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Abstract: Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver
diseases that target the liver and have a wide spectrum of presentation. A global overview of
quantitative variations on the salivary proteome in presence of these two pathologies is investigated
in this study. The acid-insoluble salivary fraction of AIH and PBC patients, and healthy controls
(HCs), was analyzed using a gel-based bottom-up proteomic approach combined with a robust
machine learning statistical analysis of the dataset. The abundance of Arginase, Junction plakoglobin,
Desmoplakin, Hexokinase-3 and Desmocollin-1 decreased, while that of BPI fold-containing family A
member 2 increased in AIHp compared to HCs; the abundance of Gelsolin, CD14, Tumor-associated
calcium signal transducer 2, Clusterin, Heterogeneous nuclear ribonucleoproteins A2/B1, Cofilin-1
and BPI fold-containing family B member 2 increased in PBCp compared to HCs. The abundance of
Hornerin decreased in both AIHp and PBCp with respect to HCs and provided an area under the
ROC curve of 0.939. Machine learning analysis confirmed the feasibility of the salivary proteome
to discriminate groups of subjects based on AIH or PBC occurrence as previously suggested by our
group. The topology-based functional enrichment analysis performed on these potential salivary
biomarkers highlights an enrichment of terms mostly related to the immune system, but also with a
strong involvement in liver fibrosis process and with antimicrobial activity.

Keywords: autoimmune hepatitis; autoimmune liver diseases; bottom-up proteomics; Cofilin-1; mass
spectrometry; hornerin; primary biliary cholangitis; saliva; random forest
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1. Introduction

Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are two types of
autoimmune liver diseases (AILDs) that target the liver and are characterized by a wide
spectrum of presentation.

AIH refers to chronic and progressive inflammation of the liver from an unknown
cause but is thought to be a combination of genetic predisposition, environmental triggers
and failure of the native immune system, which results in chronic inflammation of the
liver, necrosis of hepatocyte and subsequent fibrosis. AIH is a rare worldwide disease
predominant in women by a ratio of 4:1 with respect to men [1,2]. There are two known
types of AIH: the most common Type 1 involves anti-smooth muscle antibodies (ASMA)
with or without anti-nuclear antibodies (ANA). The more rare and often more severe
Type 2 tends to appear earlier, usually during childhood, and progresses faster than type
1; it involves anti-liver/anti-kidney microsome (anti-LMK) type 1 antibodies targeting
cytochrome P450-2D6 and anti-liver cytosol (anti-LC) type 1 antibodies. Management
frequently consists of lifelong nonspecific immunosuppression with azathioprine or other
salvage therapies [3,4].

PBC usually affects women aged 40 to 60, with a male to female ratio of 1:10. It is
characterized by the attack of the immune system towards the bile ducts and their epithelial
cells, leading to progressive destruction of the intrahepatic bile ducts, and if not diagnosed
and adequately treated it develops toward fibrosis, cirrhosis and finally liver failure [5].
Management consists of lifelong administration of ursodeoxycholic acid (UDCA) [6].

PBC and AIH can be difficult to distinguish clinically at early stages. There are
still critical issues concerning early diagnosis, risk stratification of disease progression
and identification of response to therapy predictors. Moreover, some patients may have
“overlap syndromes” with characteristics of PBC or primary sclerosing cholangitis (PSC) in
combination with AIH and cannot be assimilated into classical diagnostic categories. The
most common AIH–PBC overlap syndrome [7] can be diagnosed using the Paris criteria,
while so far there are no standardized diagnostic criteria for the other types of overlap
syndromes [8]. In recent years, the definition of “overlap syndrome” has been substituted
by the new definition of “variant syndrome of AIH and PBC” [9]. The variant syndrome
shares diagnostic clinical and histological features of both entities [10]. Another challenge
in AIH/PBC diagnosis is represented by the coexistence of comorbidities which may
affect clinical phenotype at presentation. The most common association was found with
other concurrent extrahepatic autoimmune disorders (CEHAID), mainly with autoimmune
thyroid disease, but also with Sjögren’s syndrome, rheumatoid arthritis, nondestructive
polyarthropathy, type 1 diabetes, vitiligo, ulcerative colitis and psoriasis [11,12].

AIH and PBC can be differentiated using clinical, biochemical, serologic and histologic
findings. Blood testing is often the first step for the diagnosis of AILDs because many
patients do not show symptoms until the disease has progressed to cirrhosis or liver failure.
Serum autoantibodies ANA/SMA and LKM-1 are generally considered the diagnostic
hallmarks of AIH [2]; however, a recent review reported a very poor diagnostic accuracy for
ANA, SMA and LKM-1 if detected alone, with accuracy increasing only in the presence of
both ANA and SMA [13]. Moreover, ANA tests also detect antigen specificities associated
exclusively with PBC, including autoantibodies to Sp100-containing nuclear bodies (NBs)
or gp210 protein [14]. Among candidate autoantibodies that may aid in the diagnosis of
AIH, the most promising is α-actinin, a ubiquitous cytoskeletal cross-linking protein within
the family of filamentous actin (F-actin) [15]. Nevertheless, a minority of patients with AIH
do not show detectable autoantibodies at presentation and may express them only later
and sporadically [2]. As a result, such patients must be scored using revised diagnostic
criteria (RDC) or should undergo liver biopsy. Current guidelines recommend liver biopsy
as a prerequisite for the diagnosis of AIH, to determine disease severity and to discriminate
acute and chronic forms [16]. Regarding the diagnosis of PBC, liver biopsy is required only
in specific anti-mitochondrial antibodies (AMA)-negative patients [17].
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In this scenario, while the possible use of saliva as a diagnostic fluid has been largely
investigated for oral and systemic diseases [18–22], it has been only marginally used in
autoimmune liver diseases, mainly to investigate the role played by oral microbiota in their
pathogenesis [23]. As a mirror of oral and systemic health, saliva provides valuable infor-
mation because it contains not only proteins specifically secreted by the salivary glands [24],
but also proteins from the gingival crevicular fluid [25,26], from oral microflora [27] and
plasmatic proteins transported from blood to saliva by both intra- and extracellular pathways.

In a recent work, performed on the acid-soluble fraction of saliva from AIH and PBC
patients explored by a top-down mass-spectrometry pipeline, our group evidenced qualitative
and quantitative variations of some naturally occurring proteins/peptides belonging to the
main families of salivary proteins, either secreted or not secreted by salivary glands [28].
These proteins/peptides were acid proline-rich proteins; statherin and P-B peptide; histatins;
salivary cystatins; cystatins A, B, C and D; α-defensins; antileukoproteinase; S100A7, S100A8,
S100A9 and S100A12 proteins. Supervised machine learning analysis of Mass Spectrometry
(MS) data revealed for the first time the feasibility of selected salivary proteins to discriminate
groups of subjects based on AIH or PBC occurrence. The acid-soluble salivary fraction
did not contain, however, protein prone to precipitation under acidic conditions which
may be influenced, in their expression, by the pathological condition. With the aim of
extending our previous finding on salivary proteome in patients affected by AIH and PBC,
and therefore to obtain a global overview of quantitative variations on the salivary proteome
in presence of these two pathologies, we explored the acid-insoluble salivary fraction using a
gel-based bottom-up proteomic approach combined with a robust machine learning statistical
analysis of the dataset. Mass spectrometry data were analyzed by exact Mann—Whitney and
Kruskal—Wallis tests to provide plausible salivary biomarkers related to AIH or PBC while
Random Forest (RF) and multidimensional scaling (MDS) were used to individuate a panel of
salivary proteins able to accurately classify the subjects based on AIH or PBC manifestation.
Finally, a topology-based functional enrichment analysis has been performed for gaining
insights into biological and functional pathways of both proteins commonly found and
proteins showing varied levels among the three comparison groups.

2. Results
2.1. Characteristics of the Participants

A total of 17 AIH patients (in the following indicated as AIHp) 60.6 ± 12.8
(mean ± standard deviation) years old, males n = 2, females n = 15, and 17 PBC pa-
tients (PBCp) 63.0 ± 9.4 years old, males n = 0, females n = 17 were recruited. The control
group (HCs) included 17 age- and sex-matched healthy volunteers (58.9 ± 13.4 years old,
males n = 0, females n = 17).

The detailed demographic data of HCs, AIHp and PBCp are reported in Table S1.
Demographic characteristics, including age and gender, were matched between the AIHp
and HCs and between PBCp and HCs (p > 0.05). Clinical and pharmacological features
of AIHp and PBCp, collected at the same time of saliva sampling, are reported in Table 1.
They comprise a panel of serum markers of liver dysfunction, including markers of hepato-
cellular dysfunction alanine transaminase (ALT) and/or aspartate aminotransferase (AST);
markers of biliary disease such as alkaline phosphatase (ALP); markers of parenchymal
liver dysfunction or biliary obstruction; or total bilirubin (TB) and γ-glutamyltransferase
(GGT) and albumin, useful in assessing hepatic synthetic function. Patients were also
tested for antinuclear antibodies (ANAs), smooth muscle antibodies (SMAs) and renal
microsomal antigen antibodies (LKMs).
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Table 1. Clinical features and pharmacological treatments of AIHp and PBCp included in the study
measured at the time of saliva sampling.

Parameters AIHp PBCp

Age, average (range) Years 60.6 (40–83) 63.0 (52–83)

Gender, n (%) Female 15 (88.3%) 17 (100%)

BMI, average (range) Kg/m2 26.46 (17.58–36.13) 24.63 (19.33–30.27)

Cirrhosis, n (%) 4 (23.5%) 4 (23.5%)

Histological stage n (%) I–II 5 (29.4%) 11 (64.7%)
III–IV 12 (70.6%) 6 (35.3%)

Positivity to autoantibodies, n (%)

ANA 12 (70.6%) 8 (47.1%)
SMA 10 (58.8%) 3 (17.6%)
LKM 1 (5.9%) 2 (11.8%)
AMA 0 (0%) 16 (94.1%)

AST, median (range) IU/L 25.0 (14–57) 28.0 (17–65)

ALT, median (range) IU/L 20.0 (8–46) 28.0 (17–133)

GGT, median (range) IU/L 30.0 (0–138) 68.0 (14–452)

ALP, median (range) IU/L 64.5 (28–216) 118.0 (65–415)

IgG, median (range) g/dL 1.4 (0.69–2.51) 1.4 (1.1–2.3)

Albumine, median (range) g/dL 3.9 (3.24–4.76) 3.9 (2.8–4.4)

Prothrombin time, median (range) INR 0.93 (0.92–1.03) 1.0 (0.91–1.61)

TB, median (range) mg/dL 0.69 (0.3–1.46) 0.61 (0.28–2.95)

Platelets, median (range) 109/L 199.0 (91–402) 223 (46–418)

Pharmacological treatment (% treated)

AZA (only or + UDCA
and/or Steroids) 58.8%

Steroids 11.8%
UDCA (only or + steroids) 23.5% 100%

Naïve 5.9%

Range refers to total range; BMI: body mass index; ANA: antinuclear antibodies, SMA: smooth muscle anti-
bodies; LKM: renal microsomal antigen antibodies; AMA: anti-mitochondrial autoantibodies; AST: aspartate
aminotransferase; ALT: alanine aminotransferase; GGT: glutamyl transferase; ALP: alkaline phosphatase, IgG:
immunoglobulin G; TB: total bilirubin; AZA: Azathioprine; UDCA: Ursodeoxycholic Acid.

Regarding pharmacological therapies, 58.8% of AIHp were under Azathioprine only
or in combination with Steroids and/or UDCA, 11.8% under Steroid only, 23.5% under
UDCA only or with Steroids and 5.9% were without therapy (naïve); PBCp were 100%
under UDCA treatment.

The presence of other concurrent autoimmune diseases was investigated in patients;
five AIHp and six PBCp presented Hashimoto’s thyroiditis, one AIHp and one PBCp
presented rheumatoid arthritis.

2.2. Saliva Sampling

To unravel the best approach for protein solubilization, the acid-insoluble fraction of
saliva samples was subjected to three different solubilization solutions before bottom-up
analysis. Based on bicinchoninic acid (BCA) assay, it was possible to demonstrate that
2% sodium dodecyl sulfate (SDS), 0.5 mM Dithiothreitol (DTT), 30 mM Tris-HCl pH 6.8
(Solution 3) allowed the retrieval of the best quantity of acid-insoluble proteins with a total
protein concentration (TPC) of 2.5 mg/mL, approximately double the recovery of proteins
compared to Solution 2 (TPC = 1.3 mg/mL) and more than 10 times the recovery obtained
with Solution 1 (TPC = 0.2 mg/mL). Therefore, solution 3 was chosen to treat all AIHp,
PBCp and HC samples.
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Figure S1 reports the stained SDS-PAGE gel of AIHp, PBCp and HC pellets. For each
lane, three portions of the gel were manually excised and submitted separately to trypsin
digestion. This approach was preferred over total lane digestion to minimize the amount
of gel to be submitted to in-gel digestion and therefore improve protein identification.

2.3. RP-nanoHPLC-High Resolution ESI-MS and MS/MS Analysis and Protein Identification

MS analysis of tryptic peptides resulted in 918, 891 and 787 high-confidence proteins
for AIHp, PBCp and HCs, respectively, of which 467 were quantified in all groups and used
for statistical analysis. Mann—Whitney and Kruskal—Wallis tests were used to identify
possible protein abundance variations among AIHp vs. PBCp, AIHp vs. HCs and PBCp
vs. HCs. In this way, non-parametric tests highlighted 14 varied proteins out of 467 with
significant changes (p-values < 0.05 with and FDR < 10%). The results are shown in Table 2,
reporting: (i) six proteins decreased in AIHp compared to HCs, namely Arginase (P05089),
Junction plakoglobin (P14923), Desmoplakin (P15924), Hexokinase-3 (P52790), Desmocollin-
1 (Q08554) and Hornerin (Q86YZ3); (ii) one protein increased in AIHp compared to HCs:
BPI fold-containing family A member 2 (Q96DR5); (iii) seven proteins increased in PBCp
compared to HCs, namely Gelsolin (P06396), Monocyte differentiation antigen (P08571),
Tumor-associated calcium signal transducer 2 (P09758), Clusterin (P10909), Heterogeneous
nuclear ribonucleoproteins A2/B1 (P22626), Cofilin-1 (P23528) and BPI fold-containing
family B member 2 (Q8N4F0); (iv) one protein decreased in PBCp compared to HCs:
Hornerin (Q86YZ3). Interestingly, only Hornerin was found to be simultaneously reduced
in both pathologies. No significant changes were found in the comparison between AIHp
and PBCp.

Table 2. Pairwise Mann–Whitney comparisons and Kruskal–Wallis test between HCs, AIHp and
PBCp. Significant p-values < 0.05 with and FDR < 10% are highlighted. Direction of significant
changes is also shown.

Proteins HCs vs. AIHp HCs vs. PBCp AIHp vs. PBCp HCs vs. AIHp
vs. PBCp

Uniprot
Code Description Mann

Whitney
Mann

Whitney
Mann

Whitney
Kruskal
Wallis

p-Value p-Value p-Value p-Value

P05089 Arginase * 0.0003
AIH < HC 0.0730 0.0061 0.0006

P06396 Gelsolin 0.2313 0.0015
PBC > HC 0.0653 0.0077

P08571 Monocyte differentiation antigen * 0.0256 0.0001
PBC > HC 0.1474 0.0005

P09758 Tumor-associated calcium signal
transducer 2 0.0187 0.0010

PBC > HC 0.5352 0.0035

P10909 Clusterin * 0.0540 0.0002
PBC > HC 0.0777 0.0009

P14923 Junction plakoglobin 0.0007
AIH < HC 0.2313 0.0287 0.0034

P15924 Desmoplakin * 0.0007
AIH < HC 0.3057 0.0177 0.0030

P22626 Heterogeneous nuclear
ribonucleoproteins A2/B1 * 0.0036 0.0006

PBC > HC 0.1899 0.0009

P23528 Cofilin-1 * 0.0679 0.0007
PBC > HC 0.5177 0.0062

P52790 Hexokinase-3 0.0013
AIH < HC 0.0987 0.0819 0.0053

Q08554 Desmocollin-1 * <0.0001
AIH < HC 0.0064 0.0114 <0.0001



Int. J. Mol. Sci. 2023, 24, 12207 6 of 23

Table 2. Cont.

Proteins HCs vs. AIHp HCs vs. PBCp AIHp vs. PBCp HCs vs. AIHp
vs. PBCp

Uniprot
Code Description Mann

Whitney
Mann

Whitney
Mann

Whitney
Kruskal
Wallis

p-Value p-Value p-Value p-Value

Q86YZ3 Hornerin * <0.0001
AIH < HC

<0.0001
PBC < HC 0.4824 <0.0001

Q8N4F0 BPI fold-containing family B
member 2 0.0145 0.0007

PBC > HC 0.5629 0.0035

Q96DR5 BPI fold-containing family A
member 2

0.0007
AIH > HC 0.0216 0.5861 0.0044

* Proteins selected by Boruta algorithm for RF classification.

2.4. Subjecs Classification with Random Forest (RF) Analysis

RF classification among AIHp, PBCp and HCs was applied to a subset of 17 proteins
selected according to the Boruta method. Figure 1A shows the relative importance of the
selected proteins for classification, evaluated by the mean decreased Gini purity score
(x-axis) and the mean decreased accuracy (y-axis). These parameters account for how much
the purity and accuracy of classification decrease by excluding the specific protein from
classification. Therefore, the greater the value of the parameter the greater the importance of
the protein in the model. In Figure 1, Hornerin (Q86YZ3) appears to be the most important
protein, consistent with the fact that it is the only protein showing significant changes in
both comparisons: AIHp vs. HCs and PBCp vs. HCs (Table 2). Clusterin (P10909) was also
a good discriminant component.
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The most important proteins for the classification of each group are shown in
Figure 1B. As evidenced from this figure, Arginase (P05089), Desmoplakin (P15924),
Cornifin-B (P22528), Heterogeneous nuclear ribonucleoproteins A2/B1 (P22626), 40S ribo-
somal protein S3 (P23396), 40S ribosomal protein S3a (P61247), 14-3-3 protein zeta/delta
(P63104), Tubulin alpha-4A chain (P68366), Desmocollin-1 (Q08554) and Calnexin (P27824)
were the most important proteins for AIHp classification, while Phosphoglycerate kinase 1
(P00558), Monocyte differentiation antigen (P08571), Clusterin (P10909) and Ras GTPase-
activating-like protein (P46940) were selected for PBCp classification.

This subset of proteins provided a consistent increase in classification accuracy. The
out-of-bag (OOB) classification error for AIHp and PBCp was 6% and 12%, respectively.
When grouping AIHp and PBCp, the classification error of patients versus HCs was 0%
(Table 3).

Table 3. Confusion matrix of the classification of the three groups of subjects.

Predicted Class

HCs AIHp PBCp OOB Error (%)

True class

HCs 17 0 0 0

AIHp 0 16 1 6

PBCp 0 2 15 12

Figure 2 shows the multidimensional scaling (MDS) diagram obtained by RF classi-
fication analysis of the three compared groups. The MDS diagram highlights a complete
separation between HCs and both AIHp and PBCp in accordance with 100% accuracy in
the classification shown in Table 3. A 3D video showing the first three MDS axes is reported
in Supplemental materials (Video S1).
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Seven proteins, selected by the Boruta algorithm with high MDG scores, showed also
significant differences by Mann–Whitney tests. However, other components, prevalently
those with low mean decreased Gini scores, did not show significant changes and, on
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the other hand, components with significant changes were not selected by the Boruta
algorithm. This apparent contrast is due to the essential nature of RF classification and
in general of methods based on decision trees. Indeed, RF is able to find multiple ‘split’
points of the same variable, a method completely different from that adopted by classical
univariate tests that consider the whole distribution of data. This allows two or more
groups to be discriminated by a certain variable even when the mean (or average rank) of
the variable is the same in the different groups. On the other hand, the use of multiple split
points is not very suitable for normal diagnostic purposes, which require values gradually
and coherently related to the severity of the disease. Because of this fact, although the
classification produced by RF is of considerable interest in several respects, the proteins
that collectively contribute to the classification of AIHp and PBCp cannot be tout court
considered as candidate markers of the diseases.

The relative abundance of 23 proteins, including the 14 proteins with significant
changes based on Mann–Whitney tests and the 17 proteins selected by Boruta algorithm
for RF classification (eight proteins were in common) are graphically shown in the heatmap
of Figure 3. From the heatmap it is interesting to observe the higher values of Hornerin
(Q86YZ3; last row) in the HCs group with respect to both AIHp and PBCp groups, in
agreement with the results of the Mann–Whitney tests.
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Figure 3. Heatmap of the abundance of proteins that showed significant changes based on M–W
tests (denoted by the P code in the first column) and the proteins selected by Boruta algorithm for
classification of AIH, PBC and HC groups (denoted by the B code in the second column). A, C and P
are abbreviations of AIHp, HCs and PBCp, respectively. Eight proteins were in common in the two
lists. To facilitate comparisons, data were row-wise standardized, that is each protein has mean = 0
and standard deviation = 1. Colors range from bright green (mean − 1 SD) to bright red (mean + 1 SD).
The last row represents Hornerin protein, the only one that was significantly decreased both in AIHp
and PBCp with respect to HCs.

To assess the diagnostic value of Hornerin as a potential salivary biomarker of au-
toimmune liver diseases, Hornerin data were evaluated by a ROC curve, by setting HCs
versus AIHp and PBCp grouped together (Figure 4). The area under the ROC curve
(AUC) was 0.939, and the best cut-off resulted in a sensitivity and specificity of 82% and
74%, respectively.
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2.5. Protein-Protein Interaction Network, Topological Analysis and Pathway Enrichment

The topological features of the protein-protein interaction network (PPIn), such as node
degree and betweenness centrality (BC) distributions, were examined using the Network
Analyzer tool of Cytoscape. In scale-free networks, often observed in biological systems,
most of the nodes (proteins) have few connections to the others, while a small number of
nodes (hubs) are extensively connected to numerous others within the network. The nodes
with high degrees were identified as hub proteins, which represent important connections
within the network structure. On the other hand, nodes with high BC values were identified
as bottleneck proteins because of their central role in facilitating communication and
information flow between different parts of the network.

2.5.1. Proteins Commonly Found among AIHp, PBCp and HCs

The extended PPIn obtained from the 467 proteins found among AIHp, PBCp and
HCs, generated by the STRING database, is shown in Figure 5A.

The PPIn was composed by only one giant network containing 449 nodes, interacting
with 2293 edges and having a PPI enrichment p-value < 1.0 × 10−16. Among the 449 nodes,
47 nodes were selected for their higher BC value and 47 nodes for their larger degree.
The 25 nodes having the highest BC (min. 0.008; max. 0.132) and degree (min. 58; max
177) values, with respect to the full PPIn, were extracted from the extended network, and
constitute the backbone network (Figure 5B). In the backbone network Glyceraldehyde-
3-Phosphate Dehydrogenase (GAPDH) and albumin (ALB) were hub proteins with the
largest degree and highest BC values. The other proteins of the backbone network were
Cofilin (CFL1), T-Complex 1 protein (TCP1), Eukaryotic Translation Elongation Factor 2
(EEF2), Cell Division Cycle 42 (CDC42), Ras Homolog Family Member A (RHOA), Matrix
Metallopeptidase 9 (MMP9), Integrin Subunit Alpha M (ITGAM), ATP Synthase F1 Subunit
Alpha (ATP5F1A), ATP Synthase, F1 Subunit Beta (ATP5B), Valosin-Containing Protein
(VCP), Pyruvate Kinase M1/2 (PKM), Heat Shock Protein Family A (Hsp70) Member 8
(HSPA8), Heat Shock Protein Family A (Hsp70) Member 5 (HSPA5), Heat Shock Protein
Family D (Hsp60) Member 1 (HSPD1), Heat Shock Protein Family A (Hsp90) Member 1
(HSP90AA1), Heat Shock Protein Family B (Hsp90) Member 1 (HSP90AA1), Catalase (CAT),
Calreticulin (CALR), Prohibitin 1 (PHB1), Enolase 1 (ENO1), Prolyl 4-hydroxylase Subunit
Beta (P4HB) and Fibronectin 1 (FN1).

Finally, the 25 proteins included in the backbone network underwent GO biological
process annotation and Reactome pathway analysis (Table 4).



Int. J. Mol. Sci. 2023, 24, 12207 10 of 23Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 10 of 24 
 

 

 
Figure 5. (A) Extended PPI network composed by 449 nodes interacting each other with 2293 edges 
and a PPI enrichment p-value < 1.0 × 10−16. Yellow nodes denote proteins with high degrees and 
betweenness centrality values thus representing the backbone network. (B) Topology of the back-
bone network, extracted from the extended network, containing proteins with higher BC and degree 
values. The size of the node corresponds to their BC values and colors range from yellow to red 
based on degree values. Protein names are reported in the text. 

The PPIn was composed by only one giant network containing 449 nodes, interacting 
with 2293 edges and having a PPI enrichment p-value < 1.0 × 10−16. Among the 449 nodes, 
47 nodes were selected for their higher BC value and 47 nodes for their larger degree. The 
25 nodes having the highest BC (min. 0.008; max. 0.132) and degree (min. 58; max 177) 
values, with respect to the full PPIn, were extracted from the extended network, and con-
stitute the backbone network (Figure 5B). In the backbone network Glyceraldehyde-3-
Phosphate Dehydrogenase (GAPDH) and albumin (ALB) were hub proteins with the larg-
est degree and highest BC values. The other proteins of the backbone network were Cofilin 
(CFL1), T-Complex 1 protein (TCP1), Eukaryotic Translation Elongation Factor 2 (EEF2), 
Cell Division Cycle 42 (CDC42), Ras Homolog Family Member A (RHOA), Matrix Metal-
lopeptidase 9 (MMP9), Integrin Subunit Alpha M (ITGAM), ATP Synthase F1 Subunit Al-
pha (ATP5F1A), ATP Synthase, F1 Subunit Beta (ATP5B), Valosin-Containing Protein 
(VCP), Pyruvate Kinase M1/2 (PKM), Heat Shock Protein Family A (Hsp70) Member 8 
(HSPA8), Heat Shock Protein Family A (Hsp70) Member 5 (HSPA5), Heat Shock Protein 
Family D (Hsp60) Member 1 (HSPD1), Heat Shock Protein Family A (Hsp90) Member 1 
(HSP90AA1), Heat Shock Protein Family B (Hsp90) Member 1 (HSP90AA1), Catalase 
(CAT), Calreticulin (CALR), Prohibitin 1 (PHB1), Enolase 1 (ENO1), Prolyl 4-hydroxylase 
Subunit Beta (P4HB) and Fibronectin 1 (FN1). 

Finally, the 25 proteins included in the backbone network underwent GO biological 
process annotation and Reactome pathway analysis (Table 4). 

Table 4. Top five most significantly enriched Gene Ontology (GO) Biological Process and Reactome 
Pathway enrichment terms for the proteins in the backbone network. Protein names are reported in 
the text. 

Term ID Term 
Term 
Size 

Enriched 
Terms FDR * Associated Genes 

Gene Ontology Biological Process 

Figure 5. (A) Extended PPI network composed by 449 nodes interacting each other with 2293 edges
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Table 4. Top five most significantly enriched Gene Ontology (GO) Biological Process and Reactome
Pathway enrichment terms for the proteins in the backbone network. Protein names are reported in
the text.

Term ID Term Term
Size

Enriched
Terms FDR * Associated Genes

Gene Ontology Biological Process

GO:0071310 Cellular response to
organic substance 2369 21 5.99 × 10−12

GAPDH|CAT|ATP5B|EEF2|TCP1|PKM|
CALR|HSPA5|P4HB|HSP90AA1|FN1|
VCP|HSP90AB1|MMP9|HSPD1|CDC42|

RHOA|HSPA8|CFL1|ITGAM|PHB

GO:0006457 Protein folding 213 9 6.53 × 10−09 TCP1|CALR|HSPA5|P4HB|HSP90AA1|
VCP|HSP90AB1|HSPD1|HSPA8

GO:0046034 ATP metabolic process 204 8 1.12× 10−07 GAPDH|TPI1|ENO1|ATP5B|PKM|VCP|
ATP5A1|HSPA8

GO:0043312 Neutrophil
degranulation 484 10 1.42 × 10−07 CAT|EEF2|PKM|HSP90AA1|VCP|HSP

90AB1|MMP9|RHOA|HSPA8|ITGAM

GO:0051702 Interaction with
symbiont 93 6 7.16 × 10−07 GAPDH|FN1|HSPD1|HSPA8|CFL1|PHB

Reactome pathways

HSA-168256 Immune System 1956 17 1.13 × 10−08

CAT|EEF2|TCP1|PKM|CALR|HSPA5|
P4HB|HSP90AA1|FN1|VCP|HSP90AB1|
MMP9|CDC42|RHOA|HSPA8|CFL1|

ITGAM
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Table 4. Cont.

Term ID Term Term
Size

Enriched
Terms FDR * Associated Genes

HSA-3371556 Cellular response to
heat stress 89 5 4.23 × 10−05 HSPA5|HSP90AA1|VCP|HSP90AB1|

HSPA8

HSA-5336415 Uptake and function
of diphtheria toxin 6 3 4.76 × 10−05 EEF2|HSP90AA1|HSP90AB1

HSA-6785807
Interleukin-4 and

Interleukin-13
signaling

107 5 7.35 × 10−05 HSP90AA1|FN1|MMP9|HSPA8|ITGAM

HSA-9020591 Interleukin-12
signaling 46 4 1.10 × 10−04 TCP1|P4HB|CDC42|CFL1

* Corrected with Benjamini–Hochberg, Term size: the total number of proteins in the GO and Reactome pathways;
Enriched terms: number of terms pertaining to the backbone network; Associated genes: proteins associated to
the specific term.

2.5.2. Proteins with Varied Levels among AIHp, PBCp and HCs

The PPIn built by using the 23 proteins obtained by merging those showing significant
varied levels among AIHp, PBCp and HCs (14 proteins) based on Mann–Whitney tests,
with the proteins selected by the Boruta algorithm (17 proteins), is shown in Figure 6.
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Figure 6. Topology of the network containing varied proteins among AIHp, PBCp and HCs. The
size of the node corresponds to their BC values and colors range from yellow to red based on degree
values. BC: Betweenness centrality.

The PPIn was composed of one main network containing 13 nodes, interacting with
each other through 15 edges, and three minor networks (topological features of the nodes
are reported in supplemental material Table S2). The protein with the highest BC and
largest degree is Phosphoglycerate Kinase 1 (PGK1) followed by 14-3-3 protein zeta/delta
(YWHAZ) and Cofilin-1 (CFL1). One minor network comprised three components of
desmosomes, namely Junction plakoglobin (JUP), Desmoplakin (DSP) and Desmocollin-1
(DSC1); the second comprised two antimicrobial peptides, namely BPI fold-containing
family A member 2 (BPIFA2) and BPI fold-containing family B member 2 (BPIFB2) and the
last comprised two cytoskeleton components, namely Hornerin (HRNR) and Small Proline
Rich Protein 1B (SPRR1B).

Finally, also these proteins underwent GO biological process annotation and Reactome
pathway analysis as reported in Table 5.
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Table 5. Gene Ontology (GO) Biological process and Reactome Pathway enrichment terms for the
proteins varied among AIHp, PBCp and HCs.

Term ID Term Term
Size

Enriched
Terms FDR Associated Genes

Gene Ontology Biological Process

GO:0045055 Regulated exocytosis 697 12 5.56 × 10−08
TUBA4A|DSC1|IQGAP1|HK3|CD14|
CLU|ARG1|HRNR|GSN|DSP|JUP|

SERPINB6

GO:0044419
Interspecies

interaction between
organisms

1899 12 1.60 × 10−04
BPIFB2|CANX|BPIFA2|IQGAP1|RPS3|

CD14| CLU|RPS3A|HNRNPA2B1|
ARG1|GSN|CFL1

GO:0060429 Epithelium
development 1109 9 0.0011 DSC1|IQGAP1|SPRR1B|HRNR|TAC

STD2|PGK1|DSP|JUP|CFL1

GO:0070268 Cornification 113 4 0.0036 DSC1|SPRR1B|DSP|JUP

GO:2001235
Positive regulation of
apoptotic signaling

pathway
180 4 0.0162 RPS3|CLU|GSN|YWHAZ

GO:0071345 Cellular response to
cytokine stimulus 1013 7 0.0289 CANX|RPS3|HNRNPA2B1|ARG1|GSN|

YWHAZ|CFL1

GO:0030155 Regulation of cell
adhesion 712 6 0.0328 IQGAP1|RPS3|ARG1|TACSTD2|

GSN|JUP

Reactome pathways

HSA-168256 Immune System 1956 18 4.76 × 10−11

BPIFB2|CANX|TUBA4A|BPIFA2|DSC1|
IQGAP1|HK3|CD14|CLU|HNRNPA2B1|
ARG1|HRNR|GSN|DSP|JUP|YWHAZ|

CFL1|SERPINB6

HSA-6809371 Formation of the
cornified envelope 127 4 0.0083 DSC1|SPRR1B|DSP|JUP

HSA-109581 Apoptosis 173 4 0.0159 CD14|GSN|DSP|YWHAZ

HSA-447115 Interleukin-12 family
signaling 56 3 0.0159 CANX|HNRNPA2B1|CFL1

HSA-6803157 Antimicrobial peptides 87 3 0.0338 BPIFB2|BPIFA2|CLU

HSA-76002
Platelet activation,

signaling and
aggregation

260 4 0.0461 TUBA4A|CLU|YWHAZ|CFL1

FDR corrected with Benjamini–Hochberg. Term size: the total number of proteins in the GO and reactome
pathways; Enriched terms: number of terms pertaining to the backbone network; Associated genes: proteins
associated to the specific term.

3. Discussion

The aim of this study was to provide a salivary molecular signature of autoimmune
liver diseases. A robust statistical analysis of quantitative salivary proteomic data from
AIHp, PBCp and controls provided indication of the proteins statistically varied in levels
among groups, considered as potential biomarkers of the disease, and proteins able to
classify a subject with good accuracy based on AIH or PBC occurrence. Additionally,
proteomic data have been used to build a PPIn and a functional enrichment analysis
has been performed to explore the biological significance of salivary proteins and obtain
insights regarding the contribution of these proteins to the pathogenesis of autoimmune
liver diseases.
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3.1. Topology-Based Functional Enrichment Analysis

In the backbone network, Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH)
and albumin (ALB) were either hub and bottleneck proteins with the largest degree and
BC values. It is reported that proteins that are hubs as well as bottlenecks will likely be
evolutionarily conserved [29] and are involved in multiple pathways [30].

In the contest of chronic liver disease, both quantitative and functional changes have
been evidenced in either albumin or GAPDH [31]. It has been demonstrated that in
patients with liver cirrhosis, albumin undergoes both several reversible and irreversible
posttranscriptional changes that alter its properties [32]. Importantly, albumin represented
a good prognostic factor, being a significant predictor of death in patients with liver
cirrhosis [33,34]. Ideally, topological network analysis identifies proteins susceptible to be
potential biomarker of pathologies [35]; however, our proteomic analysis of saliva from AIH
and PBC patients did not evidence varied levels of these two important proteins. Indeed,
among the 25 proteins constituting the backbone network, and thus showing higher degree
and BC values, only Cofilin-1 (degree 68, BC 0.016) was found to be increased in PBC
patients with respect to HCs. As reported below, Cofilin-1 is a multifunctional protein
involved in many biological processes and functional pathways also in the liver.

The topology-based functional enrichment analysis performed on the backbone’s
proteins revealed a set of central nodes mainly associated with the immune system; among
these Interleukin-4, Interleukin-13 and Interleukin-12 signaling displayed higher p-values.
Hepatocytes, cholangiocytes, putative hepatobiliary progenitor cells and fibroblasts express
functional interleukin-4 and interleukin-13 receptors, and studies conducted on transgenic
mice with interleukin-13 signaling genetically disrupted in hepatocytes, cholangiocytes
or fibroblasts revealed key roles for interleukin-13 in fibrosis, steatosis, cholestasis and
ductular reaction [36]. PBC has a genetic association with interleukin-12 signaling [37],
so that modulation of this pathway at an early stage of disease has been proposed as a
therapeutic model in the treatment of this pathology [38]. Regarding proteins with varied
levels among AIHp, PBCp and HCs, the highest central nodes were Phosphoglycerate
Kinase 1 (PGK1) followed by 14-3-3 protein zeta/delta (YWHAZ) and Cofilin-1 (CFL1).
The topology-based functional enrichment analysis performed on these salivary proteins
highlighted an enrichment of terms with multifaceted biological functions mostly related
to the immune system, but also with a strong involvement in the liver fibrosis process and
with antimicrobial activity.

3.2. Dysregulated Proteins in AIH and PBC Are Mainly Involved in Liver Fibrosis

Liver fibrosis is an abnormal wound repair response caused by an assortment of
chronic liver damages, which is characterized by over-deposition of diffuse extracellular
matrix and anomalous hyperplasia of connective tissue [39]. Our analysis performed on the
salivary proteome of AIH and PBC evidenced a set of dysregulated proteins with respect
to HCs potentially involved in the development and/or progression of this pathological
condition. These findings were further confirmed by the topology-based biological and
pathways enrichment analysis that evidenced an enrichment of terms related not only to
the immune system, but also to epithelium development, regulation of cell adhesion and
formation of the cornified envelope.

The concomitant reduced level of Junction plakoglobin, Desmoplakin and Desmocollin-
1 in AIH patients is intriguing since all three proteins are major components of desmosomes,
cell structures specialized in cell-to-cell adhesion. The reduction in desmosomal protein
level in AIHp, evidenced for the first time in this study, could be related to their liver
fibrotic state; in fact, 70% of the AIHp enrolled in the study presented the most severe
liver fibrotic stage III and IV while the majority of PBCp presented a mild liver fibrotic
stage I and II. The exact localization of cell junctions in hepatic epithelial cells has not
been determined yet [40], but Zhou et al. have shown that, in the absence of plakoglobin,
bile duct ligation resulted in a more severe disease outcome with enhanced liver fibro-
sis [41]. The correlation between the levels of desmosomal proteins and the fibrotic stage
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has been described in mice lacking E-cadherin in the liver which developed periportal
inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis,
which resembles primary sclerosing cholangitis [42]. These findings point out that an intact
intrahepatic biliary network with normal bile secretion depends on functional E-cadherin.
Moreover, Dubash et al. described how the loss of desmosomal proteins in transgenic mice
activated a signaling pathway in cardiomyocytes that up-regulated multiple inflammatory
and extracellular matrix proteins known to promote tissue fibrosis [43].

Arginase-1 levels were found decreased in AIHp with respect to HCs and important
for AIH classification in RF analysis. This protein is a manganese-containing enzyme that
catalyzes the final step in the urea cycle. In the liver arginase-1 is mainly expressed in the
periportal hepatocytes, but not in the bile ducts, endothelial and Kupffer cells [44]. Serum
arginase level is significantly associated with oxidative stress since it is indirectly involved
in nitric oxide (NO) regulation by the consumption of L-arginine, which is a common
substrate for NO synthase (NOS). The balance between the consumption of L-arginine by
arginase-1 (leading to the production of proline for collagen and polyamine production
which are essential for cell growth and matrix modelling) and NOS (for NO production)
determines the outcome of wound repair, with arginase-1 controlling the healing process
and NOS regulating the anti-microbial activity. In a mouse model of liver fibrosis, hepatic
stellate cells activation is accompanied by a switch in arginine catabolism resulting from
downregulation of NOS and upregulation of arginase-1; therefore, inhibition of arginase-1
has been proposed as an anti-fibrotic target for the treatment of liver fibrosis [45]. Our
results, which evidenced reduced arginase-1 levels in AIHp, are apparently in contrast
with these findings, however it can be highlighted that most of the patients enrolled for
this study were undergoing corticosteroids therapy whose effect on arginase-1 expression
remains to be elucidated [46].

Gelsolin and Cofilin-1, both showing increased levels in PBCp with respect to HCs,
are actin-binding proteins, key regulators of actin filament assembly and disassembly. In
particular, Cofilin-1 is, among the proteins found with varied levels in AIHp and PBCp,
the only one included in the backbone network probably thanks to its prominent role
in actin dynamics and modulation essential for cell survival. This prominent role in the
topological analysis is not surprising since liver injuries create a microenvironment that
alters actin dynamics in the hepatic stellate cells which are responsible for type I collagen
expression, the major extracellular matrix protein in various types of fibrotic diseases [47].
Hereafter, Cofilin-1 levels were related to the stage of liver fibrosis playing a key role in
the progression of liver fibrosis toward hepatocellular carcinoma [48]. Moreover, Cofilin-1
levels have been found to be increased in HBV-associated hepatocellular carcinoma and its
levels were correlated with the severity of this liver disease [49].

Early experiments on mice lacking gelsolin evidenced a reduction in dermal fibroblasts
migration, establishing that gelsolin is required for rapid motile responses in cell types
involved in stress responses such as hemostasis, inflammation and wound healing [50].

Similarly, clusterin, a Golgi extracellular chaperone implicated in cholestatic and
fibrotic processes, was also found to be augmented in PBC patients with respect to HCs. It
is expressed by hepatocytes and secreted into the bile, possibly acting as a chaperone to
protect either bile duct epithelia from damage by toxic bile constituents or biliary proteins
from misfolding [51]. Clusterin was found to be upregulated in thioacetamide-induced and
bile duct ligation mouse models of liver fibrosis; the upregulation of clusterin attenuated
hepatic fibrosis by inhibiting the hepatic stellate cells’ activation and Smad3 signaling
pathways responsible for the production of extracellular matrix proteins such as type
I collagen [52]. On the contrary, circulating clusterin levels were significantly reduced
in biliary atresia, which is a rare cholestatic liver disease of neonates characterized by
obstruction of the biliary system; in this case clusterin levels were reduced, especially
in patients with worse outcomes including jaundice and severe liver fibrosis [53]. Our
results, in agreement to these findings, suggested that upregulation of clusterin may act as
a defense mechanism to prevent hepatic fibrosis.
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Higher levels of Tumor-associated calcium signal transducer 2 (Trop-2) were found in
PBC patients with respect to HCs. It has been reported that Trop-2 levels in hepatitis C pa-
tients were inversely correlated to AST and ALT values [54], but our results cannot confirm
this correlation since PBC patients enrolled for the study presented almost normal values of
transaminases. Trop-2 plays a role in tumor progression by actively interacting with several
key molecular signaling pathways traditionally associated with cancer development and
progression. Conversely to most type of tumor, where Trop-2 was found upregulated [55],
in liver cancer this protein has been found downregulated [56]. The different expression
pattern of Trop-2 in liver cancer and autoimmune liver diseases is intriguing and deserves
further elucidation.

The same controversial results in the expression pattern between liver cancer and
autoimmune liver diseases has been highlighted for hornerin; this protein was found to
be elevated via proteomic analysis in hepatocellular carcinoma [57] while our proteomic
data revealed hornerin as the only protein with levels reduced in both AIH and PBC
patients with respect to HCs as well as the protein that, in RF analysis, best discriminated
these pathologies from HCs. This contradiction is quite interesting and could be related
to different pathophysiological pathways between cancer and AIH and PBC. For instance,
hornerin was found to be downregulated in atopic dermatitis, contributing to the epidermal
barrier defect observed in this skin disease [58]. Indeed, being a component of the liver
matrisome [59], it can be speculated that reduced levels of hornerin in both AIH and PBC
patients may be correlated to the anomalous hyperplasia of connective tissue associated
with liver fibrosis. The role of hornerin as a potential biomarker for AIH/PBC classification
has been further validated by the ROC curve of HCs versus AIHp and PBCp grouped
together, which provided an AUC of 0.93 with an accuracy of 78%. However, it may be
highlighted that a better classification accuracy of HCs of 100% with respect to AIHp and
PBCp grouped together was obtained by RF using the whole panel of 17 proteins selected
by the Boruta algorithm.

Our study on the salivary proteome of AIH and PBC revealed also varied levels
of proteins with prevalent antimicrobial function, and marginally involved in the liver
fibrosis process. Indeed, several studies have shown that metabolites of oral microbiota,
through the gut-oral axis, can enter the bloodstream and contribute to the occurrence and
progression of many liver diseases [60,61].

BPI fold-containing family A member 2 (BPIFA2) and BPI fold-containing family
B member 2 (BPIFB2) proteins are characterized by the presence of the bactericidal/
permeability-increasing protein fold (BPI fold) [62].

Interestingly, despite their similar antimicrobial function, increased levels of BPIFA2
and BPIFB2 were observed in AIH and PBC patients, respectively, with respect to HCs. This
difference could be related to an oral dysbiosis, which is often observed in such patients and
involves the alteration of different bacterial species in the oral microbiota of AIHp [23] and
PBCp [63] and towards which BPIFA2 and BPIFB2 can show different inhibitory activity.
Indeed, a recent study on BPIFA2 knockout mice highlighted its prominent role in the
solubilization of ingested bacterial lipopolysaccharides [64]. From another point of view,
the increased level of BPIFA2 in AIHp only could be related to other biological functions
of this multifaceted protein. In fact, besides its prominent role in the local antibacterial
response, BPIFA2 exerted a role in the prevention of early fibrosis progression and the
development of chronic kidney disease [65]. A similar protective role in inhibiting liver
fibrosis can be speculated for the AIHp since the patients enrolled for this study showed a
marked liver fibrotic state.

An impaired gut-oral axis in autoimmune hepatitis could be also related to the in-
creased level of Monocyte differentiation antigen CD14 we observed in PBCp with respect to
HCs. CD14 might be an important factor in the pathogenesis of PBC since it is constitutively
expressed by human intrahepatic biliary epithelial cells [66]. As a marker of monocyte acti-
vation and response to bacterial lipopolysaccharides, CD14 level reflects the host response
to products of microbial translocation [67]. Increased levels of CD14 were found in PBC
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patients before UDCA therapy [68], but our results showed an increase in CD14 levels also
in patients undergoing therapy with UDCA. CD14 protein also plays a key role in liver
disease by reducing fibrosis through degradation or clearing up collagen-I deposits [69].

3.3. Machine Learning Analysis of Proteomics Data

RF analysis, one of several up-to-date machine learning methods, evidenced a panel of
proteins/peptides present in saliva able to correctly classify the AIHp group with respect
to PBCp with 94% accuracy, the PBCp group with respect to the AIHp group with 88%
accuracy and PBCp/AIHp grouped together with respect to HCs with 100% accuracy. This
result confirms our previous one obtained by applying the same statistical approach to a
mass-spectrometry dataset obtained after top-down proteomic analysis of the acid-soluble
fraction of saliva from AIHp and PBCp. Moreover, this approach confirms the feasibility
of the salivary proteome to discriminate groups of subjects based on physiological or
pathological condition not only confined to the oral cavity [28].

3.4. Study Limitation

The low number of subjects involved in the study may not be entirely representative
of the considered population; nevertheless, the statistical analysis performed by our group
provides a good classification of subjects based on AIH or PBC occurrence. A larger
population will be useful to further validate the present findings. Most of the proteins found
with altered levels among AIHp, PBCp and HCs and/or selected by Boruta algorithm for
patients’ classification have multiple isoforms often characterized by different, sometimes
even opposite, functional activities, and the bottom-up approach exploited in this study
does not allow for characterization of isoforms/proteoforms.

Moreover, the observational nature of the study did not allow a demonstration of the
causal effect of the varied proteins on AILDs, which can be considered potential biomarkers
rather than causal mediators of these pathologies.

4. Materials and Methods
4.1. Ethical Statement

This is a cross-sectional study performed in 2021 on AIHp and PBCp recruited from
the liver unit of University Hospital of Cagliari, Sardinia, Italy. Patients and healthy
controls signed the informed written consent that agreed with the latest stipulations es-
tablished by the Declaration of Helsinki. The Committee of the “Azienda Ospedaliero-
Universitaria di Cagliari”, Cagliari, Italy, approved the study on 21 July 2021 (reference
number PG/2021/11303).

4.2. Study Subjects and Clinical Studies

Patients were diagnosed based on the criteria reviewed by the International Au-
toimmune Hepatitis Study Group (IAIHG) in 1999 [70] and by the EASL clinical practice
guidelines [5]. The study included patients showing, at the time of saliva sampling, almost
normal values of ALT and AST; based on these inclusion criteria, only patients that were
under pharmacological therapy for at least three years were selected. Only one AIHp was
without therapy but was included in this study because of his normal values of transami-
nases. Patients affected by overlap syndrome, chronic hepatitis induced by HBV or HCV,
drug or alcohol abuse, fatty liver disease, primary sclerosing cholangitis and any major oral
disease (periodontitis, caries) were excluded.

The HCs included age- and sex-matched healthy volunteers recruited from the local
population. Controls were excluded if they were relatives of the patients and had a history
of liver diseases, immunological disorders and major oral diseases. Most of the controls
were patients’ caregivers recruited in the hospital during follow-up and/or medical and
research personnel involved in the study.
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4.3. Sample Collection, Treatment and Acid-Insoluble Proteins Solubilization

Unstimulated whole saliva (WS) (from 0.2 to 1 mL) was collected with a soft plastic
aspirator at the basis of the tongue from 9.00 am to 1.00 pm. in fasting conditions using a
standard protocol optimized to preserve salivary proteins from proteolytic degradation.
After collection, samples were immediately mixed with an equal volume of 0.2% (v/v) 2,2,2-
trifluoroacetic acid (TFA) and centrifuged at 14,000× g for 10 min at 4 ◦C. The insoluble
fraction (pellet) was separated and stored at −80◦ until the solubilization.

Three different solutions were tested for pellet solubilization: (i) Solution 1, 2% SDS,
0.4 M sodium chloride (NaCl); (ii) Solution 2, 0.1 M sodium hydroxide (NaOH);
(iii) Solution 3, 2% SDS, 0.5 mM DTT, 30 mM Tris-HCl pH 6.8. To improve solubiliza-
tion, the three solutions were submitted to three cycles of 1 min sonication/1 min vortex
followed by 5 min centrifugation 14,000× g, 4 ◦C. The resulting pellet was submitted to
a further solubilization step under the same conditions. The insoluble material was dis-
carded, and the soluble fraction submitted to TPC determination in duplicate by PierceTM

BCA Protein Assay kit (Thermo Fisher Scientific, Waltham, MA, USA), according to the
provided kit instructions.

4.4. SDS-PAGE, Bands Excision and Enzymatic Digestion

All chemicals and reagents were purchased from Bio-Rad (Hercules, CA, USA). Ten µg
of proteins were loaded on SDS-PAGE under reducing conditions. Samples were previous
treated with Laemmli Buffer [71] for 5 min at 100 ◦C. The electrophoretic separation, carried
out at 180 Volt constant for 30 min, was performed using 4–15% Mini-PROTEAN® TGX™
Precast Protein Gels and Tris/Glycine Running Buffer (0.025 M Tris, 0.192 M Glycine,
0.1% SDS, pH 8.3). Molecular weights were determined by loading Precision Plus Dual
Color Protein Standard. After the electrophoretic separation, gels were stained with Bio-
Safe™ Coomassie Stain following the provided instructions. After destaining, each lane
of the gel was divided into three slices corresponding to the following molecular weights:
250–75 kDa (A), 75–25 kDa (B) and < 25 kDa (C) (Figure S1), and slices, manually excised,
cut into small pieces and submitted to in-gel digestion. Trypsin (Trypsin Singles, Proteomics
Grade— Sigma-Aldrich/Merck, Darmstadt, Germany) was added to gel samples following
the provided instructions in enzyme/proteins ratio of 1/80 (w/w) and incubated overnight
at 37 ◦C. Extracted tryptic peptides were lyophilized and then solubilized in 0.1% formic
acid (FA) for nano-RP-HPLC-high resolution ESI-MS and MS/MS analysis.

4.5. Nano-RP-HPLC-High Resolution ESI-MS/MS Analysis

All chemicals and reagents were purchased from Sigma-Aldrich/Merck. One hundred
fifty-three samples corresponding to the tryptic peptides prepared by in-gel digestion
of A, B and C slices obtained in triplicate from the acid-insoluble fraction of 17 saliva
samples were analyzed, from September 2021 to November 2022, with an Ultimate 3000
Nano System HPLC (Dionex-Thermo Fisher Scientific) coupled with a LTQ Orbitrap Elite
(Thermo Fisher Scientific). The Easy Spray reverse-phase nano column (250 mm × 75 µm
inner diameter I.D., Thermo Fisher Scientific) was a C18 with 2 µm beads and elution of
peptides was achieved with aqueous solvent A (0.1% FA) and aqueous solvent B (0.1% FA,
80% ACN v/v) in 100 min at a flow rate of 0.3 µL/min with the following gradient: 0–3 min
at 4%B, 3–70 min 4–50% B, 70–90 min 50–80%B, 90–92 min 80–90%B, 92–100 min 90%B. The
mass spectrometer was operating at 1.7 kV in the data-dependent acquisition mode, with
the capillary temperature set at 275 ◦C and S-Lens RF level 68.4%. Full MS experiments
were performed in positive ion mode from 350 to 1600 m/z with resolution 120,000 (at
400 m/z). The 10 most intense ions were subjected to CID fragmentation setting 35% of
normalized collision energy for 10 ms, isolation width of 2 m/z and activation q of 0.25.

4.6. Protein Identification and Quantitation

Protein characterization was performed by Proteome Discoverer (PD) software (ver-
sion 2.2, Thermo Fisher Scientific) with the SEQUEST HT cluster search engine (University
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of Washington, licensed to Thermo Electron Corporation, San Jose, CA, USA) against the
UniProtKB Homo sapiens database (188,453 entries, release 2019_03). MS spectra obtained
from the three gel portions of the same sample were analyzed by PD as fractions of that
sample. Database search parameters were as follows: carbamidomethylation of cysteine as
fixed modification, oxidation of methionine, serine/threonine phosphorylation, N-terminal
pyroglutamic residue and N-terminal acetylation as dynamic modifications and allowance
for up to two missed tryptic cleavages. The peptide mass tolerance was set to 10 ppm and
fragment ion mass tolerance was 0.6 Da. Peptides were filtered for high confidence and a
minimum length of 6 amino acids; settings of FDR were 0.01 (strict) and 0.05 (relaxed).

Proteins identified were then filtered for high FDR confidence and for a minimum
number of 2 unique peptides, excluding keratins. Grouping and quantification were set
specifying categorical factor related to the condition AIHp, PBCp and HC. Proteins iden-
tified have been subjected to PD Label-Free Quantification and protein abundances have
been determined based on area of unique peptide precursor ions. The mass spectrome-
try proteomics data have been deposited with the ProteomeXchange Consortium via the
PRIDE [72] partner repository with the dataset identifier PXD039847.

4.7. Data Analysis

Only proteins found with at least 30% of distribution among all the three comparison
groups (AIHp, PBCp and HCs) were selected for statistical analysis. Protein abundances
were first automatically normalized against the total amount of tryptic peptides by PD
software, then transformed to log2 and submitted to quantile normalization. Values under
the detection limit were replaced with log2(1000), a value below the minimum of the entire
dataset. The choice of this conventional value was not critical for statistical analyses, as
non-parametric tests and RF do not consider the continuous data distribution but only the
rank order of values.

4.8. Protein-Protein Interaction Network, Topological Analysis and Pathway Enrichment

Protein–protein interaction (PPI) analysis was performed on 467 proteins found with
at least 30% of distribution among all the three comparison groups (AIHp, PBCp and
HCs) and on the 23 proteins obtained by merging those showing significant varied levels
among AIHp, PBCp and HCs (14 proteins) based on Mann–Whitney tests, with the proteins
selected by Boruta algorithm (17 proteins). Analysis was performed by STRING v.11.5 [73]
(latest access on July 2023) with a default medium confidence of 0.4 and FDR stringency
at 5%. Active interaction sources were based on “experiments”, “co-expression” and “co-
occurrence”. Topological parameters of the PPI network, such as degree and betweenness
centrality (BC) were calculated from Cytoscape v.3.10 [74]. The stringApp for Cytoscape
was used to retrieve PPI networks from the STRING database [75] and topological analyses
of the networks were performed using the Network Analyzer tool [76]. Two important
metrics—degree and betweenness—were utilized to evaluate the importance of nodes in
a network [77]. Hub proteins were identified by their very high degree of connectivity.
Proteins with high betweenness centrality, namely bottlenecks, are key connectors in the
PPI network, controlling the flow of information within a network [78].

For accessing the key nodes in the PPI, network members were first ranked by their
degrees and BC afterwards the top-scoring proteins corresponding to 10% of the total num-
ber of nodes were selected. These topologically central proteins comprised the backbone of
the PPIn. Selected proteins were further submitted to functional enrichment analysis based
on reactome pathway distribution and GO biological process by stringApp, after removing
redundant terms with default cutoff of 0.5.

4.9. Statistical Analysis

Various goodness-of-fit tests (Kolmogorov–Smirnov, Shapiro–Wilk, Lilliefors, etc.)
showed a considerable deviation from normality of protein abundances. Thus, comparisons
among the three groups were performed by Mann–Whitney (MW) and Kruskal–Wallis
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(KW) non-parametric tests. Significant p-values of multiple tests were adjusted by the
Benjamini–Hochberg procedure [79] to keep the cumulative false discovery ratio (FDR)
among all tests less than 10%. Classification of subjects was obtained using Random Forest
(RF) analysis and optimized by selecting a subset of relevant proteins identified by the
Boruta method [80] and by tuning the two main RF parameters (total number of trees and
number of features randomly sampled for each split point). RF classification was validated
by the ‘out-of-bag’ samples. In detail, this method consists in using only about two-thirds
of the samples for each decision tree. The classification obtained with these samples is then
tested using the remaining one-third of the samples (hence the term ‘out-of-bag error’).
This procedure is repeated for each of the planned number of trees (1000 in our analysis),
each time randomly selecting the samples for classification and those for validation. The
overall accuracy is ultimately assessed as the average of the ‘out-of-bag’ errors. The relative
importance of each protein for classification was evaluated by the decrease in the Gini
purity index and decrease in classification accuracy observed after temporarily excluding
that protein from the analysis. Dimensionally reduced diagrams of the RF classification
were obtained by multidimensional scaling (MDS) using the RF proximity between each
two subjects. Proximity was calculated as the normalized frequency of trees containing the
two subjects in the same end node. Statistical analyses were made using R (R Core Team. R:
A language and environment for statistical computing. Vienna, Austria: R Foundation for
Statistical Computing; 2014. http://www.R-project.org/; latest access on 1 December 2022)

5. Conclusions

The bottom-up proteomic approach applied in this study, associated with a robust
statistical analysis, allowed us to highlight a set of potential salivary biomarkers of AIH
and PBC. The topology-based functional enrichment analysis performed on these potential
salivary biomarkers highlighted an enrichment of proteins with multifaceted biological
functions mostly related to the immune system, but also with strong involvement in the
liver fibrosis process and with antimicrobial activity. Cofilin-1 was the protein with the
highest centrality values in the backbone PPI network among those with varied levels,
while Hornerin was the only protein showing reduced levels in both AIHp and PBCp
compared to HCs and also able to better discriminate the patients of both groups from
HCs in the RF analysis. RF analysis confirmed the feasibility of the salivary proteome to
discriminate groups of subjects based on AIH or PBC occurrence as previously suggested
by our group.
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