glasses under an optical microscope. The manual evaluation of
a large number of biopsies using a microscope is time-consuming and, on some occasions,
error-prone, particularly when facing rare and complex pathologic entities, for which long
training is often mandatory. Consequently, pathologists involved in clinical practice are
at risk of possible errors in diagnosis, and patients are affected by a delayed or erroneous
diagnosis, with negative consequences on their health status [76]. The recent introduction of
low-cost scanners and the possibility to obtain whole slide images from each tissue section
represents a real revolution in the field of surgical pathology, with significant advantages
in the evaluation of histopathological images. The medical image algorithms here reported,
and the new ones that will be developed in the further months, will aid pathologists in
obtaining more rapid, reliable, expert, and validated histopathological and cytological
diagnoses in different fields of human pathology. Thanks to the application of machine
learning techniques to pathology, pathologists in all hospitals of the world will gain access
to large volumes of histopathological images previously diagnosed and validated, which
could be compared with the case of interest, allowing for the quick identification of the
disease class the histological specimen under examination fits with. Moreover, medical
imaging algorithms could disclose details and correlations that may be undetected even by
an expert’s naked eye. The high resolution and multiscale nature of WSIs allow for identi-
fying the local texture and spatial context within each histological specimen, representing a
very rich data source, at a much higher resolution than that obtained using a microscope
with the naked eye, which can be correlated with histopathological diagnosis and patient
prognosis [32]. Based on these data, we believe that there is room for the establishment of
teams of engineers specialized in AI and pathologists involved in clinical practice that can
drive the development of AI technologies in pathology and develop reliable and accurate
algorithms that will become clinical tools for enhancing the diagnostic accuracy of human
diseases. In this project, both computer science experts and pathologists may play key roles.
The role of engineers is of utmost importance, thanks to their ability to offer plenty of oppor-
tunities and explore alternative new methods, like convolutional neural networks, which
have shown outstanding performance on image classification tasks [77] and improved
automated classification of tissue sections. On the other hand, the role of pathologists is
also of utmost importance, as they are early adopters of the algorithms and participate
in the validation phase of new algorithms, ultimately ending with the development and
accreditation of tools for a better diagnosis and treatment of human diseases. In conclusion,
while machine learning algorithms have recently shown great promise in enhancing WSI
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analysis in digital pathology, in our opinion, it is crucial to address their current limitations
for the effective implementation of these tools in clinical practice.
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