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Abstract: (1) Objective: Myocarditis can be associated with ventricular arrhythmia (VA), individual
non-invasive risk stratification through cardiovascular magnetic resonance (CMR) is of great clinical
significance. Our study aimed to explore whether left atrial (LA) and left ventricle (LV) myocardial
strain serve as independent predictors of VA in patients with myocarditis. (2) Methods: This
retrospective study evaluated CMR scans in 141 consecutive patients diagnosed with myocarditis
based on the updated Lake Louise criteria (29 females, mean age 41 ± 20). The primary endpoint
was VA; this encompassed ventricular fibrillation, sustained ventricular tachycardia, nonsustained
ventricular tachycardia, and frequent premature ventricular complexes. LA and LV strain function
were performed on conventional cine SSFP sequences. (3) Results: After a median follow-up time
of 23 months (interquartile range (18–30)), 17 patients with acute myocarditis reached the primary
endpoint. In the multivariable Cox regression analysis, LA reservoir (hazard ratio [HR] and 95%
confidence interval [CI]: 0.93 [0.87–0.99], p = 0.02), LA booster (0.87 95% CI [0.76–0.99], p = 0.04),
LV global longitudinal (1.26 95% CI [1.02–1.55], p = 0.03), circumferential (1.37 95% CI [1.08–1.73],
p = 0.008), and radial strain (0.89 95% CI [0.80–0.98], p = 0.01) were all independent determinants
of VA. Patients with LV global circumferential strain > −13.3% exhibited worse event-free survival
compared to those with values ≤ −13.3% (p < 0.0001). (4) Conclusions: LA and LV strain mechanism
on CMR are independently associated with VA events in patients with myocarditis, independent to
LV ejection fraction, and late gadolinium enhancement location. Incorporating myocardial strain
parameters into the management of myocarditis may improve risk stratification.

Keywords: myocarditis; cardiovascular magnetic resonance; outcomes; ventricular arrhythmia;
myocardial strain

1. Introduction

Myocarditis is characterized by inflammation of the myocardium, and is recognized for
its heterogenous clinical presentation and outcomes [1–4]. The natural history of patients
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with myocarditis varies, and ranges from complete recovery to a spectrum of adverse car-
diac complications including dilated cardiomyopathy, heart failure, recurrent myocarditis,
ventricular arrhythmia (VA), and sudden cardiac death [4,5]. Various VAs, such as ventricu-
lar fibrillation, sustained ventricular tachycardia, nonsustained ventricular tachycardia, and
frequent premature ventricular complexes, have been observed in patients with myocarditis
and are linked to increased cardiovascular mortality [6]. This underscores the crucial need
for effective risk stratification tools to guide physicians. Cardiovascular magnetic resonance
(CMR) is a well-established non-invasive method for the diagnostic evaluation of patients
with myocarditis [7–10]. It also offers valuable prognostic information [11–13]. Septal late
gadolinium enhancement (LGE) has been identified as a predictor of adverse cardiovascular
events, including VAs [14,15]. The recently proposed CMR-feature tracking can provide a
sensitive, quantitative evaluation of myocardial contractility [16–18]. It enables the easy
calculation of atrial and ventricular strain, without requiring additional sequences and
it has been shown to increase diagnostic [19–21] and prognostic value in patients with
myocarditis [22–24]. Doerner et al. demonstrated that combining atrial and ventricular
strain parameters with the Lake Louise criteria can enhance the diagnostic performance in
patients with myocarditis [19]. Regarding CMR-feature tracking’s prognostic value, Fischer
et al. reported that global longitudinal strain represents an incremental and independent
prognostic marker over clinical features and other CMR parameters, including LGE (HR:
1.21; 95% CI 1.08–1.36; p = 0.001) [25]. However, our current understanding of the signifi-
cance of atrial and ventricular strain parameters on the occurrence of VAs in patients with
myocarditis remains limited. CMR-feature tracking offers advantages such as not requiring
contrast media administration. This makes it a viable option for patients with concomitant
renal disease, allergies to gadolinium, or limited tolerance due to cardiac symptoms such
as orthopnea [26–29]. Promising diagnostic possibilities are emerging with abbreviated
CMR protocols that omit the use of contrast media [30–33]. Identifying predictive CMR
parameters derived from an abbreviated CMR protocol is expected to unquestionably yield
significant advantages in real-life clinical practice.

Therefore, the current study aimed to explore the potential value of atrial and ven-
tricular strain parameters as supportive contrast-free CMR markers in predicting VAs in
patients with myocarditis.

2. Materials and Methods
2.1. Study Population

In this retrospective, observational, single-center study, all consecutive patients with
myocarditis who underwent CMR and fulfilled the modified Lake Louise criteria [10]
between 3 March 2017, and 7 September 2023 were considered. Myocarditis was diagnosed
based on the current recommendations of the Position Statement of the European Society
of Cardiology Heart Failure Association [7].

Exclusion criteria included subjects <18 years old, previous myocardial infarction, pre-
existing cardiomyopathy, and suspected or known prior irreversible myocardial damage.

Cardiovascular risk factors were collected from medical records. Hypertension was defined
as a systolic blood pressure of ≥140 mmHg or a diastolic blood pressure of ≥90 mmHg at rest
on more than two occasions, or the use of antihypertensive drugs [34]. Smoking status was
defined as current smokers or never smokers. Cholesterol laboratory analyses were conducted
following the standard in-house protocol. Diabetes status was assessed using the World Health
Organization criteria [35] or an established diagnosis of type 2 diabetes. Obesity was defined as
a BMI > 30, as defined by the World Health Organization criteria [36].

Institutional Review Board approval for this retrospective, cross-sectional study was
obtained and the patient’s consent was waived given the retrospective nature of the study.
A flowchart demonstrating the application of inclusion and exclusion criteria is provided
in Figure 1.
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Figure 1. Flowchart of patients included in the study.

2.2. CMR Acquisition

CMR examinations were conducted at 4.1 ± 2.6 days (median = 1 day, range = 1–10 days)
post-hospital admission using a Philips Achieva dStream 1.5 T scanner system (Philips Health-
care, Best, The Netherlands) with anterior coil arrays. Cine-images were acquired using a
balanced steady-state free precession and retrospective gating during expiratory breath-hold
maneuvers (TE: 1.7 ms; TR: 3.4 ms/flip-angle: 45◦, section thickness = 8 mm) in both long-
axis (two-, three-, and four-chamber view) as well as in a short-axis plane, covering the entire
ventricle from base to apex.

T2-STIR images were obtained using triple inversion recovery T2-weighted pulse se-
quence (TR = 2 RR, TE ≈ 70 ms; flip-angle: 45◦, section thickness = 8 mm, FOV 300 × 300 mm2)
in long-axis (two-, three-, and four-chamber view) and short-axis plane with whole ventricular
coverage from base to apex.

T1 mapping was performed in the short-axis plane in three slices (at the base, mid-
ventricular, and apex, respectively) using a single-breath-hold, ECG-triggered, MOLLI sequence
before contrast media injection (TE 1.1 ms; TR 2.5 ms; flip angle 35◦; FOV, 300 × 300 mm2).

T2 mapping was acquired before the administration of contrast-media on three rep-
resentative short-axis slices (at the base, mid-ventricular, and apex, respectively) using a
single-breath-hold, black-blood prepared ECG-triggered, spin-echo multiecho sequence.

LGE imaging was performed in both long- and short-axis slices 10–12 min after
contrast media injection (Gadovist, Bayer Healthcare, Berlin, Germany) with a dose of
0.15 mL per kg body weight using phase-sensitive inversion recovery sequences (PSIR)
(TE: 2.0 ms; TR: 3.4 ms; flip-angle: 20◦, section thickness = 8 mm). The inversion time was
determined using the Look-Locker technique.

2.3. CMR Image Post-Processing

We employed the commercially available software system Circle CVI42 (CVI42, Circle
Cardiovascular Imaging Inc., Calgary, AB, Canada) for CMR-feature tracking analysis.
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Offline CMR-feature tracking analyses were performed to assess peak global longitudinal
strain, global radial strain, and global circumferential strain in a 16-segment software-
generated 2D model. For longitudinal strain, myocardial strain data were obtained from
two-, three-, and four-chamber long-axis views. Concerning radial strain and circumfer-
ential strain, myocardial strain data were derived from apical, mid-ventricular, and basal
short-axis views in all patients. On all images, the epi- and endocardial borders were delin-
eated in end-diastole. Subsequently, an automated computation was initiated, whereby the
applied software algorithm automatically traced the border throughout the entire cardiac
cycle. Similarly, CMR-feature tracking analyses of atrial strain parameters were performed
offline. On all the acquired images, LA endocardial borders were manually delineated
in long view of the cine images when the atrium was at its minimum volume. The four-,
three-, and two-chamber views were used to derive LA longitudinal strain. LA appendage
and pulmonary veins were excluded from segmentation.

Consequently, the software algorithm effectively and accurately tracked the myocardium’s
borders throughout the cardiac cycle using an automated computation process. Tracking and
contouring quality were visually validated and manually corrected when necessary. Three
peaks in the strain curve; namely, reservoir, conduit, and booster strain and their corresponding
strain rate parameters were identified. The quality of the tracking and contouring of atrial and
ventricular function was visually validated and manually corrected.

The extent and location of LGE was evaluated both qualitatively and quantitatively. Specif-
ically, evaluation involved counting and determining the location of the affected myocardial
segments. The extent of LGE were obtained by tracing the epicardial and endocardial contours
in each short-axis image. A region of interest was manually positioned in normal myocardium,
and LGE was defined as myocardium with mean signal intensity >5 standard deviations greater
than the reference region of interest. All CMR parameters, including CMR-feature tracking,
were analyzed by an operator blinded to patients’ baseline characteristics and outcomes.

2.4. Study End Points

Hospital medical records were meticulously reviewed to collect follow-up data. The
primary outcome measured was the incidence of ventricular arrhythmia following CMR,
including conditions such as ventricular fibrillation, sustained and nonsustained ventricular
tachycardia, as well as frequent premature ventricular complexes.

2.5. Statistical Analysis

Continuous variables were presented as median (interquartile range [IQR]) or mean
and standard deviation, while categorical variables were expressed as frequency (%). The
normality of the distribution of the parameters was assessed using the Kolmogorov–Smirnov
test. Comparisons of continuous variables were conducted through the independent samples
t-test or Mann–Whitney U test, as appropriate. Categorical variables were analyzed using the
chi-square test or Fisher’s exact test, as appropriate. Univariable analysis was performed using
Cox proportional hazard regression to identify independent predictors of ventricular arrhythmia
events. Atrial and ventricular strain predictors that demonstrated statistical significance (p < 0.05)
during univariable analysis were subjected to further examination through multivariable Cox
regression, adjusting for age, sex, common cardiovascular risk factors, left ventricular ejection
fraction, and LGE septal location. To account for the influence of confounding factors, event-free
survival from VA events at follow-up for continuous covariates that remained significant during
multivariable analysis was calculated as a probability area using g-computation [37]. Changes
in the hazard ratio across values of LV global circumferential strain—which demonstrated the
highest hazard ratio following multivariable adjustment—were examined by fitting a spline
curve. From this analysis, a cut-off of −13.3% was derived to stratify the population into
low- and high-risk groups. This threshold corresponds to the point at which the hazard ratio
reached or exceeded 1. All statistical tests were two-sided and a p-value < 0.05 was considered
statistically significant. All statistical analyses were performed using R Statistical Software
(v4.2.2; R Core Team 2022, Vienna, Austria).
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3. Results
3.1. Patient Population

During the study period, a total of 141 patients (29 females, mean age 41 ± 20 standard
deviation) with myocarditis were enrolled after the application of inclusion and exclusion
criteria. (Figure 1). Baseline characteristics of patients are shown in Table 1. During a
median follow-up of 23 months (IQR [18–30]), 17 patients (12%) had a VA event (14 males,
mean age 59 ± 14), while 124 patients (88%) either completed the follow-up period event-
free or were censored (age 39 ± 19).

Table 1. Baseline and CMR characteristic of patients with and without ventricular arrhythmia events.
Values are n (%) or median (IQR); p-values in bold are significant. BSA indicates body surface area;
LVEF and RVEF, left and right ventricular ejection fraction, respectively; EDV, end-diastolic volume;
ESV, end-systolic volume; SV, stroke volume; GRS, GCS, and GLS, global radial circumferential and
longitudinal strain, respectively; LGE, late gadolinium enhancement.

Variable Overall, n = 141 1 Event, n = 17 1 No Event, n = 124 1 p-Value 2

Gender (male) 112 (79%) 14 (82%) 98 (79%) >0.99
Age, years 40 (22, 56) 56 (50, 70) 37 (21, 52) <0.001
Height, cm 170 (170, 175) 170 (168, 175) 170 (170, 175) 0.89
Weight, kg 72 (63, 82) 80 (72, 90) 70 (60, 79) 0.020
BSA, m2 1.86 (1.72, 1.98) 1.88 (1.76, 2.05) 1.82 (1.69, 1.94) 0.25
Hypertension 26 (18%) 7 (41%) 19 (15%) 0.018
Dyslipidemia 16 (11%) 5 (29%) 11 (8.9%) 0.027
Obesity 16 (11%) 5 (29%) 11 (8.9%) 0.027
Current or previous smoking 20 (14%) 2 (12%) 18 (15%) >0.99
Diabetes mellitus 6 (4.3%) 3 (18%) 3 (2.4%) 0.023
Family history of coronary disease 30 (21%) 4 (24%) 26 (21%) 0.76
Chest pain 125 (89%) 9 (53%) 116 (94%) <0.001
Heart failure 11 (7.8%) 4 (24%) 7 (5.6%) 0.029
Arrhythmias 14 (9.9%) 10 (59%) 4 (3.2%) <0.001
Reservoir, % 30 (24, 38) 20 (10, 29) 30 (25, 39) <0.001
Conduit, % 18 (12, 23) 8 (5, 15) 18 (14, 23) <0.001
Booster, % 12.2 (9.8, 16.0) 11.2 (7.2, 14.3) 12.8 (10.1, 16.0) 0.10
LVEF, % 56 (50, 61) 49 (41, 58) 57 (52, 61) 0.022
LV EDV/BSA, mL/m2 92 (80, 103) 96 (84, 129) 91 (80, 102) 0.054
LV ESV/BSA, mL/m2 40 (32, 48) 51 (41, 75) 39 (32, 45) 0.023
LV SV/BSA, mL/m2 51 (45, 57) 47 (42, 52) 52 (46, 57) 0.22
RVEF, % 55.7 (52.0, 58.7) 51.3 (49.2, 58.9) 55.9 (52.4, 58.6) 0.17
RV EDV/BSA, mL/m2 82 (71, 95) 81 (72, 88) 82 (71, 96) 0.68
RV ESV/BSA, mL/m2 35 (30, 43) 36 (29, 44) 35 (30, 43) 0.73
RV SV, mL/m2 46 (38, 53) 39 (37, 47) 46 (40, 53) 0.082
LV GRS, % 22 (18, 29) 16 (13, 20) 23 (19, 29) <0.001
LV GCS, % −14.4 (−17.0, −12.2) −11.1 (−13.6, −9.3) −14.9 (−17.3, −12.5) <0.001
LV GLS, % −13.9 (−15.5, −12.1) −9.3 (−12.2, −8.3) −14.3 (−15.5, −12.6) <0.001
LGE, number of AHA segments 69 (49%) 8 (47%) 61 (49%) 0.87
LGE septal 32 (23%) 9 (53%) 23 (19%) 0.004
LGE mass, % 9 (4, 13) 11 (5, 16) 8 (4, 13) 0.35
LGE mass, g 7 (3, 11) 8 (5, 12) 6 (3, 11) 0.24
Pericardial involvement 34 (24%) 3 (18%) 31 (25%) 0.76
T2 total, ms 59.3 (55.8, 63.1) 61.4 (59.5, 63.9) 59.0 (55.6, 62.6) 0.047

1 Median (IQR) or frequency (%). 2 Fisher’s exact test; Wilcoxon rank sum test; Pearson’s chi-squared test.

3.2. Associations of Ventricular and Atrial Strain Measures with Ventricular Arrhythmia Risk

Univariable Cox regression analysis revealed that increased weight, the presence of
hypertension, dyslipidemia, diabetes mellitus, and diminished LA reservoir, LA conduit,
LA booster, and LV global radial strain values were significantly associated with an in-
creased incidence of VA events during follow-up. Additionally, increased LV end-diastolic
and end-systolic volumes indexed by body surface area, impaired LV global longitudinal
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and circumferential strain values were also significantly associated with an increased risk
of VA events (Table 2). Subsequent multivariable analysis identified LA reservoir (HR: 0.93
95% CI [0.87–0.99], p = 0.02) and booster (HR: 0.87 95% CI [0.76–0.99], p = 0.04) functions, as
well as LV global longitudinal (HR: 1.26 95% CI [1.02–1.55], p = 0.03), circumferential (HR:
1.37 95% CI [1.08–1.73], p = 0.008) and radial (HR: 0.89 95% CI [0.80–0.98), p = 0.01) strain
measures as statistically significant, independent predictors of VA events after adjustment
(Table 3). Except for elevated LV global circumferential and longitudinal strain, decreased
values in all other strain measures were associated with an increased risk of VA events at
follow-up (Figure 2).

Table 2. Univariable Cox proportional hazards regression analysis of clinical and CMR characteristics
for prediction of ventricular arrhythmic events. Abbreviations as in Table 1. p-values highlighted in
bold represent statistically significant values.

Variable Hazard Ratio (95% CI) p-Value

Gender 1.4 (0.39–4.7) 0.63
Age 1.1 (1–1.1) <0.001
Height 1 (0.94–1.1) 0.89
Weight 1 (1–1.1) 0.017
BSA 3 (0.32–29) 0.33
Hypertension 3.5 (1.3–9.3) 0.01
Dyslipidemia 4.2 (1.5–12) 0.0072
Obesity 4 (1.4–11) 0.0096
Current or previous smoking 0.8 (0.18–3.5) 0.77
Diabetes mellitus 7.2 (2.1–25) 0.0021
Family history of coronary disease 1.1 (0.35–3.3) 0.9
Chest pain 0.1 (0.039–0.26) <0.001
Heart failure 6 (1.9–18) 0.002
Arrhythmias 23 (8.8–63) <0.001
Reservoir 0.9 (0.86–0.94) <0.001
Conduit 0.87 (0.82–0.93) <0.001
Booster 0.88 (0.79–0.97) 0.012
LVEF 0.93 (0.89–0.96) <0.001
LV EDV/BSA 1 (1–1) <0.001
LV ESV/BSA 1 (1–1) 0.0025
LV SV/BSA 0.96 (0.91–1) 0.12
RVEF 0.96 (0.89–1) 0.19
RV EDV/BSA 0.99 (0.97–1) 0.54
RV ESV/BSA 0.98 (0.93–1) 0.33
RV SV 0.96 (0.92–1) 0.093
LV GRS 0.95 (0.92–0.98) 0.0012
LV GCS 1.2 (1.1–1.3) <0.001
LV GLS 1.4 (1.2–1.6) <0.001
LGE, number of AHA segments 1.1 (0.41–2.8) 0.88
LGE septal 5.1 (2–13) <0.001
LGE mass, % 1 (0.98–1.1) 0.24
LGE mass, g 1 (0.99–1.1) 0.11
Pericardial involvement 0.64 (0.18–2.2) 0.48
T2 total 1.1 (0.99–1.2) 0.083
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Table 3. Multivariable Cox proportional hazards regression analysis. Models are incrementally
adjusted with demographics 1, cardiovascular risk factors 2, LVEF 3, and LGE septal 4. p-values in
bold are significant. Abbreviations as in Table 1.

Multivariable Analysis

Hazard Ratio (95% CI) p-Value

Adjusted for sex and age 1

Reservoir 0.92 (0.87–0.97) 0.002

Booster 0.85 (0.77–0.94) 0.002

Conduit 0.91 (0.84–0.99) 0.03

LV GCS 1.25 (1.11–1.40) <0.001

LV GRS 0.93 (0.89–0.97) <0.001

LV GLS 1.25 (1.08–1.43) 0.002

+ cardiovascular risk factors 2

Reservoir 0.91 (0.87–0.96) <0.001

Booster 0.84 (0.75–0.93) 0.001

Conduit 0.89 (0.82–0.97) 0.007

LV GCS 1.44 (1.20–1.72) <0.001

LV GRS 0.87 (0.81–0.94) <0.001

LV GLS 1.37 (1.16–1.61) <0.001

+ LVEF 3

Reservoir 0.93 (0.88–0.99) 0.03

Booster 0.89 (0.78–1.00) 0.049

Conduit 0.93 (0.85–1.01) 0.1

LV GCS 1.39 (1.12–1.73) 0.003

LV GRS 0.89 (0.82–0.97) 0.006

LV GLS 1.27 (1.03–1.56) <0.001

+ LGE septal 4

Reservoir 0.93 (0.87–0.99) 0.02

Booster 0.87 (0.76–0.99) 0.04

Conduit 0.92 (0.84–1.02) 0.1

LV GCS 1.37 (1.08–1.73) 0.008

LV GRS 0.89 (0.80–0.98) 0.01

LV GLS 1.26 (1.02–1.55) 0.03
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For instance, panel A demonstrates a higher probability of event-free survival within 12 months for 
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proved event-free survival outcomes. 

Figure 2. Event-free survival probability by prognosticators values during follow-up. Panels
(A–F) display three-dimensional survival areas for left atrial (LA) reservoir, LA conduit, and LA
booster strain measures and global measures of left ventricular (LV) circumferential, LV radial, and LV
longitudinal strain illustrating the arrhythmia-free survival probability (y-axis) at various time points
during follow-up (x-axis) up to 12 months across a range of prognosticators values (color-coded).
For instance, panel (A) demonstrates a higher probability of event-free survival within 12 months
for higher LA reservoir values, while panel (D) correlates higher LV global longitudinal strain with
improved event-free survival outcomes.
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Stratification of the population in low- and high-risk groups, based on a cut-off value
of −13.3% for LV global circumferential strain (Figure 3), demonstrated that patients with
an LV global circumferential strain higher than −13.3% experienced significantly worse
event-free survival (p < 0.0001) (Figure 4).
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experience VA events.

4. Discussion

The current study evaluated the prognostic significance of atrial and ventricular
myocardial strain in patients with myocarditis. Our findings reveal that both atrial and
ventricular strain parameters are independently associated with VA events in myocarditis
patients. Significantly, these myocardial strain indices maintain their predictive power in-
dependently of established CMR risk factors such as left ventricular ejection fraction (LVEF)
and the location of LGE. Among these parameters, LV circumferential strain showed the
most significant correlation with the incidence of VA events during the monitoring period.

Patients suffering from myocarditis can experience VAs with an annual rate of 10%,
while the percentage of myocarditis-related sudden cardiac deaths attributed to myocarditis
varies between 10% and 20% during autopsy [14]. Therefore, identifying patients at
increased risk of VAs is crucial for accurately managing myocarditis cases. The location
of myocardial replacement fibrosis detected through CMR-LGE has been established as
an independent predictor of VA events in myocarditis patients [12,14,38,39]. In a study
involving 144 patients with a history of myocarditis, Casella et al. reported that the
location of LGE scar was an independent predictor of VA (HR 2.0; 95% CI 1.2–3.5; p = 0.02)
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regardless of treatment strategy [14]. Indeed, myocardial replacement fibrosis signifies
both irreversible myocardial damage and an arrhythmic substrate [8]. In clinical practice,
the adoption of faster and more cost-effective CMR protocols offers undeniable benefits.
This approach enhances the accessibility of CMR examinations, making them available
to a broader range of patients, including those who are unable to receive contrast agents
and have a reduced tolerance for lengthy procedures. Consequently, there is a growing
incentive to identify alternative markers that do not require contrast administration but
can still effectively enhance the prediction of VA events.

Myocardial strain is intricately linked to the structural characteristics of the heart mus-
cle fibers. It can quantitively detect early-stage impairments in both atrial and ventricular
function [16,40,41] and it is related to cardiovascular complications [25,42–44]. In addition,
strain parameters can be measured on standard cine sequences without the necessity for
additional acquisitions or contrast media administration.

Atrial and ventricular strain parameters have proven to be robust markers of future
arrhythmia events in various cardiovascular diseases [45–48]. Ersbøll et al. conducted a
prospective study investigating the utility of global longitudinal strain in predicting VAs
in the acute phase of myocardial infarction. The study revealed a significant reduction
in longitudinal strain among patients who developed VAs in comparison to those who
did not (9.9% vs. 13.9%, p < 0.001). Diminished longitudinal strain emerged as an inde-
pendent predictor of VAs, even after accounting for various clinical, electrocardiographic,
and echocardiographic factors [45]. Candan et al. assessed the effect of atrial strain in
predicting sudden cardiac death or ventricular arrhythmias in patients with hypertrophic
cardiomyopathy. The authors reported that atrial strain was an independent predictor of
appropriate implantable cardioverter defibrillator therapy (odds ratio: 0.806, p = 0.008) [48].
To the best of our knowledge, this is the first work specifically focused on investigating
the prognostic role of CMR-derived atrial and ventricular myocardial strain in patients
with myocarditis.

Our data support the hypothesis that both atrial and ventricular strain are related to
VA events. One of the key findings in the present study is that LV circumferential strain is
independently associated with VA events in myocarditis and it can be clinically used to
discriminate high-risk myocarditis patients. The significance of LV circumferential strain as
a predictor of VA has been previously described in patients with hypertrophic cardiomy-
opathy [49] and ischemic cardiomyopathy [50]. The myocardium of the ventricular wall
is organized into three layers of fibers: subendocardial fibers, subepicardial fibers, and
transmural fibers [16]. LV circumferential strain, reflecting circumferential shortening, is
predominantly influenced by changes in subepicardial fibers [16]. The heightened impact of
subepicardial fibers as a predictor of VAs may be related to the typical myocardial fibrosis
pattern observed in myocarditis [8], leading to electric remodeling [51]. Recent studies
have shown that the subepicardial myocardium is of great significance in the occurrence of
VAs [52]; this supports the concept that arrhythmic events in myocarditis may be related to
re-entry circuits within the subepicardial layers [51]. Of interest, LA reservoir and booster
parameters are independently associated with VAs at follow-up. This association may arise
from the anatomical communication between cardiac chambers. The LA actively modulates
left ventricular filling through its distinct phases [17,40,53]. Another hypothesis is that
the direct involvement of the atria during myocarditis contributes to proarrhythmogenic
remodeling of the atria [54]. Our results demonstrate that utilizing atrial and ventricular
strain serves as helpful and supportive non-contrast CMR parameters for risk stratifying
patients with myocarditis at risk of arrhythmic complications.

This study has certain limitations. Firstly, due to its retrospective design, some clinical
and laboratory data were not available for analysis in every patient. Secondly, the relatively
modest sample size, coupled with a limited number of events, may have increased overfit-
ting risk in our multivariable analysis. Therefore, information on incremental prognostic
value of the models is limited. Moreover, it is important to note that our investigation did
not incorporate the use of continuous arrhythmia monitoring via implantable devices; this
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constrained our ability to capture real-time data on specific events. Additionally, endomy-
ocardial biopsy or genetic testing to rule out alternative diagnoses was not conducted in
all patients, despite this being common clinical practice in many centers currently [15,22].
Furthermore, the absence of a dedicated validation set also warrants caution in applying
our findings to a broader population. Although our study yielded promising results, it is
imperative to conduct additional prospective trials with a larger patient cohort to validate
our findings.

5. Conclusions

LA and LV strain parameters are independently associated with ventricular arrhythmia,
independently of cardiovascular risk factors, LV systolic function, and LGE location. Atrial
and ventricular strain may be used as additional non-contrast CMR parameters to stratify risk
in patients with myocarditis. The current findings may have a substantial influence on clinical
decision-making and contribute to tailored care in this category of patients.
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