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A B S T R A C T

Here we discuss the behaviour of very thick composite plates considering electro-magneto-elastic coupling of
various types using fully three-dimensional (3D) kinematics. Published research highlights a lack of studies on
the 3D mechanics of smart composite plates that integrate both higher-order (flexoelectric/flexomagnetic) and
lower-order (piezoelectric/piezomagnetic) multiple physical fields (electro-magneto-elastic). The common
approach to achieving the targeted and desired mechanical behavior within such composites could involve using
structural elements. This gap can potentially be addressed by amalgamating the term ∂/∂z with the 2D governing
equations of plates. This expression indicates alterations in thickness, in which z is the coordinate dedicated to
the thickness. The governing equations can be created by operating on the variational method which enables us
to establish and settle the 3D bending equations of the bulk structure. The pointed-out equations have been
influenced by the implementation of additional hypotheses, such as von Kármán’s strain and complicated 3D
tensor relations. Inserting the term ∂/∂z into the mathematical model renders that the analytical solution
techniques are unable to assist us in obtaining numerical results. Consequently, a semi-analytical solving method
grounded on the polynomial phrases facilitates the acquisition of the required solution. This fully 3D bending
study of very thick piezocomposite cube-like bulk structures (CBS) can be an original reference in the field of
mechanics of intelligent plate-like structures.

1. Introduction

Among the capabilities of smart materials, one can mention their
ability to maintain their original configuration. However, such a prop-
erty is under certain conditions due to special stimuli. This outstanding
feature shows the upper hand for smart composite materials in contrast
to other composite structures [1–3]. The intelligent materials are able to
sense different environmental circumstances and respond to these situ-
ations due to their atomic and perovskite crystalline structure. Among
the conditions, one can refer to humidity, magnetic, and electric fields,
and also thermal environment [4].

From a commercial point of view, intelligent composite structures
are famous for electromagnetic materials, which among the cases of
their role in sensitive engineering industries can be expressed as tools
that are used as actuators and sensors. Designing and producing non-

biological systems inspired by biological systems is one of the pur-
poses used for this type of material. In fact, mathematical and compu-
tational modeling, analysis, and simulation of processes in complex
biological mechanisms are made possible by these intelligent structures.
Smart composite plates are among the commonly operated elements in
electromagnetic industries. The outstanding advantages of these engi-
neering pieces bring a wide range of applications. These composites
provide the beneficial mechanical properties of classic composites ob-
tained from the combination of several natural substances, together with
the smart features all at once. Several basic engineering materials are
involved in the formation of these composites, including microstructure
materials or even smaller ones, i.e. nanostructures. The combination of
primary materials such as cobalt, iron oxide, lead, etc., can result in
smart ceramics that provide significant sensing capability. In the initial
process of ceramic production, after crystallization at a temperature
higher than Curie, the perovskite crystal structure is formed. This
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combination of materials magically gives the ability to be intelligent and
enables engineers to use these ceramics in control systems, actuators,
and sensors on any scale [5–9]. The utilization of the substances is
evident across diverse applications, aiming to manage structural shape,
mitigate noise, and eradicate vibrations in various items such as aero-
space engineering, marine industries, and mechanical fields. Further,
assort of functions can be witnessed in other domains, ranging from
automotive and civil platforms, specifically in green energy sectors
[10–14].

The Smartness aspect can be acquired through the medium of various
effects such as piezomagneticity, piezoelectricity, and higher order ones
like flexoelectricity and flexomagneticity among which the last item is a
cutting-edge and fresh research territory. Flexomagnetic effect (FM)
encompasses an essential characteristic through which a substance
demonstrates a reactive magnetic behavior, either as a reverse response
due to interaction between elastic strains and magnetic field gradients,
or through the interrelation of elastic strain gradients and magnetic
fields which results in the emergence of the direct effect. The phenom-
enon of FM is contingent upon size, showcasing its significance pri-
marily at reduced scales, particularly within the realms of micro and
nano dimensions. Consequently, ceramics crafted at these diminutive
scales prominently manifest the effect associated with FM. This property
harbors the capability to significantly transform various domains
including but not limited to spintronics, magnetoelasticity, etc., poten-
tially revolutionizing their methodologies and applications. Continued
exploration within this research area holds the promise of innovating
novel material features with heightened magnetic characteristics which
allow us to precisely control and manipulate via elastic displacements
[15–24].

While the FM influence comprehension remains nascent in theory, a
significant portion of research involves computational models. Never-
theless, empirical investigations have yielded compelling evidence
affirming the effect’s existence [15–24]. Ongoing advancements for this
category are poised to usher in a wave of innovative materials and de-
vices harnessing the FM effect which opens pathways to novel techno-
logical avenues and promising fresh prospects for the development of
cutting-edge technologies. The research emphasis has been on flex-
omagnetic properties across diverse material conditions while delving
into the underlying circumstances that dictate their mechanical

response within one- (1D) and two-dimensional (2D) investigations
[25–34]. The presented references offer an excellent foundation for
acquainting oneself with the FM, serving as valuable resources to
comprehend the current status and ongoing research in this field. All the
above-mentioned research backgrounds are the sight of 2D mechanical
studies approving further research which is necessary for the FM effect
to thoroughly understand the capacity of structures consisting of flex-
omagnetic influence. However, in the immediate past, [35] kept forward
the FM studies by modeling the smart composite beams in a 3D medium.
They realized that a 3D computational model could provide more
meaningfulness for strain gradients, magnetic fields, etc. Although this
work developed the research on FM, it relates to the beam structures.
The present study grants another computational model to present full
deformations in three axes for a 3D intelligent CBS entailing FM.

This article comprehensively delves into the fully three-dimensional
elasticity analysis of FM smart CBS, integrating the authors’ novel
derivation of the modified energy density for piezomagnetic-
flexomagnetic (PFM) structures. The subsequent section systematically
unfolds the constitutive equations while consolidating 3D tensors
sourced from reputable literature. As the formulation addresses variable
thickness CBS, derivation of internal moments and forces remains un-
attainable; however, direct acquisition of principal equations via stress
components is proposed. Assumedly, a uniformly distributed transverse
static load is applied, prompting the exploration of potential solutions to
the 3D constitutive relations by means of polynomial terms utilizing a
semi-analytical approach.

To lay out this article, it has been arranged in the following sequence:
The initial section, Section 1, aims to provide an introductory overview
of the subject matter along with a concise review of pertinent literature.
Section 2 is dedicated to elucidating the mathematical model governing
the primary focus of this study as outlined in the title. Within Section 3,
an in-depth exploration of semi-analytical solution methodology is
represented which provides insight into the technique employed for
resolving the problem. Section 4 meticulously examines the obtained
numerical results by validating them with established references. Sec-
tion 5 precisely explores the acquired findings by offering an elaborate
analysis and comprehensive interpretation of the results. Finally, a
conclusion section that summarily shortens the carried-out study is
assigned to this paper by Section 6.

Nomenclature

ℵ Displacement vectors
ui(i = 1, 2, 3) Displacements in the x-, y-, and z- directions of the

domain
V Domain’s volume
N0

xx and N0
yy Effect of magnetic field in line with the x- and y-axis

εij Elastic strains
σij Elastic stresses
ψ External magnetic potential
F External mass loads
hijkl 4th-order converse flexomagnetic tensor
fijkl 4th-order direct flexomagnetic tensor
Cijkl 4th-order elasticity tensor
R Free energy density
ηijk Gradient of the elastic strains
ξijk Higher-order stress tensor
Tij Hyper stress resultant
δij Kronecker’s delta
q Lateral static load
x Length coordinate
Lx Length of the CBS

Hi Magnetic field
Bi Magnetic flux
l Material’s length scale parameter
Ψ Magnetic potential function
ν Poisson’s ratio
α Position vector
G Shear modulus
U Strain energy
t Surface traction
aij 2nd-order magnetic permeability tensor
gijklmn 6th-order strain gradient tensor
gi Strain gradient coefficients
qijk 3rd-order piezomagnetic tensor
z Thickness coordinate
h Thickness of the CBS
u, v, and w 3D displacements for x-, y-, and z-axis
∇ 3D nabla operator
R Unknown variables for displacements
Nxx Work done by a magnetic field
W Work performed by external forces
Ly Width of the CBS
E Young’s modulus
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2. Mathematical modeling

Upon the groundwork of the rectangular coordinate system, Fig. 1
vividly illustrates a smart cube-like bulk structure (CBS) encompassing a
pre-volume with dimensions of [0, Lx] × [0, Ly] × [-0.5 h, 0.5 h], con-
fronted with a linear magnetic field and a transverse static load. It is
emphasized that the variables “Lx” and “Ly” represent the effective
length and width of the CBS in all relations. And “h” denotes the initial
thickness of the undeformed CBS.

2.1. The PFM model

It is conceivable to succinctly explore the mathematical model per-
taining to PFM structures as documented by Malikan and Eremeyev
[28]. The fundamental equations integrating piezomagnetic and FM
effects can be found in detail in the corresponding reference. The
problem can be linked to the characteristic equations of static bending
utilizing the variational principle [36–39].

In the subsequent phase of the mathematical modeling, all re-
lationships are going to be derived to suit a thick CBS with a fully 3D
structure. The vectors of displacements possess the following configu-
ration [40–42]
⎡

⎢
⎣

u1(x , y, z)
u2(x , y, z)
u3(x, y, z)

⎤

⎥
⎦ =

⎡

⎢
⎣

u(x , y, z)
v(x , y, z)
w(x , y, z)

⎤

⎥
⎦ (1)

As seen above, no assumption has been made for kinematic dis-
placements and this is a merit of 3D elasticity. With the help of the
Lagrange strain formula, one can derive the elastic strains, and subse-
quently computing the strain gradients is a straightforward process
[43–45]

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)

; i, j, k = 1, 2,3 (2a)

ηijk =
∂

∂xk

[
εij
]
; i, j, k = 1,2, 3 (2b)

Following that, matrices representing the strain gradient and strains
themselves can be generated as

[ε] =

⎡

⎢
⎣

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

⎤

⎥
⎦ (3a)

[η] =

⎡

⎢
⎢
⎣

(
ηxxx ηxxy ηxxz

) (
ηxyx ηxyy ηxyz

) (
ηxzx ηxzy ηxzz

)

(
ηyxx ηyxy ηyxz

) (
ηyyy ηyyx ηyyz

) (
ηyzx ηyzy ηyzz

)

(
ηzxx ηzxy ηzxz

) (
ηzyx ηzyy ηzyz

) (
ηzzx ηzzy ηzzz

)

⎤

⎥
⎥
⎦

(3b)

In this particular case, the tensor of strains and their gradients exhibit
symmetry indicated as εij = εji and ηijk = ηjik. Hence, one obtains

⎧
⎪⎨

⎪⎩

εxx
εyy
εzz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y
∂w
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

εyz
εxz
εxy

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎨

⎪⎩

εzy
εzx
εyx

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

(
∂v
∂z+

∂w
∂y

)

1
2

(
∂u
∂z +

∂w
∂x

)

1
2

(
∂u
∂y +

∂v
∂x

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

In sequence, we arrived at the formulas

⎧
⎪⎨

⎪⎩

ηxxx
ηxxy
ηxxz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂εxx
∂x

∂εxx
∂y

∂εxx
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

ηyyx
ηyyy
ηyyz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂εyy
∂x

∂εyy
∂y

∂εyy
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2v
∂x∂y

∂2v
∂y2

∂2v
∂y∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

ηzzx
ηzzy
ηzzz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂εzz
∂x

∂εzz
∂y

∂εzz
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2w
∂x∂z
∂2w
∂y∂z

∂2w
∂z2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 1. A 3D multi-physic composite CBS under an uniform lateral static load surrounded by a vertical magnetic field.
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⎧
⎪⎨

⎪⎩

ηxzx
ηxzy
ηxzz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂εxz
∂x

∂εxz
∂y

∂εxz
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=
1
2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x∂z+

∂2w
∂x2

∂2u
∂y∂z+

∂2w
∂x∂y

∂2u
∂z2 +

∂2w
∂x∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

ηyzx
ηyzy
ηyzz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂εyz
∂x

∂εyz
∂y

∂εyz
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1
2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2v
∂x∂z+

∂2w
∂x∂y

∂2v
∂y∂z+

∂2w
∂y2

∂2v
∂z2 +

∂2w
∂y∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

ηxyx
ηxyy
ηxyz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂εxy
∂x

∂εxy
∂y

∂εxy
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
1
2

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2u
∂x∂y+

∂2v
∂x2

∂2u
∂y2 +

∂2v
∂x∂y

∂2u
∂y∂z+

∂2v
∂x∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎨

⎪⎩

ηzyx
ηzyy
ηzyz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂εzy
∂x

∂εzy
∂y

∂εzy
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎨

⎪⎩

ηyzx
ηyzy
ηyzz

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

ηzxx
ηzxy
ηzxz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂εzx
∂x

∂εzx
∂y

∂εzx
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎨

⎪⎩

ηxzx
ηxzy
ηxzz

⎫
⎪⎬

⎪⎭

⎧
⎪⎨

⎪⎩

ηyxx
ηyxy
ηyxz

⎫
⎪⎬

⎪⎭
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂εyx
∂x

∂εyx
∂y

∂εyx
∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎨

⎪⎩

ηxyx
ηxyy
ηxyz

⎫
⎪⎬

⎪⎭
(5)

It is seriously a challenge to encounter a 3D tensor and convert it to a
2D writable one. Not to mention that we here developed the 3D strain
gradient tensor (ηijk) (g ∈ ℝ I×J×K) visualized similarly to Rubik’s cube
and based on the tube-mode composition method (Fig. 2) [46]. Neces-
sarily, applying symmetry rules finalizes the tensor.

It is currently anticipated to produce constitutive equations utilizing
the formula provided in [28].

δU+ δW = 0 (6)

For the current intentions, the changes in strain energy are written as

δUAll = δUMech + δUMag (7)

in which the acronyms “Mag” and “Mech” respectively represent the
magnetic and mechanical components within the energy context.

Expressing the alteration of the mechanical segment involves gath-

ering the non-zero tensors, which can be formulated as

δUMag =

∫

V

[
− Txxδ∂Hx/∂x − Tyyδ∂Hy/∂y − Tzzδ∂Hz/∂z

− BxδHx − ByδHy − BzδHz

]

dV (8b)

where

Hk =
{
Hx Hy Hz

}
= −

{
∂Ψ
∂x

∂Ψ
∂y

∂Ψ
∂z

}

(9)

It should be borne in mind that Eq. (9) can also be presented as a
diagonal matrix [35].

The energy variation for elastic and magnetic parts can be

Fig. 2. A 3D presentation of the strain gradient tensor (a); and the tube-mode mixture (b).

δUMech =

∫

V

⎡

⎢
⎢
⎢
⎢
⎣

σxxδεxx + σyyδεyy + σzzδεzz + τyzδγyz + τxzδγxz + τxyδγxy
+ξxxxδηxxx + ξxxyδηxxy + ξxxzδηxxz + ξyyxδηyyx + ξyyyδηyyy + ξyyzδηyyz
+ξzzxδηzzx + ξzzyδηzzy + ξzzzδηzzz + ξyzxδηyzx + ξyzyδηyzy + ξyzzδηyzz
+ξxzxδηxzx + ξxzyδηxzy + ξxzzδηxzz + ξxyxδηxyx + ξxyyδηxyy + ξxyzδηxyz

⎤

⎥
⎥
⎥
⎥
⎦
dV (8a)
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δUMag =−

∫ Lx

0

∫ Ly

0

∫ h/2

− h/2

(
∂Bx

∂x +
∂By

∂y +
∂Bz

∂z +
∂2Txx

∂x2 +
∂2Tyy

∂y2 +
∂2Tzz

∂z2

)

δΨdzdydx

+

∫ Ly

0

∫ h/2

− h/2

[

Bx+
∂Txx

∂x

]Lx

0
δΨdzdy+

∫ Lx

0

∫ h/2

− h/2

[

By+
∂Tyy

∂y

]Ly

0
δΨdzdx

+

∫ Lx

0

∫ Ly

0

[

Bz+
∂Tzz

∂z

]h/2

− h/2
δΨdydx

(11)

The work which is performed by the magnetic field is

δW =

∫ Lx

0

∫ Ly

0

[

N0
xx

(
∂δw
∂x

∂w
∂x

)

+ N0
yy

(
∂δw
∂y

∂w
∂y

)]

dydx (12)

It is necessary to note that the shear effect of the external in-plane
force is not taken into the model.

Using the fundamental lemma of the calculus of variations one can
collect terms in Eq. (10), leading to establishing linear 3D bending
equations as

δu :0→
∂σxx

∂x +
∂τxy
∂y +

∂τxz
∂z +

∂2ξxxx
∂x2 +

∂2ξxxy
∂x∂y +

∂2ξxxz
∂x∂z +

∂2ξxzx
∂x∂z +

∂2ξxzy
∂y∂z +

∂2ξxzz
∂z2

+
∂2ξxyx
∂x∂y +

∂2ξxyy
∂y2 +

∂2ξxyz
∂y∂z =0

(13a)

δv :0→
∂σyy

∂y +
∂τxy
∂x +

∂τyz
∂z +

∂2ξyyy
∂y2 +

∂2ξyyx
∂x∂y +

∂2ξyyz
∂y∂z +

∂2ξyzx
∂x∂z +

∂2ξyzy
∂y∂z +

∂2ξyzz
∂z2

+
∂2ξxyy
∂x∂y +

∂2ξxyx
∂x2 +

∂2ξxyz
∂x∂z =0

(13b)

δw : 0→
∂σxx

∂x
∂w
∂x +

∂σzz

∂z + σxx
∂2w
∂x2 + σyy

∂2w
∂y2 + σzz

∂2w
∂z2 +

∂τxz
∂x +

∂τyz
∂y

+2τxy
∂2w
∂x∂y+ 2τxz

∂2w
∂x∂z+ 2τyz

∂2w
∂y∂z+ 2ξxxx

∂3w
∂x3 +

∂2ξxzx
∂x2 +

∂2ξzzz
∂z2 +

∂2ξzzx
∂x∂z

+
∂2ξxzz
∂x∂z +

∂2ξzzy
∂y∂z +

∂2ξxzy
∂x∂y +

∂2ξyzx
∂x∂y +

∂2ξyzy
∂y2 +

∂2ξyzz
∂y∂z + N0

xx
∂2w
∂x2 + N0

yy
∂2w
∂y2 = 0

(13c)

The tensor reduction is contingent upon the structure which main-
tains a linear-elastic behavior and exhibits a plane of elastic symmetry,
enabling the further reduction of independent elastic constants from Cijkl
to Cij (i, j ∈ {1, 2, …, 6}) [47–52] as

[
Cijkl
]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C1111 C1122 C1133 0 0 0
C1122 C2222 C2233 0 0 0
C1133 C2233 C3333 0 0 0
0 0 0 C2323 0 0
0 0 0 0 C1313 0
0 0 0 0 0 C1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)

The six-order strain gradient tensor can be decreased into

[
gijklmn

]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g1111 g1122 g1133 g1123 g1113 g1112
g2211 g2222 g2233 g2223 g2213 g2212
g3311 g3322 g3333 g3323 g3313 g3312
g2311 g2322 g2333 g2323 g2313 g2312
g1311 g1322 g1333 g1323 g1313 g1312
g1211 g1222 g1233 g1223 g1213 g1212

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)

The tensor of piezomagnetic properties can be condensed or
simplified into a more compact form if the piezomagnetic material
possesses a hexagonal crystal [42,50]

[
qijk
]
=

⎡

⎢
⎣

q11 q12 q13 q14 q15 q16
q21 q22 q23 q24 q25 q26
q31 q32 q33 q34 q35 q36

⎤

⎥
⎦ (16)

wherein the piezomagnetic constants underwent a transformation,
shifting from the initial qijk notation into qiα (α ∈ {1, 2, …, 6}) and
considering q24 = q15 [35].

Likewise, the symmetry variations of the reverse and the direct im-
pacts of the FM can be streamlined into distinct components f11, f111, and
f14 particularly tailored for a crystal structure with a cubic shape
[49,51,52]

[
fij
]
=

⎡

⎢
⎣

0 0 0 0 f111 0
0 0 0 f111 0 0
f14 f14 f11 0 0 0

⎤

⎥
⎦ (17)

Subsequently, due to limited available literature on the material,
assuming an equivalence between the converse FM tensor and the direct
one, it is hypothesized that the former can be simplified accordingly,
particularly considering the diagnosed cubic crystal nature of the pie-
zomagnetic material.

δUMech =

∫ Lx

0

∫ Ly

0

∫ h/2

− h/2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σxx

(
∂δu
∂x

)

+ σyy

(
∂δv
∂y

)

+ σzz

(
∂δu
∂z

)

+ τyz
(

∂δv
∂z +

∂δw
∂y

)

+ τxz
(

∂δu
∂z +

∂δw
∂x

)

+τxy
(

∂δu
∂y +

∂δv
∂x

)

+ ξxxx
(

∂2δu
∂x2

)

+ ξxxy
(

∂2δu
∂x∂y

)

+ ξxxz
(

∂2δu
∂x∂z

)

+ ξyyx
(

∂2δv
∂x∂y

)

+ξyyy
(

∂2δv
∂y2

)

+ ξyyz
(

∂2δv
∂y∂z

)

+ ξzzx
(

∂2δw
∂x∂z

)

+ ξzzy
(

∂2δw
∂y∂z

)

+ ξzzz
(

∂2δw
∂z2

)

+ξyzx
(

∂2δv
∂x∂z+

∂2δw
∂x∂y

)

+ ξyzy
(

∂2δv
∂y∂z+

∂2δw
∂y2

)

+ ξyzz
(

∂2δv
∂z2 +

∂2δw
∂y∂z

)

+ξxzx
(

∂2δu
∂x∂z+

∂2δw
∂x2

)

+ ξxzy
(

∂2δu
∂y∂z+

∂2δw
∂x∂y

)

+ ξxzz
(

∂2δu
∂z2 +

∂2δw
∂x∂z

)

+ξxyx
(

∂2δu
∂x∂y+

∂2δv
∂x2

)

+ ξxyy
(

∂2δu
∂y2 +

∂2δv
∂x∂y

)

+ ξxyz
(

∂2δu
∂y∂z+

∂2δv
∂x∂z

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dzdydx (10)
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[
hij
]
=

⎡

⎢
⎣

0 0 0 0 h46 0
0 0 0 h46 0 0
h15 h15 h11 0 0 0

⎤

⎥
⎦ (18)

The intricate challenge of size dependence inherent in smart devices
has been meticulously addressed by leveraging various micro-
mathematical models, as outlined in the works by [53–55]. The cur-
rent research focuses on the first-strain gradient theory to deploy scale
impact under the context of the generalized model. Notably, a
comprehensive formulation has been precisely derived for linear elastic
and isotropic materials and the tensor of rank six of strain gradient
(gijklmn), drawing insights from the research contributions of [34,56–60]

gijklmn = g1
[(

δijδkl + δikδjl
)
δmn + (δimδln + δinδlm)δjk

]

+g2
[
δij(δkmδln + δknδlm) + δik

(
δjnδlm + δjmδln

) ]
+ g3δilδjkδmn

+g4δil
(
δjmδkn + δjnδkm

)
+ g5

[
δim
(
δjlδkn + δjnδkl

)
+ δin

(
δjlδkm + δjmδkl

) ]

(19)

A higher-order elastic moduli, denoted by the symbol gi is introduced
inside Eq. (19). It is crucial to note that the material under scrutiny is a
non-centrosymmetric PM substance. Nevertheless, a simplification is
here made by means of a centrosymmetric tensor for strain gradient.
This choice has been merely an assumption stemming from the lack of
adequate literature in this field, compelling its implementation. The
constituents of the strain gradient tensor (g) are obtained from gradient
elasticity with isotropy, employing the order-of-differentiation condi-
tions as

δij =

{
1, if i = j,
0, if i ∕= j. (20)

Therefore, as an illustration, the first member of the strain gradient
tensor can be articulated utilizing the principles of the Voigt notation in
a subsequent manner

g11 = 4
(
g1 + g2 + g5

)
+ g3 +2g4 (21)

where the gi displayed earlier is detailed below [34,57,59]

g1 = −
2
3
(
g2 + g5

)
g2 =

μ
30
(
27l20 − 4l21 − 15l22

)

g3 =
1
3
(
8g2 + 2g5

)
g4 =

μ
3
(
l21 + 6l22

)
g5 =

μ
3
(
l21 − 3l22

)

where some additional variables can be seen as l0, l1, and l2, which are
here called length scale parameters. It is worth noting that in order to
simplify matters, we presume that l0 = l1 = l2 = l.

Furthermore, a precise amount for shear modulus (μ) of strain
gradient remains undetermined. Consequently, let us assume an equiv-
alent scalar of μ to elastic shear modulus (G) for our current analysis.

We proceed with the development of the formulation. The relation-
ships between stress and strain, accounting for both lower and higher-
order effects, can be articulated as follows [28]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx
σyy
σzz
τyz
τxz
τxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=
[
Cij
]

6×6 ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−
[
qij

]

6×3
×

⎧
⎪⎨

⎪⎩

Hx
Hy
Hz

⎫
⎪⎬

⎪⎭
−
[
hij
]

6×3 ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Hx

∂x
∂Hy

∂y
∂Hz

∂z

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(22)

Fig. 3. CGL grid points for a CBS (N = 9, M = 9, P = 7) with an example for boundary conditions CFCF.
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Fig. 4. Validation for the deflection in the top surface of the thick CBS with CCCC (q = 1GPa); (a) Abaqus (b) Present 3D model.
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ξxxx ξxxy ξxxz
ξxyx ξxyy ξxyz
ξxzx ξxzy ξxzz
ξyyx ξyyy ξyyz
ξyzx ξyzy ξyzz
ξzzx ξzzy ξzzz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[
gij
]

6×6
×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ηxxx ηxxy ηxxz
ηxyx ηxyy ηxyz
ηxzx ηxzy ηxzz
ηyyx ηyyy ηyyz
ηyzx ηyzy ηyzz
ηzzx ηzzy ηzzz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−
[
fij
]

6×3
×

⎧
⎪⎨

⎪⎩

Hx
Hy
Hz

⎫
⎪⎬

⎪⎭

(23)

⎧
⎪⎨

⎪⎩

Txx
Tyy
Tzz

⎫
⎪⎬

⎪⎭
= −

[
hij
]

3×6 ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

⎧
⎪⎨

⎪⎩

Bx
By
Bz

⎫
⎪⎬

⎪⎭
=
[
aij
]

3×3 ×

⎧
⎪⎨

⎪⎩

Hx
Hy
Hz

⎫
⎪⎬

⎪⎭
+
[
qij
]

3×6
×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γyz
γxz
γxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
[
fij
]

3×6

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ηxxx ηxxy ηxxz
ηxyx ηxyy ηxyz
ηxzx ηxzy ηxzz
ηyyx ηyyy ηyyz
ηyzx ηyzy ηyzz
ηzzx ηzzy ηzzz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)

The extended stiffness matrix of three-dimensional elasticity per-
taining to an isotropic material with homogeneity is represented
[61–65]

[
Cijkl
]
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E(1 − ν)
K

Eν
K

Eν
K

0 0 0

Eν
K

E(1 − ν)
K

Eν
K

0 0 0

Eν
K

Eν
K

E(1 − ν)
K

0 0 0

0 0 0
E

2(1+ν) 0 0

0 0 0 0
E

2(1+ν) 0

0 0 0 0 0
E

2(1+ν)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(26)

in which K = (1+ ν)(1 − 2ν).
The work done due to external forces encompasses an impact of the

transverse magnetic field, acting as a longitudinal load, thereby influ-
encing the overall mechanical response.
⎧
⎨

⎩

N0
xx =

ψ
h
q31

N0
yy = N0

xx

(27)

Establishing the magnetic potential amounts significantly guides our
discourse. We will proceed by defining a magnetic potential along the
top and bottom thickness surfaces of the CBS [28]
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ψ
(

+
h
2

)

Ψ
(

−
h
2

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

{
ψ
0

}

(28)

For the subsequent relations, we will disregard the direct PFM
parameter as our focus centers solely on evaluating the converse PFM
effect. An exact mathematical correlation between Eq. (9), Eq. (11), Eq.
(25), and Eq. (28) yields

Ψ =

(
z2

2
−

h2

8

)[
q31
a33

(
∂2u
∂x∂z

)

+
q32
a33

(
∂2v

∂y∂z

)

+
q33
a33

(
∂2w
∂z2

)]

+ ψ
(
z
h
+
1
2

)

+

(
z2

2
−

h2

8

){
h46
a33

(
∂3u

∂x2∂z+
∂3w
∂x3

)

+
h46
a33

(
∂3v

∂y2∂z+
∂3w
∂y3

)

+
h15
a33

(
∂3u

∂x∂z2

)

+
h15
a33

(
∂3v

∂y∂z2

)

+
h11
a33

(
∂3w
∂z3

)}

(29)Fig. 5. Validation for the deflection in the bottom surface of the thick CBS with
CCCC (q = 1GPa); (a) Abaqus (b) Present 3D model.
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Fig. 6. Validation for the deflection in the top surface of the thick CBS with CFCF (q = 1 MPa); (a) Abaqus (b) Present 3D model.
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Observing the above relation, Eq. (28) truly fulfills the magnetic
requisites specified in Eq. (29). Later, by exclusively considering the
transverse magnetic field component, we attain the magnetic field.
Following extensive mathematical analysis, the governing bending
equations can be expanded.

3. Solution technique

A diverse range of techniques have been employed to tackle math-
ematical and physical issues explicitly by offering practicable solutions.
On such methods, semi-analytical solutions like the Semi-Analytical
Polynomial Method (SAPM) as detailed by [43,44,63,66–70], facilitate

Fig. 7. Validation for the deflection in the bottom surface of the thick CBS with CFCF (q = 1 MPa); (a) Abaqus (b) Present 3D model.
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swifter and more accessible problem-solving by utilizing functions
decomposition into more straightforward forms of polynomial terms.
Renowned for its great accuracy, the SAPM technique has gained
prominence in addressing various physical challenges by prompting the
forthcoming utilization of its 3D adaptation for problem-solving. For
further elucidation on the SAPM technique, detailed insights have been
available from earlier research [43,44,63,66–70].

First, the governing equations can be checked to ensure their preci-
sion and workability. Addedly, as the analysis is a full 3D and a
benchmark one, we should guarantee the certainty of the boundary
conditions and then provide the goal results. To effectively solve the
governing differential equations, one should adhere to the following
natural and essential boundary conditions imposed across the CBS
borders together with the top and bottom surfaces. The “surf” here
means the surface around the CBS and “surf 1” is shown in Fig. 3. Surf 4
is in front of Surf 1, and Surf 2 is on the x = 0 in a counterclockwise
rotation. Due to the fully 3D model, the edge/boundary area is not a line
(2D plate) and we are faced with four surfaces around the CBS, leading
to very complicated imposing of the boundary conditions.

• Clamped (C):

u
⃒
⃒ Surf 1 - 4 = v

⃒
⃒ Surf 1 - 4 = w

⃒
⃒ Surf 1 - 4 = 0

• Free (F):

σxx
⃒
⃒ Surf 2,4 = N0

xx, σyy
⃒
⃒ Surf 1,3 = N0

yy,

τxz

⃒
⃒
⃒
⃒
⃒
⃒
⃒
Surf 2,4;z=−

h
2 , +

h
2
= τyz

⃒
⃒
⃒
⃒
⃒
⃒
⃒
Surf 1,3;z=−

h
2 , +

h
2
= 0

The specified conditions yielding the lower and upper surfaces of the
CBS are defined as

Top surface: σzz

⃒
⃒
⃒
⃒
⃒
⃒
⃒
z = +

h
2
= Q, τxz

⃒
⃒
⃒
⃒
⃒
⃒
⃒
z=+

h
2
= τyz

⃒
⃒
⃒
⃒
⃒
⃒
⃒
z=+

h
2
= 0, where Q =

q/b.

Bottom surface:σzz

⃒
⃒
⃒
⃒
⃒
⃒
⃒
z = −

h
2
= τxz

⃒
⃒
⃒
⃒
⃒
⃒
⃒
z=−

h
2
= τyz

⃒
⃒
⃒
⃒
⃒
⃒
⃒
z=−

h
2
= 0

Fig. 8. Validation for the deflection through the bottom y-axis in the top surface of the thick CBS with CFCF (q = 1 MPa); Abaqus (Red) Present 3D model (black).

Fig. 9. Validation for the deflection through the y-axis in the bottom surface of the thick CBS with CFCF (q = 1 MPa); Abaqus (Red) Present 3D model (Blue).
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The expressions of the presented boundary conditions in SAPM are
provided here for the first time for a 3D rectangular CBS
[43,44,63,66–70]

u(x, y, z) =
∑N

i=1

∑M

j=1

∑P

k=1

R(k+P.(j− 1)+M.P.(i− 1) )x(i− 1)y(j− 1)z(k− 1) (30a)

v(x, y, z) =
∑N

i=1

∑M

j=1

∑P

k=1
R(k+P(j− 1)+M.P.(i− 1)+N.M.P )x(i− 1)y(j− 1)z(k− 1) (30b)

w(x, y, z) =
∑N

i=1

∑M

j=1

∑P

k=1
R(k+P(j− 1)+M.P.(i− 1)+2.N.M.P )x(i− 1)y(j− 1)z(k− 1) (30c)

N, M, and P represent point distributions along the thickness and
main area of the CBS.

The SAPM method can then be applied. The first step involves seg-
menting the region using grid points. For all three dimensions, the mesh
points, as will be described in Eq. (31), conform to the extensively uti-
lized Chebyshev-Gauss-Lobatto (CGL) grid points as

xi =
1
2
Lx
(

1 − cos
i − 1
N − 1

π
)

, i = 1,2, ...,N (31a)

yj =
1
2
Ly
(

1 − cos
j − 1
M − 1

π
)

, j = 1,2, ...,M (31b)

zk =
1
2
h
(

cos
k − 1
P − 1

π
)

, k = 1,2, ...,P (31b)

Fig. 3 visually depicts the CGL grid, which embraces the entire
domain. Each point possesses the capability to maneuver, enabling the
potential for thickness stretching, thereby manifesting the 3D displace-
ments. Notably, the solid blue points correspond to the imposed
boundaries, while the solid red points adhere to the governing equa-
tions. Non-uniformly spaced points configured by CGL enhance the ac-
curacy owing to the proximity of boundary points. It should be pointed
out that when the boundary conditions are applied, all the points in the
four side surfaces must get involved with the conditions.

Given that there exist three unknown variables (u, v, and w) associ-
ated with every individual point

Fig. 10a. Thickness deformations vs. the different magnetic potential
for CCCC.

Fig. 10b. Thickness deformations vs. the different magnetic potential for CFCF.

u =

⎡

⎢
⎣

u(x1, y1, z1), ..., u(xN, y1, z1), u(x1, y1, z2), ..., u(xN, y1, z2), ..., u(x1, y1, zP), ..., u(xN, y1, zP)
u(x1, y2, z1), ..., u(xN, y2, z1), u(x1, y2, z2), ..., u(xN, y2, z2), ..., u(x1, y2, zP), ..., u(xN, y2, zP)

u(x1, yM, z1), ..., u(xN, yM, z1), u(x1, yM, z2), ..., u(xN, yM, z2), ..., u(x1, yM, zP), ..., u(xN, yM, zP)

⎤

⎥
⎦ (32a)

v =

⎡

⎢
⎣

v(x1, y1, z1), ..., v(xN, y1, z1), v(x1, y1, z2), ..., v(xN, y1, z2), ..., v(x1, y1, zP), ..., v(xN, y1, zP)
v(x1, y2, z1), ..., v(xN, y2, z1), v(x1, y2, z2), ..., v(xN, y2, z2), ..., v(x1, y2, zP), ..., v(xN, y2, zP)

v(x1, yM, z1), ..., v(xN, yM, z1), v(x1, yM, z2), ..., v(xN, yM, z2), ..., v(x1, yM, zP), ..., v(xN, yM, zP)

⎤

⎥
⎦ (32b)

w =

⎡

⎢
⎣

w(x1, y1, z1), ...,w(xN, y1, z1),w(x1, y1, z2), ...,w(xN, y1, z2), ...,w(x1, y1, zP), ...,w(xN, y1, zP)
w(x1, y2, z1), ...,w(xN, y2, z1),w(x1, y2, z2), ...,w(xN, y2, z2), ...,w(x1, y2, zP), ...,w(xN, y2, zP)

w(x1, yM, z1), ...,w(xN, yM, z1),w(x1, yM, z2), ...,w(xN, yM, z2), ...,w(x1, yM, zP), ...,w(xN, yM, zP)

⎤

⎥
⎦ (32c)
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Consequently, a total of N × M × P × 3 equations will be generated,
equating to an identical number of unknowns. At last, applying the
Newton-Raphson technique helps with the computation of the
mentioned unknown parameters attributed to the points.

4. Results comparison

No reference has already reported the bending of smart CBS con-
sisting of a higher-order electro-magnetic property in a 3D domain.
Accordingly, by way of Fig. 4 to Fig. 7, a kind of comparison with the
Abaqus commercial code has been performed to validate the present
model (by removing smart properties) and the solution procedure. Then,
one reaches the deflections and deformations of a thick isotropic and
homogeneous rectangular CBS by the ensuing data, Fig. 5, Fig. 6.

Lx = 20 cm, Ly = 10 cm, h = 5 cm, E = 190GPa, ν = 0.29.
The present semi-analytical model will be converged at 11 × 11 × 7

grid points. As the current formulation is grounded on the 3D analysis,
the considered validation corresponds to maximum deflections of the
topmost and bottom-most surfaces of the thickness. Interestingly, it is
obviously shown that the present formulation results have been in great
correlation with those of 3D finite element code. Moreover, as seen by
the figures, 3D elasticity gives thickness deformations very accurate.

Fig. 4 to Fig. 7 may not be sufficient to affirm the present model’s
precision and the solving procedure. Hence, Fig. 8 and Fig. 9 are pre-
pared which pertain to the deflection path among the y-axis for the
topmost and bottom-most layers of the CFCF CBSs. As can be marked,
the deflections in both surfaces can be in an acceptable consent which
confirms the further use of the present mathematical model to extract
the required results.

5. Results presentation

This section is divided into some sub-sections to classify and arrange
the parametric study to ease the presentation of results. Besides, in order
to simplify the results, some parameters are introduced as; aspect ratio:
β = Lx/Ly, thickening ratio: H = h/Lx. The results have been given by the
following material properties,

E = 286GPa, ν = 0.32, a33 = 1.57 × 10-4N/A2, h15 = h11 = h46 =

10− 9N/A,q31 = 580.3 N/A.m, q32 = q31, q33 = 700 N/A.m, q15 =

275 N/A.m.

5.1. Results of magnetic potential effect

The deflections of the CBS have been investigated along the thickness
due to changes in the magnetic potential with the help of Fig. 10a,
Fig. 10b, and Fig. 10c are devoted to CCCC, CFCF, and CFFF boundary
conditions, respectively. The input data for the three shown figures are β
= 0.5, H = 1, q = 1GPa, and l = 0.02 μm.

If a two-dimensional CBS is examined based on the plane stress or
plane strain approaches, the maximum deflection at z= 0 (mid-plane) is
the same value at all thickness points. But, in this work, owing to the
implementation of a three-dimensional analysis, according to the figures
below, it is clear that the upper layers have maximum deflection and the
closer we get to the lower layers of the thickness, the deflection values
decrease. Finally, the least amount of deflection will be in the lowest
layer of the thickness.

When the four surfaces around the CBS have zero degrees of freedom
and are completely fixed and constrained, the changes in the magnetic
potential cannot have a special effect on the deformation results. But, in
the case that the side surfaces have degrees of freedom or are free from
any moving restrictions, the effect of the magnetic potential will be
greater.

An appealing result that can be taken out is that the numerical
amounts of the magnetic potential underlie the deformation in the
thickness of the CBS. In two-dimensional and one-dimensional problems
of beams and sheets, the magnetic field leads to a change in the
deflection of the CBS only, but here the magnetic field has also caused an
alter in the thickness value, which shows the ability and efficiency of
three-dimensional analysis to accurately solve the mechanical behavior
of materials.

5.2. Results of strain gradient effect

The strain gradient effect is momentous for smart materials with
high-order sensing properties. We dealt with that problem by showing
Fig. 11a and Fig. 11b. Both figures are presented for changes in strain
gradient parameter values and similar boundary conditions. The
entrance quantities are β = 0.5, H = 1, and q = 1GPa for both figures;
however, the magnetic potentials are ψ = 0A, and ψ = 2A, respectively.
The first figure is designed for the case where there is no magnetic field,
and in the second figure, we considered the case where a magnetic field
exists with a certain amount of magnetic potential. The variations in the

Fig. 10c. Thickness deformations vs. the different magnetic potential for CFFF.
Fig. 11a. Thickness deformations vs. length scale parameter for CFCF.
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deflection along the dimensionless thickness show that the strain
gradient parameter is a very influential factor in the mechanical
behavior of the smart CBSs. In very small values of the strain gradient
parameter, the difference in the deflection is not so noticeable. However,
when the value of this parameter goes up, how the thickness deforms
will change. This result can make perfect sense, from a physical point of
view. Since the strain gradient is the result of changes in strains, and
strains are dimensionally dependent, in a three-dimensional analysis,
the effect of variations in the third dimension (thickness) is also included
in the problem. Therefore, the strain gradient will become more domi-
nant due to the embracing of εz in the equations. On the other side, by
collating both figures it can be observed that the slope of the curves is
more steep in Fig. 11b which shows that the ratio of deflections in the
upper layers to the lower layers of the thickness is in a further difference.
This valuable finding stems from the magnetic potential influence and
its impact on the thickness deformation.

In order to provide comparable results, some numeric results are
tabulated via Table 1. The Table is figured out for three different
boundary conditions, namely CCCC, CFCF, and CFFF. The input data are
given numeral, including the dimensional quantities.

5.3. Results of the effect of thickness deformation in rectangular CBSs

Fig. 12a, Fig. 12b, Fig. 12c, Fig. 12d, Fig. 12e, and Fig. 12f, are state-
of-the-art in the field of mechanics of smart materials. The details of the
inputs are β = 0.5, H = 1, and q = 1GPa for all six indicated figures.
Though the values of the strain gradient parameter are respectively, l =
0.02 μm, l = 0.02 μm, l = 0.02 μm, and l = 0.02 μm for the first four
figures, and the values of the magnetic potential are respectively, ψ = 0A
and ψ = 2A.

Let us initially nominate a parameter by which one could define the
deflection in the topmost layer of the thickness to that of the bottom-
most. In point of fact, it presents the thickness deformation ratio as

Ws =
wTopmostsurface

wBottom− mostsurface

The first two diagrams are allocated for CFCF boundary conditions
and the rest belong to the CFFF. The main objective of the diagrams is to
assess the WS parameter in conjunction with the x and y axes while the
value of the magnetic potential differs. It is worth mentioning that for
CFCF, y= 0,2 are fully clamped and for CFFF, y= 0 is fully free and y= 2

stands for totally clamped. But, x = 0,1 are completely free for both
CFCF and CFFF. Let us here point out that the real start and end points of
these four diagrams and the others showing thickness deformation in
line with the dimensionless length and width of the CBS are not what is
shown in the figures. As a matter of fact, there is an asymptote for these
items at x= 0,1 and y= 0,2 for the clamped boundary condition thatWS
would lean towards 0. Thus, we would like to allow ourselves to hold
forth on 0.000001 instead of 0, and 0.999999 in place of 1. An
impressive result of these figures is that the WS parameter is a big deal
near the center of the y dimension when y= 0,2. The deflections close to
free edges (x = 0,1 for all cases, and y = 0 for the CFFF) give smaller
values for WS compared to fully fixed conditions. Additionally, the
magnetic potential causes the WS parameter more noteworthy. This
substantial outcome has been attained in the previous figures as well.

5.4. Results of the effect of thickness deformation in square CBSs

This part of the results of the article is dedicated to smart square
CBSs. This section is a continuation of the previous section with all the
same conditions and inputs, but the previous section was related to
rectangular CBSs. In the discussion of rectangular sheets, we observed

Fig. 11b. Thickness deformations vs. length scale parameter for CFCF.

Table 1
The effect of strain gradient for various boundary conditions (Lx = 1 µm, Ly = 2
µm, h = 1 µm, q = 1GPa, ψ = 2A).

l (µm) Maximum deflections (µm)
CCCC CFCF CFFF
×10-2 ×10-2

0.0000 0.2287 0.8552 0.1103
0.0100 0.2284 0.8555 0.1113
0.0200 0.2276 0.8567 0.1146
0.0300 0.2264 0.8594 0.1208
0.0400 0.2247 0.8648 0.1316
0.0500 0.2228 0.8742 0.1509
0.0525 0.2223 0.8774 0.1578
0.0550 0.2218 0.8808 0.1660
0.0575 0.2213 0.8847 0.1756
0.0600 0.2208 0.8888 0.1869
0.0625 0.2203 0.8933 0.1998
0.0650 0.2198 0.8981 0.2144
0.0675 0.2192 0.9031 0.2307
0.0700 0.2185 0.9082 0.2485
0.0725 0.2175 0.9133 0.2708
0.0750 0.2160 0.9180 0.3292
0.0760 0.2151 0.9196 0.4809

Fig. 12a. Effect of thickness deformation along the x-axis for CFCF.
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Fig. 12b. Effect of thickness deformation along the y-axis for CFCF.

Fig. 12c. Effect of thickness deformation along the x-axis for CFFF.
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that the changes of the WS parameter in both the x and y axes are
different for both CCCC and CFCF boundary conditions, and here we are
going to check this issue for square CBSs by drawing Fig. 13a, Fig. 13b,
Fig. 13c, and Fig. 13d. Let us use the following quantities β = 0.5, H= 1,
q = 1GPa, and l = 0.02 μm for the discussed figures.

Since the studied smart CBS is completely isotropic, therefore, we
should see the same changes for the WS in the square CBS. This means
that the thickness of the CBS is deformed equally on both edges. Finally,
by presenting these figures, it is clear that this hypothesis cannot be

absolutely correct. If all four sides of the CBS have the same boundary
conditions, the WS parameter will be similar in the direction of x and y
dimensions, which Fig. 13a and Fig. 13b display this result. But in
Fig. 13c and Fig. 13d, one can see that the variations of the WS are
different in the x and y axes.

5.5. Results of 3D plates vs. 3D beams

The last part of the discussion section investigates a comparison

Fig. 12d. Effect of thickness deformation along the y-axis for CFFF.

Fig. 12e. Effect of thickness deformation along the y-axis for CFCF. Fig. 12f. Effect of thickness deformation along the x-axis for CFCF.

M. Malikan et al. Composite Structures 353 (2025) 118733 

16 



Fig. 13a. Effect of thickness deformation along the x-axis for CCCC.

Fig. 13b. Effect of thickness deformation along the y-axis for CCCC.
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between the 3D plates (fully 3D) and a 3D beam (d/dy = 0) through
Fig. 14 utilizing β = 0.5, H = 1, q = 1GPa, ψ = 2A, l = 0.02 μm. As it is
vivid, the results of the 3D plate at the mid-length (x1 + 0.5 × x2)
coincide with the results of the 3D beam; however, the results of the 3D
plate at the x = 0 (edge) deviate. This fact simply indicates that the edge
effect is a notable factor in 3D elasticity studies and a full 3D analysis
supplies more precise mechanical behavior.

6. Conclusions

Several key results emerged from this comprehensive investigation
into the effects of lower- and higher-order smart properties within a fully
three-dimensional mechanical analysis. Prior to this study, no exami-
nation of the three-dimensional (3D) elasticity of the smart PFM com-
posite CBS had been undertaken, as affirmed by an exhaustive review of
existing literature. Consequently, it was evident that further scrutiny

was imperative. To facilitate this analysis, the governing equations were
tailored to incorporate the term ∂/∂z denoting the thickness stretching
effect. Revisiting a higher-level magnetic model previously proposed
and confined to piezomagnetic structures, this study adapted and
amalgamated various methodologies such as a 3D CBS kinematic model,
Hamilton’s principle, von Kármán strain nonlinearity, and specific
reverse magnetic models to derive the governing equations for a thick
composite CBS. The resulting necessary tensors have been expressed in
3D configurations pertinent to a comprehensive three-dimensional
analysis. Subsequently, the derived linear three-dimensional equations
characterized the bending behavior of the smart plate which have been
moved into a 3D semi-analytical Polynomial Method to advance essen-
tial parametric studies. Beyond merely uncovering specific findings

Fig. 13c. Effect of thickness deformation along the x-axis for CFCF.

Fig. 13d. Effect of thickness deformation along the y-axis for CFCF.

Fig. 14. Comparison of the deflection through the thickness of the thick CBS
with CFCF.
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outlined below, this work underscored the significance of conducting 3D
mechanical analyses that integrate various physical connections,
particularly the interplay involving FM, thereby illuminating fresh in-
sights into PFM dynamics.

• In the mechanical analysis of three-dimensional CBSs, one of the
influential and determining parameters can be the deflection ratio
defining deflections in the highest thickness layer to the lowest one
for CBS (WS). The value of this parameter in two-dimensional
elasticity analysis is equal to one. Because in such problems there
is no thickness deformation after applying static or dynamic loads,
and the thickness remains constant. But in the three-dimensional
elasticity, the main discussion of this article, the value of this
parameter was meaningful in some conditions. For example, the
value of the WS parameter becomes a relatively large number when
the smart CBS is in the clamped boundary condition.

• In two-dimensional elasticity, many parameters affect the behavior
of smart CBSs. However, it is unfeasible to check the effect of such
parameters on the thickness change. Nevertheless, in the three-
dimensional elasticity and as a result of the computational
modeling obtained in this study, it was found that parameters such
as magnetic potential and strain gradient have a direct effect on the
thickness deformation.

• A fully three-dimensional elasticity analysis shows that the edge
effect can be a strong player in predicting the mechanical response
of smart structures.
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[2] Dastjerdi Sh, Akgöz B. New static and dynamic analyses of macro and nano FGM
plates using exact three-dimensional elasticity in thermal environment. Compos
Struct 2018;192:626–41.

[3] Karami B, Ghayesh MH. Vibration characteristics of sandwich microshells with
porous functionally graded face sheets. Int J Eng Sci 2023;189:103884.

[4] Mohamed ASY. Smart Materials Innovative Technologies in architecture. Towards
Innovative design paradigm Energy Procedia 2017;115:139–54.

[5] Gia Phi B, Van Hieu D, Sedighi HM, Sofiyev AH. Size-dependent nonlinear
vibration of functionally graded composite micro-beams reinforced by carbon
nanotubes with piezoelectric layers in thermal environments. Acta Mechanica
2022;233:2249–70.

[6] Yang W, Liu M, Chen S, Kang W, Chen J, Li Y. Electromechanical analysis of a self-
sensing torsional micro-actuator based on CNTs reinforced piezoelectric composite
with damage. Compos Struct 2023;313:116945.

[7] Ezzin H, Mkaoir M, Qian Z, Arefi M, Das R. Lamb Wave Analysis in Anisotropic
Multilayer Piezoelectric-piezomagnetic Material. J Appl Comput Mech 2022;8:
629–40.

[8] Qilin J. Electro-mechanical analysis of functionally graded graphene reinforced
composite laminated plate with macro fiber composite actuator. Compos Struct
2023;319:117132.

[9] Vijay K, Varadan K, Vinoy J, Gopalakrishnan S. Smart material systems and mems:
design and development methodologies. John Wiley & Sons; 2006.

[10] Jankowski P. Detection of nonlocal calibration parameters and range interaction
for dynamics of FGM porous nanobeams under electro-mechanical loads. F U Mech
Eng 2022;20:457–78.

[11] Ud Din I, Aslam N, Medhin Y, Sikandar Bathusha MS, Irfan MS, Umer R, et al.
Electromechanical behavior of self-sensing composite sandwich structures for next
generation more electric aerostructures. Compos Struct 2022;300:116169.

[12] Silva MR, Tita V, Medeiros RD. Influence of the geometric parameters on the
effective properties of piezoelectric composite sensors using real measurements
and a new RVE. Compos Struct 2023;303:116292.

[13] Singhal A, Sedighi HM, Ebrahimi F, Kuznetsova I. Comparative study of the
flexoelectricity effect with a highly/weakly interface in distinct piezoelectric
materials (PZT-2, PZT-4, PZT-5H, LiNbO3, BaTiO3). Waves Random Complex
2021;31:1780–98.

[14] Fattahi I, Mirdamadi HR. Novel composite finite element model for piezoelectric
energy harvesters based on 3D beam kinematics. Compos Struct 2017;179:161–71.

[15] Mallek-Zouari I, Ben Taazayet W, Grenèche JM, Bessais L, Dkhil B, Thabet MN.
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