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Abstract—The recent success of machine learning (ML) has been fueled by the increasing
availability of computing power and large amounts of data in many different applications.
However, the trustworthiness of the resulting models can be compromised when such data is
maliciously manipulated to mislead the learning process. In this article, we first review poisoning
attacks that compromise the training data used to learn ML models, including attacks that aim to
reduce the overall performance, manipulate the predictions on specific test samples, and
implant backdoors in the model. We then discuss how to mitigate these attacks using basic
security principles, or by deploying ML-oriented defensive mechanisms. We conclude our article
by formulating some relevant open challenges which are hindering the development of testing
methods and benchmarks suitable for assessing and improving the trustworthiness of ML
models against data poisoning attacks.

INTRODUCTION Suppose you call one of
your company suppliers to understand why they
stopped sending you emails about promotions.
The supplier replies that they continue to send
their promotion as usual and invite you to check
the spam. The supplier was right! The emails
ended up in your spam folder, together with other
communications from that company. This could
have happened not by accident, but instead as

a result of fraud, in which an evil competitor
ensures that the email client marks any email
from the victim company as spam. To this end,
this malicious company could flood you with
spam also containing the victim company’s name
- until your machine learning-based spam filter
associates this benign name with the property
“spam”, thus trashing any future promotions. This
scenario is an instance of a machine learning
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security threat called data poisoning, described
already in 2008 by Nelson et al. [1]. Under
this setting, malicious users may cause failures
in ML systems (e.g., spam filters) by tampering
with their training data, thereby posing real con-
cerns about their trustworthiness. Several sources
confirm that poisoning is already carried out in
practice [2]. For example, Microsoft’s chatbot
Tay1 was designed to learn language by inter-
acting with users, but instead learned offensive
statements. Alternatively, a group of extremists
submitted wrongly-labeled images of portable
ovens with wheels tagging them as Jewish baby
strollers to poison Google’s image search.2

In addition to data poisoning, other attacks
are threatening the reliability and robustness of
ML systems [2], [3].Evasion attacks have been
conceived to force the victim’s model to output
wrong predictions at test time. For example, a
malicious user can craft printable stickers that can
force a classifier to misclassify a stop sign, posing
different security concerns for user safety and
self-driving industry. Privacy attacks have been
devised to extract private information about the
target system (via model stealing), or its sensitive
training data (via membership inference), thus
undermining the system’s intellectual property or
users’ privacy. The potential harm that evasion,
privacy, and poisoning attacks can cause, along
with other AI-related risks, have led the European
Union (EU) to publish the EU AI Act [4], to
start defining proper policies for AI trustworthi-
ness. These regulations require AI systems to
provide not only accurate but also human-aligned
decisions, which follow the principles of being
explainable, fair, robust, and accountable.

Unfortunately, the road toward developing
trustworthy AI/ML systems is paved with many
obstacles. In particular, it is not only a problem
of designing the algorithms right, since data plays
a crucial role too. As Gary McGraw says, “data
matters just as much as the rest of the technology,
probably more”. While data can be a strength
for AI/ML models, it may also be their most
vulnerable Achilles’ heel. Accordingly, Kumar et
al. [5], have revealed that data poisoning is, in
fact, considered the most feared threat faced today

1www.theguardian.com/technology/2016/mar/26/
microsoft-deeply-sorry-for-offensive-tweets-by-ai-chatbot

2www.timebulletin.com/jewish-baby-stroller-image-algorithm/

by companies that work with machine learning.
Within this work, we give a high-level overview
of data poisoning attacks and recently-proposed
mitigations. On the attack side, we study how
one can compromise the ML training phase by ex-
ploiting specific vulnerabilities of AI/ML models,
which is useful to provide a systematic evaluation
procedure for AI/ML robustness against data poi-
soning. On the defense side, we investigate novel
detection and sanitization strategies developed on
both data and models to mitigate the impact of
potential poisoning attacks.

In the remainder of this article, we categorize
the main attack scenarios that enable practical
poisoning attacks against classification ML mod-
els, discuss the corresponding poisoning attacks,
and how to mitigate them, following the catego-
rization presented in [2]. While the work in [2]
provides an in-depth technical survey on data
poisoning attacks, we focus more here on (i)
the interplay between data poisoning attacks, the
trustworthiness of machine learning, and AI reg-
ulation, and on (ii) also presenting more standard
security principles that can be implemented to
protect ML systems against poisoning attacks.

We conclude by discussing the current lim-
itations and open issues hindering the develop-
ment of trustworthy AI/ML models against data
poisoning attacks and by identifying promising
future research directions. Although we do not
thoroughly cover evasion and privacy attacks in
detail here, we refer the reader to the European
Union Agency for Cybersecurity (ENISA) re-
port [3], which offers a complementary overview
of the ML threat landscape.

Poisoning Attacks on Machine Learning
When developing a machine learning algo-

rithm, the first step is to collect data, which should
be ideally collected and labeled in a controlled
and safe environment. However, this is a time-
consuming and expensive task that not all orga-
nizations and individuals can afford. Sometimes,
data is therefore collected from the Internet or
other untrusted sources; e.g., when building secu-
rity systems, the user can download labeled data
from external vendors, such as VirusTotal3, for
malware data annotation. The user then splits the

3https://www.virustotal.com
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Figure 1. Conceptual figure for pristine training (a), indiscriminate (b), targeted (c), and backdoor (d) poisoning
attack. The influence of poisoning attacks leads the classifier to change its decision boundary (black line) to
meet the attacker’s goal.

Figure 2. Training (left) and test (right) phase for a machine learning model and potential stages where a
malicious user can mount a poisoning attack and where the victim user can take defensive actions.

data into training and test datasets, which should
sufficiently represent the task at hand. Afterward,
the user can train the model from scratch on the
training dataset, i.e., they train the model from
a random initialization of its weights to fit the
function underlying the data. However, training a
machine learning model that achieves satisfactory
performances might require too many computa-
tional resources if the task is complex. In this
case, a pretrained model can be used and partially
(or entirely) fine-tuned, e.g., trained on a smaller
dataset for a short amount of time. Otherwise,
the user can outsource the training procedure to
third-party entities. Once the learning phase is
concluded, the model can accomplish the desired
task. The user finally evaluates the model on
data never seen during training, i.e., test data, to
assess the model performance. If the classifier’s
performance on this dataset is satisfactory, the
user assumes it generalizes well to other data, and
they deploy the model. However, as illustrated in
Fig. 2, the data gathering and learning phases may
be entry points for malicious users (red devils) to
mount a poisoning attack. Analogously, there are
several phases in which defenses can be imple-
mented (blue shields). In the following section,
we thoroughly discuss the different scenarios in
which attackers can threaten the trustworthiness
of the user’s model through data poisoning attacks

and the different types of poisoning attacks that
can be perpetrated.

Threat Modeling and Attack Scenarios
The threat model and the attack scenarios

define the set of assumptions about the setting
under which attackers can mount an attack. Three
main scenarios have been considered in the lit-
erature of poisoning attacks: (i) training-from-
scratch, (ii) fine-tuning, and (iii) model-training
(or outsourcing).

In training-from-scratch and fine-tuning sce-
narios, the attacker influences the learning phase
conducted by the victim by tampering with the
training data. These attacks may occur when the
victim gathers the training data from external,
potentially corrupted, repositories. The distinction
between the two scenarios hinges on how the
victim employs the collected data. In training-
from-scratch scenarios, the victim uses the col-
lected data to train the model from scratch. In
the fine-tuning setting, instead, the victim down-
loads a pre-trained model and uses the collected
data to fine-tune it. In this scenario, the attacker
can potentially poison the model by modifying
or injecting some training samples optimized to
reach a specific malicious goal. However, they
might lack the details required to stage such an
attack, like particular aspects related to the pris-
tine training data and the target model. Neverthe-
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less, under these limited knowledge settings, the
attacker can exploit the transferability property
of poisoning attacks to create effective poisoning
samples. Demontis et al. [6] have shown the
attacker might sample a surrogate dataset from
the same distribution as the training set and use
it to train a surrogate model. The attack can then
be staged against the substitute model, and the
resulting poisoning samples can finally be used
to attack the target model.

Conversely, in the model-training (outsourc-
ing) scenario, the victim user is assumed to have
limited computational resources and outsources
the training process to a third-party authority.
Hence, the user could rely on external fee-based
services, sharing the training dataset and a de-
scription of the desired model to train (i.e., its ar-
chitecture, hyperparameters, stopping conditions,
etc.). Federated learning can be considered a spe-
cial case of outsourcing training where the notion
of third-party authority is extended to all the
participating nodes that help learn a shared model
in a collaborative manner [7]. Once the model has
been trained and given to the user, we assume
the victim has a validation phase. The validation
phase serves to assess the system’s usability, i.e.,
the model passes the assessment if the prediction
accuracy on test data, never shared with the ex-
ternal trainer, is satisfactory. With the increasing
demand for computational capabilities in training
deep neural networks (DNNs), this scenario is
attracting the interest of users and companies
with a limited budget [7]. Rather than acquiring
the necessary hardware for training such models,
they prefer the pay-as-you-go formula offered
by external services, often lowering costs. Yet
losing complete control over the learning phase
and leaving it to the third-party trainer. Despite
being economically convenient, this choice leads
to security risks. An untrustworthy third-party
trainer or an attacker acting as a man-in-the-
middle can tamper with the training procedure
and provide the victim user with a model that
behaves according to their goal. To keep their
attack stealthy, the attacker must ensure that the
provided model retains high prediction accuracy,
making sure to pass the validation phase without
suspicion from the victim user [8].

Attacks
Data poisoning pollutes a ML model’s training
data to observe or exploit the opened vulnerability
at test time. Within the given attack scenarios,
three types of poisoning attacks can be perpe-
trated: indiscriminate, targeted, and backdoor. We
will refer to Fig. 1 throughout this section to
explain how these three attacks affect ML mod-
els. Precisely, in Fig. 1a, we show the decision
boundary of the model trained on pristine data,
while the adjacent figures show the effect of the
three mentioned types of poisoning attacks on it.

Indiscriminate Poisoning Attacks.
Indiscriminate poisoning attacks tamper with the
training data to compromise the system’s avail-
ability by reducing the model’s prediction accu-
racy on test samples. In other words, the attacker
forces the model to output wrong classifications
for any test input, limiting its availability and
reliability to legitimate users.

In Fig. 1b, we show an example of an in-
discriminate poisoning attack adopted in Big-
gio et al. [9]. Poisoning samples (highlighted
in black) are obtained by flipping the labels
of training samples, i.e., from “dog” (blue) to
“parrot” (orange) and vice versa. As a result,
the boundary of the poisoned classifier (black
line) is skewed compared to its clean version
(see Fig. 1a), increasing the error for future test
samples. The adversary can further compromise
the system usability by increasing the fraction of
flipped training samples or by carefully optimiz-
ing the injected noise in the poisoning samples
features [9]. However, while effective, the first
strategy is not optimal and would require a high
control of training points by the attacker, thus
weighing on its applicability in real applications.
Moreover, a high fraction of mislabeled training
samples may induce suspicion in the victim’s
user, who can adopt a defense mechanism against
the attack. On the one hand, the adversary may
reduce the percentage of label flips by injecting
an unbounded noise in the poisoning samples.
Specifically, after flipping their labels, poisoning
samples are perturbed with an adversarial noise
optimized to maximize the test error of the vic-
tim’s model. However, crafting these optimized
samples can be computationally expensive for the
attacker against cutting-edge ML models.
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An alternative approach has been investigated
by Feng et al. [10]. To enhance stealthiness and
avoid detection, the attacker optimizes the noise
added to the samples to be more similar to benign
samples. Such kinds of attacks are called clean-
label, as the content of the poisoning samples
seems coherent with the assigned label. How-
ever, although Feng et al. [10] have improved
efficiency for indiscriminate attacks and improved
stealthiness compared to previous work [9], its
applicability in real systems is limited to hypoth-
esized situations where the attacker can control
the entire training set.

Most of the indiscriminate poisoning attacks
aim at compromising the accuracy of the target
models and therefore were designed within the
training-from-scratch and fine-tuning scenarios,
mainly because they would not pass the validation
stage provided in the model-training scenario [2].
Complementary, promising research directions,
traced in Jagielski et al. [11], and Cin et al. [7],
aim at compromising the fairness or increasing
model energy-consumption and prediction latency
of the poisoned models, making them compatible
with the model-training scenario as they preserve
model accuracy.

Targeted Poisoning Attacks.
Unlike an indiscriminate attack, which aims to
lower the system’s availability, a targeted poi-
soning attack seeks to compromise the integrity
of the poisoned model. In other words, the vic-
tim’s model will hold high accuracy on clean
samples but causes an induced misclassification
for a target sample. This characteristic makes
it compatible with the model-training scenario;
however, existing attacks have been limited to
training-from-scratch and fine-tuning scenarios.
In Fig. 1c we illustrate an example of a targeted
attack where “parrot” (orange) and “dog” (blue)
samples are almost all correctly classified. Never-
theless, the decision boundary is induced by the
poisoning points (black line) to open a region
where a specific “dog” image is classified as a
“parrot”. Moreover, as the model performs well
on benign data, it is hard to understand if the
model is poisoned and thus vulnerable to targeted
attacks. Koh et al. [12] were the first to show how
tools designed for interpretability of ML predic-
tions, namely influence functions, can be used to

modify relevant training samples and increase the
classification error on a target sample predefined
by the attacker. However, this approach has the
same computational complexity as the one pro-
posed in Biggio et al. [9], and is thus limited to
shallow models. Alternatively, Shafahi et al. [13]
proposed a heuristic approach, feature collision,
to mount clean-label attacks. The main idea is
to leverage the complexity and non-linearity of
DNNs to craft clean-label poisoning samples that
collide in the feature space with a target sample
the attacker would like to have misclassified. At
test time, the target sample is then predicted as
the poisoning sample with which it collides. For
example, considering Fig. 1c, the attacker adds
noise to a “parrot” image to make it collide, in
feature space, with the target image of a “dog”
(the black dog shown in the figure) that they
would like to have misclassified as “parrot”. Al-
though this heuristic provides promising results,
it can only be used in fine-tuning scenarios. If the
feature extractor is updated, the collision with the
target sample will be removed, and the attack will
fail.

Backdoor Poisoning Attacks.
Backdoor poisoning, similar to targeted poisoning
attacks, cause integrity violations, meaning that
the model behaves correctly for pristine samples
but misclassifies certain samples. Nevertheless,
backdoor poisoning attacks are more ambitious
in the attacker’s goal as they lead the model to
misclassify any test sample containing a specific
backdoor trigger. In this sense, the trigger is
the activation mechanism that forces the model
to make wrong predictions. Backdoor poisoning
attacks have been investigated under all three
attack scenarios, i.e., model-training, training-
from-scratch, and fine-tuning. Furthermore, sev-
eral strategies have been developed to stage a
backdoor attack. Some of them rely on data
poisoning, others tamper directly with the model’s
weight at test time, and others alter the training
loss itself [2]. Below we refer to the strategies
to compromise the data to carry out the attack.
In Fig. 1d we depict an example of a backdoor
attack where the attacker uses a yellow sticker as
a trigger. The attacker embeds this trigger into
a small percentage of training samples and asso-
ciates the presence of the trigger with the “parrot”
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class (orange) by changing the poisoning sam-
ples’ labels in parrot. Once the model has been
trained on the poisoned dataset, the adversary can
exploit the vulnerability by adding yellow stick-
ers to samples, causing integrity failures of the
backdoored model. This idea of using arbitrary
patterns to implant the backdoor has been first
adopted by Gu et al. [8] in the model-training
scenario. In their paper, the authors showed how
backdoored traffic-sign classifiers could deviate
their predictions from stop-sign to speed-limit
signs thanks to the presence of the yellow sticker.
Although performed in simple contexts, an im-
plicit assumption of this attack is that the model
has enough flexibility to learn both the original
and the backdoor classification task. In addition,
virtually no knowledge about the target model is
required, making this attack relevant in practical
applications.

However, despite the effectiveness of Gu et
al.’s attack [8], novel approaches propose the
adoption of invisible triggers that can overcome
human inspection and more advanced defensive
techniques. Specifically, as pointed out by Doan
et al. [14], the patch-based triggers proposed
in [8]are perceptually visible; therefore, the corre-
sponding backdoor images can be easily detected
under human inspection. Moreover, repeating the
same pattern in multiple images can raise sus-
picion and be easily spotted by existing defen-
sive mechanisms. Therefore, Doan et al. [14]
proposed a more stealthy backdoor attack where
the adversary fits a trigger generator function
that outputs a distinct invisible trigger for each
poisoning sample. At test time, the backdoored
model will associate the presence of such trig-
gers with the attacker’s chosen class. Note that,
being the resulting triggers invisible and sample-
specific, their detection is more challenging even
for an excellent human observer. Nevertheless,
these strengths come at a high cost. It would
require solving a computationally demanding op-
timization problem, whereas the original [8] was
very efficient as the attacker exploits pre-defined
triggers. Such simple attacks are thus practical for
resource or time-constrained attackers.

Defenses against poisoning
When protecting against security threats in

ML systems, defenders can combine standard

security principles with ML-oriented defensive
mechanisms. This integration increases the sys-
tem’s level of protection and reduces the risk
of security breaches. Traditional security mea-
sures alone may not be sufficient for ML-based
systems due to their complex nature. Integrating
ML-oriented defensive mechanisms enables the
system to adapt to evolving threats and maintain
its integrity. In summary, combining these two
approaches can result in a robust and secure ML
system capable of handling novel security threats.

Standard Security Principles
Standard security measures can be taken to reduce
the risk of an ML-based system being targeted
by attacks [15]. We here discuss three main
strategies for safeguarding ML systems against
data poisoning attacks inspired by Saltzer and
Schroeder’s [15] principles. From the perspective
of poisoning against ML, these directions include:
(i) access control; (ii) system monitoring, and
(iii) audit trails. Access control involves design-
ing policies to organize users and their privi-
leges when accessing the system. To prevent data
poisoning attacks, only authorized and trusted
users should have the privilege to modify and
validate the training data. The defender can also
randomize training data collection (e.g., collect at
different times and locations) among the involved
entities to further reduce the risk of receiving
poisoned data from potentially-untrusted ones.
System monitoring aims to design mechanisms
for continuously monitoring the system and iden-
tifying which vulnerabilities the attackers exploit.
Timely detection of an attack allows the defender
to promptly identify the attack’s cause and take
subsequent measures to reduce the impact of
future attacks. Audit trails aim to keep track of
all the activities and transactions in the system;
e.g., checking users and the data they manipulate
allows identifying malicious users in case an
attack has occurred. This enables the defender
to promptly exclude those users, or degrade their
privileges.

ML-oriented Defensive Mechanisms
Besides standard security measures, ML-based
systems demand also for the development of spe-
cific defense mechanisms to protect the AI/ML
model itself. With respect to data poisoning at-
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tacks, as shown in Fig. 2, defenses can be de-
ployed (i) before training, (ii) during training,
and (iii) after training. Different knowledge and
capabilities are required to defend the model at
each stage, depending on the given threat model-
ing scenario. We would like to finally remark that
defenses are, in general, attack specific, i.e., one
defense mitigates one attack [16], [17]. However,
there are a few counterexamples to this [18].

Defending before training consists of sani-
tizing the data before training the model. This
requires access to the training data and, in some
cases, also to a set of pristine, untainted data.
As in the model-training (outsourcing) scenario,
if the defender does not control the data, these
defenses cannot be applied. The underlying idea
of sanitization-based defenses is that poisoning
samples can be removed by outlier detection
techniques, as they have to be very different
from samples within the same class label (see,
e.g., Figure 1b) to induce the model to learn
a significantly-different decision function [16].
Nevertheless, such defenses can be circumvented.
For example, attackers can fool them by applying
smaller perturbations to the data. Smaller per-
turbations will however affect the classifier less.
There is thus a trade-off between attack strength
and stealthiness.

Defending during training consists of defin-
ing robust learning algorithms that bound the
influence of maliciously-altered points. Such ap-
proaches require access to training data and the
ability to alter the model. Defenses during train-
ing are thus infeasible when the learning phase
is outsourced. One promising approach in this
space relies upon limiting the impact of each
training point by bounding its gradient size, based
on the observation that poisoning samples exhibit
larger gradients to have higher influence on the
learning process (see, e.g., Figure 1c where a
single poisoning point altered the decision func-
tion). Interestingly, this technique was originally
proposed in the context of differential privacy to
prevent information leakage from a classifier. In
this sense, the approach in Hong et al. [18] solves
two different issues simultaneously, preventing
poisoning attacks and increasing privacy. The
effect of poisoning defenses on other desiderata,
such as privacy, should always be considered
when applying defenses. Unfortunately, the com-

munity’s current understanding of these interac-
tions is rather limited.

Defending after training consists of analyzing
a trained model and determining if it has been
poisoned or backdoored, and potentially how to
clean it, preventing wrong predictions on the in-
coming test data. As this group is very diverse, the
defender requirements in knowledge and capabil-
ities also vary, but these defenses are applicable
in all threat modeling scenarios. For example,
Wang et al.’s Neural Cleanse [17] reconstructs
the backdoor trigger from a given model. This
specific reconstruction requires a small batch of
clean data and access to the model’s parameters.
To explain their approach, we consider the ex-
ample in Fig. 1d of a model that misclassifies a
“dog” with a yellow sticker as a “parrot”. Given
the model’s parameters and input samples, we
can search the perturbation required to classify
a “dog” as a “parrot”. For a model backdoored
as in [8], this search likely returns a yellow
sticker. Instead, for an unbackdoored model, we
would find a scattered change altering, for ex-
ample, the color of almost all the pixels [17].
Once the trigger has been discovered, there are
several ways to proceed; e.g., the defender can
retrain the model with correctly labeled triggered
images or remove the trigger from the incoming
test samples. However, an attacker aware of this
defense can make it harder to reconstruct the
trigger. For example, the insertion of correctly
labeled images with the trigger hinders the appli-
cation of Neural Cleanse [19]. The study of such
adaptive attacks is highly relevant to evaluate
defenses thoroughly. Relying on the attacker not
knowing how the defense works (i.e., on security
by obscurity rather than on security by design)
should only be regarded as an additional (but not
substantial) protection mechanism. So far, there
are only a few works using adaptive attacks in
poisoning, and thus our overall understanding of
existing defenses is very limited.

Open Challenges and Conclusion
In this article, we have provided a high-level

overview of data poisoning attacks on machine
learning, which are considered one of the main
threats to the deployment of trustworthy AI mod-
els, along with possible defense mechanisms.
We firmly believe that our overview can help
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stakeholders understand the risks to trustworthy
ML in terms of training data security, while also
being compliant with the undergoing legislation
efforts both from the EU and the US. This is
crucial, as poisoning attacks can also undermine
other trustworthiness dimensions of AI/ML mod-
els, such as fairness and reliability of the models’
predictions. A paradigmatic example is posed by
federated learning, where the input of several
users is combined, and even a single adversarial
participant may impair the resulting model via a
poisoning attack.

We would like to conclude our discussion
by introducing some relevant open research chal-
lenges in the area of data poisoning attacks and
defenses. The first challenge is related to the
impracticality of some threat models considered
for poisoning attacks in real-world application
settings. One example includes poisoning at-
tacks that require control over the entire training
set [10], thus limiting their viability in more
realistic settings where only a few training data
samples are likely to be controlled. However,
although some scenarios are attractive from a
mere theoretical perspective, we do believe that
future work should focus more on tackling use-
inspired basic research questions that pose not
only methodological challenges but also better
reflect realistic application constraints.

The second challenge concerns the scalability
of poisoning attacks against large-scale models
and modern deep networks. We have seen that
heuristic attacks [10], [13], [8] exhibit promising
results; however, their applicability and robust-
ness remain limited in the presence of suitable
defense mechanisms. On the other hand, effective
and stealthy poisoning attacks [9], [12], [14] re-
quire solving an expensive optimization problem
that may not scale in practice. It is, therefore,
essential to explore more effective approxima-
tions to reduce their computational complexity,
as done by Huang et al. [20]. Some promising
research avenues in this direction include building
on the results from other research fields, like
meta-learning and hyperparameter optimization,
in which more efficient techniques to solve bilevel
problems involving learning algorithms are con-
stantly developed.

The third challenge is associated with gaining
a better understanding of ML defenses. As previ-

ously discussed, privacy-enhancing mechanisms
can also have an alleviating effect on poisoning
attacks [18]. However, our overall understanding
of how poisoning interacts with privacy or other
ML security threats is very limited, and requires
more in-depth investigation. Lastly, and more
pressing, is the challenge of how to soundly
evaluate defenses. Ideally, defenses should be
tested against adaptive attacks, i.e., attacks that
are aware of the defense mechanism [19]. Cur-
rently, there are few adaptive attacks, and thus our
knowledge about the limits of existing defenses is
rather narrow. This lack of understanding severely
limits how, or if, these defenses can be applied
in practice, consequently undermining the trust
of any applied system trained on data potentially
accessible by a malicious entity.

Bringing together these research directions
can inspire the design of more effective, scalable,
and practical poisoning attacks and defenses.
Such a development is crucial, as it would be oth-
erwise difficult to properly evaluate the robustness
of ML models, and analyze the factors influencing
these vulnerabilities, at scale, as well as in the
context of different application domains.

Finally, to answer the question raised in this
article’s title, we can say that no, we are not
there yet when it comes to ML security against
data poisoning. While research in data poisoning
has highlighted potential vulnerabilities of ML
models, we are still at a very early stage. From
the attack side, we need to design more efficient
attacks and benchmark methods and protocols to
systematically test the robustness and reliability
of ML models under realistic poisoning threats,
and at an industrial level. Similarly, for defenses,
we need to develop sound evaluation guidelines
and investigate the relationship with other fields
to obtain more reliable and effective defenses,
which can be easily deployed at scale. We do
believe that tackling these challenges, especially
given that data poisoning is considered one of
the most relevant threats by many companies [5],
remains extremely relevant to enable the devel-
opment of trustworthy ML.
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2. A. E. Cinà, K. Grosse, A. Demontis, S. Vascon,

W. Zellinger, B. A. Moser, A. Oprea, B. Biggio, M. Pelillo,

and F. Roli, “Wild patterns reloaded: A survey of ma-

chine learning security against training data poisoning,”

ACM Computing Surveys, 2023.

3. European Union Agency for Cybersecurity,

ENISA,, “Securing Machine Learning Algorithms,”

https://www.enisa.europa.eu/publications/

securing-machine-learning-algorithms, 2021.

4. European Commission and Directorate-General for

Communications Networks, Content and Technology,

Ethics guidelines for trustworthy AI. Publications Of-

fice, 2019.

5. R. S. S. Kumar, M. Nyström, J. Lambert, A. Marshall,

M. Goertzel, A. Comissoneru, M. Swann, and S. Xia,

“Adversarial machine learning-industry perspectives,” in

IEEE Security and Privacy Workshops, 2020.

6. A. Demontis, M. Melis, M. Pintor, M. Jagielski, B. Big-

gio, A. Oprea, C. Nita-Rotaru, and F. Roli, “Why do

adversarial attacks transfer? explaining transferability

of evasion and poisoning attacks,” in USENIX Security

Symposium, 2019.
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