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Abstract

This works aims to investigate the impact of wind forcing datasets and wave
breaking parameterizations on spectral wave model performance under ex-
tremely energetic conditions. For this purpose we used the wave model Wave-
WatchIII to simulate the evolution of the highly energetic storms that oc-
curred in winter 2013/2014 in the North-East Atlantic. We forced the wave
model with two different wind datasets: one proceeding from the ECMWF
ERA5 reanalysis dataset and the other from satellite observations. More-
over, two wave energy dissipation parameterizations were tested: Test471
and Test500. The model accuracy was assessed by comparing the output
datasets with buoy data both in deep and coastal water. Moreover, wave
height measurements from satellite were used to assess the model accuracy
along storm tracks across the ocean. The accuracy of simulated results shows
a significant dependence on the wind forcing and wave dissipation parameter-
ization used. Error metrics computed under storm conditions at wave buoys
are consistent with those computed along storm tracks. At the wave buoy
locations, all datasets tend to underestimate wave parameters at the peaks
of the storms.
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1. Introduction1

Recent work has reported that extreme sea state conditions have increased2

in terms of frequency and intensity in the last decades (Young and Ribal,3

2019; Reguero et al., 2018). This trend, related to climate change and pos-4

sibly involved in a long-term tendency, has significance for engineering ap-5

plications: among them we can mention coastal hazard assessment, offshore6

ship operations and the design of marine structures. Marine engineers and7

scientists often combine datasets proceeding from different sources in an ef-8

fort to achieve an accurate and exhaustive description of extreme events and9

their impacts (O’Reilly et al., 2016; Castelle et al., 2015; Masselink et al.,10

2016). In this context, by integrating in situ and remote measurements,11

third-generation spectral wave models and their output make a fundamental12

contribution towards a better understanding and prediction of extreme wave13

events.14

Third-generation spectral wave models are widely used nowadays for wave15

hindcast and forecast at global and regional scales (Bernier et al., 2016; Be-16

sio et al., 2016; Perez et al., 2017; Sandhya et al., 2018; Ruju et al., 2019).17

These models solve the wave action balance equation with a set of source18

terms encompassing the effects of physical processes from wave generation19

to dissipation (Tolman et al., 2013). Although the recent implementation20

of physical-based parameterizations has led to an increase of model output21

accuracy, simulating extreme wave events remains a challenge (van Vledder22

et al., 2016; Holthuijsen et al., 2012; Zieger et al., 2015; Campos et al., 2019).23

This is mainly due the paucity of observations available during the evolution24

and at the peak of extreme events with respect to moderate and more fre-25

quent conditions. As a result of the data used during the parameterization26

development and model calibration processes, model uncertainties are gen-27

erally higher for rare wave conditions. For instance, Filipot and Ardhuin28

(2012) reported a deterioration of error statistics associated with different29

parameterizations for significant wave heights above 8 m.30

Under energetic and storm conditions characterized by large wave steep-31

ness values, the wave energy dissipation parameterization takes a key role32

in spectral evolution and wave growth limitation. Despite the significant at-33

tention received, it is likely to represent the least understood source term34

(Ardhuin et al., 2010). In addition to parameterizations, is is well acknowl-35
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edged that wave model accuracy strongly depends on the accuracy of the36

wind forcing dataset (Stopa et al., 2016). This works aims to investigate37

the impact of two different wave breaking parameterizations and two wind38

forcing dataset under extremely energetic wave conditions. We use the third39

generation wave model WaveWatchIII (WWIII), version 5.16, to simulate the40

sequence of severe storms occurred that in the North-Est Atlantic during the41

winter 2013/2014.42

Previous work has recognized the winter of 2013/2014 as one of the most43

exceptional in terms of storm sequence and intensity in the North-East At-44

lantic Ocean (Wadey et al., 2014; Masselink et al., 2016). Due to the rela-45

tively south paths of these extra-tropical cyclones, extreme energetic wave46

conditions were recorded by coastal monitoring systems of Western European47

countries, from Portugal to Ireland. On coastal areas, these storms drove48

extreme surge, runup and overtopping causing large morphological changes49

and strong damage to infrastructures (Castelle et al., 2015; Scott et al., 2016;50

Autret et al., 2016).51

The two wave energy dissipation parameterizations tested in this work are52

Test471 and 500. They are both included in the parameterization group ST453

available in WWIII version 5.16. Moreover, we assess the impact of two wind54

forcing datasets. One of them is constituted by the wind analysis obtained55

through the use of various remotely sensed wind observations (Bentamy et al.,56

2019; Desbiolles et al., 2017). The other is the ERA5 reanalysis dataset57

(Hersbach et al., 2019). Model accuracy is assessed by comparing simulated58

results with the measurements from buoys located in the North-East Atlantic59

as well as satellite observations along storm tracks.60

2. Methods61

2.1. Data collection and storm identification at wave buoys62

We collected in situ wave parameters from eight North-East Atlantic wave63

buoys belonging to different observational networks. Two of them (62163 and64

62001) are offshore buoys, located in water depths exceeding 2500 m. The65

other six (62069, 62103, 62064, 4403, 5602, DW5) are coastal buoys deployed66

in mean water depths ranging from 30 to 68 m (see Figure 1 showing the67

geographical setting). Table 1 lists the wave buoys with mean water depth68

and main wave parameters.69

These buoys are exposed to a combination of long-period Atlantic swells70

and locally-generated wind waves. Due to the shelter offered by the sur-71
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Figure 1: Global (blue dots) and local (green dots) grid configuration over the Eastern
Atlantic region. Red dots indicate the buoy locations.

rounding coastline and small islands and the dissipation on the continental72

shelf, wave height at buoys 62103, 4403 and DW5 is significantly smaller73

than that at other locations. Buoy 62103 lies in the British channel and it74

is thus partially sheltered by the Brittany and Cornwall peninsulas. On the75

other hand, the presence of the islands of Ushant and Belle-Ile dampens the76

incoming wave energy hitting buoys DW5 and 4403, respectively. Wave prop-77

agation at coastal buoy locations is affected not only by topographic features78

but also by tidal dynamics (currents and water levels) that can be particu-79

larly intense in proximity of Brittany shores. All the buoys chosen in this80

work provide a high time coverage of nearly 100% for the winter 2013/201481

on which this work focuses on.82

5



Table 1: Wave buoys with mean water depth and significant wave height Hs statistics. for
the period considered.

Buoy depth [m] mean Hs [m] Hs,99 [m] Hs,70 [m]
62163 2526 5.0 11.9 5.9
62001 4554 4.5 10.9 5.4
62069 66 3.9 9.6 4.7
62103 68 2.6 7.1 3.1
62064 54 3.4 8.2 4.1
4403 30 2.4 5.8 3.0
5602 45 3.6 8.7 4.3
DW5 42 2.5 6.6 3.0

We used the peak-over-threshold (POT) (Mathiesen et al., 1994) method83

to identify the 24-hour independent storms occurred during the 2013/201484

winter at buoy 62163. The Hs threshold was chosen equal to the 30% ex-85

ceedanceHs (Hs,70) calculated over the 2013/2014 winter period. We retained86

only the storms with a duration larger than 12 h that met the independence87

criterium with more than 24 hours between the end of a storm and the be-88

ginning of the following one. Although the threshold value of 30% may seem89

low for extreme event analysis, due to the highly-energetic period consid-90

ered, this method allowed the identification of 13 storms in the winter period91

comprised between the 21th of December and the 21th of March (dates usu-92

ally taken as of the meteorological start and end of winter). However, we93

extended the winter period up to the 31 of March to include the 14th storm94

occurred on the 24th of March; see upper panel of Figure 2. The extreme95

wave parameters representative of each storm of the sample were selected96

as the values occurring at the time in which the maximum wave height was97

observed during the storm duration.98

The adoption of the same method, used for the event identification at99

buoy 62163, would have led to a different number of storms at each buoy100

location. For consistency, we recognized at buoys locations the same storms101

first identified at the offshore buoy 62163. Since this buoy lies at the western-102

most location and North-East Atlantic storms are mainly moving eastward103

(Dodet et al., 2010), they are likely to hit first buoy 62163 and then continue104

propagating until they reach the other buoys. For this reason, at the other105
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buoy location we expect that both the beginning and the end of a storm106

happen later than at buoy 62163. Therefore, we identified the beginning of107

a storm at each buoy location as the time at which Hs firstly increases over108

Hs,70 after the beginning of the storm at 62163. Analogously, the end of the109

storm was set at the time at which Hs falls below Hs,70 after the end of the110

storm at 62163. Note that Hs,70 is different at each location.111

The criteria of storm independence and minimal duration prescribed at112

buoy 62163 are not always met at the other locations. This is particularly113

evident at buoy 4403 where, just before the February 10th, storms S7 and114

S8 are contiguous since Hs remains above the threshold for a considerable115

amount of time from the start of storm S7 to the end of the storm S8. Nev-116

ertheless, this procedure has the main benefit of allowing the identification117

of the same storms (14 in number) at each buoy location, each of them being118

related to the same synoptic system (see Figure 2 that highlights the storms119

over the time series of Hs measured by buoys).120

2.2. Data collection and storm tracking from atmospheric pressure121

We used the fifth generation ECMWF atmospheric reanalysis ERA5 (Hers-122

bach et al., 2019) as a database to track the low-pressure systems propagation123

across the Atlantic Ocean during the 2013/2014 winter. We identified the124

low-pressure systems from the atmospheric pressure at the sea level. First, at125

each ERA5 output time instant the active low-pressure systems (that we can126

classify as extra-tropical cyclones) were identified as those systems that have127

a pressure value lower than 980 hPA and imposing a minimum distance of 5o128

between different systems. Moreover, the evolution of system propagation in129

time and space was made assuming a maximum velocity of 120 km/h (33.3130

m/s) of the low-pressure system.131

This method led to the identification of a large number of low-pressure132

systems whose life duration spanned from few hours up to several days for133

the most persistent. To focus on the same events recognized at the buoy134

locations, we looked for the active systems at the time arrival of the 14135

energetic storms, in terms of Hs, recorded at the buoy 62163. We named136

these low-pressure systems with the same name of the storms they drove137

at the buoy locations (S1, S2, etc.). Since an energetic low-pressure system138

drove the Hs peak occurred in the last stage of storm S4 at buoy 62163, we139

added this one (calling it S4B) to the sample constituted by the 14 systems140

that were active at the beginning of the 14 storms. Once identified, the141

propagation path of these 15 systems, responsible for the largest wave heights142
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Figure 2: Time series of significant wave heightHs at the buoy locations. Yellow rectangles
extend over the storm duration. Grey dashed lines indicate the Hs thresholds Hs,70 used
for storm identification.
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in the winter 2013/2014, was tracked back from its generation in the Western143

Atlantic and forward to its dissolution in the Eastern Atlantic. Figure 3 shows144

the paths of the low-pressure systems highlighting the intense extra-tropical145

cyclones driving the the five highest Hs at the storm peak at buoy 62163.146

40°N

50°N

60°N

70°W 60°W 50°W 40°W 30°W 20°W 10°W

S4B S7 S8 S10 S13

Figure 3: Paths of the low-pressure systems recorded in the winter 2013/2014 in the
North Atlantic. The paths of the 5 most intense systems are highlighted by coloured lines.
Markers are 6-hour spaced.

2.3. Modelling techniques147

We used the numerical model WAVEWATCH III (WWIII) (Tolman,148

2016) version 5.16 to simulate the energetic wave dynamics that occurred in149

the winter 2013/2014. WWIII is a spectral wave model able to reproduce the150

physical processes governing wave motion over a wide range of water depths.151

Its physical and numerical configurations make it suitable to perform hind-152

cast and forecast at global and regional scales. The governing equation of153

the model is the wave action balance equation in which the source and sink154
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of wave energy is taken into account by means of a set of source terms:155

DN

Dt
=
S

σ
, (1)156

where D/Dt represents the total derivative (moving with a wave component)157

and S represents the net effect of sources and sinks for the wave action158

spectrum N = E/σ (where E is the energy spectrum and σ is the intrinsic159

frequency of the wave). Parameterizations are usually divided into four main160

source terms: atmospheric Satm, nonlinear Snl, ocean Soc and bottom Sbt.161

This work focuses on the parameterization of wave energy dissipation by162

breaking included in the ocean term Soc, that is assumed to be the most163

important sink of wave energy in storm seas (van Vledder et al., 2016).164

In this study, a multigrid approach allowed the optimization of compu-165

tational cost given the wide range of physical process scales we are focusing166

on: from the long scales of wave and swell generation in the deep ocean167

to the small scales of wave-current interaction and depth-induced processes168

in coastal water. The model ran over a rectangular grid with a constant169

spatial resolution of 0.5◦ covering the entire globe. Wave spectra computed170

over this grid represented the boundary conditions for the coastal simula-171

tions performed over an unstructured grid extending over coastal water from172

Northern Spain in the South to the British channel in the North. This173

unstructured mesh was developed in the scope of the HOMONIM project,174

funded by the French government, in order to improve the operational wave175

surge forecasting system along French Altlantic coast (Michaud et al., 2015).176

It is made up of 92757 nodes with a decreasing resolution from 10 km at177

offshore boundaries to about 200 m at the coastline and is supported by178

an accurate and recent 100 m resolution bathymetry also developed in the179

HOMONIM project (see Biscara et al. (2014)). The triangle-based grid is180

used in WAVEWATCH III with the explicit N-scheme based on contour resid-181

ual distribution (see Roland (2009) for a review). Initially implemented in182

the Wind Wave Model-II (WWM-II), this numerical scheme have then been183

successfully validated in WAVEWATCH III on an unstructured mesh closely184

similar to ours (Ardhuin et al., 2009; Boudiere et al., 2013). See figure 1 that185

shows the model grid configuration together with the location of the buoys.186

It is worth mentioning that, the mean water depths of 4 coastal buoys given187

in table 1 are between the minimum and maximum water depths extracted188

from the model simulations, as expected. The exceptions are buoys 5602 and189

4403 whose mean water depth provided by the responsible entity (CEREMA190
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in this case) is smaller than the depth ranges from the model: water depth191

ranges 56-61 m at 5602 and 35-41 m at 4403.192

We discretized the WWIII wave spectra into 32 frequencies and 24 direc-193

tions. The frequency range extended from 0.0373 to 0.716 Hz, with a fre-194

quency increment factor of 1.1. Wave directions were linearly spaced resulting195

in an angular resolution of 15o. Resonant nonlinear wave-wave interactions196

occurring between four wave components (quadruplets) were computed with197

the Discrete Interaction Approximation (DIA) method. Triad wave interac-198

tions, accounting for nonlinear energy transfer in the nearshore, were also199

included through the LTA model. Wave dissipation was simulated with the200

parameterizations of Ardhuin et al. (2010) and Filipot and Ardhuin (2012) in201

Test471 and Test500, respectively (see section 2.4). Table 2 lists the parame-202

terizations used for the main source terms, see the WWIII manual (Tolman,203

2016) for an exhaustive description of these terms. Note that both Test471204

and Test500 are included in parameterization group ST4.205

Table 2: Source term treatment in WWIII.
Sin + Sds Snl Str Sbot Sdb Sbs

Parameterizazion ST4 NL1 TR1 BT4 DB1 BS1

2.4. Parameterization of the dissipation induced by wave breaking206

The two wave dissipation parameterizations assessed in this work are207

those by Ardhuin et al. (2010) and Filipot and Ardhuin (2012). Consistent208

with previous literature (Filipot and Ardhuin, 2012; Leckler et al., 2013),209

they are referred to as Test471 and Test500, respectively. These formulations210

recognize that wave energy can be dissipated by the breaking process in211

two ways: a spontaneous breaking in which the energy of a wave packet212

is dissipated by the breaking of that very wave packet and a cumulative213

breaking dissipation in which energy dissipation is the result of the breaking214

of longer waves wiping out shorter waves. Test471 and Test500 differ in the215

way the spontaneous breaking source term Sbk is computed. For this reason216

we briefly outline here the computation process for Sbk.217

2.4.1. Test471218

Following the work of Phillips (1984), several wave parameterizations219

related breaking probability to spectral saturation. Ardhuin et al. (2010)220

(therein after ARD10) introduced a saturation-based semiempirical wave221
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breaking parameterization with a larger dissipation rate in the mean wave di-222

rection, consistent with the observations of Mironov and Dulov (2007). The223

directional saturation spectrum B′(k, θ) is defined as:224

B′(k, θ) =

∫ θ+∆

θ−∆

k3 cos2(θ − θ′)E(k, θ′)dθ′, (2)225

with ∆=80o, E(k, θ′) is the frequency spectrum and k is the wave number.226

ARD10 extrapolated the theory of Banner et al. (2000), originally formu-227

lated for dominant waves, over the entire directional spectrum to obtain the228

breaking probability parameterization Qb:229

Qb(k, θ) = 28.16 ·max[
√
B′(k, θ)−

√
B′r, 0]2, (3)230

where B′r is the breaking threshold with a correction providing a constant231

ratio of the root-mean-square orbital velocity and phase speed at different232

water depths d (Filipot et al., 2010):233

B′r = BrY (M4Y
3 +M3Y

2 +M2Y +M1), (4)234

where Y = tanh(kd). The deep water threshold Br and the other constants235

in the polynomial fit can be found in ARD10. The factor 28.16 comes from236

the original factor of 22 of Banner et al. (2000), modified by taking into237

account that wave steepness is on the order of 1.6
√
B′ and that the wave238

counting analysis for a given wave scale from Banner et al. (2000) tends to239

give a number of waves twice less than that expected for monochromatic240

waves. The dissipation term of spontaneous breaking Sbk is:241

Sbk(k, θ) = σ
Cds
B′2r
{δdmax[B(k)−B′r, 0]2+(1+δd)max[B′(k, θ)−B′r, 0]2}E(k, θ),

(5)242

in which Cds is a dissipation constant, δd is a coefficient that controls the243

directionality of breaking and B(k) is the maximum value of B′(k, θ) for θ244

in the range [0, 2π]. Although this formulation is able to address both deep245

water and depth-induced breaking, ARD10 warned about the uncertainties246

involved in its application in shallow water environments.247

2.4.2. Test500248

With the main aim of overcoming the limitations of previous wave break-249

ing parameterizations, Filipot et al. (2010) and Filipot and Ardhuin (2012)250
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(therein after FAB12) made a significant effort towards a unified breaking251

parameterization valid from the deep ocean to the surf zone. Filipot et al.252

(2010) divided the frequency spectrum into wave scales with finite bandwidth253

centred at frequency fi. Then, following Thornton and Guza (1983), they254

assumed that the breaking wave height distribution for each scale is given255

by the product of a Rayleigh distribution PR(H, fi) and a weight function256

Wb(H, fi). In order to extend the formulation outside shallow water, they257

replaced the breaking criterion of Thornton and Guza (1983), based on the258

relative water depth H/d, with the breaking parameter defined by Miche259

(1944):260

βr =
krHr

tanh(krd)
, (6)261

where kr and Hr are the representative wave number and wave height for262

each wave scale fi. The breaking wave height function Wb is:263

Wb(H, fi) = 1.5[
βr
βt,lin

]2{1− exp[−(
β

βt,lin
)4]}, (7)264

where βt,lin is the breaking threshold defined by Miche (1944) but that takes265

into account the wave linearization (Filipot et al., 2010), inherent to the wave266

scale decomposition. The breaking probability for the wave scale with central267

frequency fi is:268

Qb(fi) =

∫ ∞
0

PR(H, fi) ·Wb(H, fi)dH. (8)269

The dissipation source term Sbk,i for the component involved in the wave270

scale i is then given by:271

Sbk,i(f) =
D(fi)E(f)∫∞

0
E(f)df

, (9)272

where D(fi) is the dissipation rate per unit area273

D(fi) = Qb(fi)Π(fi)ε(fi), (10)274

being Π(fi) and ε(fi) the crest length density per unit area and the dissipation275

rate per unit length of breaking crest, respectively (Filipot and Ardhuin,276

2012).277

13



Since the frequency windows overlap, each spectral component is asso-278

ciated with several wave scales. The dissipation source term is expressed279

as:280

Sbk(f) =
1

N

N∑
i=1

Sbk,i(f), (11)281

in which N is the number of wave scales involving the frequency f .282

2.5. Atmospheric forcings283

In this work we tested the impact of two atmospheric forcing datasets on284

WWIII model performance, under a winter characterized by a sequence of ex-285

ceptionally energetic storm conditions in the North-East Atlantic (Masselink286

et al., 2016). The first forcing dataset proceeds from the wind analysis ob-287

tained through the use of various remotely sensed wind observations. On the288

other hand, ERA5 reanalysis represents the second forcing dataset. These289

forcing datasets are briefly described in the following sections.290

Besides wind forcing, water levels and flow velocities computed by the291

Model for Applications at Regional Scales (MARS) (Lazure and Dumas,292

2008) were included in the WWIII simulations. MARS simulations were293

carried out over three nested grids with spatial resolution ranging from 2 km294

to 250 m in the shallower areas. MARS output was included only in the295

simulations over the unstructured grid, allowing the computation of wave-296

current interactions in the coastal environment.297

2.5.1. Satellite winds298

The remotely sensed data, also referred to as satellite wind analyses,299

used in this study are mostly derived from scatterometer wind retrievals in300

combination with radiometer observations (Bentamy et al., 2019; Desbiolles301

et al., 2017). The main sources of remotely sensed wind data are from scat-302

terometers onboard Metop-A (2007-present) and Metop-B (2012-present),303

and named ASCAT-A and ASCAT-B. Ancillary remotely sensed data are de-304

rived from radiometers Special Sensor Microwave Imager Sounder (SSMI/S)305

onboard the Defense Meteorological Satellite Program (DMSP) F16 (2003-306

present) and F17 (2006-present), and fromWindSat onboard Coriolis satellite307

(2003-present).308

The scatterometer retrieval in combination with radiometer wind ob-309

servations, and with the European Center of Medium Weather Forecasts310

(ECMWF) re-analysis model ERA Interim (Simmons et al., 2007), are used311
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for determining regular in space and time surface wind analyses (Desbiolles312

et al., 2017). These are available at synoptic times (00h:00, 06h:00, 12h:00,313

and 18h:00 UTC), over the global oceans with a spatial resolution of 0.25o314

0.25o. Their accuracy, determined through comprehensive comparisons with315

6-hourly averaged buoy winds, is of same order of scatterometer retrieval316

accuracy.317

Regarding the study topic, it is of interest to determine some statistics318

aiming at the characterization of the remotely wind speed and direction anal-319

yses at regional scale. To achieve such purpose, satellite wind analyses are320

compared to collocated (in space and time) 6-hourly averaged wind speed321

and direction measured by buoys 62103, 62163 and 62001 (see their location322

in Figure 1). Scatter plots (not shown) indicate that satellite wind analyses323

agree well with buoy estimates for all wind speed and direction ranges, in-324

cluding high wind conditions. The correlation between buoy and satellite is325

almost 1, while symmetrical regression slope and intercept parameter are 1326

and of 0.1 m/s, respectively. Furthermore, the low Root Mean Square Error327

RMSE values (lower than 1 m/s and 20o for wind speed and wind direction,328

respectively) attest the quality of satellite wind analyses. Satellite data im-329

prove the comparisons with insitu wind measurements with respect to the330

ERA Interim model. In fact, the satellite wind dataset contributes to reduce331

the bias and RMSE values, improving the comparisons for high wind con-332

ditions and confirming the results of Bentamy et al. (2017) and Desbiolles333

et al. (2017).334

2.5.2. ECMWF winds335

In 2018 ECMWF released the ERA5 reanalysis with spatial resolution336

of 0.25o and 1-hour intervals (Hersbach et al., 2019). This dataset combines337

worldwide observations with model data collected from the 1979 until present.338

Atmospheric variables are given at the surface and on model levels. The339

variables used as forcing for the WWIII simulations in this work are the340

horizontal components of the wind speed at 10 m above the sea level (Tolman,341

2016).342

Although the ERA5 dataset was originally released with an hourly output343

resolution, we reduced the time resolution to 6-hour intervals in the WWIII344

forcing. This has been done with the purpose of having the two forcing345

datasets assessed in this study with same spatial and time resolution, thus346

ensuring an insightful result comparison. The influence of time resolution of347

forcing winds on model results will be further addressed in section 4.348
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3. Results349

The impact of forcing winds and energy dissipation parameterizations350

on model performance is assessed by comparing the simulated datasets with351

the datasets produced by buoy and altimeter observations. Here, we adopt352

normalized statistics with the main aim of comparing a large range of wave353

conditions. The normalized root-mean-square-error NRMSE and normalized354

bias NBIAS are defined as follows:355

NRMSE =

√∑
(Oi −Mi)2∑

O2
i

. (12)356

NBIAS =

∑
(Oi −Mi)∑

Oi

. (13)357

where Oi and Mi are the observed and modelled variables.358

For the sake of clarity we assign the names of each model output dataset359

by specifying the dissipation parameterization used followed by the wind360

forcing. For instance, the output including Test500 and the ECMWF forcing361

is called Test500ECMWF.362

3.1. Wave buoys363

Figure 4 shows the comparison between observed and modelled significant364

wave height Hs time series at the offshore buoy 62163 and at the coastal365

buoy 5602. Despite some differences among the four model outputs, overall366

the WWIII datasets are able to capture the main evolution of the observed367

dataset. However, evident discrepancies can be found at storm peaks where368

the modelled Hs underestimate the observations, especially in coastal water.369

An exception to this trend is represented by Test500Satellite at buoy 62163370

that seems to better represent the Hs evolution at the peak of the main371

storms.372

To achieve a quantitative assessment of model performance, modelled373

time series are linearly interpolated over the observed time series. The scat-374

terplots of the total number of samples N , divided into deep water and375

coastal water, are shown in Figure 5, for the wave parameter Hs. NRMSE376

is on the order 0.1 at deep water buoy locations, ranging between 0.098377

for Test500ECMWF and 0.134 for Test500Satellite. Test500Satellite slightly378

overestimates Hs (NBIAS is 0.031), whereas a small underestimation is given379
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Figure 4: Observed (gray line) and predicted time series of significant wave height Hs

at the deep water buoy 62163 (a) and at the coastal buoy 5602 (b). The four computed
datasets are shown. Storms are coloured in yellow.

by Test471ECMWF (NBIAS is -0.025). The other two datasets are practi-380

cally unbiased (|NBIAS|<0.003).381

In general terms, for all datasets the NRMSE of Hs increases by few382

points percentage at coastal buoy locations. This is an expected result given383

the additional modelling challenges represented by the coastal environment384

(van Vledder et al., 2016), such as complex bathymetries and tidal currents,385

with respect to the deep ocean. A remarkable result comes from the obser-386

vation of coastal water scatterplots and the associated NBIAS of Hs. In fact,387

whereas all datasets overestimate Hs with positive NBIAS between 0.01 and388

0.042, the points associated to higher Hs (Hs>10m) fall below the line of389

perfect agreement, meaning that those large Hs are underestimated. This is390

in agreement with the Hs underestimation at storm peaks already observed391

in Figure 4.392

The analysis of model accuracy is integrated by the Taylor diagrams in393
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figure 6. All datasets have Correlation Coefficients larger than 0.95. In394

deep water, Test471Satellite and Test500ECMWF have the larger agreement395

with the observations in terms of Standard Deviation and RMSD. In coastal396

water, the differences between datasets are less marked, with Test500Satellite397

slightly improving the prediction in terms of Standard Deviation.398

3.1.1. Storm evolution and peaks399

To explore in more detail the model performance in addressing extreme400

Hs, Figure 7 provides the scatterplots of observed and modelled Hs at the401

storm peak. In this case the number of samples N is simply given by the402

product of the number of storms times the number of locations. For all403

datasets the NRMSE increases in coastal water. Moreover, NBIAS is always404

negative confirming the Hs underestimation at storm peaks. Both in deep405

and coastal water, Test500Satellite gives the lowest NBIAS in absolute value406

(the underestimation is less pronounced). Whereas the largest Hs underes-407

timation (minimum NBIAS) is provided by Test471ECMWF.408

In contrast with Figure 7, we do not observe a systematic negative NBIAS409

for Hs in Figure 8. This Figure shows the scatterplots of observed and mod-410

elled Hs collected during storms in deep water and at coastal buoy locations.411

In coastal water, the positive NBIAS values of datasets involving the param-412

eterization Test500 are likely to be driven by the large number of Hs data413

below 6 m. However, underestimation is still noticeable for more energetic414

conditions (Hs>6 m). Figure 10 aims at pointing out the difference between415

the identification of the extreme Hs at the peak of a storm (the circle, in416

this case storm S10) and the identification of the Hs values collected during417

a storm (the thick line). Note that the time instants at which extreme Hs418

occurs for the observed and modelled dataset do not necessarily coincide. For419

instance, with the ECMWF and satellite datasets, the modelled maximum420

is slightly ahead and delayed, respectively.421

The Taylor diagrams of figure 9 integrate the information provided by the422

scatter plots of figure 8. Correlation Coefficients are on the order of 0.9 for423

all datasets. In deep, Test500Satellite gives the largest Standard Deviations.424

In coastal water, the low values of the modelled Standard Deviations seem425

to confirm the peak underestimation already suggested by the scatterplots426

of figure 8.427

Figure 11 shows the extreme wave energy flux Fe computed at the peak of428

the storm and during the storm occurrence in coastal water. The wave energy429

flux Fe is calculated from linear theory, assuming a Rayleigh distribution430

18



0 5 10 150

5

10

15

Deep Water N=4795

Test471Satellite

NRMSE = 0.109
NBIAS = -0.003

W
W
III
 H

s
 [m

]

a)

0 5 10 150

5

10

15

Test471ECMWF

NRMSE = 0.101
NBIAS = -0.025

b)

0 5 10 150

5

10

15

Test500Satellite

NRMSE = 0.134
NBIAS = 0.031

c)

0 5 10 15
Observed Hs [m]

0

5

10

15

Test500ECMWF

NRMSE = 0.098
NBIAS = -0.003

d)

0 2 4 6 8 10 12 140
2
4
6
8

10
12
14

Coastal Water N=26081

Test471Satellite

NRMSE = 0.134
NBIAS = 0.01

e)

0 2 4 6 8 10 12 140
2
4
6
8

10
12
14

Test471ECMWF

NRMSE = 0.123
NBIAS = 0.031

f)

0 2 4 6 8 10 12 140
2
4
6
8

10
12
14

Test500Satellite

NRMSE = 0.14
NBIAS = 0.025

g)

0 2 4 6 8 10 12 14
Observed Hs [m]

0
2
4
6
8

10
12
14

Test500ECMWF

NRMSE = 0.126
NBIAS = 0.042

h)

0

1

2

5

10

50

100

150

200

250

300

400

500

600

800

Figure 5: Scatter plot of observed versus modelled significant wave heightHs in deep water
(a-d) and coastal water (e-h). The four datasets are shown. The grey line represents the
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Figure 6: Taylor diagrams of Significant wave height in deep (a) and coastal (b) water.

of wave heights (Longuet-Higgins, 1952), as the product between the wave431

energy density E and the group celerity cg:432

Fe = E · cg, (14)

in which433

E =
1

8
ρgH2

RMS, (15)
434

cg =
1

2
c(1 +

2kh

sinh(2kh)
), (16)

where ρ is the water density, g is the acceleration of gravity, HRMS is the435

root mean square wave height (HRMS = Hs/1.4), c is the wave celerity, k436

is the wave number and h is the water depth. Both c and k are computed437

from linear wave theory using the mean period T02. Fe plots tend to be438

more scattered than those of Hs, with Test471ECMWF providing the largest439

NRMSE for Fe both at the peak and during the storm. Test471ECMWF also440

gives the largest underestimation of Fe. Test500Satellite is the only dataset441

that overestimates Fe (NBIAS=0.05) during storms although, analogously442

the Hs trend commented in Figure 8, large values (Fe > 0.5MJ
ms

) are clearly443

underestimated. This point will be discussed in section 4. Tables 3 and 4444

list the error statistics of the four datasets at the wave buoys.445
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Table 3: Hs statistics.

Hs NRMSE
Dataset All Extreme Storm All Extreme Storm

Deep Water Coastal Water
T471Satellite 0.11 0.12 0.11 0.13 0.19 0.13
T471ECMWF 0.10 0.16 0.11 0.12 0.19 0.13
T500Satellite 0.13 0.09 0.14 0.14 0.16 0.14
T500ECMWF 0.10 0.11 0.10 0.13 0.16 0.13

Hs NBIAS
Dataset All Extreme Storm All Extreme Storm

Deep Water Coastal Water
T471Satellite -0.00 -0.09 -0.01 0.01 -0.12 -0.00
T471ECMWF -0.03 -0.15 -0.05 0.03 -0.13 0.00
T500Satellite 0.03 -0.01 0.05 0.03 -0.08 0.02
T500ECMWF -0.00 -0.09 -0.01 0.04 -0.09 0.03

Table 4: T2 and Fe statistics in coastal water.

T02 NRMSE Fe NRMSE
Dataset All Extreme Storm All Extreme Storm

T471Satellite 0.12 0.11 0.08 0.33 0.51 0.34
T471ECMWF 0.09 0.14 0.08 0.34 0.55 0.36
T500Satellite 0.14 0.11 0.09 0.32 0.44 0.32
T500ECMWF 0.10 0.13 0.07 0.31 0.49 0.32

T02 NBIAS Fe NBIAS
Dataset All Extreme Storm All Extreme Storm

T471Satellite 0.04 -0.05 0.01 -0.01 -0.35 -0.04
T471ECMWF -0.01 -0.10 -0.03 -0.05 -0.42 -0.11
T500Satellite 0.06 -0.03 0.03 0.05 -0.27 0.05
T500ECMWF 0.00 -0.08 -0.02 -0.01 -0.36 -0.05
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Figure 7: Scatter plot of observed versus modelled extreme significant wave height Hs in
deep water (a-d) and coastal water (e-h). The four datasets are shown.

3.1.2. Spectral wave analysis and sea/swell decomposition446

The availability of the two-dimensional spectra at the four coastal buoys447

managed by CEREMA (62069, 62064, 4403, 5602) allows the spectral anal-448
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Figure 8: Scatter plot of observed versus modelled significant wave heightHs in deep water
(a-d) and in coastal water (e-h) during storm duration. The four datasets are shown. The
grey line represents the mean of the model values.
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Figure 9: Taylor diagrams of significant wave height during storms in deep (a) and coastal
(b) water.

ysis of storms occurred in the winter 2013/2014 at those locations. An ex-449

ample of spectral evolution during a storm is displayed in Figures 12 and 13450

for storm S10 at the coastal buoy 62069. At the beginning of the storm, the451

measured spectrum shows a variegated shape with multiple peaks (see for452

instance the secondary peak at 0.17 Hz and 200o) that are less marked in the453

modelled spectrum (T471ECMWF). At the end of the storm, the computed454

spectrum reproduces the secondary peak at frequencies lower than 0.1 Hz455

and direction nearly opposite with respect to mean storm direction, proba-456

bly due to wave reflection at the shoreline. Figure 13 highlights as the wide457

1-D frequency spectrum observed at the beginning of the storm tends to a458

more narrow shape as the storm attenuates towards the end. At the peak of459

the storm, the energy gap between the modelled spectra and the measured460

one is particularly evident. At the storm beginning, both the atmospheric461

Sin and the energy dissipation Sds source terms proceeding from datasets us-462

ing satellite forcing are larger that those of the ECMWF dataset. Moreover,463

Test500 seems to give a smoother dissipation spectrum. This is consistent464

with Leckler et al. (2013) and is likely due to the averaging over wave scales465

of equation (11). On the contrary, as a result of its dissipation rate that is466

local in frequency, Test471 gives a higher dissipation rate at the peak fre-467
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Figure 11: Scatter plot of observed versus modelled extreme (a-d) and collected during
storms (e-h) energy flux Fe (a-d) in coastal water. The four datasets are shown. The grey
line represents the mean of the model values.
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quency at the beginning and at the peak of the storm. At the end of the468

storm, Test500 gives the higher dissipation rates. However, their impact on469

storm evolution seems to be limited since these dissipation rates at the end470

of the storm are three orders of magnitudes smaller than those at the storm471

peak.472

The identification of the wind and swell components of the spectrum is473

carried out by means of the wave age criterion first introduced by Hanson474

and Phillips (2001). The wind sea component W is defined as:475

W = E−1E|Up>c, (17)476

where E is the total spectral energy and E|Up>c is the energy of the region477

of the spectrum under the direct influence of the wind. Up is the projection478

of the wind speed, with direction θ, along the mean wave direction θw:479

Up = CU10cos(θ − θw), (18)480

where C has been set equal to 1.7. Figure 14 shows the scatter plots of481

the wind and swell components of the significant wave height for the four482

datasets. Swell waves are characterized by a larger NRMSE than wind waves,483

with all the datasets that tend to underestimate extreme values larger than 6484

m. The extreme values of wind waves (> 10 m) are larger than those of swell485

waves. These extreme wind wave conditions are slightly underestimated, al-486

though the ECMWF forcing leads to a positive NBIAS due to overestimation487

of moderate values. Table 5 reports the error statistics of the sea and swell488

components of the four datasets at the coastal wave buoys. It is worth noting489

that all datasets have, respectively, positive and negative NBIAS for wind490

and swell waves under storm duration. Therefore, the virtually unbiased total491

Hs values during storms may be the result of a balance between a small over-492

estimation of the wind component combined with a small underestimation493

of the swell component.494

3.2. Storm tracking495

Figure 15 shows the result of the storm tracking process for storm S10.496

The storm path from its generation to its dissipation is superposed to the497

atmospheric pressure field at the time of storm arrival at buoy 62163 (see498

Figure 15b). The centre of the low pressure system lies few hundreds km499

west of the buoy. The large pressure gradients in the southern part of the500
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Figure 12: Computed (T471ECMWF) and measured frequency-directional wave spectra
at the beginning (a and d), peak (b and e) and end (c and f) of the storm S10 at buoy
62069.

system are capable of driving strong westerly winds, as displayed in Figure501

16a.502

The intense wind forcing in the southern part of the low pressure system503

controls the wave storm propagation across the Atlantic. Figure 16 high-504

lights the spatial relationship between the low pressure system and the wind505

and wave height fields as the storm hits the offshore buoy 62163. This Fig-506

ure displays the results obtained by the Test471ECMWF. The largest winds507

(in excess of 25 m/s) and significant wave heights (in excess of 10 m) are508

predicted to occur inside the half circle of 800 km radius depicted in Figure509

16.510

To assess the model performance along the storm propagation, we retain511

the Hs altimeter measurements falling inside a half-circle of 800 km of radius512
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Figure 13: Frequency wave spectra at the beginning (a), peak (b) and end (c) of the storm
S10 at buoy 62069 (T471ECMWF). The values of Hs and T02 are those measured by the
buoy; the wind speed at 10 m U10 is from the ECMWF dataset. Atmospheric source terms
(d-f). Dissipation source term (g-i).

south of the centre of the recognized low-pressure systems. See Figures 3513

and 16. Figure 17 shows the comparison between the Hs from altimeter514

measurements and from model computations along the storm propagation515

paths. The model results have been interpolated from the regular grid over516

the altimeter path. The observation of the scatterplots of Figure 17 draws the517

attention to the combined role played by model forcing and parameterization518

used. Whereas Test471Satellite and Test500ECMWF are characterized by519

minimal NBIAS values, Test500Satellite and Test471ECMWF give positive520

and negative NBIAS values, respectively. Test500ECMWF is the one showing521

the lowest NRMSE.522

Figure 18 compares the wind from the ECMWF and satellite forcing523
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Figure 14: Scatter plot of observed versus modelled significant wave height Hs os the sea
component (a-d) and the swell component (e-h). The four datasets are shown. The grey
line represents the mean of the model values.
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Table 5: Sea and swell waves statistics in coastal water.

Hs NRMSE
Dataset All Extreme Storm All Extreme Storm

Wind waves Swell waves
T471Satellite 0.13 0.13 0.11 0.15 0.14 0.11
T471ECMWF 0.12 0.14 0.10 0.15 0.15 0.11
T500Satellite 0.13 0.10 0.12 0.15 0.12 0.12
T500ECMWF 0.12 0.10 0.12 0.15 0.13 0.13

Hs NBIAS
Dataset All Extreme Storm All Extreme Storm

Wind waves Swell waves
T471Satellite -0.05 -0.07 0.04 -0.01 -0.08 -0.08
T471ECMWF 0.03 -0.10 0.01 -0.02 -0.10 -0.07
T500Satellite -0.03 -0.01 0.06 -0.00 -0.05 -0.04
T500ECMWF 0.05 -0.06 0.03 -0.02 -0.08 -0.04

datasets. The wind speed values are extracted along the low-pressure sys-524

tems path propagation, thus corresponding to the time and location of Hs525

values of figure 17. The NBIAS is slightly negative meaning that, along the526

extra-tropical cyclone paths, the winds of ECMWF forcing are smaller than527

those of the satellite forcing. This underestimation becomes more evident for528

strong winds above 20 m/s. This is consistent with Figure 17, in which for a529

given parameterization, NBIAS of Hs is lower with the adoption of ECMWF530

forcing. In fact, the smaller ECMWF storm winds are likely to yield lower531

energy transfer rates from the atmosphere to the wave motion, eventually532

reducing the sea state growth along storm tracks.533

4. Discussion534

In this work, wave spectral numerical simulations under storm wave con-535

ditions show a substantial dependence on the wind forcing and wave dissipa-536

tion parameterization used. Roland and Ardhuin (2014) suggested that the537

quality of wind data and source term parameterizations are the main factors538

defining the accuracy of spectral wave results. Here, we address this subject539
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Figure 15: a) Atmospheric pressure field at the moment of the S10 storm arrival at the
deep-water buoy 62163 (grey point). The dashed line indicates the low-pressure system
path. b) Time series of significant wave height Hs recorded at the buoy 62163. The
red dashed line marks the time instant of panel a). The storms at the buoy 62163 are
highlighted in yellow.

under extreme storm conditions. This section highlights the main outcomes540

of the present study and discusses its results in the light of previous work.541

A first analysis assesses the model performance separately at deep wa-542

ter buoys and coastal buoys. Model performance decreases when computed543

data are compared with buoy measurements in coastal water. This result is544

consistent with previous studies (Ravdas et al., 2018). In contrast with deep545

water waves, coastal waves are controlled by the combined effect of irregular546

shorelines, uneven bathymetry and mean water level oscillations. In addi-547

tion, the interaction with strong tidal currents is not negligible. Besides the548

challenges in modelling the complex physics of coastal wave processes, the549
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Figure 16: a) Wind speed field at the moment of the S10 storm arrival at the deep-water
buoy 62163. b) Significant wave height Hs field at same time of panel a). The dashed
line indicates the low-pressure system path. The solid black line shows the half circle with
radius of 800 km. Altimeter measurement locations are shown by the grey dots.

quality of bathymetric and ocean circulation data play a significant role. In550

fact, tidal currents, mean water levels and bathymetry data are inevitably551

affected by errors that may propagate into the wave model and therefore552

decrease its accuracy in the nearshore.553

The NRMSE and NBIAS values of Hs along storm tracks across the554

Atlantic are consistent with those at deep water buoys during storm duration.555
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Figure 17: Scatterplots of the observed versus modelled significant wave height Hs along
the storm tracks. Panels a), b), c) and d) show the comparison for different forcings and
parameterizations. The grey line represents the mean of the model values.

For a given parameterization, the use of the wind forcing from satellite data556

tends to increase the NBIAS with respect to the use of the ECMWF wind557

forcing. This is likely to be related to an underestimation of extreme winds by558

the the ECMWF reanalysis dataset (Rascle and Ardhuin, 2013), see Figure559

18. Analogously, for a given wind forcing, NBIAS rises when Test500 is used.560

This result is consistent with Filipot and Ardhuin (2012). In general terms,561
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Figure 18: Scatterplot of satellite wind speed versus ECMWF wind speed along the storm
tracks. The grey line represents the mean of the model values.

Test500ECMWF seems to be the most robust choice for the simulation of562

storm evolution both along storm tracks (NRMSE=0.1, NBIAS=0.02) and563

at buoy locations (NRMSE=0.1, NBIAS=-0.01).564

The spectral analysis shows that all datasets tend to underestimate the565

swell component oh Hs at four coastal buoys during storm conditions. Fig-566

ure 12 reveals that during an energetic storm a considerable amount of low-567

frequency energy is propagating with an opposite direction with respect to568
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the main storm direction. This highlights the importance of shallow water569

processes, such as wave reflection at the shoreline, in determining the total570

energy budget in coastal water. To have a first assessment of the impor-571

tance of wave reflection during storms, we isolate the seaward component572

of spectrum (retaining the seaward wave components that are more than573

90o apart from the main wave direction). The comparison of the Hs with574

the measurements shows that in the model this component is largely under-575

estimated (with NBIAS ranging between -0.19 and -0.25 depending on the576

dataset). Although the great part of wave energy is propagating shoreward,577

this strong underestimation of the seaward component of the spectrum is578

likely to contribute to the underestimation of the swell component under579

storms in coastal water.580

In contrast with its values during storm events, Hs at the storm peak581

is systematically underestimated as revealed by its negative NBIAS values.582

This result is valid at both offshore and coastal buoys. Although all datasets583

share this trend, this underestimation is particularly marked using the combi-584

nation of ECMWF forcing and Test471 parameterization: NBIAS=-0.15 and585

-0.12 in deep and coastal water, respectively. The dataset Test500Satellite586

provides the smallest NBIAS, in absolute values, thus reducing the under-587

estimation. Although Test500Satellite provides the smallest NRMSE and588

absolute NBIAS, it seems that it has the main drawback of overestimating589

Hs larger than 15m (see Figures 7 and 17).590

When comparing the results coming from the different model settings591

described in this work, it is worth mentioning that the calibration of the two592

wave breaking parameterizations used here has been carried out with the593

ECMWF wind forcing (Tolman, 2016). Nevertheless, both parameterizations594

perform well with satellite forcing showing minimal bias for the entire winter595

timeseries. Since satellite data are expected to improve the characterization596

of high wind conditions with respect to the ECMWF products (Bentamy597

et al., 2017), we argue that a new calibration of parameterizations T471598

and T500 with the satellite wind forcing may lead to an improvement of the599

prediction of extreme sea states. However, the calibration task is beyond the600

scope of this work, focusing on the winter 2013/2014, as longer simulations601

are required.602

Another aspect to be taken into account is that, as can be seen in Figure603

10, Hs measurements are more noisy than simulated results. These spikes604

are likely to enhance the Hs peak underestimation by the model that could605

then be mitigated by applying a despiking filter to the measured timeseries.606
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However, we prefer to avoid this alteration due to its involved subjectivity.607

It can be worth mentioning that Castelle et al. (2015) simply applied a linear608

coefficient equal to 1.07 to adjust the Hs values from WWIII simulations to609

the measurements from buoy 62064 under the same period.610

An underestimation is found also for extreme mean wave period T02 and611

energy flux Fe in coastal water. NBIAS for T02 is slightly smaller, in absolute612

value, than that for Hs. On the other hand, the stronger underestimation of613

peak values of Fe (NBIAS between -0.27 and -0.42) is due to the Fe parameter614

definition, resulting from the product of E which is function of H2
s and cg615

which is function of wave period.616

The observed underestimation of extreme wave parameters highlights the617

importance of the choice of an accurate hindcast product for extreme wave618

analysis purposes. In fact, long-term hindcasts affected by errors in extreme619

sea state conditions can strongly impact the the probabilistic moments and620

the tail of the distributions used for extreme event analysis (Campos et al.,621

2019). This may have a crucial importance especially in calculation design.622

4.1. Impact of time resolution of forcing winds623

Due to the observed rapid evolution of sea states under extreme weather624

conditions, it appears plausible that the time resolution of the wind forcing625

might have an impact on wave model result accuracy. In this paper we have626

tested two wind datasets with the same time resolution of 6 hours. Here,627

we assess a possible negative impact of relatively low time resolutions of628

the wind forcing dataset. The accuracy of the wave output proceeding from629

simulations with the Test500 parameterization and forced by ECMWF ERA5630

winds at one hour resolution is discussed.631

In our case the high-resolution wind forcing does not lead to a reduction of632

the NRMSE of Hs for the entire dataset in deep water (NRSME=0.10). The633

Hs data stays unbiased (NBIAS<0.005). The main benefit of using a high-634

resolution wind forcing seems to be related to the ability of catching extreme635

Hs at the storm peak. In fact, the NRMSE for extreme Hs experiences a636

small decrease (from 0.111 to 0.106). Moreover, the one hour time resolution637

forcing leads to a smaller underestimation of extreme Hs: NBIAS passes638

from -0.09 to -0.08. Although detectable, the impact of the time resolution639

of the forcing winds is undoubtedly limited. The limited magnitude of this640

improvement seems to be related to the lengthy evolution of Atlantic swells641

that progressively gain energy along their tracks across the ocean. These642

swells characterized by a large wave age are likely to dominate the sea state at643
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the considered wave buoys, thus reducing the impact of fast wind oscillations644

included in a high time resolution wind forcing.645

What we have observed here in terms of the impact of the increased time646

resolution of winds on wave modelling is consistent with Mentaschi et al.647

(2015) who suggested that a resolution increase of the forcing wind field (in648

their case it was a spatial resolution increase) may not lead to an improve-649

ment of single point statistics. According to previous studies (Cavaleri, 2009;650

Ardhuin et al., 2007; Bertotti and Cavaleri, 2009) they attributed this result651

to the so-called double penalty effect: some features and patterns may be652

missed or reproduced in a wrong place in space and time by the model.653

4.2. Parameterization ST6654

Version 5.16 of WWIII includes the new package ST6 which is designed655

for the parameterization of wind input, wave breaking and swell dissipation.656

We comment here the results obtained by activating ST6. For our dataset,657

setting the FAC parameter equal to 1.09, that means increasing the value of658

the wind drag by 9%, yields a reduction of absolute NBIAS with respect to659

the default value of FAC=1. This is in agreement with Zieger et al. (2015)660

who used the same value in combination with CFSR wind reanalysis. In661

fact, our results shows a clear under- and overestimation of Hs with the662

other two values proposed by Zieger et al. (2015): FAC=1 in combination663

with CFS winds and FAC=1.23 in combination with NOGAPS winds. A664

more detailed sensitivity analysis of the FAC or other parameters included665

in the parameterization ST6 is beyond the scope of this work.666

Although the use of ST6 with FAC=1.09 leads to a small NBIAS for the667

entire dataset (<0.04), Hs values at storm peaks remain underestimated.668

With both Satellite and ECMWF wind forcing dataset, the use ST6 leads669

to NBIAS values of extreme (at the storm peak) Hs comprised between the670

values associated with Test471 and Test500. For instance, at deep water671

buoys with ECMWF forcing, the NBIAS for extreme Hs is equal to -0.13, a672

value that lies between the those associated with Test471 (-0.15) and Test500673

(-0.09), see Table 3. This results suggest that, despite ineluctable differences,674

the general behaviour of ST6 in predicting Hs under moderate and extreme675

conditions is analogous to what we have already seen and commented for676

Test471 and Test500 of the parameterization group ST4.677
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5. Conclusions678

The aim of this work was to assess the impact of wave breaking parame-679

terizations and wind forcing datasets on the accuracy of spectral wave model680

results under storm wave conditions. We used the WWIII model to simulate681

the storm sequence occurred in the winter 2013/2014 on the North-East At-682

lantic. This work focused on two wave breaking parameterizations included683

in the parameterization group ST4: Test471 and Test500. Moreover, we684

tested two forcing datasets with six-hour time resolution winds: one based685

on satellite observations and another based on the ECMWF ERA5 reanaly-686

sis. The analysis was carried out firstyl by identifying the individual storms687

at North-East Atlantic buoy locations and then following the storm tracks688

across the ocean. The main findings are summarized here:689

1. The choice of the combination of the wave breaking parameterization690

and the wind forcing dataset significantly affects the model results in691

terms of NBIAS and NRMSE of wave parameters. This is valid for692

wave parameters computed over the entire time series, during storm693

evolution as well as at the storm peaks. The change of a given breaking694

parameterization or wind forcing dataset leads to changes in NBIAS695

and NRMSE of Hs and T02 that are on the order of 5%. Due to its696

definition involving the product between group parameters function of697

H2
s and T02, Fe suffers more variability.698

2. For a given wave dissipation paremeterization and wind forcing, the699

NBIAS and NRMSE values of Hs computed under storm conditions700

at wave buoys are consistent with those computed along storm tracks701

across the Atlantic. Test500 together with the satellite wind forcing702

gives higher Hs values, thus increasing the NBIAS with respect to, re-703

spectively, Test471 and ECMWF wind forcing. By improving the error704

metrics, Test500ECMWF seems to represent the most robust choice for705

simulating the storm evolution.706

3. Negative NBIAS values of Hs at the storm peaks reveal a significant707

underestimation of extreme wave conditions that is particularly marked708

at the coastal buoy locations. This underestimation, common to all the709

tested datasets, is reduced by using the Test500Satellite dataset.710

4. The spectral analysis shows that at the coastal buoys a considerable711

amount of energy is propagating seaward during storms, possibly as a712

result of wave reflection at the shoreline. This seaward component is713
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strongly underestimated by the model (NBIAS of the order of -0.2),714

thus contributing to the underestimation of the swell component at the715

coastal buoy locations.716

5. The use of the high-resolution wind forcing (one-hour resolution) ERA5717

does not significantly improve the error statistics computed over the718

entire time series at the wave buoys. The main benefit of using a719

high-resolution forcing resides in the (limited, on the order of 1%) im-720

provement of NRMSE and NBIAS values of extreme wave conditions721

at storm peaks.722
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