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Abstract: Gastric cancer is the fifth most common and fourth deadliest cancer worldwide, with a
bleak 5-year survival rate of about 20%. Despite significant research into its pathobiology, prognostic
predictability remains insufficient due to pathologists’ heavy workloads and the potential for diag-
nostic errors. Consequently, there is a pressing need for automated and precise histopathological
diagnostic tools. This study leverages Machine Learning and Deep Learning techniques to classify
histopathological images into healthy and cancerous categories. By utilizing both handcrafted and
deep features and shallow learning classifiers on the GasHisSDB dataset, we conduct a comparative
analysis to identify the most effective combinations of features and classifiers for differentiating
normal from abnormal histopathological images without employing fine-tuning strategies. Our
methodology achieves an accuracy of 95% with the SVM classifier, underscoring the effectiveness
of feature fusion strategies. Additionally, cross-magnification experiments produced promising
results with accuracies close to 80% and 90% when testing the models on unseen testing images with
different resolutions.

Keywords: computational pathology; histopathological imaging; gastric cancer; convolutional neural
networks; machine learning; deep learning; feature extraction; feature combination

1. Introduction

Gastric cancer is the fifth most prevalent cancer globally and the fourth leading
cause of cancer-related deaths, with a global 5-year survival rate hovering around 20%.
Despite significant research into the disease’s pathobiology, predicting its progression
remains difficult, contributing to the persistently low survival rates. Furthermore, medical
diagnostics’ intricate and time-consuming nature can lead to missing critical details during
microscopic examinations, potentially resulting in misdiagnoses [1,2].

While recent advancements in computer technology, especially in Machine Learning
(ML) and Deep Learning (DL), have enabled notable progress [3–6], there remain significant
challenges [6,7]. Existing models often require extensive fine-tuning and customization to
perform well in specific medical imaging tasks, which may not always be feasible in prac-
tical scenarios [3,6]. Additionally, the transferability and general applicability of features
derived from pre-trained models to the medical domain are not well understood [6,8,9].
There is also a lack of comprehensive studies comparing the effectiveness of handcrafted
(HC) features versus deep features across different classifiers in the context of gastric cancer
histopathological images [4,6,9].

Creating computational tools that can automatically and accurately perform histopatho-
logical diagnoses is essential to addressing these challenges. In this study, we contribute
to the field of gastric cancer pathological image classification by utilizing the GasHisSDB
dataset. It has been explicitly designed to evaluate the effectiveness of shallow learning
classifiers using both HC features and deep features derived from pre-trained Convolu-
tional Neural Network (CNN) architectures and to investigate the extent to which these
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general features, without any specific fine-tuning strategy, can be effectively used in the
medical context of gastric cancer classification.

The rationale for this approach is two-fold. First, by employing these deep features
without any specific optimization or fine-tuning, we aim to assess their inherent potential,
transferability, and general applicability of these features to medical imaging tasks. This
investigation is important for understanding the robustness and effectiveness of general-
purpose features in specialized domains, particularly when resources for fine-tuning or
designing custom models may be limited.

Second, establishing a baseline performance using general features allows us to bench-
mark the potential gains that can be achieved through more specific adaptations in future
work. This study serves as a foundational step, providing insights into the inherent capa-
bilities of pre-trained models in the medical imaging domain, which can inform and guide
subsequent efforts in fine-tuning and custom model design.

Moreover, we investigate feature fusion techniques, exploring the combination of both
HC and deep features. This exploration allows us to examine how integrating different
types of features can lead to improved classification performance. By understanding the
synergies between these feature sets, we can identify optimal strategies for enhancing the
robustness and accuracy of pathology image classification.

Additionally, we conducted a cross-magnification experiment to assess how varying
image resolutions affect the performance of classification models in histopathological image
analyses. This experiment is particularly important as it addresses the practical challenges
faced in histopathology, where images may be captured at different magnifications [10,11].
High-magnification images provide detailed cellular structures, while low-magnification
images offer a broader tissue architecture perspective [10,11]. By analyzing how different
resolutions affect classification accuracy, we contribute valuable knowledge that can inform
future practices in the field, ensuring that classifiers are effective and adaptable to the
diverse conditions under which pathology images are obtained.

To sum up, the contributions of this work are the following:

• We proposed a comparative analysis of various HC and deep features across four dif-
ferent ML classifiers to identify the most stable and high-performing feature–classifier
pairs for classifying gastric cancer histopathological images and distinguishing be-
tween normal and abnormal cells;

• We explored and analyzed various feature fusion techniques to determine their effec-
tiveness in enhancing classification accuracy in the task at hand;

• We conducted a cross-magnification experiment to evaluate the impact of different
image resolutions on classification performance, providing insights into the efficacy of
utilizing multiple magnifications in pathology image analyses;

• Since different magnifications highlight unique tissue features, we conducted a cross-
magnification experiment to assess the impact of varying image resolutions on clas-
sification performance, providing insights on the use of different magnifications in
this field;

• We thoroughly evaluated the GasHisSDB dataset and compared our results with the
state-of-the-art techniques.

The rest of this manuscript is organized as follows. Section 2 reviews the existing
literature to contextualize our research within the field. Section 3 outlines the dataset and
methodologies employed in this study. Section 4 presents the findings of our experiments,
highlighting the performance of different feature categories, various classifiers, and feature
combinations. Section 5 offers an in-depth analysis of our results, comparing them with
previous studies and exploring their implications. Finally, the Section 6 summarizes our
contributions and suggests directions for future research.
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2. Related Work

The early detection and accurate diagnosis of gastric cancer (GC) is crucial, as patients
with early-stage gastric cancer (EGC) have a much higher 5-year survival rate of 70–90%
compared to only 10–30% for advanced gastric cancer (AGC) [9]. However, the accuracy of
standard white-light endoscopy for detecting EGC is limited to 70–80%, heavily relying on
the expertise of the endoscopist [9]. In recent years, researchers have increasingly explored
the use of Computer Vision (CV) and DL techniques to assist in detecting and classifying
gastric cancer from endoscopic and pathological images [12].

One of the first studies in this area was by Hirasawa et al., who developed a novel
CNN for detecting and recognizing gastric cancer in video images [3]. Similarly, Yoon et
al. developed an optimized CNN model for EGC detection and prediction [7]. Beyond
endoscopic image analyses, researchers have also explored the use of CV techniques for
gastric cancer classification using pathological images. For instance, Zhao et al. conducted a
systematic review on the application of CNNs for identifying gastric cancer [4]. They found
that a total of 27 studies had used CNN-based models for gastric cancer detection, classifi-
cation, segmentation, and margin delineation from various medical imaging modalities,
including endoscopy and pathology.

The reported accuracy of the CNN-based systems ranged from 77.3% to 98.7%, demon-
strating the strong potential of these techniques for assisting clinicians in the diagnosis of
gastric cancer [4]. One notable study in this domain was by Xie et al., who developed an
optimized GoogleNet model for the diagnosis of gastric cancer pathological images [5].
Their improved model, which combined the strengths of two network structures, achieved
a sensitivity of 97.61% and a specificity of 99.47% in recognizing gastric cancer pathological
sections [5].

In this context, Hu et al. proposed a comprehensive dataset, named GasHisSDB, with
245,196 sub-sized gastric histopathology images labeled as normal or gastric cancer, which
were derived from 600 whole slide images (WSIs) [2]. It was introduced to overcome the
limitations of the existing datasets, particularly their small sample sizes [2,13]. Several
follow-up studies have used the GasHisSDB dataset, starting from its proposal, where
Hu et al. evaluated the performance of various ML and DL models [8], while several
authors proposed optimized approaches to accomplish this task. For instance, Yong et al.
proposed an ensemble DL approach based on EfficientNetB0, EfficientNetB1, DenseNet-
121, DenseNet169, and MobileNet [6] whereas Li et al. introduced a lightweight gated
fully fused network (LGFFN) with a gated hybrid input (GHI) module. The LGFFN-
GHI comprises two main components: feature extraction and classification modules. The
feature extraction module uses a cross-attention mechanism to fuse features from different
scales. The classification module then takes the fused features and outputs the final
classification prediction [14]. In addition, Fu et al. proposed MCLNet, a multidimensional
CNN based on ShuffleNet. It extracts the correlation features between pixels in an image
by one-dimensional convolution to achieve pixel-level and patch-level feature interaction.

Overall, the reviewed studies demonstrate significant progress in applying CV and
DL techniques for gastric cancer classification from endoscopic and pathological images.
However, despite these advances, there remain notable gaps and challenges. Many existing
studies rely heavily on specific fine-tuning and optimization strategies tailored to particular
datasets or clinical settings, which may limit the generalizability and transferability of their
findings to broader contexts.

In this context, our study aims to advance the classification of gastric cancer using
histopathologic images by addressing these gaps. Our primary objective is to propose
a robust system that does not rely on ad hoc adjustments or fine-tuning. By leveraging
features from non-optimized yet generic methods, we explore the feasibility of offering
a generalizable solution that performs consistently across various magnifications and
datasets. This approach is crucial for developing automated diagnostic tools that can be
widely applicable and effective in diverse clinical environments.
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Our study builds on the foundational work in this field by providing a comprehensive
comparative analysis of both HC and deep features across multiple classifiers. We investi-
gate the inherent potential and transferability of general features extracted from pre-trained
CNNs without specific optimization. This analysis is important for understanding the ro-
bustness and effectiveness of general-purpose features in specialized domains, particularly
when resources for fine-tuning or designing custom models may be limited.

Additionally, we explore feature fusion techniques to assess how integrating different
types of features can enhance classification performance. By understanding the synergies
between HC and deep features, we aim to identify optimal strategies for improving the
robustness and accuracy of pathology image classification. Furthermore, we conduct
cross-magnification experiments to evaluate the impact of different image resolutions on
classification performance, addressing practical challenges faced in histopathology where
images may be captured at varying magnifications.

In summary, our study contributes to the field by providing a detailed comparative
analysis of feature extraction methods, exploring feature fusion strategies, and evaluating
the effects of image magnification on classification accuracy. These efforts aim to develop a
more generalizable and effective approach for automated gastric cancer diagnoses, advanc-
ing the application of ML and DL techniques in gastric cancer classification and addressing
key limitations in current research that can influence the performance of the systems, such
as the size and diversity of the training datasets, the specific CNN architectures employed,
and the clinical context in which they are deployed.

3. Materials and Methods

This section provides details of the components used in our study. We begin with an
overview of the dataset in Section 3.1, detailing its composition and relevance to our re-
search objectives. Following this, in Section 3.2, we present both feature extraction methods
employed, HC and deep, whereas in Section 3.3, we describe the classification methods ap-
plied. In addition, we discuss the performance evaluation measures in Section 3.4. Finally,
Section 3.5 outlines the experimental setup and implementation details.

3.1. Dataset

The GasHisSDB dataset is a publicly available gastric histopathology image dataset [2].
It contains a total of 245,196 sub-sized gastric histopathology images, which were derived
from 600 WSIs, stained with H&E, of 2048 × 2048 pixels. The images were scanned using a
NewUsbCamera and digitized at 20× magnification. Two experienced pathologists from
Liaoning Cancer Hospital and Institute provided the labels, classifying the images as either
normal or abnormal (gastric cancer). A normal image is characterized by the absence of
cancerous regions, reflecting typical microscopic cell observations. In contrast, an image
is labeled as abnormal when approximately 50% of its area is occupied by cancerous
regions [2]. The dataset is divided into three image sub-databases, each of them containing
images with specific resolutions: 160 × 160 (S-A), 120 × 120 (S-B), and 80 × 80 (S-C) pixels.
The distribution of the dataset images is summarized in Table 1, while Figure 1 shows two
image samples.

Table 1. Description of GasHisSDB with details on its subdivision and number of images per class.

Sub-Database Size Abnormal Normal

S-A 160 × 160 pixels 13,124 20,160
S-B 120 × 120 pixels 24,801 40,460
S-C 80 × 80 pixels 59,151 87,500

Total 97,076 148,120
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(a) Normal class image. (b) Abnormal class image.

Figure 1. Sample images from the GasHisSDB dataset, acquired with the H&E staining method.
The hematoxylin is alkaline, and stains cell nuclei a purplish blue, and eosin is acidic and stains the
extracellular matrix and cytoplasm pink, with other structures taking on different shades, hues, and
combinations of these colors [2].

3.2. Feature Extraction Methods

Features derived from images include a wide array of descriptors designed to capture
morphological, pixel-level, and textural information, denoted as handcrafted features. As
noted by [15], HC features can be broadly categorized into three main groups: invariant
moments, texture features, and color features. To them, we have added a set of deep
features, i.e., features obtained by the activations of off-the-shelf CNNs. In the following,
we present a brief summary of each category along with the specific descriptors utilized.

3.2.1. Invariant Moments

An image moment is a weighted average of pixel intensities in an image used to extract
specific properties. Moments are crucial in image analyses and pattern recognition, helping
to characterize segmented objects [16]. This study employs three distinct types of moments:
Zernike, Legendre, and Chebyshev. A concise overview of these moment types follows.

Chebyshev Moments (CH) constitute a class of discrete orthogonal moments [17],
based on Chebyshev polynomials [18] with the maximum possible leading coefficient
constrained by an absolute value of 1 within the interval [−1, 1]. This study used the
first- and second-order moments, denoted as CH_1 and CH_2, respectively. Both moments
were calculated to the fifth order. They are defined as

Tpq =
M−1

∑
x=0

N−1

∑
y=0

Tp(x)Tq(y) f (x, y) (1)

where Tp(x) and Tq(y) are the Chebyshev polynomials of order p and q, respectively, and
f (x, y) is the image function.

Second-order Legendre Moments (LM) are a type of continuous orthogonal moment
that can be used for image analyses. LM capture information about the shape and orienta-
tion of an image. They are calculated using the second-order Legendre polynomials, which
are orthogonal over the interval [−1, 1] [19,20]; they can capture and represent objects’
shape and spatial characteristics within an image. In our analysis, we extracted the LM of
order 5. The LM are defined as

Lpq =

(
2p + 1

2

)(
2q + 1

2

) 1

∑
x=−1

1

∑
y=−1

Pp(x)Pq(y) f (x, y) (2)
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where Pp(x) and Pq(y) are the Legendre polynomials of order p and q, respectively, and
f (x, y) is the image function.

Zernike Moments (ZM) are a type of continuous orthogonal moment that is defined
over the unit circle [20]. They are calculated using Zernike polynomials, which form an
orthogonal basis [21]. In this study, we extracted the ZM of order 5 with a repetition of 5.
The ZM are defined as

Znm =
n + 1

π

1

∑
x=−1

1

∑
y=−1

V∗
nm(x, y) f (x, y) (3)

where Vnm(x, y) are the Zernike polynomials, V∗
nm denotes the complex conjugate, n is the

order, m is the repetition, and f (x, y) is the image function.
The specific forms of the Chebyshev, Legendre, and Zernike polynomials are

provided below:

• Chebyshev polynomial Tp(x) of order p:

Tp(x) = cos(p · arccos(x)) (4)

• Legendre polynomial Pp(x) of order p:

Pp(x) =
1
2p

p

∑
k=0

(−1)k
(

p
k

)(
2p − 2k

p

)
xp−2k (5)

• Zernike polynomial Vnm(x, y) of order n with repetition m:

Vnm(x, y) = Rnm(ρ) · ejmθ (6)

where ρ =
√

x2 + y2 and θ = arctan(y/x), and Rnm(ρ) is the radial polynomial
defined as

Rnm(ρ) =
(n−|m|)/2

∑
s=0

(−1)s (n − s)!
s!((n + |m|)/2 − s)!((n − |m|)/2 − s)!

ρn−2s (7)

3.2.2. Texture Features

Texture serves as a visual feature indicative of homogeneity within an image. It
reveals the organization and arrangement of surface structures exhibiting gradual or
periodic variations. Rather than relying on individual pixel characteristics, a texture
analysis requires statistical calculations over regions encompassing multiple pixels [22].
The texture is characterized by the gray-level distribution of pixels and their surrounding
spatial neighbors, encapsulating local texture information. Additionally, global texture
information is determined by the extent of repetition of this local texture information. For
the sake of this work, we have considered two widely employed methods, now described.

Rotation-Invariant Haralick (HAR) Features: Thirteen HAR features were extracted
from the Gray-Level Co-occurrence Matrix (GLCM) and then transformed into rotation-
invariant features [23]. To achieve rotation invariance, four variations of the GLCM were cal-
culated, each with a distance parameter d = 1 and angular orientations
θ = [0◦, 45◦, 90◦, 135◦].

The Gray-Level Co-occurrence Matrix (GLCM) is defined as

P(i, j, d, θ) =
N

∑
x=1

N

∑
y=1

{
1 if I(x, y) = i and I(x + d cos θ, y + d sin θ) = j
0 otherwise

(8)

From the GLCM, we extracted the first 13 HAR features. They are defined as follows:
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Angular Second Moment (ASM) =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)2 (9)

Contrast =
N−1

∑
n=0

n2

(
N−1

∑
i=0

N−1

∑
j=0

P(i, j), |i − j| = n

)
(10)

Correlation =
∑N−1

i=0 ∑N−1
j=0 (i · j · P(i, j))− µx · µy

σx · σy
(11)

where

µx =
N−1

∑
i=0

i

(
N−1

∑
j=0

P(i, j)

)

µy =
N−1

∑
j=0

j

(
N−1

∑
i=0

P(i, j)

)

σx =

√√√√N−1

∑
i=0

(i − µx)2

(
N−1

∑
j=0

P(i, j)

)

σy =

√√√√N−1

∑
j=0

(j − µy)2

(
N−1

∑
i=0

P(i, j)

)

Variance =
N−1

∑
i=0

N−1

∑
j=0

(i − µ)2P(i, j) (12)

where

µ =
N−1

∑
i=0

N−1

∑
j=0

i · P(i, j) (13)

Inverse Difference Moment (IDM) =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)
1 + (i − j)2 (14)

Sum Average =
2N

∑
i=2

i · Px+y(i) (15)

where

Px+y(k) =
N−1

∑
i=0

N−1

∑
j=0

P(i, j), i + j = k (16)

Sum Variance =
2N

∑
i=2

(i − Sum Average)2 · Px+y(i) (17)

Sum Entropy = −
2N

∑
i=2

Px+y(i) log Px+y(i) (18)

Entropy = −
N−1

∑
i=0

N−1

∑
j=0

P(i, j) log P(i, j) (19)

Difference Variance = Variance of Px−y(k) (20)

where

Px−y(k) =
N−1

∑
i=0

N−1

∑
j=0

P(i, j), |i − j| = k (21)
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Difference Entropy = −
N−1

∑
i=0

Px−y(i) log Px−y(i) (22)

Information Measures of Correlation 1 =
HXY − HXY1
max{HX, HY} (23)

where

HXY = −
N−1

∑
i=0

N−1

∑
j=0

P(i, j) log P(i, j)

HXY1 = −
N−1

∑
i=0

N−1

∑
j=0

P(i, j) log(Px(i)Py(j))

HX = −
N−1

∑
i=0

Px(i) log Px(i)

HY = −
N−1

∑
j=0

Py(j) log Py(j)

Information Measures of Correlation 2 =
√

1 − exp(−2(HXY2 − HXY)) (24)

where

HXY2 = −
N−1

∑
i=0

N−1

∑
j=0

Px(i)Py(j) log(Px(i)Py(j)) (25)

Local Binary Pattern (LBP) is a powerful method for capturing the texture and patterns
in an image, as described in [24]. In this study, we computed the histogram of the LBP and
transformed it into a rotation-invariant form [25]. This histogram was then extracted and
used as the feature vector. The LBP map was generated within a neighborhood defined by
a radius of r = 1 and eight neighbors (n = 8).

The LBP operator assigns a binary code to each pixel by thresholding its neighborhood
with the center pixel value. The LBP code for a pixel (xc, yc) is given by

LBPP,R =
P−1

∑
p=0

s(ip − ic)2p (26)

where s(x) is the sign function

s(x) =

{
1 if x ≥ 0
0 otherwise

(27)

3.2.3. Color Features

Histograms are the most widely employed method for characterizing the color prop-
erties of images since they effectively represent the global color distribution within an
image, indicating their proportion. The descriptors that can be extracted from the his-
togram are invariant to image rotation, translation, and scaling changes. However, they
have a significant limitation in that they cannot describe the local distribution of colors,
the spatial location of each color, or specific objects within the image [26]. In this study,
these descriptors were calculated from images that underwent a conversion to grayscale,
streamlining the process of the analysis and computation.

Histogram (Hist) Features: From the histogram, which characterizes the overall color
distribution within the image, we derived seven statistical descriptors: the mean, standard
deviation, smoothness, skewness, kurtosis, uniformity, and entropy.
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For a histogram h(i) with N bins, the statistical descriptors are defined as follows:

Mean =
1
N

N−1

∑
i=0

i · h(i) (28)

Standard Deviation =

√√√√ 1
N

N−1

∑
i=0

(i − µ)2 · h(i) (29)

Smoothness = 1 − 1
1 + Variance

(30)

Skewness =
1

Nσ3

N−1

∑
i=0

(i − µ)3 · h(i) (31)

Kurtosis =
1

Nσ4

N−1

∑
i=0

(i − µ)4 · h(i)− 3 (32)

Uniformity =
N−1

∑
i=0

h(i)2 (33)

Entropy = −
N−1

∑
i=0

h(i) log h(i) (34)

Autocorrelogram (AC): The AC captures the spatial correlation of colors within an
image. It is a restricted version of the more general color correlogram, considering only
the spatial correlation between pixels of the same color [27]. Specifically, the color au-
tocorrelogram calculates the probability that a pixel of a given color will be found at a
certain distance, d, away from another pixel of the same color. Our research considered four
discrete distances: d = 1, 2, 3, 4. The four resulting probability vectors are concatenated to
form a comprehensive feature vector.

The autocorrelogram for color k at distance d is defined as

ACk(d) =
1

Nk

Nk

∑
i=1

∑
j∈Nd(i)

δ(C(i), k)δ(C(j), k) (35)

where Nk is the number of pixels of color k, Nd(i) is the set of pixels at distance d from pixel
i, and δ is the Kronecker delta function.

Haar-like (Haar) Features: The key idea behind these features is to calculate the
difference in the sum of pixel intensities across rectangular regions in an image. This
allows detecting edges, lines, and center-surround features that indicate the presence of
an object [28]. Haar-like features can be calculated using integral images to speed up the
process. The integral image at a location (x, y) is defined as

I I(x, y) = ∑
x′≤x

∑
y′≤y

I(x′, y′) (36)

Using the integral image, the sum of pixel intensities within a rectangular region can
be computed efficiently, allowing for the calculation of Haar-like features.

3.2.4. Deep Features

With deep features, we refer to the characteristics of an image derived from the CNN
activations since they have proven to be a potent strategy for enhancing the predictive
power of classifiers [29]. These deep features were extracted from off-the-shelf CNN
architectures pre-trained on the well-known natural image dataset ImageNet [30].

Specifically, depending on the architecture, deep features were extracted from one of
the following layers: (i) the penultimate layer, (ii) the final fully connected layer, or (iii) the
last pooling layer. This approach ensures extracting features encapsulating the network’s
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learned global knowledge. Notably, the fine-tuning strategy for the classification phase
was not employed to maintain the generalization ability of the networks [31,32]. Detailed
specifications regarding the selected layers for feature extraction, input dimensions, and
the count of trainable parameters for each CNN model are outlined in Table 2, while a brief
explanation of the CNNs employed is now provided.

Table 2. Employed CNN details including reference paper, number of trainable parameters in
millions, input shape, feature extraction layer, and related feature vector size.

CNN Parameters (M) Input Shape Feature Layer # of Features

AlexNet [33] 60 224 × 224 Pen. FC 4096
DarkNet-19 [34] 20.8 224 × 224 Conv19 1000
DarkNet-53 [35] 20.8 224 × 224 Conv53 1000

DenseNet-201 [36] 25.6 224 × 224 Avg. Pool 1920
EfficientNetB0 [37] 5.3 224 × 224 Avg. Pool 1280
Inception-v3 [38] 21.8 299 × 299 Last FC 1000

Inception-ResNet-v2 [39] 55 299 × 299 Avg. Pool 1536
ResNet-18 [40] 11.7 224 × 224 Pool5 512
ResNet-50 [40] 26 224 × 224 Avg. Pool 1024
ResNet-101 [40] 44.6 224 × 224 Pool5 1024

VGG19 [41] 144 224 × 224 Pen. FC 4096
XceptionNet [42] 22.9 299 × 299 Avg. Pool 2048

AlexNet consists of a sequence of convolutional and max-pooling layers, culminating
in three fully connected layers [33]. With only five convolutional layers, it represents the
most shallow architecture used in this study.

DarkNet builds upon the established principles of inception and batch normalization.
This study employs two specific versions of DarkNet, incorporating 19 [34] and 53 [35]
convolutional layers. These configurations form the foundational network for the You Only
Look Once object detection method.

DenseNet, proposed by Huang et al. [36], addresses the typical CNN characteristic of
having layers equal to the number of connections. Specifically, the number of connections
is L(L + 1)/2, where L denotes the number of layers. Each layer’s input comprises the
output from all preceding layers, which then serves as the input for the subsequent layer.

EfficientNet stands out for its uniform and efficient scaling of network width, depth,
and resolution through compound scaling. Proposed by Tan et al. [37], this study employs
the EfficientNetB0 version.

Inception-v3 uses the inception layer concept by incorporating factorized, smaller,
and asymmetric convolutions [38]. Inception models are notable for their multi-branch
architectures, combining filters of various sizes integrated through concatenation within
each branch.

Inception-ResNet-v2 merges the strengths of ResNet and Inception architectures [39].
The Inception-ResNet block combines variously sized convolutional filters with residual
connections, featuring four max-pooling layers and 160 convolutional layers.

ResNet refers to a family of deep architectures that use residual learning [40]. These
architectures integrate skip-connections or recurrent units to link blocks of convolutional
and pooling layers, with each block followed by batch normalization [43]. This study
employs three ResNet variants, ResNet-18, ResNet-50, and ResNet-101, with the numbers
indicating the respective network depths.

VGG comprises a series of convolutional layers followed by max-pooling, which
enhances its deep representation capabilities [41]. This study uses VGG19, featuring
19 layers.

XceptionNet extends the Inception architecture by employing depth-wise separable
convolutions to improve efficiency and reduce parameter count. This approach aims to
capture complex feature dependencies by focusing on cross-channel correlations [42].
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3.3. Classification Methods

After feature extraction, HC and deep features served as inputs for four classical ML
algorithms to classify GasHisSDB. Here is a brief overview of these classifiers.

Decision Tree (DT) is a hierarchical data structure used for prediction. Each internal
node represents a feature, with branches denoting possible feature values and leaves
representing different categories. The algorithm optimizes this structure by pruning nodes
that minimally contribute to category separation, thereby merging instances at higher levels.
Classification is achieved by tracing the path from the root to a leaf node [44].

k-Nearest Neighbor (kNN): The kNN classifier categorizes observations by consid-
ering the classes of the k training examples nearest to the observation in question. This
method employs a local strategy for classification, leveraging the proximity of neighboring
instances to determine the class [45].

Support Vector Machine (SVM): SVM differentiates categories by mapping exam-
ples to opposite sides of a decision boundary. The one-vs.-rest approach is employed
for multiclass problems, training individual classifiers to distinguish each class from all
others [46].

Random Forest (RF): This algorithm aggregates predictions from multiple Decision
Trees, each constructed from random subsets of features and examples. By fostering
diversity among the trees, this ensemble method enhances model robustness, improving
resilience against data imbalance and mitigating overfitting. The use of 100 trees specifically
enhances the random forest’s predictive accuracy [47].

3.4. Performance Evaluation Measures

In evaluating the performance of a binary classifier on a dataset, each instance is
classified as either negative or positive based on the classifier’s predictions. The result
of this classification, when compared to the actual target value, determines the following
performance measures:

• True Negatives (TNs): instances correctly predicted as negative.
• False Positives (FPs): instances incorrectly predicted as positive.
• False Negatives (FNs): instances incorrectly predicted as negative.
• True Positives (TPs): instances correctly predicted as positive.

As detailed below, we assess the classifier’s performance using several measures
specifically defined for binary classification tasks.

• Accuracy (A): It is the ratio of correct predictions to the total number of predictions:

A =
TP + TN

TP + FN + FP + TN

• Precision (P) is the ratio of TPs to the sum of TPs and FPs, indicating the classifier’s
efficiency in predicting positive instances:

P =
TP

TP + FP

• Recall (R), also known as sensitivity, is the ratio of TPs to the sum of TPs and FNs:

R =
TP

TP + FN

• Specificity (S) is the ratio of TNs to the sum of TNs and FPs:

S =
TN

TN + FP
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• F1-score (F1) is the harmonic mean of P and R, considering both FPs and FNs:

F1 = 2 · P · R
P + R

• Matthews Correlation Coefficient (MCC) is a comprehensive measure that considers
all elements of the confusion matrix (TP, TN, FP, FN). Ranging from −1 to +1, it
provides a high score only when the classifier performs well in both the positive and
negative classes:

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

• Balanced accuracy (BACC) is defined as the mean of specificity and sensitivity:

BACC =
S + R

2

3.5. Experimental Setup

The experiments were performed on a workstation with an Intel(R) Core(TM)
i9-8950HK @ 2.90 GHz CPU, 32 GB of RAM, and an NVIDIA GTX1050 Ti GPU with
4 GB of memory. MATLAB R2021b was used for all implementations and experimental
evaluations.

This study deliberately did not use image augmentations to concentrate on extracting
pure features from the original images. Moreover, we used Euclidean distance as a distance
measure for kNN with k = 1; note that with k = 1, no voting strategy is required. In
addition, the SVM kernel function uses a linear kernel, and the number of DTs composing
the RF has been set to 100.

In addition, a 5-fold cross-validation (CVal) approach was employed for the testing
strategy. This method ensures statistical reliability by repeatedly training and testing the
same dataset. Specifically, the dataset is divided into 80% for training and 20% for testing
at each iteration.

4. Experimental Results

In this section, we detail the comprehensive experimental analysis conducted to
evaluate the performance of various feature extraction and classification techniques on the
GasHisSDB dataset. Section 4.1 presents the results obtained with HC features, whereas
Section 4.2 explores the use of CNN as feature extractors. This is succeeded by Section 4.3,
where we discuss the outcomes of combining HC and deep features to enhance classification
accuracy. To ensure robustness across different magnifications, Section 4.4 evaluates the
consistency and reliability of our methods when applied to images at various magnification
levels. Finally, Section 4.5 provides a critical analysis of our results in the context of existing
research. Finally, please note that for the sake of comparison, we have reported only the
results obtained with the two best-performing classifiers, i.e., RF and SVM. We report kNN
and DT results in Appendix A.

4.1. HC Feature Performance

The outcomes obtained by RF and SVM trained with HC features are presented
in Tables 3 and 4, while Tables A1 and A2 report the results obtained with DT and kNN,
respectively.
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Table 3. Performance obtained with SVM trained with HC features. Values are shown in terms of %.

Descriptor A P R S F1 MCC BACC

AC 67.30 69.18 82.99 43.20 75.45 28.71 63.09
Haar 62.18 62.38 94.59 12.38 75.18 12.45 53.49
Hist 44.67 96.29 9.00 99.47 16.47 17.91 54.23

HAR 62.07 73.64 58.21 68.00 65.02 25.64 63.10
LBP 62.64 70.00 67.06 55.85 68.50 22.69 61.46

CH_1 75.92 77.37 85.14 61.75 81.07 48.61 73.45
CH_2 72.50 71.57 90.55 44.76 79.95 40.78 67.66
LM 73.32 72.65 89.73 48.11 80.29 42.61 68.92
ZM 63.84 69.78 71.08 52.72 70.43 23.93 61.90

Table 4. Performance obtained with RF trained with HC features. Values are shown in terms of %.

Descriptor A P R S F1 MCC BACC

AC 71.76 72.89 84.97 51.47 78.47 39.09 68.22
Haar 62.48 62.65 94.22 13.71 75.26 13.61 53.97
Hist 73.26 77.24 79.19 64.15 78.20 43.66 71.67

HAR 76.78 78.69 84.55 64.84 81.52 50.63 74.69
LBP 79.57 80.74 87.03 68.11 83.77 56.61 77.57

CH_1 78.11 79.99 85.17 67.28 82.50 53.56 76.22
CH_2 78.07 79.84 85.34 66.90 82.50 53.43 76.12
LM 78.25 80.20 85.09 67.73 82.58 53.87 76.41
ZM 65.19 68.16 79.84 42.70 73.54 24.26 61.27

The performance obtained with the SVM (Table 3) shows that the CH_1 and CH_2
features provide the best accuracy (75.92% and 72.50%, respectively) and balanced accuracy
(73.45% and 67.66%, respectively), showing their potential for discriminating between
normal and abnormal tissues. Interestingly, while the Hist features achieve high preci-
sion (96.29%), it suffers from very low recall (9.00%), leading to a much lower balanced
accuracy (54.23%).

As for the RF (Table 4), when trained with the LBP features, it achieves the highest ac-
curacy (79.57%), precision (80.74%), and F1 (83.77%). The LBP feature’s strong performance
across most metrics suggests its effectiveness in capturing essential patterns in histopatho-
logical images. Contrastively, the Haar feature again demonstrates a significantly lower
accuracy (62.48%) and balanced accuracy (53.97%), indicating its relative ineffectiveness in
this context.

Finally, the LBP again emerges as the top performer with both DT (Table A1) and
kNN (Table A2). DT with LBP obtained an accuracy of 71.22% and a BACC of 69.87%.
This indicates that despite the DT classifier’s simplicity, LBP features can still capture
discriminative information effectively. Haar features, however, perform poorly with a
balanced accuracy of 53.37%. Instead, kNN with LBP obtained an accuracy of 69.51% and
an F1 of 74.58%. Conversely, the Haar feature shows poor performance with an accuracy of
42.17% and a balanced accuracy of 48.53%, reaffirming its limitations for this task.

The consistency across classifiers underlines LBP features’ robustness, even without
top-notch performance.

4.2. Deep Feature Performance

The results of SVM and RF classifiers trained using deep features are summarized
in Tables 5 and 6. In Tables A3 and A4, the results obtained with DT and kNN are reported,
respectively.
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Table 5. Performance obtained with SVM trained with deep features. Values are shown in terms of %.

Descriptor A P R S F1 MCC BACC

AlexNet 72.97 77.49 76.56 65.81 77.02 42.80 71.18
DarkNet-19 77.86 82.20 80.82 71.95 81.50 53.28 76.39
DarkNet-53 82.83 85.84 84.99 76.88 85.41 63.65 80.94
DenseNet-201 86.02 89.01 86.61 81.84 87.79 69.91 84.23
EfficientNet B0 82.84 85.76 85.35 76.96 85.55 63.48 81.15
Inception-v3 73.60 78.88 74.73 67.51 76.75 45.86 71.12
Inception-ResNet-v2 69.87 75.03 71.65 62.78 73.29 35.68 67.21
ResNet-18 77.78 82.17 80.82 71.86 81.49 53.13 76.34
ResNet-50 82.77 86.11 84.34 77.87 85.22 63.43 81.11
ResNet-101 82.52 85.76 84.71 76.81 85.23 63.00 80.76
VGG19 79.60 83.94 81.78 73.70 82.84 57.67 77.74
XceptionNet 82.24 85.75 84.22 76.22 84.97 62.53 80.22

Table 6. Performance obtained with RF trained with deep features. Values are shown in terms of %.

Descriptor A P R S F1 MCC BACC

AlexNet 84.02 85.55 88.57 77.03 87.03 66.29 82.80
DarkNet-19 88.30 88.68 92.49 81.87 90.54 75.33 87.18
DarkNet-53 90.30 90.72 93.55 85.30 92.11 79.58 89.42
DenseNet-201 91.93 92.61 94.20 88.46 93.40 83.05 91.33
EfficientNet B0 89.89 89.96 93.77 83.92 91.83 78.71 88.85
Inception-v3 85.52 85.64 91.42 76.46 88.44 69.39 83.94
Inception-ResNet-v2 83.25 84.10 89.21 74.10 86.58 64.55 81.65
ResNet-18 86.99 87.32 91.87 79.50 89.53 72.54 85.68
ResNet-50 89.92 90.12 93.63 84.23 91.84 78.77 88.93
ResNet-101 89.59 89.76 93.48 83.62 91.58 78.07 88.55
VGG19 85.98 86.61 90.92 78.40 88.71 70.41 84.66
Xception 88.58 89.08 92.49 82.59 90.75 75.94 87.54

As shown in Table 5, SVM trained with DenseNet-201 features achieves the high-
est accuracy (86.02%) and balanced accuracy (84.23%), followed closely by DarkNet-53
and EfficientNetB0.

Even with RF (Table 6), DenseNet-201 achieves the highest accuracy (91.93%) and
balanced accuracy (91.33%), indicating its superior feature extraction capability. Other deep
features, such as those from DarkNet-53 and ResNet-101, also perform exceptionally well
with RF.

In addition, the features extracted from DenseNet-201 also excel with DT and kNN.
As shown in Table 6, DT achieves the highest accuracy (84.92%) and balanced accuracy
(84.20%). In contrast, kNN (Table A4) shows superior performance with DenseNet-201 and
DarkNet-53, which gained accuracies of 88.21% and 88.25%, respectively, and balanced
accuracies of 87.23% and 87.22%. These results further confirm that even simpler classifiers
can benefit significantly from the rich feature representations pre-trained CNNs provide.

This consistent top performance across different classifiers highlights DenseNet-201’s
strong feature extraction capabilities for histopathological images, even without any fine-
tuning strategy.

4.3. Feature Fusion Performance

Despite the significant results achieved from the previous classification, further efforts
were made to enhance performance. An additional experiment explored the potential of
integrating the representative power of both HC and deep features into a feature fusion
strategy. More specifically, this experiment focused on LBP, DenseNet-201, and Efficient-
NetB0, which resulted in the best HC and the best two deep features, respectively. They
were evaluated with all possible combinations using the best three classifiers from the pre-
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vious stage: DT, SVM, and RF. This integration aimed to leverage their combined strengths
for improved performance. The results are shown in Table 7.

Table 7. Performance measures of different classifiers trained with a feature fusion strategy. The
classifiers used are DT, SVM, and RF. The strategies compared include combinations of HC and
deep features: LBP + DenseNet-201, LBP + EfficientNetB0, DenseNet-201 + EfficientNetB0, and
LBP + DenseNet-201 + EfficientNetB0. Values are shown in terms of %.

Strategy Classifier A P R S F1 MCC BACC

LBP +
DenseNet-201

DT 88.21 89.04 91.84 82.63 90.42 75.16 87.23
SVM 94.41 95.14 95.66 92.50 95.40 88.29 94.08
RF 92.16 92.83 94.35 88.80 93.58 83.53 91.57

LBP +
EfficientNetB0

DT 87.55 89.01 90.63 82.82 89.81 73.82 86.72
SVM 94.05 94.78 95.44 91.92 95.11 87.53 93.68
RF 89.65 90.19 93.03 84.46 91.59 78.21 88.74

DenseNet-201 +
EfficientNetB0

DT 90.30 91.05 93.13 85.94 92.08 79.59 89.54
SVM 94.89 95.76 95.81 93.49 95.78 89.31 94.65
RF 91.83 92.31 94.37 87.92 93.33 82.82 91.15

LBP +
DenseNet-201 +
EfficientNetB0

DT 90.31 91.07 93.13 85.98 92.09 79.63 89.56
SVM 95.03 95.86 95.93 93.64 95.90 89.59 94.79
RF 92.26 92.67 94.72 88.50 93.68 83.74 91.61

For the fusion of LBP and DenseNet-201 features, SVM emerged as the most effective
classifier with an accuracy of 94.41% and F1 of 95.40%. This performance indicates that SVM,
when trained with this fusion of features, is highly reliable. RF also performed robustly
with an accuracy of 92.16%, showing strong capability but slightly lagging behind SVM.

In the case of combining LBP with EfficientNetB0 features, SVM again demonstrated
superior performance with an accuracy of 94.05%, F1 of 95.11%, MCC of 87.53, and balanced
accuracy of 93.68%. This reiterates SVM’s effectiveness across different feature combina-
tions. RF showed a notable drop in performance compared to the previous fusion strategy,
suggesting that this combination might not be as effective for RF.

The combination of DenseNet-201 and EfficientNetB0 features led to SVM achieving
the highest measures overall, with an accuracy of 94.89% and F1-score of 95.78%. This
indicates that the deep features from these two CNNs complement each other well, provid-
ing rich information for the classifier. RF and DT also performed better with this fusion
strategy than HC features, highlighting the benefit of purely deep features.

Finally, the most complex feature fusion strategy, combining LBP with both DenseNet-
201 and EfficientNetB0, resulted in the highest overall performance for SVM, with an
accuracy of 95.03%, and F1 of 95.90%. This indicates that the incorporation of both HC and
multiple deep features provides a comprehensive feature set that enhances classification
performance. RF also showed its best performance with this fusion strategy, suggesting
that adding more feature types helps improve its robustness and generalization.

4.4. Cross-Magnification Performance

Tables 8 and 9 detail the performance measures of two cross-magnification experiments
conducted using different classifiers and feature fusion strategies on the GasHisSDB dataset.
The experiments involved training on a 160× 160 image sub-database and testing on smaller
dimensions (120 × 120 and 80 × 80, respectively).
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Table 8. Performance measures of the first cross-magnification experiment. Different classifiers were
trained on the 160 × 160 split of the GasHisSDB with a feature fusion strategy and tested on the
120 × 120 split. The classifiers used were DT, SVM, and RF. Values are shown in terms of %.

Strategy Classifier A P R S F1 MCC BACC

LBP +
DenseNet-201

DT 86.69 90.56 87.68 85.08 89.09 72.10 86.38
SVM 86.41 97.42 80.20 96.53 87.98 74.51 88.37
RF 89.04 95.12 86.78 92.74 90.76 77.87 89.76

LBP +
EfficientNetB0

DT 85.17 88.66 87.25 81.79 87.95 68.71 84.52
SVM 85.02 96.81 78.42 95.79 86.65 72.04 87.10
RF 87.38 90.20 89.36 84.15 89.78 73.30 86.76

DenseNet-201 +
EfficientNetB0

DT 88.43 91.65 89.50 86.69 90.56 75.66 88.09
SVM 85.88 98.40 78.50 97.92 87.33 74.19 88.21
RF 89.55 94.36 88.43 91.37 91.30 78.51 89.90

LBP +
DenseNet-201 +
EfficientNetB0

DT 88.42 91.64 89.50 86.67 90.55 75.65 88.08
SVM 85.82 98.45 78.36 97.98 87.26 74.12 88.17
RF 89.56 94.79 87.99 92.12 91.26 78.67 90.05

Table 9. Performance measures of the second cross-magnification experiment. Different classifiers
were trained on the 160 × 160 split of the GasHisSDB with a feature fusion strategy and tested on the
80 × 80 split. The classifiers used were DT, SVM, and RF. Values are shown in terms of %.

Strategy Classifier A P R S F1 MCC BACC

LBP +
DenseNet-201

DT 77.05 86.23 73.23 82.70 79.20 54.89 77.97
SVM 68.92 96.18 49.89 97.07 65.70 49.83 73.48
RF 78.89 93.29 69.62 92.60 79.73 61.41 81.11

LBP +
EfficientNetB0

DT 63.58 89.19 44.34 92.05 59.23 39.09 68.20
SVM 54.36 96.04 24.53 98.50 39.07 31.44 61.51
RF 71.38 92.27 56.79 92.96 70.31 50.63 74.88

DenseNet-201 +
EfficientNetB0

DT 74.70 88.69 66.02 87.55 75.69 52.89 76.78
SVM 59.96 96.81 34.02 98.34 50.34 39.00 66.18
RF 79.73 92.84 71.54 91.84 80.81 62.39 81.69

LBP +
DenseNet-201 +
EfficientNetB0

DT 74.70 88.69 66.02 87.55 75.69 52.89 76.78
SVM 60.31 96.72 34.66 98.26 51.03 39.39 66.46
RF 78.44 93.88 68.33 93.41 79.09 61.10 80.87

Results of testing on S-B: The classifiers were evaluated on the 120× 120 test set in the first
experiment. Combining LBP and DenseNet-201 as features yielded varied results across
different classifiers. The RF classifier outperformed others, achieving an accuracy of 89.04%,
an F1 of 90.76%, and a balanced accuracy of 89.76%. The SVM also demonstrated strong
performance, particularly with a precision of 97.42%, though it lagged in recall compared
to RF.

When integrating LBP with EfficientNetB0, the performance metrics showed a slight
decline, especially noticeable in the DT classifier, which recorded an accuracy of 85.17%.
The RF continued to maintain relatively high performance, albeit slightly lower than with
DenseNet-201.

The fusion of DenseNet-201 and EfficientNetB0 features displayed a notable improve-
ment in classifier performance. RF again led the results with an accuracy of 89.55%, an
F1-score of 91.30%, and a balanced accuracy of 89.90%. The DT classifier also performed
well under this strategy, achieving high precision and recall rates.

Combining all three feature sets (LBP, DenseNet-201, and EfficientNetB0) resulted
in marginal improvements across the board. RF achieved the highest accuracy at 89.56%,
while the SVM exhibited the highest precision at 98.45%. This comprehensive feature
fusion strategy enhanced the robustness and consistency of the classifiers’ performance,
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particularly evident in the balanced accuracy and MCC scores.

Results of testing on S-C: The second experiment, with testing on the 80× 80 sub-database,
illustrated a greater challenge for the classifiers, reflected in the generally lower perfor-
mance values. The LBP + DenseNet-201 combination showed that RF remained the most
reliable classifier with an accuracy of 78.89% and an F1-score of 79.73%. While demon-
strating high precision at 96.18%, the SVM struggled with recall and balanced accuracy,
indicating a possible reliance on the 160 × 160 pixels’ image data.

In the LBP + EfficientNetB0 strategy, all classifiers showed decreased performance,
with the SVM particularly underperforming in terms of recall and F1. RF again stood out,
albeit with lower scores than the previous experiment.

The fusion of DenseNet-201 and EfficientNetB0 improved the values slightly, with
RF achieving an accuracy of 79.73% and a balanced accuracy of 81.69%. This strategy
illustrated a more balanced performance across the classifiers, with DT and SVM showing
moderate improvements in precision and recall.

Lastly, the combination of all three feature sets in this second experiment underscored
RF as the most robust classifier with an accuracy of 78.44% and an F1 of 79.09%. The SVM
showed better balanced accuracy compared to previous setups, though it still struggled
with recall.

4.5. Comparison with the State of the Art

Table 10 showcases a comparative analysis of the performance of our work against
previous state-of-the-art studies on the GasHisSDB dataset.

Table 10. Performance comparison of our work and the previous state-of-the-art works on the
GasHisSDB dataset. * indicates that the proposed approach was trained on S-A and directly tested on
S-B and S-C without fine-tuning.

Work Split (%) Model Details A (%)

S-C S-B S-A

[2] 40/40/20 VGG16 96.12 96.47 95.90
40/40/20 ResNet50 96.09 95.94 96.09

[48] 40/20/40 InceptionV3 trained from scratch - - 98.83
40/20/40 InceptionV3 + ResNet50 (feature con-

catenation)
- - 98.80

[14] 60/20/20 LGFFN - - 96.81
[49] 80/-/20 MCLNet based on ShuffleNetV2 96.28 97.95 97.85
[6] 40/20/40 Ensemble 97.72 98.68 99.20

Ours 5-fold CVal SVM with feature fusion 60.31 * 85.82 * 95.03
Ours 5-fold CVal RF with feature fusion 78.44 * 89.56 * 92.26

In Hu et al.’s work [2], two models, VGG16 and ResNet50, were tested with a 40/40/20
split. VGG16 achieved accuracies of 96.12%, 96.47%, and 95.90% across S-C, S-B, and S-A,
respectively. Similarly, ResNet50 showed comparable performance with 96.09%, 95.94%,
and 96.09% in the same sub-databases.

In the study of [48], an InceptionV3 model trained from scratch using a 40/20/40 split
achieved a remarkable 98.83% accuracy in the S-A sub-database. Furthermore, combining
InceptionV3 and ResNet50 through feature concatenation yielded a very close accuracy
of 98.80%.

Li et al. [14] used a local–global feature fuse network (LGFFN) with a 60/20/20 split,
achieving an accuracy of 96.81% in the S-A. This approach leverages the strengths of
local and global features to improve classification performance. On the other hand, [49]
employed MCLNet based on ShuffleNetV2 with an 80/-/20 split, reporting high accuracies
of 96.28%, 97.95%, and 97.85% across S-C, S-B, and S-A, respectively.
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The ensemble method adopted in [6] with a 40/20/40 split exhibited outstanding
results, with accuracies of 97.72%, 98.68%, and 99.20% in S-C, S-B, and S-A, respectively.
This ensemble approach amalgamates the strengths of multiple models, thereby achieving
superior performance and robustness in classification tasks.

The main differences between the state of the art and our work are that our evaluation
followed a 5-fold Cval protocol; we used only HC features and features extracted from
pre-trained, off-the-shelf CNNs to evaluate the extent to which non-specialized and non-
tuned features can accomplish the binary classification task faced in this study. We tested
on S-B and S-C by using only models trained on S-A to investigate the influence of the
image resolution size in this scenario.

As can be seen, we reported two models: SVM with feature fusion and RF with feature
fusion. The SVM model achieved accuracies of 60.31%, 85.82%, and 95.03% in S-C, S-B,
and S-A, respectively. Similarly, the RF model showed accuracies of 78.44%, 89.56%, and
92.26% in the same categories. Although lower in S-B and S-C due to the training/testing
strategy employed, compared to previous studies, these results highlight the potential of
feature fusion techniques in improving classification performance, even without the need
for a complex fine-tuning strategy that can be time-consuming and, above all, require a
high amount of labeled data that can be complex in medical scenarios [50]. The 5-fold CV
method ensures a more robust evaluation by repeatedly training and testing on different
subsets of the data, thus providing a reliable estimate of the models’ performance.

5. Discussion

This section analyzes the key aspects of our study. Specifically, Section 5.1 exam-
ines the relative performance and merits of HC versus deep features, whereas Section 5.2
discusses the outcomes of combining HC and deep features, analyzing how this fusion
impacts the overall classification performance. Next, Section 5.3 evaluates the robustness
and adaptability of our classification models across different magnifications of the consid-
ered dataset. Finally, Section 5.4 addresses the constraints and potential weaknesses of
our study.

5.1. On the HC vs. Deep Feature Comparison

The comparative analysis presented in Sections 4.1 and 4.2 reveals that, on the one
hand, LBP consistently performs well among HC features, demonstrating robustness
and reliability across different classifiers, even without exceptional performance. On the
contrary, Haar features generally perform poorly, suggesting that they are less suitable for
this task.

On the other hand, deep features extracted from pre-trained CNNs, especially DenseNet-
201 and DarkNet-53, consistently outperform HC features. This underscores the advantage
of using Deep Learning models for feature extraction in complex tasks such as histopatho-
logical image classification, even without fine-tuning strategies.

In addition, the random forest classifier has shown strong performance with both HC
and deep features, indicating its versatility and effectiveness in handling various feature
types. More precisely, RF with features extracted from DenseNet-201 demonstrated their
reliability for the task.

In summary, the detailed performance evaluation across various feature–classifier
combinations provides valuable insights into the strengths and weaknesses of different ap-
proaches. The consistent superiority of deep features, particularly those from DenseNet-201
and EfficientNetB0, suggests a clear direction in this domain, emphasizing the integration
of advanced Deep Learning techniques for enhanced classification accuracy, effectiveness,
and robustness. This is the main reason that motivated us to pick them along with LBP
among the HC features to investigate feature fusion strategies.
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5.2. On the Feature Fusion Performance

Across all feature fusion strategies, SVM consistently outperformed both DT and RF,
demonstrating its superior ability to handle the diverse and complex feature sets derived
from combining HC and deep features. SVM’s consistently high performance across various
combinations suggests that it is highly adaptable to different types of features.

While generally strong, RF showed variability in performance depending on the
feature combination, indicating that it might be more sensitive to the quality and type of
features used. DT, on the other hand, consistently lagged behind SVM and RF, pointing to
its relatively lower ability to utilize complex feature sets effectively.

The combination of LBP, DenseNet-201, and EfficientNetB0 features, mainly when
used with SVM, provides the most reliable and high-performing strategy for classifying
histopathological images. This fusion strategy leverages the strengths of both HC and deep
features, resulting in a robust classification framework.

5.3. On the Cross-Magnification Performance

Overall, the experiments reveal that the RF classifier consistently outperforms DT and
SVM across various feature fusion strategies and test set dimensions. The combination of
DenseNet-201 and EfficientNetB0 generally provides the most reliable feature set, enhanc-
ing classifier performance and demonstrating the feasibility of using features provided by
HC methods or pre-trained CNNs in histopathological image classification.

The comprehensive analysis demonstrates the efficacy of feature fusion and the im-
portance of choosing robust classifiers to achieve high accuracy and reliability in medical
image classification tasks.

5.4. Limitations

While comprehensive in its approach to evaluating the performance of shallow learn-
ing classifiers on histopathological image classification, this study presents several limita-
tions that must be acknowledged.

First, reliance on pre-trained CNNs for feature extraction without any fine-tuning spe-
cific to the dataset at hand may limit the potential performance of the classifiers. Fine-tuning
these networks could potentially yield features more tailored to the specific characteristics
of the histopathological images, thereby improving classification accuracy.

Second, the experiments were conducted using a single dataset, GasHisSDB, which
might limit the generalizability of the findings. The performance measures observed
might vary significantly when applied to other histopathological datasets with different
image characteristics, variations in staining procedures, or differing disease profiles. A
broader validation across multiple datasets would provide more robust evidence of the
classifiers’ effectiveness.

Third, this study employed a specific image resolution sub-database (160 × 160 for
training and testing, 120 × 120 and 80 × 80 for testing). The impact of image resolution
on classifier performance was not extensively explored, and it is possible that different
resolutions could influence the feature extraction and classification processes.

Additionally, this study did not incorporate image augmentation techniques com-
monly used in image classification tasks to improve model generalization by artificially
increasing the size and variability of the training dataset. The absence of augmentation
may result in overfitting, particularly given the limited data available for training.

In summary, while this work provides valuable insights into the use of shallow
learning classifiers for histopathological image classification with features supplied by non-
fine-tuned methods, the limitations discussed here suggest avenues for further research to
enhance and validate the findings.
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6. Conclusions

This study comprehensively evaluates shallow learning classifiers for histopathologi-
cal image classification using HC and deep features.

The comparative analysis of HC versus deep features demonstrates the clear su-
periority of deep features, particularly those extracted from pre-trained CNNs such as
DenseNet-201 and EfficientNetB0. These features consistently outperform HC features,
highlighting the advanced feature extraction capability of DL models in complex image
classification tasks. Among HC features, LBP shows robust performance, while Haar
features are less effective.

Our exploration of feature fusion techniques shows that combining features can
significantly enhance classification performance. The SVM classifier, in particular, excels
in handling diverse and complex feature sets, outperforming both DT and RF classifiers
across various combinations. The fusion of LBP, DenseNet-201, and EfficientNetB0 features
emerges as the most reliable strategy, leveraging the strengths of both HC and deep features.

In addition, our cross-magnification experiments underscore the robustness of RF clas-
sifiers, which consistently perform well across different image resolutions. The combination
of features from DenseNet-201 and EfficientNetB0 proves effective in maintaining high
classification accuracy, demonstrating the feasibility of utilizing features from pre-trained
CNNs and HC methods.

While this study advances our understanding of shallow learning classifiers in
histopathological image classification, our results open the field for several future works.
For instance, with feature importance and explainability techniques, we plan to investigate
the most effective features for the classifiers’ final prediction to simplify the workflow with
feature selection strategies. Moreover, we aim to integrate further DL methods like Vision
Transformer and leverage them as feature extractors in this context.
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AGC Advanced Gastric Cancer
CV Computer Vision
WSI Whole Slide Image
LGFFN Lightweight Gated Fully Fused Network
GHI Gated Hybrid Input
CH Chebyshev Moment
LM Second-Order Legendre Moment
ZM Zernike Moment
HAR Rotation-Invariant Haralick
LBP Local Binary Pattern
Hist Histogram
AC Autocorrelogram
Haar Haar-Like
DT Decision Tree
kNN k-Nearest Neighbor
SVM Support Vector Machine
RF Random Forest
TN True Negative
FP False Positive
FN False Negative
TP True Positive
A Accuracy
P Precision
R Recall
S Specificity
F F1-Score
MCC Matthews Correlation Coefficient
BACC Balanced Accuracy
Cval Cross-Validation

Appendix A. Further Results

Table A1. Performance obtained with DT trained with HC features. Values are shown in terms of %.

Descriptor A P R S F1 MCC BACC

AC 62.78 69.39 68.97 53.26 69.18 22.20 61.12
Haar 59.70 62.56 83.31 23.43 71.46 8.33 53.37
Hist 68.78 74.49 73.71 61.22 74.10 34.84 67.46

HAR 68.78 74.85 72.99 62.32 73.91 35.10 67.66
LBP 71.22 76.23 76.26 63.47 76.25 39.74 69.87

CH_1 71.11 76.15 76.17 63.35 76.16 39.52 69.76
CH_2 71.05 76.12 76.07 63.35 76.09 39.41 69.71
LM 71.32 76.16 76.64 63.16 76.40 39.87 69.90
ZM 58.06 65.74 64.24 48.57 64.98 12.73 56.40

Appendix B

Table A2. Performance obtained with kNN trained with HC features. Values are shown in terms of %.

Descriptor A P R S F1 MCC BACC

AC 57.34 70.04 51.66 66.06 59.46 17.42 58.86
Haar 42.17 56.99 18.40 78.67 27.82 −3.61 48.53
Hist 64.64 71.97 68.15 59.24 70.01 27.07 63.70

HAR 61.06 68.53 66.05 53.41 67.26 19.29 59.73
LBP 69.51 75.32 73.86 62.82 74.58 36.50 68.34
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Table A2. Cont.

Descriptor A P R S F1 MCC BACC

CH_1 66.16 72.41 71.28 58.29 71.84 29.45 64.78
CH_2 65.46 72.09 70.14 58.29 71.10 28.24 64.21
LM 66.32 72.57 71.38 58.55 71.97 29.81 64.97
ZM 57.40 65.03 64.19 46.97 64.60 11.12 55.58

Table A3. Performance obtained with DT trained with deep features. Values are shown in terms of %.

Descriptor A P R S F1 MCC BACC

AlexNet 75.00 79.47 79.19 68.57 79.33 47.72 73.88
DarkNet-19 78.25 82.04 82.04 72.42 82.04 54.46 77.23
DarkNet-53 81.64 84.78 84.95 76.57 84.86 61.55 80.76
DenseNet-201 84.92 87.51 87.60 80.80 87.56 68.42 84.20
EfficientNet B0 78.79 82.62 82.29 73.41 82.46 55.64 77.85
Inception-v3 74.54 79.21 78.60 68.30 78.90 46.81 73.45
Inception-ResNet-v2 73.52 78.02 78.35 66.10 78.18 44.49 72.22
ResNet-18 76.73 81.20 80.13 71.50 80.66 51.46 75.82
ResNet-50 81.30 84.62 84.47 76.42 84.55 60.87 80.45
ResNet-101 80.13 83.67 83.48 74.97 83.58 58.42 79.23
VGG19 76.40 80.97 79.79 71.20 80.37 50.80 75.49
Xception 79.38 83.30 82.49 74.59 82.89 56.94 78.54

Table A4. Performance obtained with kNN trained with deep features. Values are shown in terms of %.

Descriptor A P R S F1 MCC BACC

AlexNet 80.85 83.80 84.77 74.82 84.28 59.78 79.80
DarkNet-19 83.99 86.47 87.20 79.05 86.84 66.40 83.13
DarkNet-53 88.25 88.89 92.11 82.32 90.48 75.25 87.22
DenseNet-201 88.21 89.04 91.84 82.63 90.42 75.16 87.23
EfficientNet B0 87.53 89.01 90.60 82.82 89.80 73.79 86.71
Inception-ResNet-v2 76.13 79.89 80.98 68.69 80.43 49.85 74.83
Inception-v3 80.88 83.65 85.04 74.48 84.34 59.80 79.76
ResNet-101 87.89 88.57 91.87 81.79 90.19 74.48 86.83
ResNet-18 84.21 85.89 88.47 77.68 87.16 66.73 83.07
ResNet-50 86.97 88.20 91.09 80.41 89.62 73.19 85.75
VGG19 83.35 85.94 86.94 77.95 86.44 65.88 82.45
Xception 85.15 86.74 89.44 78.95 88.07 70.17 84.20
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