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Structure functions and perturbative hysteresis

Hadron structure constitutes one of the main sources of systematic uncertainties in theoretical
predictions for high-energy collider physics. Besides the available experimental information from
deep inelastic scattering (DIS) measurements and from Large Hadron Collider (LHC) and Tevatron
data, a substantial improvement in our knowledge of hadrons’ parton distribution functions (PDFs)
is expected from future hadronic colliders FCC-hh [1], FCC-he and LHeC [2], EIC [3]. A major
effort is ongoing to extend the current perturbative accuracy of theoretical calculations for the
partonic structure to four-loop splitting functions and DIS coefficient functions [4-7], and develop
corresponding next-to-next-to-next-to-leading-order (N*LO) phenomenology [8].

With this dramatic increase in precision, theoretical systematic uncertainties arising from the
perturbative solution of renormalization group equations (RGEs) become an important factor in
determining the overall accuracy of theory predictions for collider processes. In Ref. [9] we have
investigated this systematics in the case of the RGEs controlling the evolution of the Quantum
Chromodynamics (QCD) running coupling @y and PDFs. We have analyzed “hysteresis effects” in
perturbative RGEs, associated with the difference between solutions which are formally equivalent
at the nominal logarithmic accuracy but differ by subleading terms, and thus source RGE theory
uncertainties. We have shown that these effects can be recast in terms of emergent “resummation
scales”, by employing techniques frequently used in the soft-gluon resummation literature [10-12].

The relevance of such effects in double-logarithmic problems has been noted in [13, 14] for
analytic resummation calculations and in [15] for parton branching calculations. In [9, 16] we have
stressed their role in single-logarithmic problems, in particular noting their importance in kinematic
regions which are essential for present (and future) PDF determinations.

In this article we report results of implementing the resummation scales of [9, 17] in the
evolution code ApreL++ [18], computing the DIS structure functions F» and Fr, and comparing
numerically the size of theoretical systematic uncertainties encoded in the resummation scales with
those encoded in the factorization and renormalization scales. In this calculation we take the value
of @, at the Z-boson mass (as(Mz) = 0.118 [19]) as an input to the RGE for QCD running coupling
and the MSHT20 [20] PDF set at Qg = 2 GeV as an input to the RGE for PDFs.

In Figs. 1 and 2 we show the x-dependence of, respectively, the F, structure function and the
longitudinal structure function F7, for different values of Q, at next-to-next-to-leading order (N2LO)
using three-loop splitting functions [21, 22] and order-a? coefficient functions [23] (the order-a?} Ff.
coeflicient [24] is not yet implemented in the figures). We show theoretical uncertainties obtained
from the “standard” variations of the renormalization scale ur (purple band) and factorization
scale ur (green band) about the hard-scattering scale Q, and from variations of the resummation
scales [9, 17] (blue band). The effects due to the resummation scales associated with perturbative
hysteresis in the RGEs for @ and PDFs are in principle distinct; in Figs. 1 and 2 we combine these
effects according to the approach [17]. The blue band shows the combined effect, expressed through
variations of the resummation scale parameter &.

Resummation scale & uncertainty bands are observed to be generally of comparable size to the
renormalization scale ug and factorization scale yr uncertainty bands. For instance, in the top left
panel of Fig. 1 for F, at Q = 10 GeV, the ¢ contribution dominates in the low-x region while the ur
contribution dominates at the highest x. The other panels of Fig. 1 illustrate that, as Q increases,
the ¢ uncertainties become larger relative to the ur and ugr uncertainties, so that they eventually
become important also in the high-x region.
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Figure 1: The F; structure function versus x for different values of Q, at N2LO in perturbation theory, with
the uncertainty bands associated with variations of renormalization and factorization scales, g and ug, and
resummation scale, ures = Eu. We use MSHT20 PDFs at Qg = 2 GeV and QCD coupling at pg = Mz as
RGE inputs.

In the case of the longitudinal structure function Fy in Fig. 2, the ur and ug uncertainties are
larger than for F5, and dominate the & contribution for low Q; however, the relative importance of
the &€ contribution increases as Q increases, similarly to the case of F;, first becoming comparable
to the yr and pg contributions at low x, and then also at high x.

The & contribution staying comparatively significant in the large-Q, small-x regions in Figs. 1
and 2 corresponds to higher-order perturbative corrections to PDF anomalous dimensions dominat-
ing the small-x region [25, 26] for sufficiently large Q. In this sense, taking into account theoretical
uncertainties by exploiting perturbative hysteresis and the associated resummation scale gives an
estimate of the size of effects to be expected from phenomenological analyses [27-32] of small-x
resummations.

On the other hand, as emphasized in [9] the method presented in this article is general. It can
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Figure 2: The longitudinal structure function Fy, versus x for different values of Q, at N2LOin perturbation
theory, with the uncertainty bands associated with variations of renormalization and factorization scales, g
and ur, and resummation scale, pres = £u. We use MSHT20 PDFs at Qg = 2 GeV and QCD coupling at
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Ho = Mz as RGE inputs.

be used to estimate theoretical uncertainties in PDF determinations for any value of x, and also
applied to precision studies of transverse momentum distributions [33, 34] in Drell-Yan production.
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