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Abstract: In recent years, cardiovascular imaging examinations have experienced exponential growth
due to technological innovation, and this trend is consistent with the most recent chest pain guidelines.
Contrast media have a crucial role in cardiovascular magnetic resonance (CMR) imaging, allowing
for more precise characterization of different cardiovascular diseases. However, contrast media have
contraindications and side effects that limit their clinical application in determinant patients. The
application of artificial intelligence (AI)-based techniques to CMR imaging has led to the development
of non-contrast models. These AI models utilize non-contrast imaging data, either independently or
in combination with clinical and demographic data, as input to generate diagnostic or prognostic
algorithms. In this review, we provide an overview of the main concepts pertaining to AI, review
the existing literature on non-contrast AI models in CMR, and finally, discuss the strengths and
limitations of these AI models and their possible future development.

Keywords: cardiovascular imaging; non-contrast images; AI; CMR

1. Introduction

Cardiovascular magnetic resonance (CMR) offers a comprehensive evaluation of
cardiovascular diseases and, according to recent guidelines, is a rapidly expanding non-
invasive imaging modality [1,2]. In addition to allowing an accurate measurement of
ventricular volume and function, CMR offers the capability to visualize myocardial tissue
abnormalities [3]. Indeed, CMR has proven to be a crucial non-invasive imaging modality
for evaluating the presence, extent, and location of myocardial fibrosis in both ischemic
and non-ischemic cardiomyopathies [4,5]. Myocardial scar imaging is typically evaluated
using late gadolinium enhancement (LGE) [4,5]. Gadolinium-based contrast agent freely
distributes in extracellular space. However, in cases of myocardial damage, it can also enter
the intracellular space through ruptured cell membranes, resulting in a delayed washout
of gadolinium from the affected myocardium compared to healthy myocardium [6]. LGE
imaging allows for discrimination between ischemic and non-ischemic etiologies. In
addition, LGE-CMR provides important prognostic information [5–9].

Currently, CMR with LGE is necessary to identify myocardial scar. In clinical practice,
some patients are not eligible to contrast media administration due to allergies or kidney
disease. In addition, LGE sequences are time-consuming, requiring a 10–15 min time delay
after contrast media administration for contrast retention in myocardial scar tissue [10,11].
Therefore, alternative non-contrast CMR tools are useful in clinical practice to improve the
widespread diffusion of CMR and reduce the costs of cardiovascular healthcare.
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Artificial intelligence (AI) is a broad field of computer science that is capable of
performing tasks associated with human-like intelligence. AI in cardiovascular imaging has
experienced a growing development [12–19]. AI-based approaches have proven useful in
different CMR areas, including automated image acquisition, reconstruction, and analysis,
as well as in providing diagnostic and prognostic information [12]. Recently, the field
of non-contrast CMR examinations emerged through the support of AI models, with
promising results. Several papers have reviewed the role of AI in CMR [13–15,20], or
discussed the application of AI in reducing or eliminating contrast media administration in
computed tomography, or in other organs beyond the heart [21–25]. However, to the best
of our knowledge, none of the previous works have specifically focused on non-contrast AI
models in CMR.

Given the exponential increase in CMR examinations in recent years, wider availability
of sustainable, faster, and cheaper CMR, as well as acceleration in image acquisition, may
undoubtedly provide benefits in “real life” clinical practice.

In this review, we discuss some basic concepts of AI models in CMR and provide an
overview of the existing literature on non-contrast AI models in CMR, highlighting the
benefits of their application in clinical practice. Lastly, we discuss the current limitations of
these AI models and their possible future development.

2. Concepts of AI

AI is an umbrella term encompassing various techniques that allow machines to
learn from experience and replicate human thought processes for solving a wide range
of tasks [12–14,19,26]. Several approaches to AI exist, with machine learning (ML) being
one of them. ML refers to the ability of AI systems to acquire knowledge about a domain
by extracting patterns from raw data, without being explicitly programmed to do so. A
plethora of learning algorithms exist, and each allows the creation of a model of a certain
phenomenon of interest by learning through experience. In other words, the algorithms are
given examples as input, and they subsequently output a learned function of these inputs.
Such models can then be used to make predictions about new unseen data [27]. Typically,
the features fed to ML algorithms are task-specific and need to be either handcrafted or
created by other algorithms. Moreover, knowing in advance which features are required
for a given task can be quite challenging. Deep learning (DL), a type of ML, solves this
problem by enabling the algorithms themselves to learn and extract relevant features [14,27]
(Figure 1).
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Figure 1. Anatomy of a feedforward artificial neural network. Illustration of a one-layer fully-
connected network (FCN) architecture. The network consists of an input layer with three units,
exemplified here by age, smoking status, and left ventricle ejection fraction. Hidden neurons receive
inputs, compute weighted sums, and pass through nonlinear activation functions to produce outputs.
The network maps process data to output units, providing probabilities of class membership or
estimating numeric quantities of interest. The primary objective of this architecture is to learn
complex nonlinear mappings between input and ground-truth data.



Diagnostics 2023, 13, 2061 3 of 17

This paradigm is known as representation learning and is at the foundation of DL [26].
By representing complex concepts as deep hierarchies of simpler concepts, it is possible
to discover and learn high-level, complex features from simpler ones [26]. The ability of
the paradigm to automatically extract features from unstructured data without the need
for human intervention gradually led to the abandoning of traditional processing methods
in favor of deep artificial neural networks (DNNs; also known as feedforward neural
networks or multilayer perceptrons).

2.1. Taxonomy of ML Tasks

Machine learning tasks can be loosely categorized into different classes based on
what type of experience the algorithms are allowed to have during the training process
(Figure 2) [27].
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Figure 2. Taxonomy of machine learning algorithms based on the presence and type of supervision.
The supervision is commonly provided through weak or strong ground truths, encompassing regions
of interest annotations, estimation of numeric quantities, and assignment of discrete class labels.
Below, a U-shaped deep neural network for a supervised segmentation of the endocardium (red
contour) and epicardium (green contour) of the left ventricle is shown.

2.1.1. Supervised Learning

In supervised learning, the learning algorithms have access to labels (such as the
global longitudinal strain of the left ventricle) for each sample in the dataset (such as
cine-CMR). This labeled data, which is also referred to as ground-truth data, allows the
algorithms to learn the mapping from input data to ground truths. By iteratively updating
the algorithm’s learned parameters to minimize a particular cost function, and thus best
match its predictions with the provided labels, the training process aims at improving the
accuracy and generalizability of the algorithm. The accuracy of the learned mapping is
then evaluated on test data, which is unseen during the training stage. In medical image
analysis, the input to these algorithms is often a set of 2D images or 3D volumes, or even
sequences of 2D or 3D images in time, such as a series of images of the entire cardiac cycle
in cine-CMR. The learned output depends on the specific medical task (Figure 3).
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Figure 3. Taxonomy of AI-based image analysis tasks. Common supervised image analysis tasks
include classification and regression tasks, in which the AI algorithms are trained to predict discrete
class membership likelihoods and numeric quantities, respectively. Other tasks that are exclusively
related to images include localization, in which the algorithms predict the coordinates of bounding
boxes around regions of interest (such as the left ventricle in cine-CMR), segmentation, in which
each pixel or voxel in the image is assigned to either the background or one or more classes of
interest (such as the epicardium and endocardium contours), denoising, which consists of producing
high-resolution images or volumes (such as cine-CMR images over the cardiac cycle) from noisy
inputs, and reconstruction, in which the algorithms are taught to reconstruct high-quality cardiac
images or volumes from undersampled k-spaces. LVEF indicates left ventricle ejection fraction.

Taxonomy of Supervised Tasks

In regression tasks, the algorithm produces a continuous output (such as the ejection
fraction values of the left ventricle); in classification tasks, the output is a set of discrete
labels (such as the different levels of cardiac contractility). Other tasks include localization
tasks, in which the algorithm estimates the coordinates in the image space of bounding
boxes around regions of interest (such as anatomical or pathological structures); segmenta-
tion tasks, in which the algorithm outputs a class label for each pixel or voxel in the image or
volume, typically distinguishing between the background and one or more foreground re-
gions of interest, such as the left ventricle and atrium in non-contrast cine-CMR; acquisition
tasks, in which DNNs can be leveraged to adjust imaging parameters in real-time based on
patient-specific characteristics, such as heart rate and anatomy, in order to improve spatial
resolution, reduce motion artifacts, and enhance the overall image quality; and finally,
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reconstruction tasks, in which DNNs can be trained to reconstruct high-resolution cardiac
images from undersampled k-space data, acquired with accelerated imaging techniques
such as compressed sensing [28].

In recent AI research, a notable emerging trend revolves around the seamless in-
tegration of imaging data with diverse information obtained from different sensors, all
pertaining to a common phenomenon. This paradigm, known as multimodal learning,
aims to leverage these heterogeneous data in a complementary manner to facilitate the
learning of complex tasks [29]. These data can be clinical information (such as patient
demographics and medical history), genetic or molecular data (such as molecular profiles
of patients), behavioral or lifestyle data (such as habits, diet, physical activity, or environ-
mental exposures), longitudinal data regarding clinical outcomes, or disease progression
and histopathological data (such as information obtained from tissue samples).

Creating a dataset for training a supervised ML algorithm involves the production
of ground-truth output data. This crucial step involves the meticulous annotation of
regions of interest or the assessment of quantitative measures by radiologists or medical
experts. Manual tracing of masks around complex structures in 3D volumes, such as
cardiac structures for segmentations tasks or evaluating atrial and ventricle functions or
strain values, is particularly demanding. It requires the annotator to meticulously delineate
borders across multiple slices, underscoring the labor-intensive nature of the process.
Consequently, generating high-quality labeled datasets in the medical domain requires
both expertise and a significant investment of time. Moreover, DL approaches trained in a
supervised manner often necessitate a substantial amount of annotated data, which can
pose a limitation to their applicability to specific tasks.

2.1.2. Unsupervised Learning

In unsupervised learning, the algorithms are exposed to large volumes of unlabeled
examples, with the goal of learning useful properties about the structure of the data. Com-
mon tasks include estimating the probability distribution underlying the data generation
process, clustering the data into related subgroups, or learning to denoise noisy data.

2.1.3. Hybrid Paradigms

Hybrid paradigms that lie between supervised and unsupervised learning include
semi-supervised, weakly-supervised, and self-supervised learning. In weakly-supervised
learning, the (possibly inaccurate) supervision comes in the form of noisy labels that may
not always be ground truths, such as partial masks around regions of interest (Figure 2);
this can be due to imprecise or weary labeling, or there may be inherent complexities
in categorizing some examples. Semi-supervised learning, also known as incomplete
supervision, refers to a learning paradigm where only a small portion of the dataset is
annotated; the goal is to leverage domain knowledge and subject matter expertise to
exploit the unlabeled data and use it in conjunction with labeled data to learn good feature
representations. Finally, in self-supervised learning, only unlabeled data is available. These
algorithms frame the learning objective in such a way that supervision comes from the
data itself, for example, by deriving pseudolabels from intrinsic attributes of the data.
Through the definition and subsequent resolution of a pretext or self-supervised task, it
is possible to identify intermediate feature representations that can be used to solve other
downstream tasks, such as image classification or object detection, with very few annotated
examples [15,20].

2.2. Convolutional Neural Networks and the U-Net Architecture

In recent years, DL has experienced tremendous growth thanks to advances in tech-
nology and hardware, big data availability, and more powerful model architectures. DL
algorithms have achieved state-of-the-art results in fields such as computer vision, surpass-
ing other established methods on several image analysis benchmarks and across multiple
domains, including medical imaging. Promising DL-based approaches have been proposed
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for a variety of image processing and analysis tasks, such as reconstruction methods for
reducing scan time, noise, and artifact reduction, resolution improvement, and localization
and segmentation of regions of interest, such as the left atrium in cine-CMR [12,30].

Most DL approaches for medical image analysis are based on convolutional neural
networks (CNNs). CNNs are a DL algorithm designed to analyze visual data such as images
and videos. They consist of multiple layers of interconnected artificial neurons known as
convolutional layers. These layers employ filters to process input data, effectively capturing
spatial relationships and patterns. The filters execute convolutions by sliding across the
input data, multiplying values, and generating feature maps that emphasize significant
features. For detection, localization, and segmentation tasks, one of the most popular CNN-
based architectures is the U-Net [31]. The U-Net architecture (and its variants) consists of a
U-shaped structure comprising two interconnected paths. The contracting path enables
the extraction of increasingly abstract, fine-grained features while preserving both local
and global contextual information. This is achieved through a series of downsampling
operations that progressively reduce the spatial resolution of the image. On the other hand,
the expanding path involves upsampling the image back to its original spatial resolution by
utilizing skip connections. These connections establish direct links between corresponding
blocks at the same hierarchical level, facilitating the integration of high-resolution features.
This U-shaped architecture allows for effective information flow and combines local details
with a global context, making it suitable for various image analysis tasks. For instance, a U-
Net could be trained to identify and segment the left atrium for the automated quantification
of left atrium volume in routine long-axis cardiac cine images. Likewise, U-Nets can be used
for image quality enhancement, where the network learns to denoise corrupted images.
For such tasks, a training set comprised of corrupted–uncorrupted image pairs is required
to train the model. After pixel-wise alignment, the model is learned by minimizing the
error function between the input and network-generated images. While this approach
would be ideal, acquiring such real pixel-aligned image pairs in routine clinical practice is
difficult for various reasons, including pixel misalignment due to motion artifacts [12]. Semi
and self-supervised learning approaches have the potential to overcome these limitations
thanks to their ability to make the most out of unlabeled data.

2.3. AI-Based Diagnosis and Prognosis Prediction

Clinical prediction models have become increasingly important in modern clinical
practice, providing valuable information to healthcare professionals and patients regarding
outcome risks. These models facilitate decision-making processes and ultimately improve
health outcomes [32]. Diagnostic prediction models estimate the probability of current
health conditions being present at the individual level, while prognostic models estimate
the likelihood of developing a medical outcome within a specified time frame, such as the
probability of major adverse cardiac events over a five-year period [33,34].

In recent years, AI-based prognostic models have shown promise in providing im-
proved stratification of prognosis compared to traditional clinical prognostic scores. These
approaches require time-to-event data and may involve classical ML algorithms trained on
manually derived features from experienced radiologists, as well as demographic, clinical,
and traditional cardiovascular risk factors [35]. Alternatively, DL algorithms can operate
directly on images or volumes, automatically extracting relevant features to make a prog-
nostic prediction. DL is commonly employed to isolate regions of interest, such as the left
ventricle in short-axis cine-CMR images. These segmentations can be utilized to compute
quantitative measures, like global circumferential strain, which can then be incorporated
into traditional risk-score models (e.g., the Cox proportional hazards model). Alternatively,
DL can directly use the segmentations to make individualized prognosis predictions.

AI-based methods, especially DL methods, have demonstrated remarkable scalability
to handle large datasets and computationally-intensive tasks, making them highly suitable
for various tasks in the field of medical image analysis. Specifically, in the CMR domain,
DL approaches have showcased their capabilities in addressing a diverse range of tasks,
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making it a valuable tool for advancing CMR research and improving diagnostic accuracy
and patient care.

3. AI Applications in Non-Contrast Cardiovascular Magnetic Resonance

Contrast media administration is fundamental in CMR imaging, ranging from diagnosis
to prognosis [36–42]. Indeed, contrast enhancement is essential for evaluating the presence
of myocardial fibrosis using late gadolinium enhancement sequences [38,43,44]. The size,
location, and extent of myocardial fibrosis allow discrimination between ischemic and non-
ischemic etiologies and are independent risk factors for adverse outcomes [5,8,45–51].

Despite the crucial diagnostic and prognostic role of the LGE sequence, some patients
are not eligible to contrast media administration due to allergic reactions and nephrotox-
icity [11,52]. In addition, the application of a rapid CMR acquisition protocol without
contrast media can reduce examination time, allowing more widespread dissemination of
CMR scans with less cost.

Recently, parametric mapping techniques have been introduced in the daily clinical
practice routine, allowing for the discrimination of pathologic myocardium from healthy
tissue [7,36,53–55]. Various studies investigated the potential role of parametric mapping
to assess myocardial scar without the use of gadolinium contrast in comparison with LGE
images [56,57]. However, T1 and T2 mapping require additional sequences that extend
the CMR acquisition time, and the relaxation time is field-strength and scanner specific,
leading to inter-center variability and limiting a widespread clinical utility [58].

In the last years, AI is rising as a leading component in cardiovascular medicine [12,13,19]
and some studies have attempted to generate AI models without contrast media administra-
tion. Table 1 summarizes previous studies regarding the application of non-contrast artificial
intelligence models in CMR.

Table 1. Previous CMR studies about non-contrast AI models in ischemic and non-ischemic cardiomyopathy.

Authors Years Number of
Patients Variables Results

Baessler et al. [59] 2018 120 Radiomics features of
cine-CMR images

The model demonstrated an AUC of 0.93
and 0.092 to diagnose large and small
myocardial infarction on cine-CMR.

Avard et al. [60] 2022 72 Radiomics features of
cine-CMR images

The authors reported optimal performance
for the logistic regression model with an

AUC of 0.93 ± 0.03, an accuracy of
0.86 ± 0.05, a recall of 0.87 ± 0.1, a precision

of 0.93 ± 0.03, an F1 Score = 0.90 ± 0.04,
and for the support vector machine model
with an AUC of 0.92 ± 0.05, an accuracy of

0.85 ± 0.04, a recall of 0.92 ± 0.01, a
precision of 0.88 ± 0.04, and an F1 Score of

0.90 ± 0.02, respectively.

Larroza et al. [61] 2017 44 Radiomics features of
cine-CMR images

Radiomics analysis of cine-CMR images
achieved an AUC of 0.82 ± 0.06 with a

sensitivity of 0.79 ± 0.10, and specificity of
0.80 ± 0.10 for differentiation of acute

myocardial infarction from chronic
myocardial infarction.
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Table 1. Cont.

Authors Years Number of
Patients Variables Results

Larroza et al. [62] 2018 50 Radiomics features of
cine-CMR images

The model demonstrated an AUC of 0.849,
and a sensitivity of 92% to detect nonviable

segments, 72% to detect viable segments,
and 85% to detect remote segments.

Zhang et al. [63] 2019 212 Cine-CMR
The DL model showed a sensitivity of 89.8%

and a specificity of 99.1%, with an AUC
of 0.94.

Zhang et al. [64] 2022 843 Cine-CMR images, T1
mapping images

Virtual native enhancement demonstrated a
strong correlation with LGE in quantifying

scar size (R, 0.89; intraclass correlation
coefficient, 0.94) and transmurality (R, 0.84;

intraclass correlation coefficient, 0.90),
achieving an accuracy of 84% for detecting

scars with a specificity of 100% and
sensitivity of 77%, and excellent
visuospatial agreement with the
histopathological porcine model.

Chen et al. [65] 2022 150
Physiological, clinical,

and paraclinical
features

The proposed model demonstrated a mean
error of 0.056 and 0.012 for the

quantification, and 88.67 and 77.33% for the
classification accuracy of the state of the

myocardium.

Goldfarb et al.
[66] 2019 90

CMR water–fat
separation and

parametric mapping

The DL model could visualize myocardial
fat deposition in chronic myocardial

infarction and intramyocardial hemorrhage
in acute myocardial infarction.

Xu et al. [67] 2020 165 Cine-CMR images

The proposed AI-based model achieved a
pixel classification accuracy of 96.98%, and

the mean absolute error of the infarction
size was 17.15 mm2.

Xu et al. [68] 2018 165 Cine-CMR images

The proposed framework for the pixel-wise
delineation of the myocardial infarction
area achieved an accuracy of 95.03% and
optimal consistency (Kappa statistic: 0.91;

Dice: 89.87%) in comparison to the ground
truths manually segmented LGE images.

Abdulkareem
et al. [69] 2022 272 Cine-CMR images

The SVM model achieved accuracy, F1, and
precision scores of 0.68, 0.69, and 0.64,

respectively. Conversely, the DT models
achieved accuracy, F1, and precision scores

of 0.62, 0.63, and 0.72, respectively.

Zhang et al. [70] 2021 1196 Cine-CMR images, T1
mapping images

The authors reported high agreement
between virtual native enhancement and
LGE in the visuospatial distribution and

quantification of lesions.

Baeßler et al. [71] 2018 32 Radiomics features of
T1 mapping images

The proposed ML model achieved an AUC
of 0.95 with a diagnostic sensitivity of 91%

and a specificity of 93%.

Fahmy et al. [72] 2022 759 Radiomics features of
cine-CMR

The DL model using radiomics data of
cine-CMR images correctly identified 43%
and 28% of HCM patients without scars in

the internal and external datasets.



Diagnostics 2023, 13, 2061 9 of 17

Table 1. Cont.

Authors Years Number of
Patients Variables Results

Cau et al. [73] 2022 43 CMR parameters,
demographics data

The model showed a sensitivity of 92% (95%
CI 78–100), specificity of 86% (95% CI

80–92), and AUC of 0.94 (95% CI 0.90–0.99)
in diagnosing Takotsubo cardiomyopathy.

Eckstein et al. [74] 2022 96 CMR strain and
function parameters

The supervised ML model demonstrated an
accuracy of 90.9% (0.996; precision = 94%;

sensitivity = 100%; F1 Score = 97%) to
identify cardiac amiloidosis patients.

Krebs et al. [75] 2021 350 Cine-CMR images

The proposed score remained significantly
associated with ventricular arrhythmia after

adjustment in multivariable
regression analysis.

3.1. Ischemic Cardiomyopathy

CMR has evolved as an essential tool for assessing the prognosis after myocardial
infarction as endorsed by the Society for Cardiovascular Magnetic Resonance 2020 position
paper [76]. Indeed, the presence of LGE allows for discrimination between viable and
non-viable myocardium and the likelihood of recovery after revascularization [44,77–79].
Moreover, the presence of LGE is a predictor of major adverse cardiovascular events,
independent of left ventricle ejection fraction [47].

Several researchers have explored the potential role of non-contrast cine-CMR images
as an alternative to late gadolinium enhancement (LGE)-CMR images to assess myocardial
infarction location and size without gadolinium injection [59–64,66]. Baessler et al. investi-
gated the application of radiomics features using non-contrast cine-CMR to differentiate
ischemic scar and normal myocardium. Using multiple logistic regression models, the
authors demonstrated an area under the receiver-operating characteristics curve (AUC) of
0.93 and 0.092 in diagnosing large and small myocardial infarction on cine-CMR, respec-
tively [59]. In the retrospective study of 72 patients (52 with myocardial infarction and
20 healthy control patients), an ML-based model was developed using radiomics features
for the distinction of myocardial infarction tissue and viable myocardium on non-contrast
cine-CMR images. The authors reported optimal performance for the logistic regression
model with an AUC of 0.93 ± 0.03, an accuracy of 0.86 ± 0.05, a recall of 0.87 ± 0.1, a
precision of 0.93 ± 0.03, and an F1 Score = 0.90 ± 0.04, and for the support vector machine
model with an AUC of 0.92 ± 0.05, an accuracy of 0.85 ± 0.04, a recall of 0.92 ± 0.01, a
precision of 0.88 ± 0.04, and an F1 Score of 0.90 ± 0.02, respectively [60].

A pixel-wise tissue identification approach using a DL architecture was recently
proposed from non-contrast CMR images [67]. The AI-based model consisted of three
connected functional layers, namely heart localization, which automatically delineates
the LV, the motion feature extraction to build motion features through intensity changes
between adjacent images to evaluate the motion of each pixel, and the fully-connected
discriminative layers to predict tissue identification in each pixel. The authors validated the
proposed pipeline in 165 cine-CMR imaging datasets, reporting high accuracy (pixel-level:
95.03%) and consistency (Kappa statistic: 0.91; Dice: 89.87%) in comparison to the ground
truths manually segmented LGE images [67].

Xu et al. proposed a contrast-free deep spatiotemporal generative adversarial network
to simultaneously segment and quantify myocardial infarction from cine-CMR images [68].
The proposed AI-based model used a conditional generative adversarial network DL
approach, achieving a pixel classification accuracy of 96.98%, and the mean absolute error
of the infarction size was 17.15 mm2 [68].

Larroza et al. trained a support vector machine classifier to investigate the ability
of texture analysis using cine-CMR images to discriminate between infarcted nonviable,
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viable, and remote segments. The authors demonstrated that non-viable segments can be
detected on non-contrast cine-CMR images using texture analysis, with an AUC of 0.849
and a sensitivity of 92% [62].

Chen et al. developed an ML model that combined physiological, clinical, and paraclin-
ical features to evaluate the severity of myocardial infarction in 150 patients. The proposed
model revealed with high accuracy the presence of infarction, persistent microvascular
dysfunction, and the percentage of infarcted myocardium, demonstrating a mean error of
0.056 and 0.012 for the quantification, and 88.67 and 77.33% for the classification accuracy
of the state of the myocardium [65]. In a retrospective study of 272 patients with diagnoses
of myocardial infarction (n = 108) and healthy controls (n = 164), an AI-based model was
investigated to predict post-contrast information (i.e., presence, location, and/or extent
of MI scar) from non-contrast data [69]. The authors described a pipeline and explored
two different approaches, namely, segmentations and classification models. For the first
approach, a U-Net DL model was investigated to discover the extent and location of the
myocardial scar from non-contrast cine-CMR images [69]. For the classification model, a
ResNet50 was used to discriminate between ischemic from non-ischemic patients given
the non-contrast cine-CMR images [69]. Finally, two supervised ML methods, namely, the
support vector machines (SVM) and the decision tree (DT) methods were developed for
classifying myocardial infarction patients and healthy subjects from non-contrast cine-CMR
images. The SVM model achieved accuracy, F1, and precision scores of 0.68, 0.69, and 0.64,
respectively. Conversely, the DT models achieved accuracy, F1, and precision scores of
0.62, 0.63, and 0.72, respectively [69]. The main limitations of the previously discussed
studies were the small cohorts of patients enrolled from a single center, the retrospective
data analysis, and the lack of external validation.

Zhang et al. combined cine-CMR images and native T1 mapping to produce LGE-like
images using a novel AI approach, namely virtual native enhancement. This approach
used a DL model to enhance the imaging signal in native T1 mapping and cine images.
The virtual native enhancement was compared with LGE images using linear regression,
Pearson correlation, and intraclass correlation coefficients. In addition, a histological
comparison was performed in the porcine model of myocardial infarction. The authors
developed a non-contrast DL model from 843 patients with previous myocardial infarction
using 775 patients for development and 68 patients for testing. Virtual native enhancement
demonstrated a strong correlation with LGE in quantifying scar size (R, 0.89; intraclass
correlation coefficient, 0.94) and transmurality (R, 0.84; intraclass correlation coefficient,
0.90), achieving an accuracy of 84% for detecting scars with a specificity of 100% and a
sensitivity of 77%, and excellent visuospatial agreement with the histopathological porcine
model [64]. In their prospective study, Zhang et al. enrolled a large cohort of patients with
myocardial infarction from a single center. However, they did not evaluate the DL model
using independent testing, which represents a limitation of their study [64].

3.2. Non-Ischemic Cardiomyopathy

Similar AI-based models have been proposed in non-ischemic cardiomyopathies [70–
73]. A non-contrast T1 mapping CMR ML-based model using radiomics for the detec-
tion of myocardial tissue alterations in hypertrophic cardiomyopathy was developed by
Baeßler et al. In their retrospective study, the authors analyzed radiomics features in 32
patients with known hypertrophic cardiomyopathy in comparison with 30 healthy patients.
The proposed ML model achieved an AUC of 0.95, with a diagnostic sensitivity of 91% and
a specificity of 93% [71]. The application of an AI-based model combining imaging, clinical,
and demographic data has been shown to be an effective tool in the differential diagnosis
of various cardiovascular diseases.

Cau et al. developed an ML-based model integrating non-contrast CMR parameters
and demographic factors to identify patients with Takotsubo cardiomyopathy in subjects
with acute chest pain. The authors retrospectively enrolled three groups of patients (patients
with Takotsubo cardiomyopathy, patients with acute myocarditis, and healthy subjects)
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and tested five different tree-based ensemble learning algorithms, namely Random Forest,
Extremely Randomized Trees, Bagging of Trees, Adaptive Boosting, and Extreme Gradient
Boosting. The Extremely Randomized Trees ML algorithm showed a sensitivity of 92%
(95% CI 78–100), specificity of 86% (95% CI 80–92), and AUC of 0.94 (95% CI 0.90–0.99) in
diagnosing Takotsubo cardiomyopathy. In addition, the proposed model outperformed
clinical reader diagnoses with an average increase in AUC of 0.42 (80%), a sensitivity of
0.08 (10%), and a specificity of 0.618 (257%) in a shorter analysis time (0.26 s vs. 560 s) [73].
Similarly, Eckstein et al. developed a supervised ML model combining right atrial, left
atrial, and right ventricular strain parameters and cardiac function to identify patients
with cardiac amyloidosis using multiple machine learning classifier algorithms such as the
k-nearest neighbor, both linear and non-linear support vector machines, and decision trees.
Non-linear support vector machine using a kernel radial basis function demonstrated the
highest accuracy rate among all ML algorithms (90.9%), with an AUC of 0.996 [74]. The
main limitations of the previously discussed studies were the retrospective data analysis,
the small cohorts of patients enrolled from a single center for the training cohorts, and
the lack of an evaluation using independent testing. A CMR virtual native enhancement
has also been proposed for non-ischemic cardiomyopathy using a DL-based model by
Zhang et al. The AI model used multiple streams of convolutional neural networks to
enhance contrast and signals within the native T1 maps and cine-CMR images obtaining
an LGE-equivalent image. The virtual native enhancement was developed from the multi-
center Hypertrophic Cardiomyopathy Registry using 1075 patients for the development
and 121 patients for the test. The authors reported high agreement between virtual native
enhancement and LGE in the visuospatial distribution and quantification of lesions [70].
Cine-CMR images analyzed with DL also showed their potential prognostic role in the
recent CERTAINTY study (CinE caRdiac magneTic resonAnce to predIct veNTricular ar-
rhYthmia). In this study, the authors evaluated a DL model for ventricular arrhythmia risk
prediction from non-contrast cine-CMR of 350 heart failure patients with both ischemic
and non-ischemic etiologies and created a cine risk score. The proposed score remained
significantly associated with ventricular arrhythmia after adjustment in the multivariable
regression analysis (Model I: adjusting for sex, type of cardiomyopathy, use of diuretics,
and hsCRP; HR 3.24, p = 0.005. Model II: further adjusting for LVEDI, LV ejection fraction,
LV LGE gray zone, LA maximum volume index, and LA total emptying fraction; HR 2.67,
p = 0.027) [75]. Although it delivered promising prognostic results, the CERTAINTY study
has intrinsic limitations, including the lack of an external validation cohort and the small
sample size obtained from a single institution for the training cohort.

4. Current Limitations and Future Developments

The translation of non-contrast AI models into real-world clinical practices faces
significant challenges. The “black box” nature of AI algorithms, particularly DL models,
hampers interpretability and explainability. The reproducibility of results across different
settings is also a crucial concern. Data heterogeneity, encompassing variations in imaging
protocols and patient demographics, poses a challenge to generalizability. Ethical and legal
issues, including privacy and data security, must be carefully addressed. Overcoming these
challenges is essential for the successful integration of non-contrast AI-based solutions in
clinical practice.

4.1. Lack of Algorithms Transparency and Quality Control

The lack of transparency and interpretability often creates ambiguity regarding what
data is used and the interactions of the underlying variables that lead to specific outputs,
thereby limiting the applicability of AI models in clinical practice without adequate insight
or explanation. Furthermore, as the size of DL models increases, it becomes progres-
sively challenging to explain the individual contributions of the network’s elements to the
generated predictions.
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4.2. Data Heterogeneity and Concerns with Validation and Testing

Developing robust and generalizable AI models for CMR image analysis also requires
a substantial amount of annotated data from diverse centers, along with highly specialized
software and infrastructure. It is essential to have a large and homogeneous dataset that
encompasses images from various centers to ensure the model’s reliability and general-
izability. In addition, when such a dataset is available, it is important to examine and
separate it into training, validation, and testing sets. This division allows for an impartial
evaluation of the final models, ensuring that the assessment is not biased [80]. Furthermore,
it is of fundamental importance to repeat the division with different randomizations or
employ consolidated techniques for internally evaluating the generalization capability of
the models, such as repeated stratified cross-validation or leave-one-site-out testing [81,82].

4.3. Ethical and Legal Issues

The use of AI in healthcare raises important ethical and legal considerations. The main
ethical concerns about the application of AI in healthcare include data privacy and security,
transparency and safety, and algorithm fairness and bias. The development of large and
homogeneous datasets primarily raises concerns about data privacy and security. Notable
apprehensions arise regarding the collection and utilization of patient data, including
the possibility of its employment in undisclosed manners by entities distinct from the
individual from whom the data was obtained. Additionally, there exists the potential for
the information gathered for and by AI systems to be vulnerable to hacking attempts [83,84].
Regulatory bodies such as the Food and Drugs Administration and the European Union
Medical Device Regulation have initiated efforts to ensure transparency and safety in data
handling, privacy, processing, and data sharing [85–87]. Another issue is the “fairness”
of the AI model. Indeed, an imbalance in the training data can lead to notable variations
in the performance of AI-based models across various sex and racial groups, potentially
exacerbating disparities in healthcare.

4.4. Future Development

Controlled trials are needed to assess the application of non-contrast AI models across
different centers and patient groups to avoid unbalanced sex representation and low repre-
sentation of minority communities in order to minimize bias. Multicenter and multivendor
studies are necessary to evaluate the effectiveness of non-contrast AI-based models in
real-world clinical practice. It is crucial to compare the performance of the AI algorithm
with expert evaluations of “gold standard” CMR images, such as LGE images, by conduct-
ing multireader, multicase studies involving multiple experienced radiologists [88]. This
approach allows for a comprehensive analysis of the model’s performance, benchmarking
it against the collective expertise of human specialists. Furthermore, conducting external
validation using data from different centers and acquisition scanners enhances the relia-
bility and generalizability of the AI model’s findings. Similarly, ensuring a robust quality
control process is vital for the clinical translation of AI-based approaches, leveraging the
availability of open-source models and datasets. Non-contrast AI models may represent a
potential evolution in CMR imaging, allowing faster examinations at significantly reduced
lower costs. By implementing effective quality control measures, such as rigorous statistical
validation of models, the clinical integration of AI-based approaches can be facilitated,
leading to improved efficiency, cost-effectiveness of CMR imaging practices, and overall
patient care.

In addition, it would be necessary to develop a privacy protection algorithm that inte-
grates encryption and AI techniques for achieving secure and generalizable non-contrast AI
models. A potential strategy for safeguarding patient privacy is to keep the datasets within
the firewall of each organization and transfer only the algorithms or trained parameters to
each site.



Diagnostics 2023, 13, 2061 13 of 17

5. Conclusions

The adoption of non-contrast AI-based models holds great potential to enhance daily
clinical practice in cardiovascular healthcare by reducing costs and facilitating wider
access to CMR examinations. In particular, these AI models may be particularly useful in
patients with kidney diseases or those not eligible for contrast media administration due to
allergies. Application of these AI technologies may have the potentiality to significantly
assist clinicians in “real life” clinical practice routine, facilitating the clinical workflow,
diagnosis, and prognosis in ischemic and non-ischemic cardiomyopathy.

However, the applicability of non-contrast CMR approaches is currently limited
due to the challenges related to heterogenous datasets from different centers, the lack of
transparency and explainability of many AI algorithms, and insufficient external validation
in existing studies. To expedite the clinical application of these models, it is crucial to
design controlled trials carefully, addressing these limitations and ensuring robustness
and reliability in their evaluation. Future prospective, multicenter, multireader, and paired
validation studies are needed to accelerate the translation of non-contrast AI-based models
into effective tools for clinical decision-making in CMR imaging.
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