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Assimilation of NDVI data in a land surface – Vegetation model for
leaf area index predictions in a tree-grass ecosystem
Nicola Montaldo, Andrea Gaspa and Roberto Corona

Dipartimento di Ingegneria civile, ambientale e architettura, Università di Cagliari, Cagliari, Italy

ABSTRACT
Periodic observations of vegetation index, such as the normalized
difference vegetation index (NDVI), can be used for data assimilation in
heterogenous ecosystems. Indeed, the new Sentinel 2 Multispectral
instrument and Landsat 8 Operational Land Imager sensor data are
available at such high temporal and spatial resolutions that can be used
to detect the patches of the main vegetation components (grass and
trees) of heterogenous ecosystems, and capture their dynamics. We
demonstrate the possibility to merge grass and tree NDVI observations
and models, to optimally provide robust predictions of grass and tree
leaf area index. The proposed assimilation approach assimilates NDVI
data through the Ensemble Kalman filter (EnKF) and dynamically
calibrates a key vegetation dynamic model parameter, the maintenance
respiration coefficient (ma). In the presence of large bias of the grass
and tree ma base values, only the use of the proposed assimilation
approach removes the large bias in the biomass balance, dynamically
calibrating maintenance respiration coefficients, and corrects the model.
The performance of a land surface – vegetation model was improved
by assimilating observations of NDVI. The effective impact of the
proposed assimilation approach on the evapotranspiration and CO2

uptake predictions in the heterogenous ecosystem is also demonstrated.
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1. Introduction

The structure and function of the vegetation canopy regulates the exchange of mass, energy and
momentum across the biosphere-atmosphere interface (Eagleson 2002; Lambers, Chapin III, and
Pons 1998; Larcher 1995). Vegetation density controls the functioning of land surface processes
through its impact on evapotranspiration, interception, and carbon uptake (Albertson and Kiely
2001; Arora 2002; Chen et al. 2015; Fatichi, Pappas, and Ivanov 2016; Fernandez-Illescas and Rodri-
guez-Iturbe 2004;Montaldo et al. 2003; Porporato andRodriguez-Iturbe 2002; Rodriguez-Iturbe 2000).

The leaf area index (LAI) is a key vegetation characteristic, driver of the vegetation productivity,
and can be considered a key biophysical variable in vegetation models (Ewert 2004; Parker 2020;
Wythers, Reich, and Turner 2003). Indeed, efforts have led to improvements in the estimate of
key ecohydrological variables, such as the LAI, from remote sensors (Houborg and McCabe
2018; McCabe et al. 2017; Pettorelli et al. 2014). LAI mapping can be derived from observations
of optical remote sensors operating in the visible and infrared bands (Broge and Leblanc 2001;
Fang et al. 2019; Zheng and Moskal 2009). Indeed, vegetation indexes, e.g. the normalized

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an OpenAccess article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this
article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

CONTACT Nicola Montaldo nmontaldo@unica.it Dipartimento di Ingegneria civile, ambientale e architettura, Università
di Cagliari, Via Marengo, 3, I-09123, Cagliari, Italy

INTERNATIONAL JOURNAL OF DIGITAL EARTH
2023, VOL. 16, NO. 1, 3810–3837
https://doi.org/10.1080/17538947.2023.2259226

http://crossmark.crossref.org/dialog/?doi=10.1080/17538947.2023.2259226&domain=pdf&date_stamp=2023-09-19
http://creativecommons.org/licenses/by/4.0/
mailto:nmontaldo@unica.it
http://www.digitalearth-isde.org/
http://english.aircas.ac.cn/
http://www.tandfonline.com


difference vegetation index (NDVI), can be estimated from optical remote observations (Fang et al.
2019; Zheng and Moskal 2009), and NDVI is strictly related to LAI through empirical and phys-
ically-based models (Dong et al. 2019; Li et al. 2017; Verrelst et al. 2015; Wang et al. 2005). Nowa-
days, a wide variety of optical satellite remote sensors are available, at different spatial resolutions.
They range, for instance, from the coarse spatial resolutions of AVHRR (1100 m) andMODIS (250-
1000 m) to the fine spatial resolutions (10- 30 m) of ASTER, Landsat 8 and Sentinel 2 (Gim et al.
2020; Li et al. 2017; Ngadze et al. 2020), and the highest spatial resolutions (≤ 5 m) of IKONS,
QUICKBIRD and WorldView (Huang et al. 2018). Originally, the main limit of optical sensors
at high spatial resolution was the low time resolution of their platforms (Gao et al. 2006; Hill,
Quaife, and Williams 2011), but new platforms, such as Sentinel 2 (Attarzadeh et al. 2018; Attarza-
deh and Amini 2019) and Landsat 8 (Li et al. 2017; Ngadze et al. 2020), provide observations, poten-
tially, at high temporal resolutions (up to 5–10 days), and are freely available. Observations of
vegetation index at such high temporal resolutions are essential for operative data assimilation
approaches, being vegetation phenology highly sensitive to temporal resolution (Jin et al. 2018;
Kross et al. 2011; Thayn and Price 2008).

The fine spatial and time resolutions of the remote sensing data allow the vegetation mapping in het-
erogeneous ecosystems (Gao et al. 2006; Hill, Quaife, and Williams 2011), characterized by contrasting
plant functional types (PFTs, e.g. grass and trees) competing for water and energy (Baldocchi, Xu, and
Kiang 2004; Detto et al. 2006; Fernandez, Mora, and Novo 2004; Ramirez-Sanz et al. 2000; Scholes and
Archer 1997; Williams and Albertson 2004). In these ecosystems, spatial patterns of tree and grass cov-
ers are variable in space and time, depending on the water availability and incoming radiation (Sankaran
et al. 2005), both of which respond to topographic, climatic and edaphic factors, and ultimately produce
the tree-grass mosaic on the landscape (Breshears 2006; Moore and Heilman 2011; Villegas et al. 2014).
For capturing the fine spatial land cover variability and its evolution in time, remote optical sensing
observations need to be at fine spatial and time resolutions (Hill, Quaife, and Williams 2011; Olsoy
et al. 2017), which could be achieved, for instance, through the combined use of Landsat 8 and Sentinel
2 data. The fine spatial resolutions of Landsat 8 and Sentinel 2 allow to capture the patches of grass and
trees in heterogeneous ecosystems.

Land surface models (LSMs) have been developed to simulate land and atmosphere interactions
and the soil moisture and thermal states, from the integration of mass and energy balance equations
(e. g., Albertson and Kiely 2001; Famiglietti and Wood 1994; Montaldo and Albertson 2001; Noil-
han and Planton 1989; Wigmosta, Lettenmaier, and Vail 1994). LSMs have been coupled with veg-
etation dynamic models (VDM) for modeling vegetation dynamics and their interactions with land
surface processes (Arora 2002; Montaldo et al. 2005; Montaldo, Albertson, and Mancini 2008). The
coupled LSM-VDMs are part of the ecohydrological models, which are able to integrate hydrolo-
gical mechanisms and ecological patterns and processes (Chen et al. 2015; Fatichi, Pappas, and Iva-
nov 2016; Rodriguez-Iturbe 2000). In a coupled LSM-VDM, vegetation characteristics such as the
leaf area index (LAI), which were often considered to be yearly invariant or seasonally variable
according to pre-defined shapes in LSMs (Arora 2002; Jasper et al. 2004; Vanrheenen et al.
2004), become variable and are predicted by the VDM (Montaldo et al. 2005; Montaldo, Albertson,
and Mancini 2008).

Data assimilation techniques guide the ecohydrological models with observations of certain state
variables from satellite remote sensors (Crow and Wood 2003; Fang et al. 2019; Montaldo et al.
2001; Montaldo, Albertson, and Mancini 2007; Reichle et al. 2004; Wigneron et al. 1999). Little
effort has been made to assimilate LAI from optical remote sensing data in LSM (Bonan et al.
2020) and LSM coupled with a crop growth model or VDM (Cheng et al. 2020; Huang et al.
2015; Kumar et al. 2019; Migliavacca et al. 2009; Peng et al. 2021; Tripathy et al. 2013); most
research mainly used remote observations at the coarse spatial scale of MODIS (Demarty et al.
2007; Fox et al. 2018; Li et al. 2017; Ma et al. 2017; Migliavacca et al. 2009; Quaife et al. 2008).
MODIS observations do not seem suitable for highly heterogeneous, water-limited ecosystems
due to the coarse spatial resolution (>250 m), which would not allow a clear distinction of
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vegetation cover components (e.g. trees), which usually cover less than 50 m in these ecosystems.
This study proposes the assimilation in the coupled LSM-VDM of observations from two optical
satellites (Landsat 8 and Sentinel 2) with fine spatial and time resolutions, which could be appro-
priate for heterogeneous ecosystems.

Data assimilation accounts for both measurement and model errors optimally using, for instance,
the Kalman filters (e.g. Reichle et al. 2002). The Kalman filter considers errors of the model from par-
ameters, initial conditions and forcing (e.g. Dunne andEntekhabi 2005;Margulis et al. 2002;Montaldo,
Albertson, and Mancini 2007). The Kalman filter should optimally assimilates measurements of state
variables, such as provided by remote sensor data (e.g. soil moisture, leaf area index, surface tempera-
ture), to reduce the model errors. Besides Kalman filters, other data assimilation algorithms are vari-
ational assimilations (Jin et al. 2018), which assimilates all observations at once at their respective
measurement times over a givenperiod (Scholze et al. 2017), in contrastwith the sequential assimilation
approach used byKalman filters andParticlefilters, which assimilates observations subsequently at dis-
crete model time steps (Jin et al. 2018). Reichle et al. (2002) suggested the use of the ensemble Kalman
filter (EnKF) of Evensen (1994), because it is ‘more robust and offers more flexibility in covariance mod-
eling’. The EnKF is widely used in land data assimilation and hydrology (Crow 2003; Crow andWood
2003; Evensen 2003; Margulis et al. 2002; Montaldo, Albertson, and Mancini 2007; Reichle et al. 2002;
Reichle et al. 2019) due to its relative ease of implementation (Reichle et al. 2017). Some data assimila-
tion efforts assimilated NDVI and LAI data in ecohydrological models using EnKF (Dong et al. 2013;
Fox et al. 2018; Kumar et al. 2019; Li et al. 2017; Ling et al. 2019; Ma et al. 2017; Quaife et al. 2008). The
Kalman filter assumes that the model errors are zero-mean and uncorrelated in time. In ecohydrologic
modeling this requirement is frequently not respected, and the model becomes biased. Montaldo,
Albertson, andMancini (2007) assimilated soil moisture observations in a LSMusing EnKF and devel-
oped an assimilation approach that dynamically calibrated a key soil water balancemodel parameter as
a function of the persistent bias in soilmoisture predictions. This approachwas useful whenmodel par-
ameters largely differed from the calibrated values (Montaldo, Albertson, andMancini 2007), and was
applied using Sentinel 1 radar data by Montaldo et al. (2022). Lü et al. (2011a, 2011b) followed the
approach of Montaldo, Albertson, and Mancini (2007) assimilating soil moisture in two Chinese
field sites, and Nie, Zhu, and Luo (2011) and Zhang et al. (2017) assimilating soil moisture using
EnKF, and calibrated several parameters of a soil water balance model, by using field measurements
and not using remote sensor observations.

Here, the performance of the EnKF for LAI predictions is addressed for reducing LSM-VDM
biases due to parameter errors. Using the Montaldo, Albertson, and Mancini (2008) coupled
LSM-VDM, we propose an approach for assimilating tree and grass NDVI from Landsat 8 and Sen-
tinel 2 remote sensors in the LSM-VDM, which removes the model biases through a dynamic cali-
bration of key VDM parameters.

The proposed multiscale assimilation approach was tested in a Sardinian field site, characterized
by strong heterogeneity with wild olives randomly distributed in surrounding grass, and water-lim-
ited conditions typical of Mediterranean ecosystems (Detto et al. 2006). In the Sardinian field site, a
micrometeorological eddy-covariance based tower has been operating (Montaldo, Albertson, and
Mancini 2008; 2020), and Landsat 8 and Sentinel 2 remote observations were used for data assim-
ilation. Analogous solutions should be derivable for most other ecohydrological models, and using
data of other remote sensors with similar or higher spatial and temporal resolutions. In summary,
our objectives are to:

1) assimilate tree and grass NDVI observations of optical satellites at fine spatial resolution (Land-
sat 8 and Sentinel 2) in a coupled LSM-VDM over an heterogenous ecosystem;

2) dynamically calibrate key VDM parameters for LAI predictions, through a proposed approach
based on the manipulation of the conservation equations of green and tree biomass; and

3) evaluate the effectiveness of the proposed assimilation approach for predictions of key land sur-
face fluxes, such as evapotranspiration and CO2 assimilation.

3812 N. MONTALDO ET AL.



2. Methods

In this section we describe the proposed approach for assimilating NDVI data in a coupled LSM-
VDM. The case study and data are then presented.

2.1. The assimilation approach

The proposed multiscale assimilation approach includes (Figure 1): 1) the LSM running at a fine
time scale (e.g. half hourly), 2) the VDM that predicts LAI dynamics at a coarser time scale of
(e.g. daily), 3) the NDVI observations from remote sensors at a larger time scale (e.g. weekly),
which are assimilated through the EnKF, 4) the updating of model parameters at a further larger
time scale (e.g. three weeks or more).

Below, each component of the proposed assimilation approach is described.

2.1.1. The coupled LSM-VDM
The ecohydrological model is a three-component coupled land surface – vegetation dynamic model.
The VDM estimates the LAI evolution through time for two vegetation components (grass and
trees), which are used by the LSM for computations of the energy exchanges between soil and veg-
etation (Figure 2). The details are given in Montaldo, Albertson, and Mancini (2008). Here, a sum-
mary of the main components are described.

2.1.1.1. The land surface model. The LSM predicts the dynamics of water and energy fluxes at the
land surface on a half-hour time step (Figure 1). It includes three components of land surface: bare
soil, grass and trees. The root zone supplies the bare soil and vegetation with soil moisture for eva-
potranspiration and controls the infiltration and runoff mechanisms. Equations for surface temp-
erature and the components of the energy balance are applied separately for each land cover
component, so that the model predicts the energy balance distinctly for each land cover component
(Montaldo, Albertson, and Mancini 2008) (Table 1).

The soil water balance equation of the root zone is computed by

∂urz
∂t

= 1
drz

( fbsIbs + fv,tIt + fv,gIg − fbsEbs − fv,tEt − fv,gEg − qD) (1)

where θrz is the soil moisture of the root zone, drz is the root zone depth, Ibs is the infiltration rate on bare
soil, It and Igr are the throughfall rates infiltrating into the soil covered by trees and grass respectively, qD

Figure 1. The multiscale assimilation scheme. LSM is the land surface model, VDM is the vegetation dynamic model, EnKF is the
ensemble Kalman filter, and LAI is the leaf area index. On the right is an example of the time scale of each component of the
assimilation scheme.
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is the rate of drainage out of the bottom of the root zone, Ebs is the rate of bare soil evaporation, Et and Eg
are the rates of transpiration of trees and grass respectively, fv,t is the fraction of tree cover, fv,g is the
fraction of grass cover, and fbs is the fraction of bare soil (Montaldo, Albertson, and Mancini 2008).
The throughfall rate is modeled through a balance equation of the intercepted water by the canopy
reservoir, which storage capacity is a function of the LAI (= 0.2 LAI; Noilhan and Planton 1989) and
produces throughfall when the reservoir is saturated (Montaldo and Albertson 2001; Noilhan and Plan-
ton 1989). An infiltration excess mechanism, based on the Philip’s infiltration equation (Philip 1957), is
used for the infiltration. The qD rate is estimated using the unit head gradient assumption (Table 1;
Albertson and Kiely 2001; Montaldo, Albertson, and Mancini 2008).

Et and Eg are estimated distinctly using the Penman-Monteith equation (e.g. Brutsaert 1982, 224) for
each vegetation component, with canopy resistances estimated using a typical Jarvis (1976) approach
(Table 1). The actual rate of bare soil evaporation is determined as a(u)PE, where α(θ) is a rate-limiting
function, and PE is the potential evaporation estimated by the Penman equation (e.g. Brutsaert 1982,
equations 10.15, 10.16 and 10.19). Hence, the total evapotranspiration is estimated as:

ET = fbsEbs + fv,tEt + fv,gEg (2)

Paralleling the approach for ET estimation, a 3-component approach is implemented for estimating the
total net CO2 flux (Montaldo, Corona, and Albertson 2013):

Fc = fv,tFc,t + fv,gFc,g + Rbs (3)

where Fc,t and Fc,g are the carbon exchange of trees and grass, respectively, and Rbs is the soil respiration.
Carbon exchange rates for each PFT (i.e. Fc,t, Fc,g) are computed as the difference between photosyn-
thesis and growth respiration (Table 2). Soil respiration is estimated as a function of the temperature
(Table 2; Montaldo, Corona, and Albertson 2013; Novick et al. 2004; Ruehr and Buchmann 2010).
The model parameters are presented in Table 3.

Figure 2. The technical workflow (flowchart) of the assimilation approach.
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2.1.1.2. The vegetation dynamic model. The VDM computes the change in biomass over time from
the difference between the rates of biomass production (photosynthesis) and loss, mainly through
respiration (e.g. Cayrol et al. 2000; Larcher 1995). The VDM distinguishes tree and grass com-
ponents. In the VDM of trees, four separate biomass states are considered: green leaves (Bl),
stem (Bs), living root (Br), and standing dead (Bd). However, the VDM of grass only distinguishes
three biomass states (green leaves, roots and standing dead). The biomass [g DMm−2] components
are simulated through ordinary differential equations, integrated numerically at a daily time step
(Montaldo, Albertson, and Mancini 2008):

dBl

dt
= aaPh− Rl,m − Rl,g − Sl (4)

dBs

dt
= asPh− Rs,m − Rs,g − Ss (5)

Table 1. Equations of drainage (qD), canopy resistance (rc) with stress functions of soil moisture (θ), air temperature (Ta) and vapor
pressure deficit (VPD), sensible heat flux (H ), net radiation (Rn), soil heat flux (G), and surface temperature (Ts) in the LSM.
Parameters are defined in Table 3.

Equations
Drainage

qD = ks
u

us

( )2b+3

Canopy resistance

rc = rs,min
LAI[ f1(u)f2(Ta)f3(VPD)]

−1

f1(u) =
0

u− uwp
ulim − uwp

1

if u ≤ uwp
if uwp , u , ulim

if u ≥ ulim

⎧⎪⎪⎨
⎪⎪⎩

f2(Ta) =
0 for Ta ≤ Ta, min and Ta . Ta, max

1− Ta,opt − Ta
Ta,opt − Ta, min

for Ta, min , Ta , Ta,opt

1 for Ta,opt ≤ Ta ≤ Ta, max

⎧⎪⎪⎨
⎪⎪⎩

f3 = 1 – ω log(VPD)

Sensible heat flux

H = racpCHu(Ts − Ta),

where CH the heat transfer coefficient
Net radiation

Rn = Rswin(1− a)+ 1(Rlwin − sT4s ),

with shortwave incoming ration, Rswin, longwave incoming ration, Rlwin, estimated based on equation 6.10 in Brutsaert (1982), α
albedo, ε emissivity and σ the Stefan-Boltzmann constant
Soil heat flux
G = Rn-H-LE

Surface temperature

dTs
dt

= CTG− 2p
t
(Ts − Ta),

with T2 being the mean Ts value over one day τ, and CT the soil thermal coefficient

dT2
dt

= 1
t
(Ts − T2)
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dBr

dt
= arPh− Rr,m − Rr,g − Sr (6)

dBd

dt
= Sl − La (7)

where Ph is the gross photosynthesis, aa, as and ar are allocation (partitioning) coefficients to leaves,
stem and root states, Rl,μ, Rs,μ and Rr,μ are the maintenance respiration rates from leaves, stem and
root biomass respectively, Rl,γ, Rs,γ and Rr,γ are the growth respiration rates from leaves, stem and
root biomass respectively, while Sg, Ss and Sr are the senescence rates of leaves, stem and root

Table 2. Equations of the vegetation dynamic model components. Parameters are defined in Table 3.

Ecophysiological term Equations

Photosynthesis
Ph = 1P(PAR)fPARPAR

1.37ra + 1.6rc,min
1.37ra + 1.6rc

1P(PAR) = a0 + a1PAR+ a2PAR2

fPAR = 1− e−keLAI

Allocation For the tree cover:

aa = ja
1+V[2− l− f1(u)]

as = js +V(1− l)
1+V[2− l− f1(u)]

ar = jr +V(1− f1(u))
1+V[2− l− f1(u)]

ja + js + jr = 1; l = e−keLAI

For grass cover:

aa = ja +Vl

1+V[1+ l− f1(u)]

:

ar = jr +V(1− f1(u))
1+V[1+ l− f1(u)]

ja + jr = 1

Respiration Maintenance and growth respirations of biomass
components

Rl,m = maf4(T)Bl ; Rl,g = gaaaPg

Rs,m = msf4(T)Bs ; Rs,g = gsasPgRr,m = mrf4(T)Br ; Rr,g = grarPg

f4(T) = Q
Tm
10
10 with Tm = mean daily temperature

Soil respiration

Rbs = R10Q

Tm
10
N

whereR10
is the reference respiration rate at 10°C and QN is the soil respiration
sensitivity to temperature.

Senescence Sl = daBl
Ss = dsBs
Sr = drBr

Litterfall La = kaBd
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biomass, respectively, and La is the litter fall. The model equations are given in Table 2 and the par-
ameters are presented in Table 3, where calibrated values are reported.

The leaf area index is estimated from the biomass by a linear relationship (Arora 2003; Hanson,
Skiles, and Parton 1988; Montaldo et al. 2005; Nouvellon et al. 2000):

LAI = cl Bl (8)

where cl is the specific leaf area of the green biomass, which is different for grass and trees (Table 3).
In the case of LAI predictions of grass, the Equation (5) is not used because the VDM of grass only
distinguishes three biomass states (green leaves, roots and standing dead) and not stem biomass.
The VDM provides estimates of daily values of leaf biomass and, thus, the LAI of the tree and
grass, which is used by the LSM to estimate evapotranspiration, energy flux, rainfall interception,
carbon assimilation, and the soil water content at a half-hour time step (Figure 2; Montaldo, Albert-
son, and Mancini 2008). The LSM provides soil moisture and aerodynamic resistances to the VDM
(Figure 2). The details are given in Montaldo et al. (2005), Montaldo, Albertson, and Mancini
(2008), and Montaldo, Corona, and Albertson (2013).

2.1.2. Optical remote sensing data
NDVI is estimated from red and near-infrared spectral reflectance measurements of satellite remote
sensors (Figure 2). The Operational Land Imager (OLI) – Landsat 8 data is mainly used, and, sec-
ondly, the Sentinel 2 Multi Spectral Imager (MSI) data increases the optical database. Landsat 8 has

Table 3. Model parameters of the coupled LSM-VDM and their values for the Orroli site.

Parameter Description

Value*

grass tree

LSM-VDM parameters
rs,min [s m

−1] minimum stomatal resistance 100 300
Tmin [°K] minimum temperature 272.15 272.15
Topt [°K] optimal temperature 295.15 285.15
Tmax [°K] maximum temperature 313.15 318.15
θwp [−] wilting point 0.08 0.04
θlim, [−] limiting soil moisture for vegetation 0.20 0.17
ω [KPa−1] slope of the f3 relation 0.6 0.6
Only VDM parameters
cl [m

2 gDM−1] Specific leaf areas of the green biomass in growing season 0.01 0.005
cd [m

2 gDM−1] Specific leaf areas of the dead biomass 0.01 0.003
ke [−] PAR extinction coefficient 0.5 0.5
ξa [−] Parameter controlling allocation to leaves 0.6 0.55
ξs [−] Parameter controlling allocation to stem – 0.1
ξr [−] Parameter controlling allocation to roots 0.4 0.35
Ω [−] Allocation parameter 0.8 0.8
ma [d

−1] Maintenance respiration coefficients for aboveground biomass 0.032 0.001
ga [−] Growth respiration coefficients for aboveground biomass 0.28 0.69
mr [d

−1] maintenance respiration coefficients for root biomass 0.007 0.002
gr [−] growth respiration coefficients for root biomass 0.1 0.1
Q10 [−] Temperature coefficient in the respiration process 2.45 2.42
da [d

−1] death rate of aboveground biomass 0.05 0.0045
dr [d

−1] death rate of root biomass 0.003 0.005
ka [d

−1] rate of standing biomass pushed down 0.05 0.35
Only LSM parameters
zom,v [m] Vegetation momentum roughness length 0.05 0.5
zov,v [m] Vegetation water vapor roughness length zom/7.4 zom/2.5
zom,bs [m] Bare soil momentum roughness length 0.015
zov,bs [m] Bare soil water vapor roughness length zom/10
θs [−] saturated soil moisture 0.53
b [−] slope of the retention curve 8
ks [m/s] saturated hydraulic conductivity 5 × 10−6

|ψs| [m] air entry suction head 0.79
drz [m] Root zone depth 0.19

*Two values for vegetation parameters are those of the grass and tree.
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a temporal resolution of 8-days and a spatial resolution of 30 m for the optical bands (panchromatic
band at 15 m spatial resolution), which is similar to Sentinel 2 data, and both are freely available.

From Landsat 8 and Sentinel 2 observations, NDVI is estimated at 30 m spatial resolution for
being assimilated in the EnKF based approach. LAI is related to NDVI through the Γ operator
using an empirical approach (e.g. Gupta, Prasad, and Vijayan 2000; Potithep et al. 2010; Wang
et al. 2005):

LAI = G(NDVI) = b1 + b2NDVI
b3 (9)

where β1, β2 and β3 are coefficients for vegetation species. The values of β1, β2 and β3 have been
estimated for the case study from simultaneous observations of LAI in the field and NDVI from
remote sensors. Note that analogous solutions should be derivable with different G(NDVI)
relationships.

2.1.3. The ensemble Kalman filter
We assimilate observations of NDVI, which is related to LAI through (9), in the VDM, which
describes the evolution of LAI. In the Kalman filters, �w is a vector of surface state variables (in
this case LAI). The equation describing the evolution of �w (at the ti time step), as determined by

a nonlinear model (�f , in this case the vegetation dynamic model) can be written as (e.g. Crow
and Wood 2003):

d�w
dt

= �f (�w, �v) (10)

where �v relates errors in model physics, parameterization, and/or forcing data, and is taken to be

with mean zero and covariance �V. �H is the operator that represents the observation process which
relates �w to the actual measurements available at time tj (with j =Nla, 2, 3 Nla,…N, and Nla the
number of Δt1 model time steps in Δt2 measurement time steps)

�d(tj) = �H[�w(tj)]+ �1(tj) (11)

where �1 represents the vector of measurement errors, assuming a probabilistic distribution with
zero mean and covariance �R.

In the EnKF (Evensen 1994; Reichle et al. 2002), an ensemble of wz (ζ = 1,… ,Ne, withNe the size
of the ensemble) is predicted in parallel, using (10). The EnKF updates each ensemble member sep-

arately, using the �d(tj) observation and the diagnosed state error covariance P−��(tj) (e.g. Reichle
et al. 2002, Equation 6b). The superscripts ‘–’ and ‘+’ refer to the state estimates before and after
the update at time tj, respectively. Ensemble members are updated using (Reichle et al. 2002):

wz+���
= wz−���

+ �K[�d− �H(wz−���
)+ 1z

�
] (12)

where �K is the Kalman gain, which depends on P−��, and 1z
�

is a random realization of the measure-
ment error, which should have the same statistical properties as the error included in (11) (Margulis
et al. 2002). The mean of the ensemble members, �w+(tj) is the state estimate of the variables.

Model errors in the EnKF are included through errors in the VDM initial conditions, physical
parameters and forcing data. Errors of i) LAI initial conditions, ii) incoming short-wave solar radi-
ation (Rswin), and the Photosynthetically Active Radiation (PAR), and iii) model parameters, such as
the maintenance respiration coefficients for aboveground biomass (ma) of grass and trees (Table 2),
are included. We chosema as the VDM parameter for data assimilation after a sensitivity analysis of
LAI to VDM parameters, which proved the high sensitivity of grass and tree LAI to ma. Indeed, we
performed an univariate sensitivity analysis of LAI to VDM parameters for tree and grass (ma, ga,
Q10, ξa, Ω, rs,min, θlim, θwp), varying parameter values in a range of ±50% of the calibrated values
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(which are in Table 3). When we varied the ma parameter we found the largest effects on predictions
of both grass (from 72% to 224% of the calibrated mean LAI value) and tree (from 14% to 121% of
the calibrated mean LAI value) LAI, while varying the other parameters the variations of LAI pre-
dictions were less than half.

The ensemble of LAI initial values was generated by altering a particular value of LAI through
the addition of a normally distributed perturbation with mean zero and SDLAI standard deviation.
At each time step, the ensembles of Rswin and PAR were generated by multiplying the recorded Rswin

and PAR values by normally distributed random variables. The ensembles of grass and trees main-

tenance respiration coefficients (mz
a,g for grass andmz

a,t for trees), were generated as being normally

distributed with means of m̂a,g and m̂a,t and standard deviations of SDmag and SDmat, respectively.
In this way, ensembles of LAIζ of grass and trees, which include model errors, were generated

and evolved in time according to (4) and (8). The �d(tj) observations were obtained including the

NDVIz
�����

random error in the NDVI observations derived from Landsat 8 (or Sentinel 2) according
to (11), where the operator �H is the inverse of Γ in (9). When observations from Landsat 8 (or Sen-
tinel 2) are available, the ensemble of LAIz (i.e. LAIz−(tj)) is replaced by (or updated to) the ensem-

ble LAIz+(tj), which is optimally estimated by (12) using the �d(tj) observations. Again, the state
estimates of grass and tree LAI are given by the means of the ensembles. Hence, the EnKF filters
the errors in observations of NDVI, which is related to LAI through (9), and the errors in LAI pre-
dictions made by the VDM.

2.1.4. The proposed approach for the parameter updating
The EnKF approach compensates for both inaccurate initial conditions and moderate model par-
ameter errors. Here, we propose a method for adjusting a VDM parameter, the maintenance res-
piration coefficient for above-ground biomass, over a longer time scale than the remote sensing
observation time scale when it largely diverges from calibrated values (Table 3). The proposed
method updates (i.e. dynamically adjusts) ma based on observations of persistent bias in the mod-
eled biomass (i.e. LAI). The proposed procedure derives the required ma adjustment from the con-
servation equation of the biomass (i.e. LAI) and is the same for grass and tree LAI. Substituting (8)
in (4), the biomass balance for the modeled ‘m’ state variables is:

1
cl

∂LAIm

∂t
= aaPh

m − Rm
l,m − Rm

l,g − Sml (13)

Since the biomass balance must be conserved in both the model and reality, we write (13) for
observed ‘o’ state variables.

1
cl

∂LAIo

∂t
= aaPh

o − Ro
l,m − Ro

l,g − Sol (14)

Assuming that Phm ; Pho, Rm
l,g ; Ro

l,g, and Sml ; Sol , and subtracting (14) from (13),

1
cl

∂LAIo

∂t
− ∂LAIm

∂t

( )
= 1

cl

∂(DLAIo,m)
∂t

= Rm
l,m − Ro

l,m (15)

where DLAIo,m is the assimilation correction. From the maintenance respiration equation (Table 2)
and (8):

Rm
l,m = Rl,m(LAI

m) = mm
a f3(T)

m Bm
l = mm

a
f3(T)

m

cl
LAIm (16)

Ro
l,m = Rl,m(LAI

o) = mo
a

f3(T)
o

cl
LAIo (17)
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assuming that f m3 (T) ; f o3 (T), the first-order Taylor series expansion of the maintenance respir-
ation function about the modeled parameter values relates the modeled maintenance respiration
to the ‘real’ maintenance respiration, in terms of differences between modeled and ‘real’ LAI and
maintenance coefficient values

Rl,m(LAI
o, mo

a) = Rl,m(LAI
m, mm

a )+
∂Rl,m

∂ma
Dmo,m

a + ∂Rl,m

∂LAI
DLAIo,m (18)

where

Dmo,m
a = mo

a −mm
a (19)

Substituting (18) into (15) relates the difference between ‘real’ and modeled LAI to the difference
between ‘real’ and modeled maintenance coefficient values

∂(DLAIo,m)
∂t

= −cl
∂Rl,m

∂ma
Dmo,m

a + ∂Rl,m

∂LAI
DLAIo,m

( )
(20)

Differentiating (16) and substituting into (20) yields

∂(DLAIo,m)
∂t

= −cl
f3(T)
cl

LAIm Dmo,m
a − f3(T)

cl
mm

a DLAIo,m
[ ]

(21)

Solving (21) for the ‘real’ maintenance respiration coefficient, in terms of known quantities

mo
a = mm

a − mm
a

LAIm
DLAIo,m − 1

f3(T)LAIm
∂(DLAIo,m)

∂t
(22)

This expression would, theoretically, provide an estimate of the actualma at each time the LAI is
updated through NDVI, from knowledge of the change in DLAIo,m since the last update. However
model parameter updating over a short interval is ill advised (Montaldo and Albertson 2003; Mon-
taldo, Albertson, and Mancini 2007), as instantaneous measurement errors would induce detrimen-
tal shocks in the model. We propose updating over a reasonable averaging period, to relate
persistent bias (as defined by a time average) to model parameter bias. By averaging (22) over an
appropriate time interval (Δt3, e.g. 3 weeks, Figure 1) to capture a reliable estimate of the ‘persistent’
LAI bias, we are able to estimate the required change in the maintenance respiration coefficient
needed to reduce the model bias

mo
a = mm

a − mm
a

LAIm
DLAIo,m − 1

f3(T)LAIm
∂(DLAIo,m)

∂t
(23)

where we employ the overbar to denote a time averaged term. From inspection of (23), it is apparent
that the process of averaging the LAI increments derived from the state variable assimilation will
cancel temporally uncorrelated noise in favor of retaining the long-term persistent bias. When
(23) is used in the EnKF, we need to update each component of the mz

a,g and mz
a,t ensembles

over the Δt3 time interval, which coincides with time steps tk (k =NlaNma, 2NlaNma,…N and
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Nma the number of Δt2 steps in Δt3, i.e. Δt3= Nma Δt2 =Nla Nma Δt1), through

mz+
a (tk) = mz−

a (tk)− j1 − j2 (24)

j1 =
1

Nma

∑k,by Nla

j=k−(NmaNla)+Nla

mz−
a (tk)

LAIz−(tj)
(LAIz+(tj)− LAIz−(tj))

[ ]
(25)

j2 =
1

Nma

∑k,by Nla

j=k−(NmaNla)+Nla

[LAIz+(tj)− LAIz−(tj)]− [LAIz+(t j−Nla)− LAIz−(t j−Nla)]

f3(tj)LAIz−(tj)Dt2
(26)

where the notation in the summation operator gives an averaging from (k – NmaNla +Nla) to k in
increments of Nla. In this way, an estimate of the ‘persistent’ LAI bias is used for evaluating the
necessary change in the ma. Thereby, after a learning (calibration) period the error of the model
can be eliminated, allowing to restore a main assumption of the Kalman filter, which is zero
mean model error. The solution is the same for grass (mz+

a,g ) and tree (m
z+
a,t ) maintenance respiration

coefficients.
In short, the multiscale assimilation scheme includes (Figures 1 and 2):

1) the land surface model, which run at the half hourly time scale, required for predicting the diur-
nal dynamics of water and energy balance terms;

2) the VDM-predicted LAI dynamics of grass and trees through (4) and (8) at a daily time scale,
generating the ensembles of LAI at the ti time intervals;

3) the EnKF, which filters the NDVI remote data (9) of grass and trees, available over the tj time
intervals (e.g. weekly) with model errors and measurements, and optimally updates the ensem-
bles of LAIz−(tj) of grass and trees through (12) to arrive at LAIz+(tj);

4) the updating of themz
a ensembles of grass and trees through (24) over the tk time intervals (e.g. 3

weeks).

Hereafter, we indicate the ensemble open loop without assimilation (i.e. only steps 1-2) as
‘EnOL’, with ‘EnKF’ being the assimilation approach that includes the ensemble Kalman filter
only (i.e. step 1-3), and with ‘EnKFdc’ being the assimilation approach that includes the four
steps described above.

Because the performance of the assimilation approach has to be proven for increasing uncer-
tainty of the model (given the observation errors), the proposed assimilation approach will be tested
for increasing errors in grass and tree ma model parameters, comparing EnOL, EnKF, and EnKFdc
performance.

2.2. Case study

The proposed assimilation approach was tested with observations from a field site at Orroli, Italy,
located in east-central Sardinia (39°41’12.57’’ N, 9°16’30.34’’ E, 500 m a.s.l.; Detto et al. 2006; Mon-
taldo, Albertson, and Mancini 2008; Montaldo, Corona, and Albertson 2013; Montaldo et al. 2020).
The landscape is a patchy mixture of woody vegetation, where the dominant tree species is wild
olive with a variable height of 3.5–4.5 m (∼33% of the footprint area), and herbaceous and grass
species, on a gently sloping plateau (∼3° from NW to SE). The grass species grow during wet sea-
sons and reach approximate heights of 0.5 m in spring. The soil thickness varies from 15 to 40 cm,
averaging 17 cm ± 6 cm (standard deviation, SD) above a fractured basalt (Montaldo, Albertson,
and Mancini 2008; Montaldo, Corona, and Albertson 2013). The climate at the flux site is maritime
Mediterranean, with a mean annual precipitation of 643 mm, and mean July precipitation of 11
mm. Mean annual air temperature (Ta) is 14.6 °C, with mean July Ta of 23.7 °C.
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2.2.1. Field data
A 10 m micrometeorological station was operating at the site to measure land-atmosphere flux of
energy, water and carbon in addition to key state variables. The apparatus included a Campbell
Scientific CSAT-3 sonic anemometer and a Licor-7500 CO2/H2O infrared gas analyzer positioned
adjacent to each other at the top of the tower. These two instruments measured velocity, tempera-
ture and gas concentrations for the estimation of sensible heat flux, evapotranspiration (ET) and
CO2 exchanges (Fc) with the standard eddy covariance method (e.g. Baldocchi 2003). Half hourly
statistics were computed.

The two-dimensional footprint model of Detto et al. (2006), previously tested for this site, was
used for interpreting eddy-correlation measurements in the context of the contributing land cover
area. The combined use of the footprint model and the satellite images allowed us to interpret the
eddy-correlation observed surface flux and distinguish the source area of each PFT and bare soil to
the measured flux, using the methodology in Detto et al. (2006).

Complete details of these measurements and data processing are available at Detto et al. (2006),
Montaldo, Albertson, and Mancini (2008), and Montaldo et al. (2020).

LAI was measured indirectly through a ceptometer (Accupar model PAR-80, Decagon Devices
Inc., Washington USA), which measures the PAR in the 400–700 nm waveband, and estimates the
LAI from these readings (details are given in the instruction manual edited by Decagon Devices
Inc.). LAI measurements were performed mainly during the grass growth season (Montaldo,
Albertson, and Mancini 2008). Finally, specific leaf areas (LAI divided by dry biomass) of predomi-
nant grass (= 0.01 m2 gDM−1) and woody vegetation (= 0.005 m2 gDM−1) species were measured
directly (by weighing the dry biomass).

2.2.2. Remote sensing and data assimilation approach for the case study
A total of 176 images were acquired (126 from Landsat 8 and 50 from Sentinel 2, see Figure 2c) for
the 2016–2020 period, from which NDVI was derived at a 30 m spatial resolution. Images from the
Sentinel 2 radiometer were acquired at the L1C level and atmospherically corrected with the Sen2-
Cor tool of the Sentinel Application Platform (SNAP), or directly at the L2A level (already cor-
rected). For Landsat 8 the L1TP product was used (it is radiometrically calibrated and
orthorectified using ground control points and a digital elevation model), and the dark object sub-
traction (DOS) method (Chavez 1996) was used for the atmospheric correction. The coefficients of
(9) were estimated using simultaneous NDVI data from remote sensors and LAI observations in the
field (a total of 24 simultaneous days) distinguishing grass and trees (β1 =−0.435, β2 = 1.014 and β3
= 0.4029 for grass in the fall-winter period, β1 =−0.141, β2 = 1.720 and β3 = 1.674 for grass in the
spring-summer period, β1 = 0, β2 = 5.392, and β3 = 0.486 for trees).

In this case study, the LSM time step was half an hour, VDM time step was one day, the assim-
ilation time step of NDVI data was variable according to data availability ranging from 2 days to 20
days with an average of 7 days, and the time step of themz

a,g andmz
a,t updating was 3 weeks for both

grass and trees (Figure 1). In the EnKF,Ne was 100, which is a sufficiently large number for accurate
predictions (Crow and Wood 2003; Reichle et al. 2002).

We assumed the measurement errors being with zero mean and a standard deviation of 0.025,
for both grass and tree NDVI. We generated the ensembles of initial grass and tree LAI values of
grass (LAIg) and tree (LAIt) from a Gaussian distribution with means of 0.5 and 5.5, intentionally
different from the observations, and a standard deviation sLAI of 0.2 for both grass and tree LAI. At
each time step we generated the ensembles of incoming solar radiation and PAR by multiplying the
measured values by a normally distributed random variable with mean zero and a standard devi-
ation equal to 10%. It should be noted that the errors of the initial model states and parameters
were uncorrelated.

The proposed assimilation approach was tested comparing the EnOL, EnKF, and EnKFdc
approaches for nine initial mz

a,g and mz
a,t ensembles at most, generated with nine different initial

m̂a,g and m̂a,t values (with the same SDmag and SDmat = 5% of the initial value).
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A spatially distributed version of the multiscale assimilation approach was also applied to the
area around the tower for the case study, running the model and assimilating NDVI data for
LAI predictions in each cell of the spatial domain (Figure 3a).

3. Results

The NDVI map of the 500 m × 500 m area around the tower, derived from the Landsat-8 data of a
dry summer day (08/14/2017), captured the spatial heterogeneity of the Orroli field site, allowing
the identification of cells with predominately bare soil (NDVI < 0.22) and tree cover (NDVI
>0.4) components (Figure 3a). The 2-component system (bare soil and tree) evolved from the
start of the rainy seasons (typically in autumn in Sardinia), when grass grew replacing bare soil,
and reaching its maximum growth in spring. Indeed, the distribution peak of the NDVI frequency
in the examined area, which was mainly unimodal (Figure 3b), moved from≈ 0.35 on a dry summer
day to ≈ 0.47 on an autumn day, and reached ≈ 0.65 on a spring day (Figure 3b). The NDVI time
evolution of the 289 cells in the examined area marked the heterogeneity and seasonality of the field
(Figure 3c), with contrasting summer (NDVI decreased up to 0.2 with a high spread of the data

Figure 3. NDVI data of the field around the tower at the Sardinian site: a) the map in a dry day of the 2017 summer estimated
from a Landsat 8 image (the selected representative grass and tree cells are market with edges in red; the tower is in the center of
the map), b) frequency distributions during representative days of 2017 winter (01/25), spring (04/08), summer (08/14) and fall
(11/18), c) evolution of the 289 cells in the field in time, yellow and green represent the selected representative cells of grass and
tree respectively (circles: Landsat 8 data; squares: Sentinel 2 data).
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distribution) and spring (NDVI up to 0.8 with a narrower distribution). Tree NDVI was much less
variant over time than grass NDVI, which ranged from ≈ 0.2 (i.e. no grass, just bare soil) in summer
to ≈ 0.75 in spring (Figure 3c). The use of the optical remote sensing data allowed to distinguish
grass and tree cells. We selected the representative grass cell with low NDVI (≈ 0.2) and the repre-
sentative tree cell with high NDVI (≈ 0.45) in the field from the NDVI map of the dry summer day
(Figure 3a). We then used the NDVI time series of the two selected representative tree and grass
cells (Figure 3c) for the data assimilation. In addition, for the spatially distributed application of
EnKFdc, we assimilated the entire NDVI maps (Figure 3a), evaluating spatial patterns of the
updated model parameters.

3.1. Data assimilation results

The coupled LSM-VDMwere calibrated and validated in Montaldo, Albertson, and Mancini (2008)
and Montaldo, Corona, and Albertson (2013) for this case study; the model parameters are given in
Table 3. Here, the EnOL, EnKF and EnKFdc approaches are compared for increasing model uncer-
tainties, evaluating the benefit of the assimilation approaches.

First, we tested the EnKF approach, generatingmz
a,g andm

z
a,t ensembles with slightly lower m̂a,g and

m̂a,t values (= 0.02 d−1 and 0.0006 d−1, respectively) than the calibrated values (= 0.032 d−1 and 0.001
d−1, respectively) intentionally, assuming a moderate model error (Figure 4). The EnOL and EnKF
approaches were compared for evaluating the performance of the filter in Figure 4, where the grass
and tree LAI ensembles predicted using the EnOL and the EnKF approaches are plotted with the

Figure 4. Assimilation results at the Sardinian site comparing the ensemble open loop configuration (EnOL) and the Ensemble
Kalman filter (EnKF) approach for grass and tree LAI predictions for slightly low m̂a,g (for grass) and m̂a,t (for trees) values of 0.02
d−1 and 0.0006 d−1: a) the ensemble mean grass LAI predictions using EnOL and EnKF and LAI observations derived by Landsat 8
and Sentinel 2 (obs.) (the 95% confidence interval of the EnKF LAI assimilation is shown as a gray band); c) the evolution of the
rmse of the ensemble mean grass LAI predicted by EnOL and EnKF with respect to the observed LAI from remote data using a 60-
day window, translated in 10-day increments; b) and c) are the same as a) and c), respectively, but for tree LAI.
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LAI values derived by NDVI satellite observations using (9). The spread of the ensembles of grass and
tree LAIz decreased rapidly through time (Figure 4a and 4b). Compared to EnOL, the evolution of tree
LAI with EnKF becomes closer to the observed tree LAI (Figure 3b). The EnKF guided LAI towards
observations from the optical sensors (Figure 4), correcting the EnOL especially in spring and early-
summer, mostly for the tree component (rmse of 0.26 for the whole period and = 0.40 for the springs
using EnOL and rmse of 0.15 for the whole period and = 0.18 for the springs using EnKF for LAI of
grass, and rmse of 4.01 using EnOL and rmse of 0.20 using EnKF for LAI of trees).

The performance of the EnKF assimilation scheme and the proposed EnKFdc were verified for
increasing weak knowledge of the maintenance respiration coefficients. Generating mz

a,g and mz
a,t

ensembles with initial m̂a,g and m̂a,t values (= 0.12 d−1 and 0.01 d−1, respectively) being much
higher than the calibrated values, meant that the persistent biases of the biomass balances were
not removed by the EnKF-based assimilation approach (Figure 5a and 5c), and the EnKF assump-
tion (mean zero of the model error) was not yet respected. Instead, the EnKFdc removed the bias in
grass and tree LAI predictions through the dynamic updating of the mz

a,g and mz
a,t ensembles

(Figure 6a and 6c). While using EnKF, the rmse of grass and tree LAI was still high (= 0.25and
4.05, respectively, after one year), using the EnKFdc the rmse of the grass and tree LAI estimates
decreased significantly (= 0.12 and 0.13, respectively, after one year). Indeed, in EnKFdc, the mz

a,g
and mz

a,t ensembles decreased and converged close to the calibrated values after a learning (cali-
bration) period (Figure 6a and 6c) because (24) guided the paths of the ensemble members toward

Figure 5. Assimilation results for grass and tree LAI predictions at the Sardinian site using initial high m̂a,g (for grass) and m̂a,t (for
trees) values of 0.12 d−1 and 0.01 d−1, respectively: a) and c) the comparison between LAI observations derived from assimilated
remote optical data (obs.), the ensemble mean LAI predicted using the EnOL, EnKF, and EnKFdc approaches; b) and d) same of a)
and b) but for a shorter time period.
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the actual values (i.e. close to the calibrated values), and the assumption of the filter became
satisfied.

We validated the EnKFdc assimilation scheme using a different start period, 1th January of 2018
instead of 1st January of 2016 (Figure 5b and 5d), always generating mz

a,g and mz
a,t ensembles with

initial m̂a,g and m̂a,t values ( = 0.12 d−1 and 0.01 d−1, respectively) being much higher than the cali-
brated values (Figure 6b and 6d). Again, EnKFdc removed the bias in grass and tree LAI predictions
and dynamically updated the mz

a,g and mz
a,t ensembles after one year (Figures 5 and 6).

In the same way, when initial m̂a,g and m̂a,t ( = 0.0032 d−1 and 0.0001 d−1, respectively) were
largely lower than the calibrated values, the use of the proposed multi-scale assimilation approach
allowed the increase of both mz

a,g and mz
a,t ensembles, which converged to values close to the

calibrated values after one year (Figure 6).
We compared the performance of EnOL, EnKF and EnKFdc approaches for a large range of

initial m̂a,g (ranging from 0.0032 d−1 to 0.12 d−1) and m̂a,t (ranging from 0.0001 d−1 to 0.01 d−1)
(Figure 7). Using the EnOL approach, the rmse of the predicted grass LAI compared to the observed
LAI derived by remote observations was very high (>0.5) for initial m̂a,g lower than 0.02 d−1,
decreasing for m̂a,g values close to the calibrated ma,g , and increasing again for higher m̂a,g up to
a rmse of 0.35 (Figure 7a). When the EnKF approach was used, the rmse of the predicted grass
LAI decreased but was lower than 0.3 only for initial m̂a,g (= 0.015-0.045 d−1), close to the calibrated
value. Only the use of the proposed EnKFdc approach allowed the removal of model bias for all the
range of initial m̂a,g , and the rmse of LAI always became lower than 0.15 (Figure 6a). Using EnOL,
the rmse of the predicted tree LAI was even higher when compared to LAI observations, reaching a
value close to 4.0 for the highest m̂a,t (= 0.01 d−1) and 2.6 for the lowest m̂a,t (= 0.0001 d−1, Figure
7b). Again, by only using EnKFdc, the model bias was removed for the whole range of initial m̂a,t

Figure 6. Assimilation results for grass and tree LAI predictions at the Sardinian site using initial high m̂a,g (for grass) and m̂a,t (for
trees) values of 0.12 d−1 and 0.01 d−1, respectively, and initial low m̂a,g (for grass) and m̂a,t (for trees) values of 0.0032 d

−1 and
0.0001 d−1, respectively: a) and c) the evolutions of the mz

a,g and mz
a,t ensembles using the EnKFdc approach (for reference, the

calibrated values ofmag andmat are reported in dotted horizontal lines); b) and d) same of a) and b) but for a shorter time period.
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with rmse ≈ 0.1 (although EnKF performed sufficiently well, at least for the lowest m̂a,t values with
rmse ≈ 0.3; see Figure 7b).

We also applied the proposed approach to the entire field around the tower (Figure 3a), running
the spatially distributed version of EnKFdc from the 1th January of 2018, with still initial LAI values
of grass and tree from a Gaussian distribution with means of 0.5 and 5.5, respectively, and still gen-
erating mz

a,g and mz
a,t ensembles with high initial m̂a,g and m̂a,t values ( = 0.12 d−1 and 0.01 d−1,

respectively). While the predicted LAI (Figure 8a) were much higher than the estimated LAI

Figure 7. The rmse of ensemble mean LAI of a) grass and b) tree predicted using the EnOL, EnKF, and EnKFdc approaches with
respect to the observed LAI derived from remote data, varying the initial m̂a,g and m̂a,t values.
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from remote sensor observations (Figure 8b; mean predicted LAI of 4.56, mean observed LAI of
1.92) at the end of January 2018, the predictions of LAI (Figure 8c) became close to LAI obser-
vations (Figure 8d; mean predicted LAI of 1.60, mean observed LAI of 1.65) at the end of July
2019, because the EnKFdc removed model bias in all the cells of the spatial domain. Indeed, the
difference between maintenance respiration coefficients of grass and trees and their calibrated
values (Δma,g and Δma,t , respectively) were high at the end of January 2018 (Figure 9a and 9b;
mean Δma,g of 0.05 and mean Δma,t of 0.005), becoming negligible in July 2019 (Figure 9c and
9d; mean Δma,g of 0.001 and mean Δma,t of 0.0001.

4. Discussion

In heterogenous ecosystems, tree and grass covers and their spatial patterns are variable, depending
on the water availability and incoming radiation (Sankaran et al. 2005); their vegetation mapping
requires fine spatial and time resolutions of remote sensing data. In these ecosystems, the use of
satellite images at coarser resolutions, like the widely used MODIS (Fox et al. 2018; Li et al.
2017) that provides optical data at 250 -500 m resolution, cannot provide adequate information
for distinguishing grass and tree cover components, which are usually less than 50 m. The

Figure 8. The LAI predictions for each cell of the field around the tower a) at the end of January 2018 and c) at the end of July
2019, compared with estimated LAI from remote sensor data b) at the end of January 2018 and d) at the end of July 2019.
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combined use of the new satellites, Landsat 8 and Sentinel 2, whose data are freely available, is a
promising solution, allowing monitoring of the Sardinian heterogenous ecosystem at fine temporal
(average 7 days) and spatial (30 m) resolutions, including capturing the contrasting the seasonal
dynamics of grass and trees. While few previous efforts of LAI data assimilation in LSM and
VDM were concentrated on the use of MODIS (Demarty et al. 2007; Fox et al. 2018; Li et al.
2017; Ma et al. 2017; Migliavacca et al. 2009; Quaife et al. 2008), mainly due to the high time res-
olution (16 days) and the robustness of MODIS observations, we demonstrated that the Landsat 8
and Sentinel 2 NDVI data can be successfully used for data assimilation in heterogenous ecosys-
tems. Coupling the observations of Landsat 8 and Sentinel 2, NDVI data became more frequent
(average 7 days) and robust, starting in 2016.

Approaches have been developed to account for certain aspects of the spatial heterogeneity in
ecohydrological models (Giorgi and Avissar 1997; Koster and Suarez 1992; Montaldo and Albertson
2003). The coupled LSM – VDM of Montaldo, Albertson, and Mancini (2008) follows the common
mosaic of tiles approach, which divides the spatial domain of the model into a collection (or mosaic)
of relatively homogenous land-surface elements (or ‘tiles’) and applies the model to each tile (Avis-
sar and Pielke 1989; Koster et al. 2000; Koster and Suarez 1992). While previous efforts assimilated
NDVI or LAI at the MODIS spatial scale (≥ 250 m) assuming the homogenous surface in grid cells

Figure 9. The difference between the maintenance respiration coefficients of a) grass and b) trees and their calibrated values
(Δma,g and Δma,t) for each cell in the field around the tower at the end of January 2018; c) and d) same as a) and b) at the
end of July 2019.
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(Demarty et al. 2007; Li et al. 2017; Ma et al. 2017; Migliavacca et al. 2009;Quaife et al. 2008) are
unable to distinguish grass and tree components, the proposed approach assimilated NDVI data
of selected representative grass and tree cells of the heterogenous field in the coupled LSM-
VDM, and successfully predicted grass and tree LAI.

The possibility to merge NDVI data and a VDM optimally for predicting accurately grass and
tree LAI is demonstrated. The use of a typical Kalman filter, the ensemble Kalman filter (EnKF),
as in previous efforts (Cheng et al. 2020; Huang et al. 2015; Kumar et al. 2019; Li et al. 2017; Ma
et al. 2017; Migliavacca et al. 2009; Peng et al. 2021; Quaife et al. 2008; Tripathy et al. 2013), allowed
the capture of LAI dynamics predicted by VDM, when moderate errors of key VDM parameters,
like the ma maintenance respiration coefficients of grass and tree components, were included
(rmse = 0.15 and rmse = 0.2 respectively, Figure 4). Instead, poor estimates of ma can bring to
large VDM errors, and a main assumption of the Kalman filter (model error with zero-mean)
was violated.

When the grass and treema base values were weakly estimated (of one order of magnitude), and
the parameter bias cannot be ignored compared to the random error, the EnKF approach (which
assimilates NDVI data only) poorly predicted grass and tree LAI (rmse = 0.25 and rmse = 3.94
respectively, for high ma base values). Instead, the proposed EnKFdc approach accepted the viola-
tion of the filter assumption in the early model runs, but removed the biased model error over time
(rmse = 0.14 and rmse = 0.1 respectively, for high ma base values), adjusting all the components of
the mz

a,g and mz
a,t ensembles from the observed persistent bias in LAI (Figure 6). Previously, Mon-

taldo, Albertson, and Mancini (2007) assimilated soil moisture observations in the same LSM using
EnKF and developed an assimilation approach that dynamically calibrates a key soil water balance
model parameter, the saturated hydraulic conductivity, as a function of the persistent bias in soil
moisture predictions. This approach was useful when parameters largely differed from the cali-
brated values (Montaldo, Albertson, and Mancini 2007), and was applied by Montaldo et al.
(2022) also assimilating Sentinel 1 radar data for soil moisture (Montaldo et al. 2022). Lü et al.
(2011a; 2011b), Nie, Zhu, and Luo (2011) and Zhang et al. (2017) concentrated on assimilating
soil moisture observed in the field using EnKF, and calibrating the few parameters in soil water bal-
ance models. We compared the performance of EnOL, EnKF and EnKFdc approaches for a large
range of initial m̂a,g (ranging from 0.0032 d−1 to 0.12 d−1) and m̂a,t (ranging from 0.0001 d−1 to
0.01 d−1) (Figure 7), and wdemonstrated that the proposed dynamic calibration of key model par-
ameters was also essential for assimilating NDVI data for LAI predictions. The proposed EnKFdc
approach, which dynamically calibrates maintenance respiration coefficients of grass and trees,
removed the bias in the biomass balance due to the bias in plant respiration (Figure 5), which
was essential for balancing photosynthesis production, and reduced the model uncertainty (Figure
7). EnKFdc well corrected the VDM, guiding the entire ensemble of plant maintenance respiration
coefficients toward the optimal value throughout the simulations. It should be noted that analogous
solutions should be derivable for other VDMs, updating those parameters that highly impact model
predictions. The new approach demonstrated its efficiency also when applied to the entire site
around the tower (Figure 3a), which is characterized by a spatial variability of vegetation compo-
sition. The EnKFdc was able to guide the model for optimally updating the LAI of both vegetation
components for all the cells in the field (the mean difference between the modeled and observed LAI
in the field was only 3% in July 2019, Figure 8). Indeed, the maintenance respiration coefficients
have been efficiently updated in all the cells of the field around the tower, with differences lower
than 0.1% the calibrated values. We also demonstrated the effectiveness of the proposed assimila-
tion method for evapotranspiration and CO2 exchange predictions by comparing the predictions
using the EnOL, EnKF, and EnKFdc approaches with ET and Fc observations of the eddy-corre-
lation based tower. We evaluated the proposed assimilation approach for ET and Fc predictions
using the full ranges of initial m̂a,g and m̂a,t values (Figure 10) and comparing the total predicted
ET and Fc using the EnOL, EnKF, and EnKFdc approaches and the total observed ET and Fc (con-
sidering the days with observations only, which were 212 and 157 days, respectively). Using the
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Figure 10. The comparison of the total evapotranspiration (ET, left panels) and carbon assimilation (Fc, right panels) predicted
using the EnOL, EnKF, and EnKFdc approaches with the total observed ET and Fc varying the initial m̂a,g and m̂a,t values.
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EnOL approach, the errors in grass and tree LAI predictions were reflected in ET predictions
(Figure 10a). The EnKF approach was not enough for removing error bias in ET predictions, mainly
for high m̂a,t regardless of m̂a,g , under-estimating ET by up to 40–50%, and for low m̂a,g (<0.02 d

−1)
and m̂a,t (< 0.003 d−1) over-predicting ET by up to 15% (Figure 8c). The use of EnKFdc allowed the
removal of model bias in ET predictions for the whole range of initial m̂a,g and m̂a,t values, remain-
ing a slight over-prediction (up to 7%) only for extremely low initial m̂a,g < 0.009 d

−1 (Figure 10e).
Model bias in Fc predictions was even higher when the EnOL and EnKF approaches were used, with
over-predictions up to 120% for low m̂a,g and m̂a,t , and under-predictions up to 60% for high
m̂a,g and m̂a,t (Figure 10b and 10d). The use of the proposed EnKFdc approach allowed correction
of the model and Fc estimates were close to those observed, except the low mis-prediction of ≈14%
for the highest (> 0.1 d−1) and the lowest (< 0.009 d−1) m̂a,g (Figure 10f). Hence, for the robust pre-
diction of two key terms of the land surface fluxes, the evapotranspiration and the CO2 net flux, the
EnKFdc approach is demonstrated to be essential. The proposed EnKFdc approach removed the
model bias through a dynamic (on-line) calibration, allowing the correct prediction of ET and Fc
for the entire range of the parameter values.

5. Conclusions

The assimilation of periodic observations of vegetation index, such as NDVI, from optical remote
sensing platforms, allows for guiding the predictions of the coupled land surface model (LSM) and
vegetation dynamic model (VDM) in heterogenous ecosystems. Indeed, the new Landsat 8 and Sen-
tinel 2 optical sensors are available at such high temporal (≈ 7 days) and spatial (≈ 30 m) resolutions
that they capture the dynamics of the main vegetation components (grass and trees). We demon-
strated the possibility to successfully assimilate optical observations of grass and tree cover com-
ponents of the Sardinian heterogenous ecosystem in a VDM for a long data series (5 years). We
merged NDVI observations and the VDM optimally, to provide robust predictions of grass and
tree LAI in the heterogenous ecosystem. Moreover, the inefficacy of a typical assimilation approach
based on the Ensemble Kalman filter was demonstrated when a key VDM parameter, the ma main-
tenance respiration coefficient, was estimated poorly, because it brings excessive model errors that
alter the grass and tree biomass balances, and the Kalman filter assumption (model error with zero-
mean) was violated.

Only using the proposed EnKFdc assimilation approach, the persistent bias of the model was
removed through the adjusting of the model parameters (mz

a,g and mz
a,t) ensembles related to the

persistent bias in grass and tree LAI predictions.
Finally, we demonstrated that the proposed EnKFdc approach allowed good prediction of eva-

potranspiration and CO2 exchanges, which are strictly related to LAI, when there was a strong,
uncorrected estimate of the m̂a,g and m̂a,t base values. The proposed multiscale assimilation
approach removed the model bias through a form of dynamic calibration.

The proposed assimilation approach can be useful in operational forecasting ecohydrological
models over large domains, where the estimate of model parameters would be extremely uncertain.
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