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Abstract: Artificial intelligence (AI) is rapidly being applied to the medical field, especially in
the cardiovascular domain. AI approaches have demonstrated their applicability in the detection,
diagnosis, and management of several cardiovascular diseases, enhancing disease stratification
and typing. Cardiomyopathies are a leading cause of heart failure and life-threatening ventricular
arrhythmias. Identifying the etiologies is fundamental for the management and diagnostic pathway
of these heart muscle diseases, requiring the integration of various data, including personal and
family history, clinical examination, electrocardiography, and laboratory investigations, as well
as multimodality imaging, making the clinical diagnosis challenging. In this scenario, AI has
demonstrated its capability to capture subtle connections from a multitude of multiparametric
datasets, enabling the discovery of hidden relationships in data and handling more complex tasks
than traditional methods. This review aims to present a comprehensive overview of the main concepts
related to AI and its subset. Additionally, we review the existing literature on AI-based models in the
differential diagnosis of cardiomyopathy phenotypes, and we finally examine the advantages and
limitations of these AI approaches.
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1. Introduction

Cardiomyopathy is defined as abnormal myocardial structure and function in the
absence of coronary artery disease, hypertension, valvular disease, or congenital heart
diseases [1]. According to the recent European Society of Cardiology (ESC) guidelines,
cardiomyopathies are now divided into five major subtypes, namely: hypertrophic car-
diomyopathy (HCM), dilated cardiomyopathy (DCM), arrhythmogenic right ventricular
cardiomyopathy (ARVC), non-dilated left ventricular cardiomyopathy (NDLVC), and re-
strictive cardiomyopathy (RCM) [1].

Early detection, diagnosis, and treatment are significant in slowing the progression of
cardiomyopathy to advanced diseases and improving overall outcomes, not only for the
individual patient, but also for the family as a whole [1,2].

Patients with cardiomyopathy may access health services through a heterogeneous
clinical presentation or incidental findings, such as electrocardiogram abnormalities during
routine sports visits or family screening [1–3]. A multidisciplinary approach is required in
order to evaluate this complex cardiac condition, aiming to establish and characterize the
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cardiomyopathy phenotypes and the underlying etiological diagnosis [3]. This phenotype-
based etiological diagnosis necessitates the integration of various data, including personal
and family history, clinical examination, electrocardiography, and laboratory investigations,
as well as multimodality imaging [1].

Novel approaches based on artificial intelligence (AI), and on the subsets of machine
learning (ML) and deep learning (DL) [4–8], could provide more accurate stratification and
typing for patients with cardiomyopathy, presenting a potential solution to overcome the
limitations associated with traditional approaches and optimize personalized medicine [9].
Indeed, one of the many applications of AI and its subsets is to create models that consider a
large amount of data, including laboratory information and clinical, molecular, and imaging
data, for the superior diagnostic and prognostic stratification of patients. Developing
effective knowledge systems that integrate different layers of data is critical to maximizing
the impact on translational research and personalized medicine. Currently, there is limited
research that directly investigates the integration of these algorithms into clinical practice
and verifies their positive impact on clinical outcomes. Additionally, few reviews have
analyzed the impact of AI in the classification of cardiomyopathies, and, to the best of our
knowledge, none have focused on the impact of AI models in the differential diagnosis of
cardiomyopathy phenotypes.

The purpose of this review is to provide an overview of AI models developed to
discriminate between cardiomyopathy phenotypes, following the recent ESC guidelines
for the management of cardiomyopathies, and to highlight the benefits of their application
in clinical practice. Finally, we discuss the current limitations of these AI models and their
potential future development.

2. Notion of AI

From the invention of the term “artificial intelligence” in 1956 by John McCarthy, the
research and development of AI have not stopped. AI is a broad term encompassing a
variety of methods that enable machines to gain knowledge through experience and repli-
cate human cognitive functions [6,10–13]. Several subfields of AI exist, namely, machine
learning (ML) and deep learning (DL). Table 1 summarizes an overview of AI models with
a brief description.

Table 1. An overview of AI models with brief descriptions.

Algorithm Overview Advantages Disavantages

Support vector
machine

A supervised ML model used for
both classification and regression. It
works by finding an hyperplane
that maximally separates data
points of different classes in a
high-dimensional space, aiming to
maximize the margin between
the classes.

• Effectively handles
unstructured and
semi-structured data

• Low generalization error

• Requires long training
time for large datasets

• Results may be difficult
to interpret

Logistic regression

A supervised ML algorithm used
for binary classification. It models
the probability of an instance
belonging to a particular class using
the logistic function, and the
decision boundary is a linear
combination of input features.

• Provides insight into feature
relevance

• Efficient for small datasets
• Rapid training

• Assumption of linearity
• Sensitivity to outliers
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Table 1. Cont.

Algorithm Overview Advantages Disavantages

Random forest

A supervised ML algorithm used
for classification and regression
tasks. It builds multiple decision
trees during training and merges
their predictions to improve
accuracy and robustness. Each tree
is trained on a random subset of the
data, and the final prediction is
determined by a majority vote (for
classification) or an average
(for regression).

• High accuracy in capturing
complex relationships in
data

• Efficient on large datasets
• Provides insight about

feature relevance

• Sensitive to small
changes in data

• Bias towards dominant
classes

Gradient-boosted
decision tree

An ensemble learning technique
used for both classification and
regression. It builds a series of
decision trees sequentially, with
each tree correcting the errors of the
previous ones. It combines the
predictions of individual trees to
create a strong predictive model.

• High accuracy in capturing
complex relationships in
data

• Provides insight into feature
relevance

• Effective on structured and
unstructured data

• Requires long training
time for large datasets

• Complex interpretability

k-nearest neighbour

A supervised ML algorithm for
classification and regression that
predicts a data point’s label or value
based on the majority of its nearby
neighbors in the dataset. The “k”
represents the number of neighbors
considered for the prediction.

• No training period
• Supports dynamic data

addition
• Efficient for small datasets

• Poor performance with
large datasets

• Impact of irrelevant
features

• Sensitivity to outliers
and missing data

Naive Bayes

A supervised ML algorithm for
classification. It is based on Bayes’
theorem and assumes
independence between features.
The algorithm calculates the
probability of a data point
belonging to a particular class by
considering the probabilities of its
individual features.

• Simple and fast
• Requires small amount of

training data
• Less sensitive to irrelevant

features

• Assumption of feature
independence

• “Zero Probability” issue
• Sensitivity to outliers

and missing data

Convolutional
neural network

A DL algorithm designed for image
and video recognition. It uses
convolutional layers to
automatically and adaptively learn
spatial hierarchies of features from
input data.

• Learns hierarchical features
from spatial data

• Allows parameter sharing,
reducing overfitting

• Automated feature learning

• Large datasets needed
• Requires long training

time
• Complex interpretability

2.1. Machine Learning

ML refers to the ability of AI systems to extract patterns in raw data without being
explicitly programmed to do so. It involves training a model through the utilization of
data with known ground-truths to subsequently generate predictions for new, unseen in-
puts [12,14]. ML models can be broadly classified into different classes according to the type
of experience which they are authorized to undergo throughout their training processes,
including supervised, unsupervised, and hybrid paradigms such as semi-supervised learn-
ing, weakly supervised learning, and self-supervised learning [7,15]. Supervised learning
requires annotated data, also known as “labels”. These labeled data are usually evaluated
by an expert physician and represent the ground truth data used in the training process.
The algorithm involves iteratively adjusting to minimize the disparity between predicted
outputs and actual labels, with the aim of understanding the relationship between in-
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put data and output labels. The inclusion of expert evaluation and annotation makes
these models more time-consuming and resource-intensive compared to unsupervised
and hybrid paradigms in machine learning. Examples of supervised learning algorithms
include logistic regression (LR), support vector machine (SVM), random forest (RF), and
nearest-neighbor algorithms [16,17].

Conversely, unsupervised learning does not require annotated data for training. In-
stead, these models utilize unlabeled data to uncover patterns that facilitate the identi-
fication of clustering or associations. Some examples of unsupervised learning include
k-means, hierarchical clustering, and generative adversarial networks [18,19].

Finally, hybrid paradigms are represented by semi-supervised, weakly-supervised,
and self-supervised learning approaches as a bridge between supervised and unsupervised
learning. For instance, when labeled data are scarce, semi-supervised learning can integrate
both labeled and unlabeled data during the training process, utilizing annotated data to
guide the learning process and unlabeled data to capture additional information, thus
promoting more effective generalization [20]. Weakly supervised learning models are
designed to learn from partially or noisily annotated data, rather than complete and
accurate labels, and make predictions or classifications based on this information [21,22].
Instead, in self-supervised learning, only unlabeled data are available, and the algorithm
formulates its own learning tasks by creating surrogate tasks from the input data, such as
deriving pseudolabels from the intrinsic attributes of the data [23,24].

Deep Learning

Traditional ML algorithms require hand-crafted features for the learning process,
which is often a complex, time-consuming process. DL, a subset of ML, addresses this
challenge by allowing algorithms to autonomously learn and extract pertinent features.
The architecture of DL systems comprises input, hidden, and output neurons organized
into multiple layers, enabling the automatic extraction of features without the need for
human intervention or explicit guidance. Most DL models employed in the field of medical
imaging, as discussed in this review, rely on convolutional neural networks (CNN). CNNs
are specialized DL models tailored to process visual data, such as images and videos. They
excel by exploiting the spatial relationships between adjacent pixels to effectively and
quantitatively interpret and analyze the content. These networks comprise multiple layers
of interconnected artificial neurons, referred to as convolutional layers. These layers are
designed to learn filters (or kernels), which process input data and facilitate the extraction
of a hierarchy of features, ranging from basic to increasingly abstract and high-level. This
hierarchical feature extraction enables the network to discern not only low-level features,
like edges and textures, but also high-level semantic features, such as complex structures
and shapes [25]. Additionally, the architecture of the final layers of CNNs varies based on
the specific tasks performed. For example, in a classification task, which could be applied
in the differential diagnosis of cardiomyopathy phenotypes, the final layer comprises one
or more fully connected layers followed by a softmax activation function. This configu-
ration enables the network to generate probabilistic outputs for each class [12]—in this
case, each class represents a different pathology involved in the differential diagnosis.
Furthermore, multimodal neural networks can be devised to integrate visual data from
various imaging modalities with other types of information, such as demographics, family
history, clinical examination findings, laboratory results, and electronic health records [26].
In these networks, each data modality is processed through independent branches, each
yielding a partial result. These partial results are then merged and fed into the final layers
of the network to produce a comprehensive outcome. Consequently, these networks can
conduct a more holistic evaluation of a patient, learning to effectively assign probabilities
to different pathologies. This may lead to enhanced accuracy in medical diagnoses, as
the networks consider a wide array of patient-specific data. Recently, a distinct type of
neural architecture known as transformers has emerged as a popular approach, enabling
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the incorporation of surrounding context in the interpretation of specific portions of images
or data [27].

3. Application of AI in Cardiomyopathies

Technical advancement in the use of AI within the cardiac imaging field has opened up
the potential to use extensive datasets to develop models that can automatically interpret
data [6,7,12,28,29]. These algorithms can support the diagnosis and treatment of patients
with cardiomyopathies, allowing for early detection, outcome prediction, and prognosis
evaluation [5,29,30]. AI-based algorithms have proven useful in different cardiac imaging
areas, including automated image acquisition, reconstruction, and analysis [5,10,11]. In
addition, AI approaches can contribute to a more efficient and standardized interpretation
of coronary plaque burden, ruling out ischemic etiologies [6,11,31–33].

With regards to CMR, non-contrast CMR examinations combined with AI have shown
promising results, enabling faster, more accessible, and cost-effective CMR images that
unquestionably offer advantages in the clinical assessment of cardiomyopathy [14]. This be-
comes particularly relevant in light of the anticipated exponential rise in CMR examinations
in accordance with the recent ESC guidelines [1].

AI models can merge different data, including demographic, clinical, genetic, ECG,
echocardiography, CMR, and nuclear imaging parameters, allowing for a more compre-
hensive assessment of cardiomyopathy phenotypes (Figure 1). In recent years, radiomics
features have been suggested as an additional tool to characterize features of cardiomy-
opathies, extracting voxel-based information from images and capturing the inherent
complexity and heterogeneity of pixels in relation to their spatial “neighbors” [34–37].
Radiomics analysis generates a high number of features from each medical image, and can
be coupled with AI thanks to its ability to handle a massive amount of data compared to
traditional statistical analysis.
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Figure 1. Graphical overview of an AI-based model that integrates various data, including de-
mographic, clinical, genetic, ECG, and cardiac imaging features, to enhance the identification of
a phenotype-based etiological diagnosis. AI: artificial intelligence; ARVC: arrhythmogenic right
ventricular cardiomyopathy; DCM: dilated cardiomyopathy; HCM: hypertrophic cardiomyopathy;
NDLVC: non-dilated left ventricular cardiomyopathy; RCM: restrictive cardiomyopathy.
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AI is rising as a leading component in cardiovascular medicine, and some studies
have attempted to generate AI models for the differential diagnosis of cardiomyopathy
phenotypes (Figure 2).
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“cardiomyopathy”, “artificial intelligence”, “machine learning”, and “deep learning”.

Table 2 summarizes previous studies regarding the application of AI models in car-
diomyopathy.

Some figures were generated with an AI-based generator software, namely, Craiyon
V3 (https://www.craiyon.com/).

3.1. Hypertrophic Cardiomyopathy

HCM is defined by the presence of elevated LV wall thickness or mass, with po-
tential concomitant involvement of the right ventricle. Myocardial hypertrophy cannot
be exclusively attributed to abnormal loading conditions (e.g., hypertension and valve
disease) [1].

https://www.craiyon.com/
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Table 2. Previous studies regarding the application of AI models in cardiomyopathy. ARVC: arrhythmogenic right ventricular cardiomyopathy; CCN: convolutional
neural network; DCM: dilated cardiomyopathy; DT: decision tree; HCM: hypertrophic cardiomyopathy; LR: logistic regression; K-NN: K-nearest neighbor; NDLVC:
non-dilated left ventricular cardiomyopathy; RCM: restrictive cardiomyopathy; RF: random forest; SVM: support vector machine; TTE: transthoracic echocardiogram;
XGboost: extreme gradient boosting.

Authors Year Patients Cardiomyopathy
Phenotypes Variables AI Models Programming

Languages
Model
Interpretability Validation Public Datasets

and Code Results

Haimovich et al.
[38] 2023 50,709 HCM ECG data CNN

Python v3.8
(Python Software
Foundation, Beaverton,
Oregon)

Black box External validation
No public datasets
No algorithm code
available

The DL model achieved an
AUROC of 0.95 [95% CI,
0.93–0.97] for cardiac
amyloidosis, 0.92 [95% CI,
0.90–0.94] for hypertrophic
cardiomyopathy, 0.90 [95% CI,
0.88–0.92] for aortic stenosis, 0.76
[95% CI, 0.76–0.77] for
hypertensive left ventricle
hypertrophy, and 0.69 [95% CI
0.68–0.71] for other left ventricle
hypertrophy etiologies.

Beneyto et al.
[39]. 2023 591 HCM Clinical, laboratory

and TTE data DT, RF, and SVM

R packages version
4.1.1
(R Foundation for
Statistical Computing,
Vienna, Austria)

Inherently
interpretable
model
Post-modeling
explainability

Internal validation
No public datasets
No algorithm code
available

The proposed ML model
achieved an AUROC of 0.90
(0.85–0.94), sensitivity of 0.31
(0.17–0.44), specificity of 0.96
(0.91–0.99), and accuracy of 0.80
(0.75–0.85) in the testing set.

Siontis et al.
[40] 2021 18,739 HCM ECG data CNN

Python
(Python Software
Foundation, Beaverton,
Oregon)

Black box External validation
No public datasets
No algorithm code
available

The DL model achieved an AUC
of 0.98 (95% CI 0.98–0.99),
sensitivity of 92%, specificity of
95%, positive predictive value of
22%, and negative predictive
value of 99%.

Hwang et al.
[41] 2022 930 HCM TTE data CNN

R packages version
4.1.1
(R Foundation for
Statistical Computing,
Vienna, Austria)

Black box Internal validation

No public datasets
Algorithm code
available
(https://github.
com/djchoi1742/
Echo_LVH)
accessed on 30
December 2023

The DL model achieved average
AUCs of 0.962, 0.982, and 0.996
in the test sets for hypertensive
heart disease, HCM, and cardiac
amyloidosis, respectively.

Baeßler et al.
[42] 2018 32 HCM Radiomics features Machine learning

R packages
Version 3.4.0 (R
Foundation for
Statistical Computing,
Vienna, Austria)

Post-modeling
explainability Internal validation

No public datasets
No algorithm code
available

The proposed ML-based model
achieved an AUC of 0.95, with a
diagnostic sensitivity of 91% and
a specificity of 93%.

Zhang et al.
[43] 2023 238 HCM, DCM Radiomics features

Multilayer perceptron,
DT, RF, LR, XGboost,
SVM, naive Bayes,
K-nearest neighbor, and
ensemble learning

Python
version 4.1.1
(Python Software
Foundation, Beaverton,
Oregon)

Inherently
interpretable
model
Post-modeling
explainability

Internal validation

Public datasets
(https://acdc.
creatis.insalyon.fr/
description/
databases.html;
https://www.ub.
edu/mnms/)
accessed on 30
December 2023
No algorithm code
available

The proposed ML model
achieved an accuracy of 91.2%
and average AUCs of 0.962,
0.982, and 0.996 in the test sets
for HCM, DCM, and healthy
controls, respectively.

https://github.com/djchoi1742/Echo_LVH
https://github.com/djchoi1742/Echo_LVH
https://github.com/djchoi1742/Echo_LVH
https://acdc.creatis.insalyon.fr/description/databases.html
https://acdc.creatis.insalyon.fr/description/databases.html
https://acdc.creatis.insalyon.fr/description/databases.html
https://acdc.creatis.insalyon.fr/description/databases.html
www.ub.edu/mnms/
www.ub.edu/mnms/
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Table 2. Cont.

Authors Year Patients Cardiomyopathy
Phenotypes Variables AI Models Programming

Languages
Model
Interpretability Validation Public Datasets

and Code Results

Tayal et al.
[44] 2022 665 DCM

Demographic,
clinical, genetic,
CMR, and
proteomics
parameters

RF

Premium R packages
(R Foundation for
Statistical Computing,
Vienna, Austria)

Post-modeling
explainability External validation

No public datasets
No algorithm code
available

The proposed ML model
identified three novel DCM
subtypes: profibrotic metabolic,
mild nonfibrotic, and
biventricular impairment.

Zhou et al.
[45] 2023 399 DCM Clinical and TTE

data
RF, LR, neural network,
and XGBoost

R packages
version 3.6.2
(R Foundation for
Statistical Computing,
Vienna, Austria)

Inherently
interpretable
model
Post-modeling
explainability

External validation
No public datasets
No algorithm code
available

The ML model achieved good
accuracy in discriminating
between different etiologies in an
external validation cohort with a
sensitivity of 64%, a specificity of
93%, and AUC of 0.804.

Shrivastava et al.
[46] 2021 16,471 DCM ECG data CNN

Python
version 3.9
(Python Software
Foundation, Beaverton,
Oregon)

Black box Internal validation
No public datasets
No algorithm code
available

The diagnostic performance of
the proposed DL models yielded
an AUC of 0.955, a sensitivity of
98.8%, and specificity of 44.8%, a
negative predictive value of
100%, and a positive predictive
value of 1,8%

Zhang et al.
[47] 2022 57 ARVC/NDLVC

Transcriptome
profiles from
human hearts

SVM, naive Bayes, DT,
K-NN,
gradient-boosting
machine, XGboost, and
RF

R packages
version 4.1.3
(R Foundation for
Statistical Computing,
Vienna, Austria)

Inherently
interpretable
model
Post-modeling
explainability

External validation

Public datasets
(http://www.ncbi.
nlm.nih.gov/geo;
https://www.
mdpi.com/2073-4
425/11/12/1430
/s1)
accessed on 30
December 2023
No algorithm code
available

Random forest achieved the best
performance, with an AUC of
0.86 in discriminating between
arrhythmogenic cardiomyopathy
and dilated cardiomyopathy.

Bleijendaal et al.
[48] 2020 310 ARVC/NDLVC ECG data

CNN,
long short-term
memory, K-NN, LR,
multilayer perceptron,
RF, SVM, XGboost

Python
version 3.9
(R Foundation for
Statistical Computing,
Vienna, Austria)

Inherently
interpretable
model
Post-modeling
explainability

External validation

No public datasets
Algorithm code
available
(https://github.
com/L-Ramos/
CardiologyAI.)
accessed on 30
December 2023

The proposed ML and DL
models outperformed expert
cardiologists in terms of accuracy
and sensitivity.

Papageorgiou et al.
[49] 2022 183 ARVC/NDLVC ECG data CNN

R packages
version 4.1.0
(R Foundation for
Statistical Computing,
Vienna, Austria)

Post-modeling
explainability Internal validation

No public datasets
No algorithm code
available

The CNN model achieved 99.98%
accuracy, 99.96% specificity, and
99.98% sensitivity during the
training phase and 98.6%
accuracy, 98.25% specificity, and
98.9% sensitivity when tested.

Chao et al.
[50] 2023 381 RCM TTE data CNN

Python
version 4.1.1
(Python Software
Foundation, Beaverton,
Oregon)

Post-modeling
explainability External validation

No public datasets
No algorithm code
available

The DL model yielded an AUC
of 0.97 in differentiating
constrictive pericarditis vs.
cardiac amyloidosis.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
www.mdpi.com/2073-4425/11/12/1430/s1
www.mdpi.com/2073-4425/11/12/1430/s1
www.mdpi.com/2073-4425/11/12/1430/s1
www.mdpi.com/2073-4425/11/12/1430/s1
https://github.com/L-Ramos/CardiologyAI
https://github.com/L-Ramos/CardiologyAI
https://github.com/L-Ramos/CardiologyAI
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Table 2. Cont.

Authors Year Patients Cardiomyopathy
Phenotypes Variables AI Models Programming

Languages
Model
Interpretability Validation Public Datasets

and Code Results

Sengupta et al.
[51] 2016 94 RCM

Clinical
parameters,
conventional TTE,
and speckle
tracking TTE data

Associative memory
classifier, RF, K-NN,
and SVM

R packages
version 3.3
(R Foundation for
Statistical Computing,
Vienna, Austria)

Post-modeling
explainability Internal validation

No public datasets
No algorithm code
available

The proposed ML approach
achieved an accuracy of 93.7%
and an AUC of 96.2%.

Taleie et al.
[37] 2023 91 RCM radiomic features

K-NN, LR, multi-layer
perceptron, RF, SVM,
and XGboost

R packages
version 4.0
(R Foundation for
Statistical Computing,
Vienna, Austria)

Inherently
interpretable
model
Post-modeling
explainability

Internal validation
No public datasets
No algorithm code
available

The ML model achieved the best
performance, with an AUC of
0.73, accuracy of 0.73, specificity
of 0.73, and sensibility of 0.73.

Asmarian et al.
[52] 2022 624 RCM Clinical and

laboratory data
RF, gradient boost
model, and LR.

R packages
version 4.1.0
(R Foundation for
Statistical Computing,
Vienna, Austria)

Inherently
interpretable
model
Post-modeling
explainability

Internal validation
No public datasets
No algorithm code
available

The ML model yielded an AUC
of 0.68 in evaluating heart iron
overload.

Eckstein et al.
[53] 2022 96 RCM

CMR strain and
function
parameters

k-NN, SVM, and DT

Python
Version 3.8.12
(Python Software
Foundation, Beaverton,
Oregon)

Inherently
interpretable
model
Post-modeling
explainability

Internal validation
No public datasets
No algorithm code
available

The ML-based model achieved
an accuracy rate of 90.9% and an
AUC of 0.996.

Cau et al.
[54] 2022 43 Takotsubo

syndrome
CMR parameters,
demographics data

RF, bagging of trees,
adaptive boosting, and
XGboost

R packages
version 4.1.0
Python
version 3.9
(Python Software
Foundation, Beaverton,
Oregon)

Inherently
interpretable
model
Post-modeling
explainability

Internal validation
No public datasets
No algorithm code
available

The extremely randomized trees
ML algorithm showcased a
sensitivity of 92% (with a 95%
confidence interval of 78–100), a
specificity of 86% (95% CI 80–92),
and an AUC of 0.94 (95% CI
0.90–0.99) in the diagnosis of
Takotsubo syndrome.

Izquierdo et al.
[36] 2021 118 Left ventricle

non-compaction Radiomics features SVM, RF, LR

Python
version 3.7.9
(Python Software
Foundation, Beaverton,
Oregon)

Inherently
interpretable
model
Post-modeling
explainability

Internal validation
No public datasets
No algorithm code
available

The radiomics models for the
automated diagnosis of left
ventricle non-compaction
achieved excellent diagnostic
performance, with AUC values
of 0.95.
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LV hypertrophy can arise from numerous etiologies, and the differential diagnosis
of “unexplained” hypertrophy is crucial for patient management and outcomes. Indeed,
some LV hypertrophy etiologies may require family screening and the implantation of a
cardioverter–defibrillator [1]. AI models have demonstrated potential in classifying the
underlying causes of ventricular hypertrophy, facilitating efficient diagnosis and prognosis,
and preventing morbidity [38,39,42,53].

Haimovich et al. trained a CNN model using both 12-lead and single-lead electro-
cardiogram waveform data to differentiate between cardiac diseases associated with LV
hypertrophy. The authors retrospectively analyzed 50,709 patients from the Enterprise
Warehouse of Cardiology dataset, which were divided into groups characterized by cardiac
amyloidosis (n = 304), HCM (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446),
and other causes (n = 4766) [38]. The DL model based on 12-lead electrocardiograms,
trained with a derivation cohort of 34,258 individuals and validated with a cohort of
16,451 individuals, achieved an AUROC of 0.95 [95% CI, 0.93–0.97] for cardiac amyloidosis,
0.92 [95% CI, 0.90–0.94] for HCM, 0.90 [95% CI, 0.88–0.92] for aortic stenosis, 0.76 [95% CI,
0.76–0.77] for hypertensive LV hypertrophy, and 0.69 [95% CI 0.68–0.71] for other LV hy-
pertrophy etiologies. In addition, the CNN model trained on single-lead waveforms could
also accurately discriminate between LV hypertrophy, with an AUROC of 0.90 [95% CI,
0.88–0.92] for cardiac amyloidosis and 0.90 [95% CI, 0.88–0.92] for HCM [38]. Similarly, an
AI model based on electrocardiograms was proposed to identify pediatric patients with
HCM. The CNN model was tested in 300 pediatric patients with both echocardiographic
and clinical diagnoses of HCM and 18,439 healthy controls, achieving competitive diagnos-
tic performance with an AUC of 0.98 (95% CI 0.98–0.99), sensitivity of 92%, specificity of
95%, positive predictive value of 22%, and negative predictive value of 99%. In a subgroup
analysis, the DL models demonstrated a robust diagnostic performance in both sexes, as
well as in genotype-positive and genotype-negative HCM patients [40].

The prediction of LV hypertrophy was also explored by an ML model that combined
clinical, laboratory, and echocardiographic data. In their retrospective monocentric study,
the authors evaluated 591 LV hypertrophy patients, and after splitting them into training
and testing sets (75%:25%), developed three different ML models, namely, decision tree, RF,
and SVM. The SVM model displayed the better diagnostic performance, with an AUROC
of 0.90 (0.85–0.94), sensitivity of 0.31 (0.17–0.44), specificity of 0.96 (0.91–0.99), and accuracy
of 0.80 (0.75–0.85) in the testing set.

Hwang et al. also developed a CNN long short-term memory DL algorithm to aid in
the differentiation of common etiologies of LV hypertrophy (i.e., hypertensive heart disease,
HCM, and cardiac amyloidosis) [41]. They achieved average AUC values of 0.962, 0.982,
and 0.996 in the test set for hypertensive heart disease, HCM, and cardiac amyloidosis,
respectively, and the diagnostic accuracy for the DL algorithm was significantly higher
(92.3%) than for echocardiography specialists (80.0% and 80.6%) [41].

Conversely, Baeßler et al. developed a ML model using radiomics data from CMR im-
ages to detect myocardial tissue alterations in HCM. The authors retrospectively evaluated
radiomics features from T1 mapping images in 32 patients with known HCM, comparing
them to 30 healthy individuals. The proposed ML-based model achieved an AUC of 0.95,
with a diagnostic sensitivity of 91% and a specificity of 93% [42].

Finally, Soto et al. developed a multimodal fusion network by integrating both electro-
cardiogram and echocardiogram data for the determination of the etiology of LV hypertro-
phy. The model was trained on more than 18,000 combined instances of examinations from
2728 patients. The proposed fusion model achieved an AUC of 0.92 (95% CI [0.862–0.965]),
an F1-score of 0.73 (95% CI [0.585–0.842]), a sensitivity of 0.73 (95% CI [0.562–0.882]), and a
specificity of 0.96 (95% CI [0.929–0.985]) [55].

3.2. Dilated Cardiomyopathy

DCM is defined as the presence of LV dilatation and systolic dysfunction that cannot
solely be explained by coronary artery disease or altered loading conditions (e.g., hyperten-
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sion, congenital heart disease, and valve disease) [1]. DCM is a heterogenous myocardial
disease with a variable natural history and patient outcomes. The application of AI has
shown the ability to define the underlying cause of LV dilatation and stratify patients
according to distinct pathophysiological mechanisms [44].

The performance of an AI-based model using electrocardiogram data as a screen-
ing tool was tested by Shrivastava et al. [46]. The authors evaluated 16,471 individuals,
who were divided into DCM patients (n = 421) and control subjects (n = 16,025), using a
CNN model trained with 12-lead electrocardiograms. The diagnostic performance of the
proposed DL models yielded an excellent diagnostic performance, with an AUC of 0.955,
a sensitivity of 98.8%, a specificity of 44.8%, a negative predictive value of 100%, and a
positive predictive value of 1.8% for the detection of ejection fractions ≤45% [46].

A radiomics-based ML approach to discriminate between DCM, HCM, and healthy
patients was recently explored. Among the various ML models tested, RF minimum
redundancy maximum relevance achieved the best performance, with an accuracy of 91.2%
and average AUC values of 0.962, 0.982, and 0.996 in the test set for HCM, DCM, and
healthy controls, respectively [43].

Tayal et al. proposed a ML-based approach with profile regression mixture modeling
to classify patients with DCM into different sub-phenotypes. They used multiparametric
data that included demographic, clinical, genetic, CMR, and proteomics parameters [44].
The proposed ML model was tested in a derivation cohort comprising 426 patients who had
been prospectively enrolled in the National Institute for Health Research Royal Brompton
Hospital Cardiovascular Biobank project, identifying three novel subtypes: profibrotic
metabolic, mild nonfibrotic, and biventricular impairment. The DCM clusters were val-
idated with a cohort of 239 DCM patients prospectively enrolled in the Maastricht Car-
diomyopathy Registry [44]. The profibrotic metabolic cluster demonstrated the presence of
mid-wall LGE in all cases (100%); 20% had diabetes, and their NYHA functional classifica-
tion was predominantly class II. Conversely, among the 249 patients in the mild nonfibrotic
group, none displayed myocardial fibrosis according to LGE. These patients had milder
illnesses, with a significant number falling into NYHA functional class I. A separate group,
consisting of 27 patients, was identified as the biventricular impairment group. These
patients were notably sicker, with half of them experiencing NYHA functional class III or
IV symptoms [44].

In addition, discrimination between ischemic and non-ischemic etiologies is crucial in
patient management. Zhou et al. developed an ML model based on clinical and echocar-
diography data to discriminate between ischemic and non-ischemic LV dilatation [45]. The
authors evaluated 299 patients with dilated LV, and, after splitting them into training and
testing sets, developed four different ML models, namely, RF, LR, neural network, and
XGBoost. The XGBoost model demonstrated the best accuracy, with a sensitivity of 72%,
specificity of 78%, accuracy of 75%, F-score of 0.73, and AUC of 0.934. In addition, the ML
model demonstrated good accuracy in terms of discriminating between different etiologies
in an external validation cohort, with a sensitivity of 64%, a specificity of 93%, and an AUC
of 0.804 [45].

3.3. Non-Dilated Left Ventricular Cardiomyopathy and Arrhythmogenic Right Ventricular
Cardiomyopathy

ARVC is characterized by the presence of right ventricle dilatation and/or dysfunction,
along with histological involvement and/or electrocardiographic abnormalities, according
to the Task Force criteria [1,56].

Conversely, NDLVC is a newly proposed category of cardiomyopathy. It is defined by
the presence or absence of left ventricular systolic impairment, either regionally or globally,
along with non-ischemic myocardial scarring or the presence of fatty replacement [1].
This includes a heterogenous group of patients previous described as having dilated
cardiomyopathy without dilated LV, arrhythmogenic left ventricular cardiomyopathy, left-
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dominant arrhythmogenic cardiomyopathy, or arrhythmogenic dilated cardiomyopathy.
These patients do not fulfill the Task Force criteria [1].

AI-based models promise to facilitate the diagnosis of these cardiomyopathy sub-
types [47,49].

Zhang et al. developed an algorithm for distinguishing between arrhythmogenic
cardiomyopathy and dilated cardiomyopathy based on ML algorithms from two public
datasets containing myocardial samples. Several ML models were tested, including SVM,
naive Bayes, decision tree, K147 nearest neighbor, gradient boosting machine, extreme
gradient boosting, and RF, to identify key candidate genes with which to construct a
predictive model for favoring separation between arrhythmogenic cardiomyopathy and
dilated cardiomyopathy. The RF model achieved the best performance, with an AUC of
0.86 [47]. Similarly, Bleijendaal et al. developed ML and DL models based on typical
electrocardiographic features to diagnose Phospholamban p.Arg14del cardiomyopathy, a
well-known mutation associated with the development of dilated and/or arrhythmogenic
cardiomyopathy [48]. The authors compared the proposed AI models with an expert
cardiologist, demonstrating that the AI models outperformed the expert cardiologist in
term of accuracy and sensitivity in both the training and testing datasets. In addition,
T-wave morphology was identified as the most important electrocardiographic feature
used to classify PLN p.Arg14del carriers [48].

Another ML model based on electrocardiograms was recently developed by Papageor-
giou et al. to discriminate patients with ARVC. The authors proposed the utilization of a
CNN for the detection of arrhythmogenic heart disease, achieving 99.98% accuracy, 99.96%
specificity, and 99.98% sensitivity during the training phase and 98.6% accuracy, 98.25%
specificity, and 98.9% sensitivity when tested [49].

3.4. Restrictive Cardiomyopathy

RCM is defined by the presence of non-dilated left or right restrictive pathophysiology,
with normal ventricular wall thickness and normal or reduced diastolic and/or systolic vol-
ume in one or both ventricles [1]. The distinction between RCM and constrictive pericarditis
could be challenging because of the overlap in clinical presentation and restrictive flow
patterns with diastolic dysfunction [57]. Chao et al., by using an apical four-chamber view
from transthoracic echocardiography studies, trained a ResNet50 deep learning model,
achieving a performance with an area under the curve of 0.97, to differentiate constrictive
pericarditis from cardiac amyloidosis [50].

Sengupta et al. designed a ML approach that combines clinical parameters, con-
ventional echocardiographic, and speckle tracking echocardiography data to discrimi-
nate between RCM and constrictive pericarditis [51]. The associative memory classifier
demonstrated the best diagnostic performance, with an accuracy of 93.7% and an AUC of
96.2% [51].

Another cardiac condition that can result in a restrictive pattern is thalassemia. AI-
based models have been proposed to identify and measure iron deposits in the heart,
enabling early recognition of myocardial dysfunction and subsequent prompt treatment.
Taleie et al. proposed a ML model to discriminate between beta-thalassemia major patients
with myocardial iron overload from those without myocardial iron overload based on
radiomic features extracted from echocardiography images. Among the various ML models
tested, maximum relevance–minimum redundancy–extreme gradient boosting achieved
the best performance, with an AUC of 0.73, accuracy of 0.73, specificity of 0.73, and
sensibility of 0.73 [37]. Similarly, a ML model to evaluate heart iron overload was proposed
by Asmarian et al. achieving an AUC of 0.68 (95% CI 0.60, 0.75) [52].

Among RCM, Fabry diseases should be taken into account. Due to the heterogenous
and multisystemic clinical presentation, this diagnosis could be challenging. An AI-based
approach was recently proposed to identify patients affected by Fabry diseases using health
record data from 4978 patients with Fabry diseases and 1,000,000 healthy controls. The
AI model was trained using a training cohort comprising 75% of all patients, who were
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selected at random to construct a statistical “phenotypic biomarker” for Fabry disease.
Then, the authors predicted the likelihood of having Fabry disease for each patient in the
testing cohort, which included 25% of all patients. This method achieved a strong analytic
performance, with an AUC of 0.82 [58].

Eckstein et al. developed a supervised ML model that integrates various strain pa-
rameters from the right atrium, left atrium, and right ventricle, as well as cardiac function
metrics, to identify cardiac amyloidosis using multiple machine learning classifier algo-
rithms, including k-nearest neighbor, linear and non-linear SVM, and decision trees. The
non-linear SVM exhibited the best performance, achieving an accuracy rate of 90.9% and
an AUC of 0.996, outperforming other machine learning algorithms in their study [53].

3.5. Other Cardiac Syndromes Associated with Cardiomyopathy Phenotypes

In accordance with the recent ESC guidelines, this category encompasses LV hyper-
trabeculation and Takotsubo syndrome [1]. The term “LV hypertrabeculation” is recom-
mended over LV non-compaction, especially if this phenomena is transient or if it clearly
occurs during adulthood [1]. Takotsubo syndrome is defined as a peculiar pattern of LV
dysfunction that presents, in its most typical variant, as apical ballooning and hyperkinesis
of LV basal segments in the absence of obstructive coronary disease [1,59–61]. AI models
have been applied to identify these cardiac syndromes associated with cardiomyopathy
phenotypes [36,54].

Cau et al. designed an ML model that combines CMR parameters and demographics
factors to identify patients with Takotsubo syndrome among individuals with acute chest
pain. The authors retrospectively enrolled three groups of patients: those with Takotsubo
cardiomyopathy, patients with acute myocarditis, and healthy individuals. To assess the
model’s performance, they employed five different tree-based ensemble learning algo-
rithms, specifically RF, extremely randomized Trees, bagging of trees, adaptive boosting,
and extreme gradient boosting. The extremely randomized trees ML algorithm showcased
a sensitivity of 92% (with a 95% confidence interval of 78–100), a specificity of 86% (95% CI:
80–92), and an AUC of 0.94 (95% CI: 0.90–0.99) in the diagnosis of Takotsubo syndrome.
Furthermore, the proposed model outperformed clinical reader diagnoses, exhibiting an
average increase in AUC of 0.42 (representing an 80% improvement), an increase in sensi-
tivity of 0.08 (equivalent to a 10% boost), and an increase in specificity of 0.618 (indicating
a 257% enhancement). Importantly, this improved diagnostic performance was achieved
with a significantly shorter duration of analysis, taking only 0.26 s compared to 560 s for
the clinical reader [54].

An ML approach based on radiomics data was developed to automatically differ-
entiating LV non-compaction from other cardiomyopathy phenotypes, including HCM
and DCM [36]. The authors extracted a set of 420 radiomics features from 118 patients
(including 37 DCM, 25 HCM, and 35 left ventricle non-compaction patients, as well as
21 healthy control individuals). The radiomics model to discriminate cardiomyopathy
phenotypes was built with different consecutive steps, namely, (1) removing radiomics
features that were highly correlated; (2) normalization to introduce the features into ML
models; (3) feature selection, selecting the best features based on univariate statistical
tests; and (4) training and testing different ML models, such as SVM, multi-class RF, and
multi-class LR, for classification. The radiomics models for the automated diagnosis of left
ventricle non-compaction achieved excellent diagnostic performance, with AUC values of
0.95 [36].

4. Limitations and Future Directions

AI has the potential to reduce costs and save physicians’ time by analyzing complex
data and enabling phenotype-based etiological diagnosis, but several challenges must
be addressed for its effective implementation in real-world clinical practices. These chal-
lenges include the heterogeneity of collected data, issues related to reproducibility, the
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necessity of internal and external validation, interpretability concerns, and ethical and
legal considerations.

4.1. Data Heterogeneity and Reproducibility

First, building robust AI algorithms demands a significant amount of data, along with
complex software and infrastructure. To ensure the reliability and generability of AI models,
an ample supply of annotated data from different centers is essential. It is also crucial to
homogenize data in terms of their formats, definitions, and quality control protocols, as well
as standardize data acquisition across different imaging modalities. Indeed, insufficient
data can lead to overfitting or underfitting, resulting in inaccurate predictions. As the array
of AI algorithms continues to expand, there is a pressing need for research standardization
to ensure the reproducibility of the proposed models. Reproducibility, in this context, refers
to the ability to duplicate prior results using the same methods employed in the original
work. Achieving technical reproducibility in AI studies is contingent on the release of both
the code and dataset by the study group [62–64]. For this reason, open-access datasets and
algorithm codes are foundational to advancing the field of AI in healthcare by providing
the necessary resources for training, external validation, and reproducibility, as well as
mirroring real-world data. Table 2 summarizes the public datasets and available code
discussed in the current review.

4.2. Ethical and Legal Issues

Second, ethical and legal concerns regarding the implementation of AI in healthcare
encompass the use of patient data for the development of AI-based models. The generation
of large and homogeneous datasets gives rise to significant issues, particularly in the
domains of data privacy and security. A notable area of apprehension pertains to informed
consent, surveillance, and the violation of individuals’ data protection rights. This concern
extends to the possibility of undisclosed uses of the data by entities distinct from the
individual from whom the data were obtained [65,66]. Moreover, the vulnerability of
information collected for and by AI systems to hacking attempts introduces an additional
layer of worry. Instances of unauthorized access and data breaches pose threats to the
integrity and confidentiality of sensitive medical information [67,68]. Privacy and data
protection laws have taken proactive steps to address these concerns. These efforts aim to
establish frameworks ensuring transparency, safety, and ethical standards in the handling,
processing, and sharing of data related to healthcare [69–71]. Ensuring the fairness of AI
models is a critical concern, particularly due to the potential for biases to be embedded in
these models, especially when training data exhibit imbalances. This imbalance can lead to
significant variations in the performance of AI models across demographic groups, such
as sex and race, potentially worsening existing healthcare disparities. A comprehensive
examination of fairness and equity in the development and deployment of AI in healthcare
is essential. Addressing these challenges is vital for unlocking the full potential of AI while
safeguarding privacy, promoting transparency, and ensuring equitable healthcare outcomes
for all [72–75].

4.3. Model Transparency, Explainability, and Validation

Third, some AI-generated models, especially those based on DL, are considered “black
box” systems that do not offer any insight or explanations about how the output is obtained,
limiting clinical applicability due to their lack of transparency and interpretability. To
overcome the significant challenges presented by “black box” models, recent studies have
focused on developing AI models that are both explainable and interpretable [12,76,77].
Specifically, interpretability refers to the human ability to understand cause and effect
within an AI model. Conversely, explainability refers to the capability to elucidate an AI-
generated decision-making process using language that is intelligible to humans, enabling
an understanding of why a model produces a specific outcome [12,76,77]. Many ML models
are designed to be intrinsically interpretable (e.g., LR, linear regression, decision trees, K-
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nearest neighbors) due to their simple structure and inherent logical relationships to their
components [78,79]. In models of greater complexity, the direct interpretation process
becomes intricate and rapidly extends beyond quick logical comprehension, requiring
post-modeling explainability [80]. Additionally, an interpretable model should undergo
clinical validation through an evaluation of whether the interpretations provided by the
model are as effective enough to support healthcare decision making as expert advice [81].

Moreover, when a dataset is available, internal [82–84] and external validation of the
model, as well as studies conducted in real-world settings, are also crucial to assessing the
practical utility of deployed models [85,86]. Indeed, a significant barrier to the widespread
adoption of AI algorithms is the lack of an evaluation of their clinical impacts through
prospective studies, leaving the benefits of AI approaches largely theoretical. Similarly,
there are no studies assessing the economic or health system advantages associated with
population-level approaches to cardiomyopathy using AI algorithms.

4.4. Future Directions

Randomized trials are crucial for assessing the application of AI models to the dif-
ferential diagnosis of cardiomyopathy phenotypes across different centers, minimizing
bias through sex and minority representation. To enhance the applicability of these mod-
els, it is mandatory not only to collect extensive, homogenous datasets with external
validation, quality controls, and explainable and interpretable approaches, but also to
inform physicians about the usefulness of these models. Additionally, developing a pri-
vacy protection algorithm with encryption and AI techniques is necessary for secure and
generalizable models.

AI models used in cardiomyopathy-oriented approaches with multiparametric data
may represent a potential advancement in cardiomyopathy management. This includes dis-
ease classification, early diagnosis, risk stratification, and early detection of complications,
as well as prognosis and tailored treatment. Additionally, AI imaging pre-processing and
post-processing approaches are undoubtedly useful in clinical practice to optimize clinical
workflows and reduce the cost of cardiovascular healthcare, providing a solution to the
exponential increase in cardiovascular examinations [28,87,88]. AI algorithms exhibit the
capacity to manage larger and more intricate datasets in comparison with traditional medi-
cal models, and do not require the pre-specification of predictors or interactions, thereby
facilitating the identification of novel relationships [89,90]. These AI-based models allow
us to bridge the gap between the pathogenesis of diseases, genotypes, and phenotypes of
cardiomyopathies, enabling personalized medicine not only for the individual, but for the
entire family.

5. Conclusions

The implementation of AI-based models for the differential diagnosis of cardiomyopa-
thy phenotypes holds promise in terms of significantly enhancing daily clinical practice
in cardiovascular healthcare. The multiparametric approach to evaluating and discrimi-
nating patients with suspected cardiomyopathy has been demonstrated to be crucial in
identifying the cardiomyopathy phenotypes and the underlying etiological diagnoses. AI
models have the potential to create composite algorithms that include demographics and
laboratory data, clinical parameters, molecular, and cardiac imaging features to automate
the detection and diagnosis of cardiomyopathies. Despite the potential advantages of these
AI algorithms in cardiovascular healthcare, their applicability is currently limited due to
several challenges. These concerns include the lack of homogenous datasets with external
validation and real-world evaluations, the limited interpretability and robustness of the
models, and lingering issues regarding trust in AI-generated approaches. To expedite the
clinical implementation of these models as valuable tools in cardiomyopathy diagnosis, it
is crucial to design future multicenter trials with homogenous and open-access datasets to
achieve universal applicability of these AI models.
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