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Abstract. One of the main advantages of the Ethereum blockchain is the pos-
sibility of developing smart contracts in a Turing complete environment. These
general-purpose programs provide a higher level of security than traditional con-
tracts and reduce other transaction costs associated with the bargaining practice.
Developers use smart contracts to build their tokens and set up gambling games,
crowdsales, ICO, and many others. Since the number of smart contracts inside
the Ethereum blockchain is several million, it is unthinkable to check every pro-
gram manually to understand its functionality. At the same time, it would be of
primary importance to group sets of Smart Contracts according to their purposes
and functionalities. One way to group Ethereum’s smart contracts is to use topic
modeling techniques, taking advantage of the fact that many programs represent-
ing a specific topic are similar in the program structure. Starting from a dataset of
130k smart contracts, we built a Latent Dirichlet Allocation (LDA) model to spot
the number of topics within our sample. Computing the coherence values for a
different number of topics, we found out that the optimal number was 15. As we
expected, most programs are tokens, games, crowdfunding platforms, and ICO.
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1 Introduction

Over the past few years, the number of smart contracts deployed and verified in the
Ethereum blockchain increased exponentially [13]. They provide a higher level of se-
curity than traditional contracts offer and reduce costs associated with bargaining prac-
tices. Thanks to these particular features, smart contracts are often used for tasks that
include management and transfers of currency. Despite being used in particular for de-
veloping tokens [1], launching ICOs [8] and crowdfunding platforms [4], developers
take advantage of Ethereum’s smart contracts to build gambling games, wallets, voting
applications, and many others. Sometimes it is also possible to spot scam contracts in-
side the Ethereum chain, particularly the Ponzi Scheme, a pyramidal scheme in which
participants recruit investors with the promise of easy earnings and high-interest rates
relative to the initial investment. The first Ethereum contract appearance dates back to
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2015, but developers started to exploit this technology widely in 2017. Since then, the
number of contracts deployed in the blockchain has reached several million, so it is im-
possible to manually check each contract deployed since 2017. Given the large number
of programs to scan, it is difficult to understand how many different contracts are stored,
since many developers adopt the practice to deploy many times the same or very similar
contracts, even for testing purposes. One way to analyze such a huge set of smart con-
tracts is to use unsupervised machine learning techniques. It is essential to report and
classify these programs correctly for many reasons. For example, inside the Ethereum
blockchain it is possible to spot scam contracts. These type of contracts aims to steal
Ether from networks participants, thus it is of fundamental importance to identify and
report scam contracts properly. Another motivation is for statistical purposes since a
massive analysis of smart contracts functionalities is still missing in literature. Further-
more, keeping track of trends, new categories of application, and statistics on the smart
contracts’ topology leads to a better understanding of the technology in general and in
particular of the potential applications. It is already known that developers widely ex-
ploit contracts to build their tokens and set up secure money transfer programs. Still it is
unknown the number of contracts’ categories, and how many samples per category have
been deployed from 2016-2017 (when smart contracts started to spread) to nowadays.
It would also be interesting to build a taxonomy showing the main types of smart con-
tracts stored inside the Ethereum blockchain. The taxonomy could show which main
contract types were present at the beginning of Ethereum’s life cycle and the primary
categories now, and the smart contracts trend over the years.
Previous works [2] propose a smart contracts taxonomy of five categories.

– Financial: contracts managing, gathering, or distributing money.
– Notary: contracts that certify ownership and provenance of data.
– Game: contracts implementing gambling games and skill games.
– Wallet: contracts that, in general, simplify the interaction with the blockchain.
– Library: contracts implementing general-purpose operations.

According to the study, the most used smart contracts in Ethereum are financial, li-
braries and games. The study also gives an idea about the the correlation between design
patterns [22] [14] and smart contracts categories, but is essentially quite limited.

2 STATE OF ART

The overgrowing number of Smart Contracts leads to several problems. First, retriev-
ing only a specific smart contracts’ category could be complicated. Second, several
contracts could also be scams; spotting them and avoiding their use are primary tasks.
Often developers tend to deploy several versions of the same program in the blockchain
with minor differences. Apart from this, other developers (for experimental and test
purposes) deploy updated versions or copies of existing smart contracts, leading to a
disproportionate number of similar programs. These problems combined have attracted
the attention of many researchers. Indeed several works propose smart contracts classifi-
cation techniques. One of the several approaches [10] consists in spotting behavior pat-
terns by performing a transaction-based analysis. Another exciting approach [19] com-
bines bi-directional LSTM to capture grammar rules and context information in source
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code and Gaussian LDA to generate comment features. Another approach [17] exploits
the bytecode instead of source code to classify contracts. Other works are more specific
in classification; indeed, researchers carried out several projects to classify smart con-
tracts bugs [7], vulnerabilities [9] [12], and others aiming to spot scam contracts [5].
Considering all previous works, we can say that smart contracts classification is a high-
interest task. The problem with previous projects that perform a general classification
over contracts is that only a subset of the sample is analyzed; indeed, it is widespread to
find a dataset composed of a number between 10.000 and 20.000 contracts. Considering
the overall number of contracts within the Ethereum blockchain, we assume that 10.000
programs are insufficient to give us an idea of the actual distribution over smart con-
tracts’ categories. In particular, the statement is true for those datasets that include only
smart contracts with specific functionality (i.e., money transfer programs) and datasets
including random selections of contracts chosen within a definite and short period (i.e.,
only 2017 or only 2019-2020 programs). Furthermore, some of the proposed models are
specific for a precise type of classification, like spotting Ponzi schemes [6]. Our pur-
pose is to find an approach that guarantees us to group smart contracts into categories,
starting from a high number of samples, taking advantage of already existing datasets.

3 DATASET

Our dataset is a collection of Solidity smart contracts retrieved from three already exist-
ing datasets. The first dataset is SmartBugs [23], which contains vulnerable smart con-
tracts. The second dataset from which we collected our contracts is SmartCorpus [16],
an organized, reasoned, and up-to-date repository where developers and researchers
can efficiently and systematically access Solidity source code and other metadata about
Ethereum smart contracts. The last dataset we exploited is SmartSanctuary [15], an
organized repository containing only Ethereum verified smart contracts. What is inter-
esting about this dataset is that it includes smart contract sources for various networks,
and it is constantly updated. We will refer to our dataset as SSCB (Smart Sanctuary
Corpus Bugs). Our dataset includes contracts within a time frame ranging from 2017 to
2021, of which the most represented years are 2021, 2018, and 2020. Having a lot of
such recent contracts increased the representativeness of our dataset since 2018, saw an
exponential growth of smart contracts’ usage. Nevertheless, we lack a lot of 2019 and
all the 2015 and 2016 contracts, so we could enrich our sample and its representativity
by adding the programs missed in our dataset. Figure 1 shows the number of samples
for each dataset where we also report the data cleaned from duplicates. Some general
considerations are needed about the dataset; indeed, before proceeding with our topic
modeling, we manually checked about 600 smart contracts to have an idea on which
and how many types of smart contracts we were dealing with. Most of the contracts are
token contracts, including Non-Fungible-Tokens (NFT) and token exchange programs.
Other relevant categories found by manual inspection are Timelock contracts, Crowd-
sale, ICOs, and gambling games. We were not able to manually categorize some con-
tracts, such as ’Hello World’ contracts and others performing nonsense operations. An-
other exciting sample includes investment contracts, some of which are Ponzi schemes
that are immediately recognizable [11]
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Fig. 1: Number of contracts for each dataset

4 RESEARCH METHODOLOGY

First of all, we combined the three datasets described in the previous session into one,
building a CSV with only two features: the contract’s address and the source code.
We dropped any possible duplicate from the dataset, and we joined all different source
codes having the same address since being part of the same contract.
Our work aims to categorize our collection of Ethereum smart contracts which include
Solidity source code and comments made by developers. The main idea is that the terms
used to set variable names, function names, struct names, and comments could help to
spot the contract’s purpose. Another interesting observation is that some programs have
a well-defined structure in terms of source code; indeed, many developers recycle the
source code of already deployed contracts to build their programs. For example, observ-
ing tokens, gambling games, investments, and others are pretty much the same looking
at the code and structure, and this feature could help in our analysis. Taking advantage
of these considerations, we decided to use Natural Language Processing (NLP) tech-
niques to capture all the relevant information from the source code to perform contracts
modeling and categorization. In particular, we used topic modeling [20] techniques and
the Latent Dirichlet Allocation (LDA) model [3] to categorize our samples. In topic
modeling, a task of fundamental importance is the stopwords removal. In the case of
our dataset we are not dealing with human language. Still, we are dealing with code
language, so one aspect to consider is that all language keywords, apart from a few
exceptions, will have the same probability over the categories. Since we have collected
only Solidity contracts, we added to the stopword list all the Solidity language key-
words. We also added assembly terms since it is possible to write assembly code inside
Ethereum smart contracts. Also, we must consider that developers may write smart con-
tracts in snake-case or camel-case. So, we need to pre-process text in such a way as to
split words separated by underscores and attached words, in which the first word begins
with a lowercase letter, while the following ones with a capital letter. Eventually, we re-
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moved new lines characters and characters with exponent. To find the optimal number
of topics, we computed the topic coherence, which measures the score of a single topic
by measuring the degree of semantic similarity between high-scoring words in the topic.
In particular, we computed the c v measure [18], which is based on a sliding window,
one-set segmentation of the top words, and an indirect confirmation measure that uses
normalized pointwise mutual information (NPMI) and the cosine similarity. These mea-
surements help distinguish between semantically interpretable topics and topics that are
artifacts of statistical inference. After building our LDA model, we found the optimal
model by computing the coherence values augmenting the number of topics. Figure 2

Fig. 2: Coherence score for different number of topics

shows the coherence score for different number of topics. As the graphic shows, the
curve peaks at 15 topics, stabilizes, and after 20 topics, it increases again. If the coher-
ence score seems to keep increasing, it could be a reasonable choice to pick the model
that gave the highest CV before the curve flattens out or before a major drop.

5 RESULTS

After carrying out our analysis with the LDA model, we were able to find 15 dif-
ferent topics inside our dataset of contracts. The taxonomy in Figure 3 shows the
macro-categories and relative sub-categorizations. We detected the following macro-
categories, which almost corresponds to those already detected in literature:

– Financial
– Notary
– Game
– Wallet
– Token
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We further expanded this categorization into subcategories. The arrows show which are
the relationships between the macro-categories and the sub-categories. For example,
Bank, Investment, Crowdsale, ICO, and Ponzi scheme are exclusive topics of the Finan-
cial category. Other sub-categories such as Authorization, Termination, and Time Con-
straint are not topics belonging to a single class; indeed, we can observe these design
patterns in several contracts categories. A good example is the Time Constraint topic, a
sub-category of the Financial, Wallet, and Game macro-categories. We assigned a doc-
ument to a particular category by computing each topic’s percentage contribution and
choosing the topic with the highest percentage. We considered the one proposed in [2] to

Fig. 3: Smart Contracts Taxonomy

build our taxonomy, but with some crucial differences and further considerations. Also,
to build the hierarchy of macro and sub-categories, we considered the already delivered
studies about smart contracts design patterns. Furthermore, we added sub-categories
that previous studies did not include but detected in our manual check process of con-
tracts (i.e., token burning programs, non-fungible tokens, and Ponzi schemes). The first
difference is that we didn’t consider Library contracts as a category. It is pretty un-
common nowadays to find a smart contract whose only purpose is to contain a library;
indeed, libraries such as ’SafeMath’ or similar are most of the time part of more so-
phisticated programs. We considered the Token design pattern as a separate category.
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Fig. 4: Distribution of smart contracts categories over SSCB

Indeed, developers can follow several patterns to build their token contracts. The most
common pattern is the ’simple token’: these programs contain only a token structure
and few tokens transfer and burn functions. Another interesting pattern is the Non-
Fungible-Token (NFT) [21] one, which certifies a digital asset as unique and therefore
not interchangeable. Other common patterns for the token category are programs for ex-
changing and tokens burning. In this work we assume that all the Token sub-categories
are considered in the same topic. For what concerns the Financial class, we found sev-
eral topics of interest: indeed, some programs aim to store and preserve Ether as a bank.
Others are investments oriented programs, and there are also ICO and Crowdfunding
platforms. There are two types for what concerns investment programs: the first ones are
regular investment programs, while the others are Ponzi schemes, which are pyramidal
models, and so only the very first few users to invest their money in these contracts will
have profit. Other unique topics are ’gambling’ and ’ether lock,’ which are Game and
Wallet categories topics. The first pattern concerns gambling games, such as roulettes,
card games, and others. The topic ’ether lock’ instead involves locking and storing Ether
for a certain amount of time; they are different from bank programs because these last
allow users to retrieve their money at any time. Other topics are common to several cat-
egories, like time constraints, used by Financial, Game, and Wallet contracts. Another
unique type is the Notary one, which includes contracts for voting applications and cer-
tification programs. Also, we spotted several contracts that we couldn’t categorize as
’Hello World’ programs and other particular types of contracts.These programs were
assigned with the topic with the lowest contribution percentage and are identified by
incoherent keywords, especially if compared with the other categories.
Regarding the distribution of smart contracts in SSCB, as we expected, most of the pro-
grams belong to Tokens and Financial categories, covering most of 70% of our dataset.
In contrast, the others cover the remaining part of SSCB. Figure 4 summarizes cate-

70



Category Topics Top 5 Keywords

Token

Regular Token
buyuser

NFT
selluser

Token Burn
buyuseraddruser

Token Exchange
buystorageuser

buydatauser

Game

Gambling
kill

Oracle
uturn

Termination
validator

Time Constraint
empty
game

Notary
Authorization

vote

Certification
receivevote

Voting
destroy

paramvalparam
pressguy

Wallet

Ether Lock destroy
Oracle block

Termination kill
Authorization time

Time Constraint takeether

Financial

Bank
eaterfunctionInvestment

withdrawPonzi Scheme
payonlyagencyTime Constraint

emptyAuthorization
takeetherICO

Crowdsale
Unclassified ? ?

Table 1: Table resuming categories and topics

gories’ distribution. However, the most present type is Token, which alone covers 42.4%
of the dataset.

6 CONCLUSIONS

In this study, we leveraged Natural Language Techniques to understand intelligent con-
tracts use cases. Our main contributions are the proposal of a fine-grain taxonomy of
smart contracts and the presentation of insights into sub-categories with respect to pre-
vious similar works. Another contribution is that given the categories, it is possible to
check quickly if a smart contract is a scam, a bank, or another type of contact. The ap-
plication of LDA led us to find 15 different categories of SC that enrich those provided
in previous works [2] [22] [14]. As future work, we aim to build a complete taxonomy
and going deep with our analysis. In particular, we aim to find the distribution of ev-
ery single topic over our dataset, taking advantage of more contracts. Also, we want
to build a temporal taxonomy, showing the topics’ evolution over the years and each
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primary trend per year. Another contribution of the work will be creating several small
datasets, each containing smart contracts of a specific topic, for example, a dataset of
Non-Fungible-Tokens only.
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