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Abstract. The complex association between neuroinflammation and seizures has been widely investigated in 
recent years. As mediators of inflammatory response, cytokines like tumor necrosis factor-a (TNF-α) are po-
tential therapeutic targets for epileptic disorders. TNF-α is a pleiotropic cytokine with a controversial role in 
epileptogenesis, seemingly capable to both favor the genesis of seizures and elicit neuromodulatory responses. 
Anti-TNF agents are a group of monoclonal antibodies engineered to inhibit the response to this cytokine 
for antinflammatory purposes. The clinical experience of the use of these drugs in neurological conditions like 
multiple sclerosis showed controversial results. Evidence in favor of the employment of anti-TNF agents for 
the treatment of epilepsy are still limited to certain forms of disorders, notably Rasmussen encephalitis, and 
in carefully selected patients.
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Background

Understanding the involvement of inflammatory 
responses in epileptogenesis has been the object of sev-
eral studies in the last years (1, 2). Seizures can elicit 
inflammatory responses and, in turn, regional inflam-
mation can contribute to the development and persis-
tence of seizures (3). Neuroinflammatory responses 
are also primed in a group of disorders of the central 
nervous system (CNS) mediated by neural-specific 
autoantibodies and associated with seizures (4-6). 
Inflammation within the brain tissue is not always 
detrimental, since different neurotrophic and homeo-
static mechanisms are also governed by inflammatory 
mediators (7). In this complex association, the role of 
cytokines has been of interest for therapeutic purposes 
and tumor necrosis factor-α (TNF-α), being involved 
in both inflammatory and neuromodulatory pathways, 
can represent a possible pharmacological target for 
many neurological pathologies (8-16). To understand 

the therapeutic perspectives of anti-TNF-α agents, we 
review the biological functions of this cytokine and 
the effects of TNF inhibitors in patients with epileptic 
syndromes and other disorders of the CNS.

Synthesis of TNF and molecular mechanisms of 
action

TNF-α is an effector cytokine of the TNF super-
family that regulates cell homeostasis and immune-in-
flammatory pathways (17). This pleiotropic cytokine is 
encoded by the TNF gene, located on chromosome 6 
(6p21.33) and synthesized as a 26 kDa monomeric type 
2 transmembrane precursor protein (tmTNF). The cy-
toplasmic terminal portion of the precursor is cleaved 
by a TNF-α converting enzyme (TACE; ADAM17), 
releasing a soluble 17 kDa cytokine (sTNF) (18). Both 
sTNF and tmTNF need to aggregate in homotrimers 
to exert their biological functions (19). Homotrim-
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ers of sTNF or tmTNF can interact with two trans-
membrane glycoprotein receptors, TNF receptor 1 
(TNFR1, also known as TNFRSF1a, p55TNFR, p60, 
CD120a) and TNF receptor 2 (TNFR2, also known 
as TNFRSF1b, p75TNFR, p80, CD120b), that are in 
turn preassembled as homotrimers (20). These recep-
tors differ in the affinity for ligands, in their cellular 
expression profiles and in the downstream signaling 
involved (19). This latter is finely balanced and de-
pends on the cell type and activation status, on TNF 
production and on the activity of TACE (21). TNFR1 
is expressed by a wide range of cells and can be ac-
tivated primarily by sTNF and to a lesser extent by 
tmTNF (22). TNFR2 is preferentially expressed on 
the surface of immune cells and endothelial cells and 
responds mainly to tmTNF (22). The responses to 
TNFR1 result in divergent outcomes, such as prolif-
eration, apoptosis or production of cytokines, depend-
ing on the effectors involved, such as Nuclear Factor 
Kappa-B, C-Jun N-terminal Kinase, p38 and the acid 
sphingomyelinase-ceramide system (19, 22). Of note, 
the intracellular domain of TNFR1 can activate cell 
death pathways through a death signaling complex 
(19). The response to TNFR2 is more restricted and 
involves inflammatory and survival pathways, like the 
phosphatidylinositol 3-kinase-dependent pathway 

that promotes neuron cells survival (23). It is possi-
ble for TNFR2 to perform a ligand passing towards 
TNFR1 (24). Additionally, two forms of reverse sign-
aling have been described and involve respectively the 
cytoplasmic domain of TNFR2, via MAP kinase and 
p38 pathways, or the intracellular domain of tmTNF 
that is capable to activate pro-inflammatory responses 
once cleaved (25, 26). 

Anti-TNF agents and their employment in disorders 
of central nervous system

Since the assessment of the efficacy of an anti-
TNF-α agent in patients with rheumatoid arthritis, 
different molecules with a TNF-inhibitory effect have 
been authorized for the treatment of polyarticular 
juvenile idiopathic arthritis, ankylosing spondylitis, 
psoriasic arthritis, psoriasis and inflammatory bowel 
diseases (27). Figure 1 illustrates the anti-TNF agents 
currently approved for therapeutic use and their mo-
lecular structures (28). All these molecules consist in 
monoclonal antibodies (MAbs), that result from gene 
splicing and mutation techniques (29).

Infliximab, adalimumab and golimumab are full-
length bivalent IgG1 MAbs with a capability to ac-

Figure 1. Molecular structure of the anti-Tumor Necrosis Factor (TNF)-α agents currently approved by the Food and Drug Admin-
istration. Human derived is indicated in blue, mouse-derived in red. CDR: Complementary Determining Regions; Fab: Fragment 
antigen-binding; Fc: Fragment crystallizable; Fv: Fragment variable; TNFR2: TNF receptor 2.
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tivate complement and to bind Fc-receptor (28, 30). 
While adalimumab and golimumab are fully human 
antibodies, infliximab is a chimeric product consti-
tuted by mouse-derived amino acids (25%) and by 
human amino acids (75%) (28, 30). Certolizumab is 
a monovalent Fab1 fragment of a humanized IgG1 an-
tibody containing amino acid sequences derived from 
a mouse anti-TNF MAb and is PEGylated to en-
hance half-life and solubility and lacks effector func-
tions due to the absence of a Fc region (28, 30, 31). 
Etanercept is constituted by the extracellular portions 
of human TNFR2 and the Fc portion of human IgG1. 
The MAbs can act both by blocking the cellular func-
tions mediated by TNF-receptors (antagonistic ef-
fect), or through a reverse signaling via tmTNF, with 
an agonistic action (28). All TNF-inhibitors are ad-
ministered in a parenteral way and display differences 
in mechanisms of action, pharmacokinetic profiles and 
thus in clinical efficacy (32).

The literature about the employment of TNF-
inhibitors in neurological disorders is primarily fo-
cused on the treatment of multiple sclerosis (33, 34). 
However, two clinical trials raised the concern of a 
disease progression in some patients that were receiv-
ing TNF-inhibitors, based on clinical and radiological 
signs (33, 34). The occurrence of both inflammatory 
demyelinating and non-demyelinating events further 
emerged from different cases and case-series of pa-
tients treated for non-CNS related disorders (35-46). 
Although a causal correlation between demyelination 
and the use of anti-TNF-α has not been defined, some 
mechanisms may explain the adverse events observed 
(30, 47-49): (i) seen the inability of TNF-inhibitors 
to penetrate the BBB, they could not neutralize the 
TNF-driven inflammatory events (lack of entry the-
ory) and this causes a relative increase of TNF con-
centration within the brain tissues as opposed to the 
periphery (sponge effect theory); (ii) the exposure to 
TNF-inhibitors was associated to an enhanced activity 
of peripheral autoreactive T cells, that could penetrate 
the BBB and sustain inflammatory and demyelinat-
ing events in the CNS; moreover, some patients may 
have per se an increased serum neutralization capacity 
of TNF-α and display an enhancement of this adverse 
effect; (iii) the use of anti-TNF-α agents may induce 
a downregulation of IL-10 and an upregulation of 

IL-12 and IFN-g; (iv) TNF-inhibitors may activate 
or reactivate a latent infection, which can trigger an 
immune-mediated demyelination; (v) the use of TNF-
inhibitors may reduce the expression of TNFR2 recep-
tors within the brain tissues, impairing the course of 
reparative processes. These theories, although specifi-
cally referring to demyelinating events, may suggest a 
detrimental role of TNF-inhibitors in the treatment of 
different neurological disorders. 

Mechanisms of epileptogenesis mediated by TNF-α

TNF-α has been implicated in the pathogenesis 
of several neuropathological conditions including is-
chemia, and post-traumatic or exocitotoxic brain in-
jury (50-52). Albeit investigated by several studies, 
the involvement of TNF-α in epileptogenesis has not 
been completely clarified (2). Reportedly, the cytokine 
can influence neuronal cells by direct interaction or 
through the expression of neurotransmitter receptors 
on glial cells (53, 54) and it is also thought to create 
alterations in the permeability of the blood brain bar-
rier (55, 56). More lines of evidence emerge from ex-
periments in animal models that revealed a controver-
sial role of TNF-α in epileptogenesis and highlighted 
three aspects that can determine its involvement: the 
cellular source of the cytokine, its concentration within 
brain tissues and the type of receptor predominantly 
expressed by the cells (1, 57, 58). Some authors evi-
denced how TNF-α displayed an inflammatory and 
degenerative effect when secreted by astrocytes, as op-
posed to a more tissue repair and remyelination-ori-
ented outcome when released by microglial cells (59-
61). Secondarily, mice overespressing TNF-α in high 
amounts by neurons and astrocytes were more prone 
to develop brain injury and neuronal deficits, while 
a milder overexpression in astrocytes was associated 
with a decrease in seizure susceptibility (61, 62). Fi-
nally, while signaling via TNFR1 elicits proinflamma-
tory and proconvulsivant effects, responses to TNFR2 
display a more anticonvulsivant and neurotrophic ori-
entation (58). 

This latter feature was well defined in murine 
models. Mice overexpressing TNF-α or knock out 
for TNFR1 showed reduced seizure duration, as op-
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posed to those knock out for TNFR2 or for both the 
subtypes of receptor (62). Moreover, the intratissutal 
administration of human TNF-α (more specific for 
mouse TNFR1) did not affect seizure duration, as 
opposed to the administration of murine recombi-
nant TNF that reduced the duration and the number 
of kainic acid-induced seizures (62). The responses 
activated by TNFR1 are still poorly characterized. 
Seemingly, the death signaling complex activated 
downstream this isoform of the receptor contributes 
to seizure-related brain injury and in experimental 
models of seizures neutralizing antibodies to TNF-α 
can reduce the entity of cell damage within brain tis-
sues (63). These evidences were further confirmed by a 
study conducted on hippocampal tissues from patients 
with intractable temporal lobe epilepsy, where TNFR1 
pathways resulted predominant and related to the acti-
vation of apoptosis pathways (and thus to the seizure-
induced brain injury) (64). Other studies evidenced 
how TNFR1 may be involved in post-translational 
mechanisms that regulate expression and turnover of 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid (AMPA), gamma aminobutyric acid (GABA) 
and N-methyl-d-aspartate (NMDA) receptors (53). 
Particularly, evidences suggest that glutamatergic 
transmission and glutamate synthesis are upregulated 
in response to TNF, while GABA-ergic transmission 
is attenuated via induction of endocytosis of GABAA 
receptors (53, 65). The disclosure of more details about 
the mechanisms activated by TNFR1 signaling may be 
of key importance for therapeutic reasons and should 
be investigated by further studies.

Use of anti-TNF agents in epilepsy

The literature covering the use of anti-TNF agents 
for epileptic diseases is scanty. A prospective, open-
label study by Lagarde and colleagues was conducted 
with the administration of adalimumab to 11 patients 
with Rasmussen Encephalitis (RE) refractory to other 
immunotherapies (e.g., corticosteroids, azathioprine, 
intravenous immunoglobulins) (66). The primary out-
come was the decrease of seizures frequency, considering 
“responders” patients experiencing a decrease in seizure 
frequency by at least 50%. As secondary outcome, the 

neurologic and cognitive outcomes and the side effects 
of the treatment were evaluated. Despite the fact that 
none of the patients became seizure free, five patients re-
sponded to the treatment and another one experienced 
a transitory decrease in the frequency of seizures. A sta-
bilization of cognitive decline was observed in three of 
the five patients. Only one patient had to discontinue 
adalimumab, following an elevation of blood creatine 
kinase levels. The response to the treatment was more 
evident in patients with slowly progressive forms of RE 
and those individuals carrying autoimmune diseases, 
such as uveitis and juvenile arthritis. Seen the absence 
of a severe motor and cognitive deficiency, none of the 
responders underwent hemispherectomy, although this 
measure was necessary for three patients that faced a 
severe progression of the disease (66). Beside this study, 
Goyal and colleagues reported the case of a 12-year-
old girl suffering from a granulomatous disease and RE 
(67). After several attempts to treat seizures with dif-
ferent immunotherapies, the patient underwent a treat-
ment with etanercept and azathioprine with no clini-
cal improvement. As etanercept was interrupted and 
relayed with infliximab, the young girl showed an 85% 
reduction in seizure frequency and duration and an im-
provement of speech and memory (67).

Overall, these results encourage further studies to 
assess whether adalimumab or other TNF-inhibitors 
could be effective for the treatment of some forms of 
RE, refractory to immunotherapies, but not matching 
the full criteria for a surgical approach. Patients, with 
slowly progressive forms may be good candidates for 
a treatment with anti-TNF-α agents (66). A possible 
disadvantage of immunotherapy in RE is that it can 
slow down the progression of the disease and preserve 
the functional outcome, but with little effect on sei-
zures, hence leaving patients in a steady state without 
the possibility to undergo hemispherectomy (68).  Ad-
ditionally, the dual nature of the responses to TNF-α 
in epileptogenesis must be kept in mind in order to 
avoid an unfavorable outcome with an increase in sei-
zures frequency and in the entity of brain injury. Future 
therapeutic agents may discern TNFR1 and TNFR2 
signaling, in order to silence the proinflammatory and 
proepileptic responses to the former and sustain the 
mechanisms of tissue preservation and repair activated 
by the latter (51).
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Conclusions 

Targeting TNF-α for the treatment of disorders 
of the central nervous system appears to be premature 
considering the controversial effects reported. A more 
univocal response may result from a better understand-
ing of the effects of TNF inhibition on the balance 
between TNFR1 and TNFR2 signaling. This aspect is 
particularly important for epilepsy syndromes, where 
the aim should be to downregulate the responses to 
TNFR1 and upregulate certain pathways activated by 
TNFR2. The favorable outcome of some patients with 
RE following the administration of adalimumab can 
be promising but is referred to a limited number of 
subjects affected by a disease with a preponderant in-
flammatory etiology. Further studies including other 
forms of epileptic diseases may be determinant for un-
derstanding whether anti-TNF-α agents can be effec-
tive as therapeutic agents.
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