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Abstract: Motivated by the recent heated debate on whether the masses of local objects,
such as compact stars or black holes (BHs), may be affected by the large-scale, cosmological
dynamics, we analyze the conditions under which, in a general relativity framework, such a
coupling small/large scales is allowed. We shed light on some controversial arguments, which
have been used to rule out the latter possibility. We find that the cosmological coupling occurs
whenever the energy of the central objects is quantified by the quasi-local Misner-Sharp mass
(MS). Conversely, the decoupling occurs whenever the MS mass is fully equivalent to the
(nonlocal) Arnowitt-Deser-Misner (ADM) mass. Consequently, for singular BHs embedded in
cosmological backgrounds, like the Schwarzschild-de Sitter or McVittie solutions, we show that
there is no cosmological coupling, confirming previous results in the literature. Furthermore,
we show that nonsingular compact objects couple to the cosmological background, as quantified
by their MS mass. We conclude that observational evidence of cosmological coupling of
astrophysical BHs would be the smoking gun of their nonsingular nature.

Keywords: astrophysical black holes, Exact solutions, black holes and black hole
thermodynamics in GR and beyond, gravity, quantum black holes

ArXiv ePrint: 2309.16444

∗Corresponding author.

© 2024 The Author(s). Published by IOP Publishing
Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work,
journal citation and DOI.

https://doi.org/10.1088/1475-7516/2024/03/026

https://orcid.org/0000-0001-5595-7537
https://orcid.org/0000-0002-2224-7704
https://orcid.org/0009-0008-4505-9723
https://orcid.org/0000-0002-1487-0862
mailto:mariano.cadoni@ca.infn.it
mailto:riccardo.murgia@gssi.it
mailto:mirko.pitzalis@ca.infn.it
mailto:asanna@dsf.unica.it
https://doi.org/10.48550/arXiv.2309.16444
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2024/03/026


J
C
A
P
0
3
(
2
0
2
4
)
0
2
6

Contents

1 Introduction 1

2 Definitions of mass for compact objects and cosmological coupling 3
2.1 Basic features of the Misner-Sharp mass 4

3 Embedding point-like objects and perfect fluid stars in cosmological
backgrounds 6
3.1 Schwarzschild-de Sitter solution 6
3.2 McVittie solution 7

4 Coupling of compact objects: local anisotropic and isotropic sources 8
4.1 The Sultana-Dyer solution 8
4.2 Compact objects sourced by anisotropic fluids 9
4.3 Compact objects sourced by isotropic fluids 11
4.4 Charged singular solution embedded in a FLRW background 11

5 Conclusions 12

1 Introduction

Recently, there has been renewed interest in an old question of general relativity (GR): are
small-scale, local systems, like planets, stars or compact objects/black holes (BHs), affected
by the large-scale dynamics of the cosmological background they are embedded in?

The first known attempt to consistently answer this question dates back to McVittie [1],
who found a solution of Einstein’s field equations describing a point-like object embedded in a
spatially-flat Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime. However, the issue
was far from being settled, as the extremely nontrivial physics involved in this embedding
entails conceptual and interpretative problems (see, e.g., refs. [2–6]).

As a result, a considerable body of work has ensued over the years, with, however,
contradictory results (for an incomplete list, see, e.g., refs. [7–51] and references therein).
The main conceptual obstacle is caused by the huge separation of scales between local
inhomogeneities, whose characteristic scale is their virial radius ∼ GM , and the large-scale
cosmological dynamics, occurring instead at the Hubble radius H. Although there seems
to be general agreement on the negligible impact of the cosmological expansion on small-
scale1 Newtonian systems [35, 37, 68, 69], the issue is still opened for local, relativistic
bodies, like BHs.

Notice that the coupling could be a rather natural feature of highly-compact gravitational
systems. Naïvely, the mass/radius relation of a BH would suggest that, if lengths are affected
by the cosmological expansion, so should do masses.

In the latest years, the debate has rekindled due to recent developments based on the
theoretical work of Croker and collaborators [70–72], focusing mainly on supermassive black

1However, this is not necessarily the case with large-scale structures [12, 36, 52–67].
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holes at the center of galaxies as the most promising objects to detect this effect. Through a
perturbative approach and an averaging procedure, they derived the Friedmann’s equations
from varying the gravitational action. What they show, in this way, is that the pressure
in the interior of BHs/compact objects contribute actively to the energy density sourcing
the cosmological equations. The conservation of the stress-energy tensor, then, implies the
presence of a coupling of these objects with the cosmological expansion, which should manifest
as a significant shift in their masses. Their model also allows to predict that the masses of
local objects should vary with the scale factor a according to the power law M(a) ∝ ak [70].
This formula was then tested in ref. [73] against an observational sample of supermassive
BHs at the centre of elliptical galaxies at different redshift. Such objects are quiescent, i.e.,
they are concerned by negligible processes of accretion or mergers, so that the data-set is
not sensibly affected by other growth channels other than the supposed coupling mechanism
with the expanding background. This set of data showed a preference for k ∼ 3 [73, 74]. The
conclusion of the authors of ref. [73] is that BHs may be the source of dark energy.

However, this claim and the underlying theoretical framework have faced significant criti-
cism. Even if the underlying framework could be flawed from the beginning [75], most criticism
has been directed at the concept of coupling itself. On the one hand, the substantial separation
in scales between local and cosmological systems makes such coupling implausible [76, 77].
On the other hand, the equation of state of matter inside a BH, which is typically taken to
be dust, is unable to mimic dark energy [78, 79]. Moreover, current observational constraints
on the slope parameter k capturing the mass-redshift dependence, are highly controversial,
as they heavily depend on the astrophysical probes employed in the analysis [80–83].

These critiques cast again doubts on the feasibility and validity of the proposed coupling
between cosmological dynamics and the masses of BHs/compact objects. However, in ref. [74],
we and collaborators built a solid general relativistic framework that enabled us to describe
the coupling of local inhomogeneities with the cosmological background in full generality,
as well as to recover the expression of the mass-shift from refs. [70, 73].

Apart from the intricate situation on the observational side, the theory behind the
cosmological coupling of compact astrophysical objects is far from being well established. One
of the main issues is the absence of generic solutions of Einstein’s equations describing singular
BHs or BH mimickers. This is quite different from the singular BH case, for which we know
that spherical, asymptotically-flat solutions are unique and given by the Schwarzschild one. A
simple way to circumvent this problem is to focus on general, model-independent properties,
which should characterize the cosmological coupling. Thus, the theoretical question that we
will address in the present paper is: in which conditions does the cosmological expansion
affect dynamical quantities, such as BH masses? We give a precise answer to this question
by working on a solid theoretical ground. Previously, the debate was biased by the use
of the nonlocal Arnowitt-Deser-Misner (ADM) mass to quantify the energy pertaining to
local objects. The starting point of this work, instead, is the identification of the quasi-local
Misner-Sharp (MS) mass as the most appropriate quantity to determine the energy of local
compact objects, and to investigate their cosmological coupling.

The MS mass is covariantly defined, and it reduces to the ADM mass at asymptotically-
flat infinity. Therefore, it can be identified as an ideal tool for making theoretical predictions
to compare with astrophysical measurements. We then use the MS mass to compute the
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energy of various cosmologically-embedded solutions: Schwarzschild-de Sitter, McVittie,
Sultana-Dyer (SD), and nonsingular BHs sourced by anisotropic fluids. Additionally, this
approach enables us to make a general statement about the existence of the cosmological
coupling of compact astrophysical objects. We explicitly show that the cosmological coupling
becomes manifest whenever the energy of the central object is quantified by the MS mass.
On the other hand, the cosmological decoupling occurs whenever the energy of the central
object is equivalent to its ADM mass, as in singular BH models. In particular, this implies
that the cosmological coupling is inevitable whenever the energy of the nonembedded object
can be quantified everywhere by the MS mass, but not by the ADM one. That is the case
of nonsingular BHs and other ultracompact objects.

The paper is structured as follows.
In section 2, we discuss the role played by the different definitions of mass for BHs/compact

objects in cosmology, and provide a brief overview of the key properties of the MS mass.
In section 3, we revisit the singular Schwarzschild-de Sitter and McVittie solutions,

demonstrating that the mass of the central local object does not couple to the cosmological
dynamics.

In section 4, we examine the cosmological embedding of nonsingular BHs/compact objects:
we firstly revisit the SD solution, then discuss the most general case of compact objects with
anisotropic sources, and finally the isotropic case. We explicitly show that the cosmological
coupling is quantified by the MS mass, and we conclude that any observational evidence of
cosmological coupling could be a smoking gun for the nonsingular nature of astrophysical BHs.

We present our conclusions in section 5.

2 Definitions of mass for compact objects and cosmological coupling

Answering the question posed in section 1, about the mass growth of compact objects due
to cosmological expansion, is complicated by the fact that there are several definitions of
mass/energy in GR [84, 85]. Often, quasi-local definitions of energy proposed in the literature
are mathematically involved and, hence, difficult to apply to real situations, or even to very
idealized and simple analytical solutions of Einstein’s equations. On the other hand, the
quasi-local MS mass [86] represents a quite natural definition, as it emerges naturally from
Einstein’s equations and is directly related to astrophysical observations of the internal energy
of a spherically-symmetric, virialized system. For isolated objects in asymptotically-flat
spacetimes, there is also another relevant definition, which is the ADM mass, a nonlocal
quantity defined in terms of a surface integral at spatial infinity.

Static eternal BHs embedded in a cosmological background are usually described by
neglecting the cosmological asymptotics and resorting to asymptotic flatness instead, where
all observables can be precisely identified and quantified in terms of surface integrals at
spatial infinity [87]. In this case, one can safely use the ADM mass. For spacetimes with
different asymptotics, like the FLRW ones, the identification and interpretation of such
nonlocal observables become much more involved.

The key issue in this type of problem is not purely kinematic, like, e.g., that concerning
the cosmological redshift of distances in cosmology, but fully dynamic. As such, it implies
some explicit or implicit assumption about how the small-scale, inhomogeneous dynamics

– 3 –



J
C
A
P
0
3
(
2
0
2
4
)
0
2
6

of the compact object is related to the large-scale, homogeneous and isotropic cosmological
background dynamics. The usual assumption is that there exists a scale of decoupling, which
is essentially justified by the huge separation of scales between the heaviest known galactic
BH (∼ 10−3 pc) and the Hubble radius (∼ 1010 pc) [77].

However, supermassive and stellar-mass BHs have existed for a long time during cos-
mological evolution. Tiny effects could accumulate over such extremely long time scales,
leaving observable imprints even at small spatial scales. Although the precise form of the
cosmological coupling, or its absence for special solutions, cannot be taken as established,
the possibility of its presence cannot be a priori excluded.

The use of the ADM mass to characterize the energy of cosmologically-embedded BHs
is fully justified only if one accepts the assumption of the decoupling of scales. This is
the only case where a cosmologically-embedded BH can be safely treated as an eternal,
asymptotically-flat object.

The decoupling of scales assumption is physically justified only for the Schwarzschild-
de Sitter solution, where one has a globally-defined, static, radial coordinate to safely define
the r → 0 and r → ∞ limits. In other cases, such as, e.g., the McVittie solution, the
r → 0 and r → ∞ limits use different radial coordinates, related by a time-dependent
coordinate transformation.

Finally, another strong limitation of the ADM mass is that it correctly quantifies the
energy of the compact objects only in the case of astrophysical bodies in which the stress-energy
tensor is zero outside, such as singular BHs. This is not the case for nonsingular BHs [88].

In the following, we will briefly review the basic properties of the quasi-local MS mass.

2.1 Basic features of the Misner-Sharp mass

Depending on the asymptotics of a given spacetime, there are several ways to quantify the
energy of a gravitational system. As already stated, in asymptotically-flat spacetimes (or,
more in general, for spacetimes with a timelike asymptotic boundary, like, e.g., anti de Sitter),
the key observables can be unambiguously quantified, through the ADM decomposition, as
nonlocal quantities defined at the boundary of the spacetime, the so-called “hair” of classical,
singular Kerr-Newman solutions [89].

For BHs not in vacuum, like nonsingular BHs, this identification is less straightforward,
even if the manifold is asymptotically flat (see, e.g., refs. [88, 90] and references therein).
In these cases, there is a different definition which better encapsulates the local properties
that the energy of a gravitational system should satisfy: the Hawking-Hayward quasi-local
mass [91, 92], which, for spherically-symmetric spacetimes, reduces to the MS mass [93]. In
a generic asymptotically-flat spacetime, the ADM and MS masses coincide only at spatial
infinity, namely MADM = limr→∞ MMS. They are fully equivalent outside the compact object
only if the stress-energy tensor vanishes outside of the object.

On the contrary, the MS mass can be defined covariantly also for non-asymptotically
flat and non-stationary spacetimes, it is the most natural definition of energy for spherically-
symmetric gravitational systems and is, therefore, routinely used by most researchers working
in the field. Moreover, as it encodes the local properties of the energy of a given spherically-
symmetric, virialized gravitational system, the MS mass is the physical mass measured by
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astrophysical observations. For these reasons, it represents the most appropriate tool to
investigate the possible cosmological coupling of local objects embedded in cosmological
backgrounds.

For a spherically-symmetric spacetime with a metric of the general form2

ds2 = hab(x)dxadxb + r(x)2dΩ2 , (2.1)

the MS mass takes the form

MMS = r(x)
2G

[
1 − hab(x)∇ar(x)∇br(x)

]
. (2.2)

Given that the MS mass is a covariant quantity [93], all the physical results based on
its use are coordinate-independent, while its explicit form rests, of course, on the particular
gauge chosen. In the following, we consider the systems of coordinates that are mostly
adopted when discussing the embedding of spherical objects in cosmological backgrounds.
One system is given by Lemaître coordinates (t, r, θ, ϕ)

ds2 = −eα(t,r)dt2 + eβ(t,r)dr2 + R(t, r)2dΩ2 , (2.3)

where α, β and R all depend on the radial and time coordinates. Note also that this metric
generalizes the ones written in isotropic coordinates

ds2 = −eα(t,r)dt2 + eβ̃(t,r)
(
dr2 + r2dΩ2

)
, (2.4)

that have also been frequently adopted to discuss the cosmological embedding of com-
pact objects.

However, in order to discuss the MS mass, it is more convenient to use R(t, r) as the
radial coordinate. Through a straightforward change of coordinates (see ref. [94]), one can
recast the metric (2.3) into the form

ds2 = −A(T, R)dT 2 + B(T, R)dR2 + R2dΩ2 , (2.5)

with the relations

A =
(

eα − eβ Ṙ2

R′2

)
F 2 ; (2.6a)

B = eα+β

R′2
(
eα − eβ Ṙ2

R′2

) , (2.6b)

where the dot and prime stand for derivation with respect to t and r, respectively. F is an
integration function entering the time-coordinate transformation, it is required to guarantee
that dT is an exact differential [94]. Using eq. (2.5), the MS mass reads as

MMS = R

2G
(1 − gµν∇µR∇νR) = R

2G

(
1 − gRR

)
= R

2
(
1 − B−1

)
. (2.7)

2Throughout the paper, we shall use natural units in which c = ℏ = kB = 1. Latin indices a, b = 1, 2 denote
the time and radial coordinates. We use Greek indices to denote four-dimensional spacetime coordinates. dΩ
is the line element of the two-sphere.
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Using eq. (2.6b), in the gauge (2.3), it becomes

MMS = R

2G

(
1 + Ṙ2e−α − R′2e−β

)
. (2.8)

In the following sections we will use this formula to compute the mass of cosmologically-
embedded compact objects. In order to compute the MS mass for a given spherically-symmetric
configuration, we must specify the radius r0 at which MMS is evaluated. For horizonless
compact objects, like BH mimickers, there is some degree of arbitrariness in the choice of r0
since the density profile always goes to zero only at r → ∞, which prevents from defining
a hard surface. We use here the same convention as in ref. [74], i.e., we define the surface
of the object as the one containing 99% of the MS mass. Notice that there is no technical
complication due to the presence of a time-dependent apparent horizon, which replaces the
event horizon for the cosmologically embedded solutions. In fact, as shown in ref. [74], the
cosmologically embedded solutions we are considering in this paper use spherical spacetime
foliations. r0 is only needed at the initial time and, therefore, is given by the radius of
the eternal BH event horizon.

3 Embedding point-like objects and perfect fluid stars in cosmological
backgrounds

In this section we will use the MS mass to reproduce already-known results regarding the
nonexistence of a cosmological coupling of standard singular BHs. By doing so, we will
clarify the physical reasons behind the absence of the small-/large- scale coupling in two
well-known solutions that were recently reconsidered to advocate against the ubiquity of the
cosmological coupling [77]. The gist of their argument is that there is a complete separation
between the scales pertaining to local objects (like BHs) and the dynamics of the cosmological
background, such that the mass of the central BH can be approximately identified with
its ADM mass. First of all, let us note that the ADM mass cannot be properly defined
in non-asymptotically flat spacetimes, as those corresponding to cosmologically embedded
objects. Secondly, as previously stressed, the ADM mass is a nonlocal quantity, thereby
unable to quantify local effects, such as the coupling. Finally, the separation of scales
presented in [77] involves rather questionable limits on small and large scales, due to the use
of time-dependent radial coordinates. The two limits truly represent separated scales only
if we consider the small-scale local dynamics at times for which the scale factor does not
change significantly. If this not the case, the notion of small- and large-scale limits would
instead depend on time. The only case in which one can truly show that the two limits
give neatly separates scales at all times is the Schwarzschild-de Sitter solution, since one
can define coordinates in which the spacetime is static.

We shall show that, for point-like objects, the separation of scales and the resulting
decoupling emerges naturally when considering the MS mass of the solutions mentioned above.

3.1 Schwarzschild-de Sitter solution

The simplest known example of an embedding of a compact object (mass-particle) in a
cosmological background is the Schwarzschild-de Sitter metric, which is a vacuum solution
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of Einstein’s equations with a positive cosmological constant. A peculiarity of this metric
is that it can be written in the static patch

ds2 = −
(

1 − 2Gm

r
− H2r2

)
dt2 + dr2

1 − 2Gm
r − H2r2 + r2dΩ2 . (3.1)

As already noted, here we have a clear separation between the small scales, where the
solution reduces to the Schwarzschild one with an ADM mass m, and the large scales, where
we instead have the de Sitter asymptotics. The decoupling can be readily seen using the
MS mass given by eq. (2.8), instead of a more intricate change of coordinates as done in
ref. [77]. A straightforward calculation yields indeed

MMS = m + H2

2G
r3 . (3.2)

The first term is the ADM mass of the Schwarzschild BH, while the second term is simply
the mass contribution due to the constant cosmological density over a volume r3. There is
no trace of the growth of m due to the expanding cosmological background given by the
Hubble parameter H = ȧ/a, namely there is no cosmological coupling.

3.2 McVittie solution

The McVittie spacetime [1] represents a generalization of the Schwarzschild-de Sitter spacetime
to a generic FLRW model. It was the first exact solution of GR which allowed for the
embedding of spherically-symmetric objects in a generic cosmological background. It is based
on some assumptions, the most important ones being a perfect, isotropic and spherically-
symmetric fluid as a source, and the absence of fluxes of matter/energy into/away from the
central object. Moreover, the metric is required to reduce to the Schwarzschild one, written
in isotropic coordinates, when expressed in terms of radial coordinate of the observer, r̂ = ar.
It thus has the same singularity at the origin.

In the coordinates used in eq. (2.3), it reads as

ds2 = −

(
1 − Gm(t)

2r

)2

(
1 + Gm(t)

2r

)2 dt2 + a2
(

1 + Gm(t)
2r

)4 (
dr2 + r2dΩ2

)
, (3.3)

where a is the scale factor and m(t) = m0/a(t), from Einstein’s equations and from the
requirement of absence of radial fluxes.

We identify the areal radius as

R(t, r) ≡ a(t) r

(
1 + Gm0

2ra(t)

)2
. (3.4)

By writing this solution in the gauge (2.5), eq. (2.8) yields,

ds2 = −
(

1 − 2Gm0
R

− H2R2
)

F 2 dT 2 + dR2

1 − 2Gm0
R − H2R2 + R2 dΩ2 , (3.5)

which is very similar to the Schwarzschild-de Sitter solution, the only differences being the
factor F in the gT T component, and the fact that H is not restricted to describe a de Sitter
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cosmological background. This similarity translates also in the behavior of the MS mass,
where again we have a complete separation of scales

MMS = R

2G

(2Gm0
R

+ H2R2
)

= m0 + H2

2G
R3 . (3.6)

We again identify two independent terms: a contribution of the ADM mass of the BH,
and a purely cosmological term. No coupling is present, as expected, since the density sourcing
the McVittie solution is purely cosmological, i.e., ρ = 3H2/8πG, while the contribution of
the ADM mass of the central object can only be accounted for by inserting by hand the
usual Dirac delta distribution.

4 Coupling of compact objects: local anisotropic and isotropic sources

In section 3 we showed that, for solutions of Einstein’s equations describing the cosmological
embedding of the Schwarzschild black hole, there is no cosmological coupling.

On the contrary, when the impact of small-scale anisotropies is taken into account, it is
possible to have nontrivial solutions describing compact objects/BHs [95–97] circumventing
the Penrose theorem [98], and enabling the construction of nonsingular solutions [88, 99–112].
In this section, we will consider several scenarios of cosmological embedding of compact objects:
the SD solution, solutions sourced by anisotropic fluids, solutions sourced by isotropic fluids,
and charged singular solutions.

4.1 The Sultana-Dyer solution

The SD solution [30] is another exact solution describing a BH embedded in a spatially flat
FLRW. It was found by conformally transforming the Schwarzschild metric with the goal of
changing the Schwarzschild global timelike Killing vector into a conformal Killing one. The
conformal transformation also allows the spacetime to be nonsingular at r = 0.

Despite it being problematic due to the fluid becoming tachyonic at late times near the
horizon [30, 35], it is still interesting for our purposes.

The metric is essentially the McVittie one (2.3), with an important difference: the mass
m appearing in the metric is now a constant

ds2 = −

(
1 − Gm0

2r

)2

(
1 + Gm0

2r

)2 dt2 + a2
(

1 + Gm0
2r

)4 (
dr2 + r2dΩ2

)
. (4.1)

The fact that the mass does not depend on a naturally introduces fluxes, making the
source anisotropic. In fact, the source of the SD solution is a combination of two noninteracting
perfect fluids, one in the form of an ordinary massive dust and the other of a null dust [30, 35].
It is well-known that such a combination can be recast as a single anisotropic fluid [113]. As
we shall see, this is the origin of the coupling with the cosmological background.

We now compute the MS mass (2.8) of the SD solution. We first identify

R ≡ ar

(
1 + Gm0

2r

)2
, (4.2)
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with which, using eq. (2.6b) and reading eα and eβ from eq. (4.1), we get

B =
1 − 2Gam0

R(
1 − 2Gam0

R

)2
− H2R2

. (4.3)

Therefore, the MS mass (2.8) reads as

MMS = a m0 + H2R3

2G
(
1 − 2Gam0

R

) . (4.4)

The first term represents the coupling of the mass of the solution with the cosmological
background, and it is consistent with the linearly-scaling universal coupling term derived for
the first time in ref. [74] for generic anisotropic fluids. The second term cannot be interpreted
as a pure cosmological contribution, due to the presence, in the denominator, of a term
depending on a m0. The latter encodes the interaction between the small and large scales,
as a physical consequence of the accretion flow of cosmic fluid onto the central object, due
to the presence of nonzero fluxes in the source. Note that similar results hold for the class
of exact models analyzed in ref. [35], devised to correct the problems of the SD metric, as
well as for the solutions considered in ref. [114].

4.2 Compact objects sourced by anisotropic fluids

In ref. [74] it was shown that the metric parametrization (η is the conformal time)

ds2 = a2(η)
[
−eα(η,r)dη2 + eβ(η,r)dr2 + r2dΩ2

]
, (4.5)

representing the cosmological embedding of a generic compact object sourced by an aniso-
tropic fluid, allows to describe the coupling of GR BHs/horizonless configurations to the
cosmological background. The stress-energy tensor pertaining to the source has the form
T µ

ν = diag
(
−ρ, p∥, p⊥, p⊥

)
.

Einstein’s equations and stress-energy tensor conservation give:

e−β(r,η) = g(r)arα′ ; (4.6a)

ȧ2

a2
(
3 − rα′) e−α + 1 − e−β + rβ′e−β

r2 = 8πGa2ρ ; (4.6b)

e−β + re−βα′ − 1
r2 + e−α

(
−2 ä

a
+ ȧ2

a2

)
= 8πGa2p∥ ; (4.6c)

ρ̇ + ȧ

a

(
3ρ + 3p∥ + rp′

∥

)
= 0 , (4.6d)

where a dot now means derivation with respect to η. The remaining equation, stemming
from the conservation of the stress-energy tensor, is used to compute p⊥.

The field equations allow for a regime in which α̇ = 0, which is the only one in which
compact objects can be consistently embedded in a cosmological background (see refs. [74,
115, 116]). It describes the absence of fluxes, unlike the case analyzed in section 4.1.
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This set-up is suitable to describe both the large- (cosmological) and the small- (in-
homogeneity) scale dynamics, and it allows for a non-zero interaction term between these
two scales.3

The cosmological mass coupling is immediately manifest when computing the density
through Einstein’s equations and integrating it over a reference cosmological volume (see
ref. [74] for further details)

M(η) = 4πa3(η)
∫ L

0
dr r2 ρ(r, η)

= 4π

3 ρ1a3L3 e−α(L) + M(ai)
a

ai

[
1 − e−β0(L)akL

]
,

(4.7)

where L is the scale of a particular compact objects, while

kL ≡ k(L) = rα′(r)
∣∣∣∣
r=L

. (4.8)

Here we defined M(ai) ≡ aiL/2G, which is the mass of the object computed at the coupling
epoch. This expression defines the proper Schwarzschild radius aiL = 2GM(ai) at this
reference time.4

The first term in eq. (4.7) corresponds to a purely cosmological contribution, which
depends on the cosmological background energy density ρ1. It is therefore expected to be
relevant only beyond the transition scale to homogeneity and isotropy. It does not play a role
at the typical scales L of the compact object. As here we are not interested in whether and
how the small-scale dynamics affects the large-scale cosmological one, another long-standing
problem commonly known as “cosmological backreaction” [55–59], we can safely neglect
this term in the following discussion.

The second term in eq. (4.7) represents a “universal cosmological Schwarzschild mass”.
The cosmological coupling emerges as a linear dependence between the mass of the object
and the scale factor a. Note that this is the same universal coupling term found for the
SD solution (see eq. (4.4)). It has here a geometric origin in terms of the local curvature
generated by the compact object [74]. Finally, the last term encodes model-dependent
corrections to the universal term.

Note that, for standard Schwarzschild BHs, the sum of the second and third terms in
eq. (4.7) is identically zero, and we are left with the purely cosmological contribution.

Eq. (4.7) can also be derived from the general definition of the MS mass. Using R = ar,
from eq. (2.8) one gets

MMS = ar

2G

[
1 + ȧ2

a2 r2e−α − a2

a2 e−β

]

= 4π

3 ρ1a3r3e−α + ar

2G

[
1 − e−β0(r)ak(r)

]
,

(4.9)

3It is worth noting that the cosmological embedding realized using the metric (4.5) is more general than
the one used by McVittie in eq. (3.3). In our case the metric is required to reduce to the static metric of the
local compact object at any fixed instant of time. Conversely, in the McVittie parametrization, such reduction
must happen by passing to the observer radial coordinate r̂ = ar.

4The definition of M(ai) as a linear function of L is expected to hold only for black holes or ultra-compact,
strongly-coupled, objects, for which a weak-field limit description is not valid.
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where, in the last step, we made use of the Friedmann equation 3ȧ2/a2 = 8πGa2ρ1, with
ρ1 = ρ1(η) being the density of the cosmological fluid sourcing the background. To obtain
the last element we also used eq. (4.6a). Eq. (4.9) is equivalent to eq. (4.7) when evaluated
at the radius of the compact object r = L.

Notice that the cosmological coupling is present independently of the underlying cosmolo-
gical background (for instance, it is present also in a de Sitter background). That is because
ρ1 can be freely specified, and it determines the scale factor regardless of the dynamics of the
small-scale inhomogeneities.5 If we impose the solution at constant time to be Schwarzschild-
de Sitter, we have no coupling, i.e., we have a complete separation between scales. Let us
finally recall that, differently from the SD and other solutions, here the coupling is not due
to some accretion onto compact objects, since we imposed the absence of radial fluxes.

4.3 Compact objects sourced by isotropic fluids

The case of nonsingular compact objects sourced by isotropic fluids can be considered as
a particular case of the previously discussed anisotropic fluid, where p⊥ = p∥ = p. The
only difference is that, now, the conservation of the stress-energy tensor gives the additional
equation p′ + α′ (ρ + p) /2 = 0. This makes the system (4.6) more constrained, so that, as
shown by McVittie [1], it does not allow for smooth solutions describing the cosmological
embedding of compact objects. Only the standard FLRW cosmological solutions are allowed.
On the contrary, in the derivation of the main results of section 4.2, i.e., eqs. (4.7) and (4.9),
we did not exploit the conservation equations for the stress-energy tensor. Therefore they
still hold true also in the case of isotropic compact objects, provided that the cosmologically
embedded solutions exist. This could be, for instance, the case of a non-smooth cosmological
embedding of a local compact object. Thus, we expect also nonsingular compact objects
sourced by isotropic fluids to couple to the cosmological evolution in the same way as their
anisotropic counterparts.

4.4 Charged singular solution embedded in a FLRW background

The cosmological embedding of singular solutions can also be extended to the charged
Reissner-Nordström (RN) solution of GR. There has been some work devoted to the charged
generalization of the McVittie spacetime, the so-called Shah-Vaidya solution (see refs. [11, 27,
33, 41, 47] and references therein). Even in this case, the stress-energy tensor is anisotropic,
but any flux onto/away from the central object is absent. One might attempt to naïvely
apply the general results of this section to the cosmological embedding of the RN BH, given
that the stress-energy tensor is nonzero outside of the horizon, implying that the MS and
ADM mass are not identical in the BH exterior. However, there is a problem in the definition
of the quasi-local mass, due to the divergence associated to the electric field at r = 0.

In the presence of an electric field, the gravitational potential scales as 1/r2, due to
the density of the electric field scaling as r−4. As a consequence, there is an extra factor

— scaling as 1/r in the quasi-local energy — which is ill-defined at r = 0. This feature is
interpreted as a repulsive effect due to the intensity of the electric field in the vicinity of the
singularity (for further details, see, e.g., section VIII in ref. [93], or section III in ref. [117]).

5This is strictly true only if one neglects the backreaction (see the discussion above).
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Alternatively, one can quantify the energy of a charged solution with the ADM mass,
which is anyhow undefined in non-asymptotically flat spacetimes, and moreover does not
capture the coupling to the cosmological background, as discussed in detail throughout
this paper. We thus conclude that a clear description of the coupling between a charged
singular spacetime embedded in a cosmological background is quite problematic. Moreover,
from a purely phenomenological point of view, the presence of an electromagnetic charge
is astrophysically irrelevant.

5 Conclusions

In this paper we have shown that the longstanding debate on the theoretical status of the
coupling of BHs/compact astrophysical objects to the cosmological background can be finally
put on solid ground, if the physically observable mass of the compact object is identified
as the MS mass. By doing so, we have explicitly demonstrated that singular BHs cannot
couple to the large-scale cosmological dynamics.

We have also shown that the cosmological coupling is not only allowed, but quite natural,
for generic compact objects sourced both by isotropic fluids and local anisotropies, like, e.g.,
nonsingular BHs. The energy of these systems has a quasi-local nature, so that it can be
correctly quantified by the MS mass (instead of the nonlocal ADM mass). In this case,
we have found that the mass of the object is intrinsically linked to the scale factor a by a
universal linearly-scaling leading term, with a geometric origin in terms of the local curvature
of spacetime. Although our derivation provides a general, model-independent statement
on the existence of the cosmological coupling of compact astrophysical objects, its range of
application is until now quite limited. This is because, up to now, there is no generic solution
for BHs or BH mimickers to be embedded in a FLRW universe. Our explicit examples of
regular BHs and BH mimickers are, therefore, limited to the few cases already present in
the literature. On the other hand, our considerations could be straightforwardly applied
to any future new solution of this kind.

From a purely theoretical point of view, there are two main issues that still need further
investigation: (i) fully understand the cosmological coupling of singular objects sourced by
local anisotropies, but characterized by an ill-defined MS mass (which prevents a direct
application of the results of section 4). This is the case of the RN BH briefly discussed in this
paper; (ii) generalize the framework in order to encompass rotating compact objects (see, e.g.,
refs. [13–15] for earlier works on the embedding of the Kerr metric in a FLRW cosmology).
Note, however that including rotation is expected to have a non-neglibile impact only on the
subleading non-universal term in eq. (4.7), without affecting at all our conclusions about the
leading universal linear coupling term and the decoupling of singular BHs.

As described in section 1, the situation still remains rather complicated from the point
of view of observations, mainly due to the lack of clear observational results. New sets of
data are needed in order to validate the theoretical predictions for the exponent k. Our
theoretical analysis shows quite clearly that eternal BHs, i.e., objects with event horizons,
are characterized either by k = 0 if they are singular objects, or by k = 1 if they are regular.
It seems that GR can not allow for other possibilities. Observational evidence of a nonzero
cosmological coupling would thus be the smoking gun of the nonsingular nature of the actual
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astrophysical black holes. Conversely, a clear detection of k = 0 would imply that nonsingular
GR BHs are hardly compatible with observations.
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