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Fig. 1. We propose a novel set of dual schemes to turn an adaptively refined grid into a conforming hexahedral mesh. Compared with prior methods, our
schemes allow to process a broader class of input grids, and produce coarser hexahedral meshes with a simpler singular structure.

Hexahedral meshes are an ubiquitous domain for the numerical resolution
of partial di�erential equations. Computing a pure hexahedral mesh from an
adaptively re�ned grid is a prominent approach to automatic hexmeshing,
and requires the ability to restore the all hex property around the hanging
nodes that arise at the interface between cells having di�erent size. The
most advanced tools to accomplish this task are based on mesh dualization.
These approaches use topological schemes to regularize the valence of inner
vertices and edges, such that dualizing the grid yields a pure hexahedral
mesh. In this paper we study in detail the dual approach, and propose
four main contributions to it: (i) we enumerate all the possible transitions
that dual methods must be able to handle, showing that prior schemes
do not natively cover all of them; (ii) we show that schemes are internally
asymmetric, therefore not only their construction is ambiguous, but di�erent
implementative choices lead to hexahedral meshes with di�erent singular
structure; (iii) we explore the combinatorial space of dual schemes, selecting
the minimum set that covers all the possible con�gurations and also yields
the simplest singular structure in the output hexmesh; (iv) we enlarge the
class of adaptive grids that can be transformed into pure hexahedral meshes,
relaxing the tight topological requirements imposed by previous approaches.
Our extensive experiments show that our transition schemes consistently
outperform prior art in terms of ability to converge to a valid solution,
amount and distribution of singular mesh edges, and element count. Last
but not least, we publicly release our code and reveal a conspicuous amount
of technical details that were overlooked in previous literature, lowering an
entry barrier that was hard to overcome for practitioners in the �eld.
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1 INTRODUCTION
Volumetric discretizations made of hexahedral cells are ubiquitous in
applied sciences, where they are used as computational domains for
the numerical resolution of partial di�erential equations [Schneider
et al. 2019; Wang et al. 2004, 2021]. Converting an adaptively re�ned
grid into a pure hexahedral mesh is one of the prominent approaches
to hexmeshing, and due to its unbeaten scalability and robustness is
the only fully automatic method that successfully transitioned from
academic research to industrial software [CoreForm 2020; Dassault
Systèmes 2020].
Grid-based methods operate on carefully constructed lattices.

When adaptive grids are used, hanging nodes arising at the inter-
face between cells with di�erent size are substituted by dedicated
topological schemes that locally restore the all hex connectivity and
provide the necessary conforming transitions . For ease of imple-
mentation and reproduction, the number of these schemes must be
low. At the same time, the scheme set must be rich enough to exhaus-
tively address all the possible con�gurations, such that convergence
to a conforming pure hexahedral mesh is always guaranteed.

Early approaches unsuccessfully tried to directly incorporate
hanging nodes in the hexmesh, but this operation is not always
possible (Section 2). Maréchal [2009] was the �rst to observe that if
all grid vertices have six incident edges and all edges have four inci-
dent cells, then the dual of the grid yields only hexahedral elements.
The schemes he proposed operate on small groups of nearby hang-
ing nodes, regularizing their valence (i.e., the number of incident
edges) . In this paper, we dive into the details of the dual approach,
clarifying some ambiguous aspects of previous methods and also
introducing novel topological schemes that overcome the known
ones, permitting to obtain – for the same input grids – conforming
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Fig. 2. The number of hexahedra incident to an edge directly impacts the maximum per element quality locally achievable. For each configuration, we show
edge valence and the best Minimum Scaled Jacobian that can be obtained from such connectivity . Our schemes always generate edges with valence between
3 and 6. On the dataset released with [Gao et al. 2019], both [Maréchal 2009] and [Gao et al. 2019] introduce singular edges with higher valence.

hexahedral meshes with lower element count and simpler singular
structure. Speci�cally, this article o�ers four main contributions.

Exhaustivity: we show that the original schemes proposed by
Maréchal [2009] and by [Gao et al. 2019; Hu et al. 2013] are not
exhaustive, in the sense that they only show the basic transitions,
without explicitly deriving the full scheme set that is necessary to
handle any possible con�guration. Speci�cally, considering the class
of adaptive grids that can be processed with these methods, there
exist exactly 20 alternative transitions (Figure 3). As detailed in Sec-
tion 5, handling all transitions requires a non trivial blending of the
known elementary schemes, which was never addressed in previous
literature. Our analysis also revealed that previous approaches may
occasionally fail to produce a valid mesh (Section 7.2). Conversely,
our schemes are guaranteed to always produce the correct result.

Ambiguity: we show that prior schemes are ambiguous, because
transitions are internally made of chains of prismatic elements that
intersect orthogonally, passing one on top of the other. It follows
that schemes are internally asymmetric, and there are always two
possible ways to handle an intersection. In �at regions two chains
intersect once, hence there are two alternative ways to implement
them. Concave edges have three chains that intersect twice, hence
there are 22 con�gurations. Concave corners involve three chains
that intersect three times, hence there are 23 con�gurations. Inter-
estingly, these choices are often critical, as they may negatively
impact the singular structure of the output mesh.

Optimality: we explore the combinatorial space of dual schemes,
proving that there are multiple ways to bend a chain of prisms
around a concavity and that each method produces a dual hexmesh
with di�erent singular structure. We also show that we can avoid
high valence edges by wisely selecting the best intersections. In
this sense our schemes are optimal because, among all the possi-
ble chain intersections, they choose the ones that minimize edge
valences. Existing tools based on [Gao et al. 2019; Maréchal 2009]
unnecessarily insert edges with higher valence, negatively a�ecting
mesh quality (Figure 2).

Weak balancing: we extend the class of adaptive grids that can
be transformed into pure hexahedral meshes. Prior schemes require
the input grid to be (strongly) balanced, meaning that the di�erence
in the amount of re�nement associated with any pair of cells shar-
ing an edge, face or vertex must be lower than 2. We introduce a
few additional schemes that permit input grids to obey to a weaker

de�nition of balancing, where only face-adjacent cells must have
compatible re�nement. This extension allows to greatly reduce the
number of mesh elements, introducing up to 64% less hexahedra in
the output mesh for same input grid.

Summarizing, this study o�ers a comprehensive overview – and
hopefully a better understanding – of the transition schemes for
grid-based hexmeshing, also proposing novel ideas and advancing
the �eld. The schemes proposed in this paper make explicit for the
�rst time the full set of transitions that are necessary to process an
adaptively re�ned grid, and also substantially enlarge the class of in-
put grids that can be converted into a conforming hexahedral mesh.
We performed extensive comparative tests on multiple datasets [Gao
et al. 2019; Zhou and Jacobson 2016], producing more than 20 thou-
sand hexahedral meshes overall. Based on these results, we can
conclude that our schemes are consistently superior than prior art
in terms of ability to produce a valid result (i.e., conforming, all-hex),
mesh singular structure, and element count (Section 7). To grant
maximal di�usion, we publicly share the complete set of schemes
and the code necessary to install them. All these contributions have
been incorporated into the MIT licensed library CinoLib [Livesu
2019].

2 RELATED WORKS
Grid-based hexahedral meshing was pioneered by Schneiders, who
�rstly proposed to use regular voxel grids [Schneiders 1996], and
soon later introduced adaptively re�ned grids, obtained through the
use of octrees [Schneiders et al. 1996]. Octrees had already been used
for adaptive mesh generation, but they were unsuitable to hexmesh-
ing because there were no topological schemes to suppress hanging
nodes, and there were no bounds on the topological complexity of
each cell [Shephard and Georges 1991].
If adjacent elements in an adaptive grid di�er by at most one

level of re�nement, there exist exactly 28 alternative con�gurations
that must be handled. Discarding trivial con�gurations (i.e., fully
re�ned and unre�ned cells) and accounting for symmetries, the
number goes down to 20 unique cases [Weiler et al. 1996]. A hexahe-
dralization for four of these con�gurations was published multiple
times [Schneiders 1997, 2000a,b; Schneiders et al. 1996; Tack et al.
1994]. Authors also showed that concave con�gurations cannot be
hexmeshed, because they contain an odd number of quadrilateral
faces, a condition for which it is proved that the hexmeshing prob-
lem does not admit a valid solution [Mitchell 1996]. Despite being
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Fig. 3. Exhaustive set of all possible transitions that may arise in an adaptive grid with two alternative levels of refinement. Values next to each cube denote
the number of octants filled with a regular 4� 4� 4 sub-grid (blue). The red-shaded empty octants can be imagined filled with a coarser 2� 2� 2 sub-grid,
which is not rendered to make the figure easier to parse. These cases can be seen as a volumetric interpretation of the lookup table shown in [Nielson 2004].

non-exhaustive, the known schemes are of practical relevance, and
a variety of algorithms used them to generated adaptive hexahedral
meshes. Whenever unsupported con�gurations arise, grid re�ne-
ment can be iteratively applied to reconduct the problem to the set
of known schemes so that a mesh can be created [Zhang and Bajaj
2006]. This allows to potentially mesh any grid, but at the same time
is undesirable, because a conspicuous amount of extra re�nement
may be necessary to converge to a valid solution. Slightly di�erent
re�nement schemes were proposed in [Ito et al. 2009], but also in
this case concave con�gurations cannot be handled. Conversely,
[Livesu et al. 2016] proposed schemes to realize �ne-to-coarse tran-
sitions along a tubular object, but this approach does not extend to
a broader class of shapes.

Considering the impossibility to derive a complete set of hexmesh-
ing schemes, recent literature approached the problem from a dif-
ferent angle. Maréchal [2009; 2016] pioneered the dual approach,
which is based on the intuition that cutting grid cells to regularize
vertex valences de�nes a polyhedral mesh that yields a pure hexa-
hedral mesh once dualized. His paper sets the basic ideas but does
not document the exhaustive set of schemes that are necessary to
handle all the possible transitions described in Figure 3 . Based on
the same principles, we independently derived an optimal set of
schemes, for which we demonstrate both exhaustiveness and opti-
mality, in the sense that they produce coarser meshes with simpler
singular structure.
In recent years a few variations of the dual approach have been

proposed. Hu and colleagues [2013] propose to position transition
schemes at the inner sides of re�ned areas, reducing their volumetric
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extent. The idea is to essentially shift the same schemes one level in-
wards in the grid, without changing them. Gao and colleagues [2019]
proposed to dualize the grid �rst, and then substitute clusters of
non-hexahedral elements with templated all-hex schemes which
reproduce patterns very similar to the ones designed by Maréchal.
Also these schemes are not exhaustive and, as discussed in Sec-
tion 7.2, the method implemented in [Gao et al. 2019] may fail to
produce a conforming hexahedral mesh. None of these prior meth-
ods supports weakly balanced grids, and necessitate to over-re�ne
the input grid to meet more stringent topological criteria for con-
forming hexmeshing.

Grid-based meshing pipeline. Transition schemes for conforming
hexahedral meshing are just a single building block of a more com-
plex pipeline. Typically, the process starts from a coarse regular
grid, which is adaptively re�ned to meet geometric or numerical
accuracy. The so generated grid is then further re�ned to make
it topologically suitable for hexahedral meshing [Maréchal 2009].
Transition schemes like ours are then used to secure mesh confor-
mity, and the relevant portion of the grid is extracted, discarding
unnecessary cells. Depending on the application, only the interior
or the exterior can be retained. For example, the typical goal of
FEM analysis is to discover stresses internal to the object, whereas
CFD is more concerned with the dynamics happening outside of
it (e.g., around the wing of an airplane). The simulation domain
is �nalized by projecting its boundary onto the target geometry,
possibly preserving its feature lines [Gao et al. 2019; Lin et al. 2015].
Since many cuboids may have more than one facet exposed on
the surface (or more than one edge participating in a feature line),
mesh padding is used to improve mesh topology, ensuring that no
element becomes degenerate during the projection [Cherchi et al.
2019]. At the end of this process, the so generated mesh is ready for
use and can be coupled with the numerical solver of choice. While
this article is fully focused on the topological templates that ensure
mesh conformity, each one of the building blocks mentioned above
has a dedicated line of research. Our schemes are compatible with
any existing grid-based meshing pipeline.

Other pipelines. Hexahedral meshing is a vast topic, and a variety
of alternative techniques have been proposed in literature, such as
polycubes [Fang et al. 2016; Fu et al. 2016; Gregson et al. 2011; Huang
et al. 2014; Livesu et al. 2013], advancing front methods [Kremer
et al. 2014], sweeping methods [Gao et al. 2015], and methods that
align to some guiding �eld [Corman and Crane 2019; Li et al. 2012;
Liu et al. 2018; Livesu et al. 2020; Solomon et al. 2017]. Most of these
methods are notoriously superior than grid methods, in the sense
that they produce meshes with much simpler singular structure and
often much higher per element quality. Nevertheless, none of these
algorithms can be compared with grid-based approaches in terms of
robustness and scalability, making the use of grids the only feasible
solution to reliably process large collections of shapes of any size
and complexity.

3 DUAL MESHING: CONSTRAINTS AND DESIDERATA
The dual idea is a broad topological concept, with applications in
many scienti�c �elds. In mesh generation dualization has been

widely used, e.g. to transform a Voronoi diagram into a simplicial
mesh [Lévy and Liu 2010], or to generate quadrilateral [Campen
et al. 2012; Nielson 2004] and hexahedral [Gao et al. 2019; Hu et al.
2013; Maréchal 2009; Tautges and Knoop 2003] meshes.

Considering a (primal) cellular complex composed of V vertices,
E edges, F faces and C cells, its dual mesh is a cellular complex
having:

• one vertex for each primal cell c � C

• one edge for each primal face f � F

• one face for each primal edge e � E

• one cell for each primal vertex � � V

In particular, the valence of each dual vertex corresponds to the
number of faces of its associated primal cell. The valence of each
dual edge corresponds to the number of sides of its primal face. The
number of sides of each dual face corresponds to the valence of
its associated primal edge. The number of faces of each dual cell
corresponds to the valence of its associated primal vertex.
From a topological perspective, a hexahedron is a solid with 8

vertices, 12 edges, and 6 quadrilateral faces. Considering the de�-
nition above, one can always generate a pure hexahedral mesh via
dualization if and only if:

• each primal vertex has valence 6, because its associated dual
cell has 6 faces

• each primal edge has valence 4, because its associated dual
face will be a quad

In addition to these strict topological requirements, it is practically
relevant to ensure that the so generated hexmesh has a good singular
structure, meaning that it locally resembles a regular grid almost
everywhere. To this end, it is desirable that the majority of inner
dual vertices have valence 6, and that the majority of dual edges
have valence 4. Thinking about these properties in terms of their
relation with the primal mesh, it turns out that a good adaptive grid
should have as many cells as possible composed of 6 faces, and as
many 4-sided faces as possible. In particular, it is important to avoid
primal faces with many sides, because they produce high valence
singular edges in the dual hexmesh, which negatively impact per
element quality (Figure 2). The schemes proposed in this paper
are designed to fully address topological constraints, and also to
optimize the ful�llment of practical desiderata.

4 BASIC TRANSITIONS
In this section we start from the basic scheme originally proposed
in [Maréchal 2009] and show how it can be adapted to convex,
concave, and corner con�gurations. As it will become clear in the
remainder of the section, there are multiple ways to perform this
task. We will exhaustively show all the possible versions and select
the ones that are optimal with respect to the desiderata expressed
in Section 3.
The core idea is identical to the 2D case depicted in Figure 5,

where the two hanging nodes are suppressed by forming two trian-
gles connected through the vertical edge in between them. However,
the 3D realization is more convoluted, because any non conforming
transition between a 4�4 and a 2�2 grid generates 14 hanging ver-
tices with valence 5. Following the analogy with the 2D case, we can
imagine to extrude the triangles that suppress the hanging nodes,

16ma
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Fig. 4. Basic scheme to transition from a flat 4�4 to a 2�2 grid. From le� to right: there are 14 hanging nodes with valence 5 (black dots). The first chain of
prismatic elements with triangular cross section suppresses all hanging nodes but four. The second chain intersects the first one orthogonally, and secures
valence 6 for all vertices. The four upper cells reproduce the 2�2 structure, completing the transition. Some of the faces are transparent to be�er inspect the
interior topology.

Fig. 5. A 2D example of the dual approach proposed in [Maréchal 2009].
Le�: an adaptively refined grid has two hanging vertices (black dots) at
the interface between elements of di�erent sizes. Middle: connecting them
through the vertical edge in between ensures that all internal nodes have
valence four. Right: dualizing the grid yields a pure quadrilateral mesh.

which become chains of prismatic elements with triangular cross-
section. Each transition requires two such chains, that intersect
orthogonally at the middle of the grid. If the chains were identical,
their intersection would de�ne a valence 8 vertex, violating the
constraints expressed in Section 3 and thus failing to produce a
pure hexahedral dual mesh. To keep vertex valences under control,
the trick is to make sure that the two chains do not intersect at
the same height, but rather one passes below the other, splitting
the valence 8 vertex into two valence 6 vertices. Consequently, any
time there is an intersection, one must choose which of the two
chains passes below the other, leading to ambiguity. Figure 4 shows
how the topology of the two chains must be arranged to secure the
correct vertex and edge valences. One could alternatively choose
to have the upper chain passing below the lower one. This choice
is completely harmless if the intersection occurs at a �at region,
because the global amount and type of primal mesh elements does
not change.

Given this basic scheme, the whole idea behind dual hexmeshing
is to suppress all hanging nodes by designing a network of pris-
matic chains that wind around clusters of grid elements having the
same amount of re�nement. Since each cluster is a regular sub-grid,
its outer surface is also regular, therefore chains always intersect
pairwise in an orthogonal manner. In practice, this means that all
we need is to be able to adapt the scheme in Figure 4 to allow these
chains to turn at the convexities and concavities of each re�ned
cluster.

Fig. 6. When a chain of prismatic elements turns 90� to traverse a con-
vex edge, two tetrahedral elements (yellow) are necessary to adjust mesh
topology and provide the necessary bending.

4.1 Convex transitions
Two chains of prisms that meet at the convex edge of a re�ned
area can be welded together by using two tetrahedral elements that
form a bridge between the cross sections of the incoming chains
(Figure 6). Di�erently from �at and concave transitions, this scheme
is not ambiguous because no intersections between orthogonal
chains are involved.

4.2 Concave transitions
Transitions across concave edges are more complex, because four
di�erent chains of prismatic elements are involved. Two of them are
parallel to the concave edge, and are positioned aside from it. The
other two are orthogonal to the concave edge, and are the ones that
need to be merged into a single chain that turns at the concavity.
These four chains intersect pairwise at the left and right of the
concave edge. Depending on how these intersections are realized,
the transition changes. There are two di�erent ways two handle each
intersection (one chain goes below, one above), therefore there exist
22 alternative solutions. Ignoring symmetries, the amount of unique
schemes reduces to three. Speci�cally, if the two chains that merge
at the concave edge pass both below their respective intersections,
their blending can be realized using three pentagonal faces (Figure 7,
left). If one of the two chains passes above its intersection, then
three hexagonal faces are needed (Figure 7, middle). Finally, if both
chains pass above their intersections, three heptagonal faces are
needed (Figure 7, right).

16Ma
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Fig. 7. There are three di�erent ways to bend a chain of prismatic elements along a concave edge. Le�: if the chain passes below both intersections aside
the concavity, the bending can be realized with three pentagonal faces. Middle: if the chain passes below one intersection and above the other, the bending
necessitates hexagonal faces. Right: if the chain passes above both intersections, heptagonal faces are needed. Transition elements are highlighetd in yellow.
Note that in all cases two hexagonal faces are needed to handle the bo�om and top corner faces (see the bo�om le� dashed lines). The le�most solution is the
optimal one, because it introduces the least amount of high valence irregular edges in the dual hexmesh.

Recalling that primal faces become edges in the dual mesh, and
that the valence of such edges correspond with the number of sides
of their primal face, we can conclude that – depending on the scheme
of choice – concavities may introduce irregular edges with valence
5, 6 or 7. In order to optimize the criteria expressed in Section 3 we
always adopt the transition that produces valence 5 edges, obtain-
ing the simplest singular structure in the output mesh. Note that
regardless of the con�guration of choice, the top and bottom lids of
a concave edge are essentially two quads with two corners cut (to
account for the incoming chains). This means that the full scheme
will still produce two valence 6 edges in the dual mesh (see the
dashed lines at the bottom left of Figure 7). Nevertheless, our choice
minimizes the extent of high valence singularities in the output
hexmesh, completely avoiding valence 7 edges and reducing the
amount of valence 6 singular edges to only two.

4.3 Transitions around corners
Prismatic chains never traverse the corners of a cluster of re�ned
elements directly, but each corner has three chains that wind around
it and mutually intersect each other three times. If the corner is
convex, these intersections are handled with the �at scheme in Fig-
ure 4, and always produce a mesh with equivalent singular structure.
Conversely, concavities require to use a blending of the schemes
for concave edges shown in Figure 7. Di�erently from a single con-
cavity, which can always be handled with the simplest among the
three possible options, concave corners are the meeting point of
three mutually orthogonal concave edges. The interplay between
the chains winding around the corner is such that it becomes im-
possible to make sure that each chain passes below all intersections
it is involved in. More precisely, three mutual intersections and two

Fig. 8. Corners of a refined area always have three chains of prisms wind-
ing around them. Since each intersection chain can be arranged in two
di�erent ways, there are 23 alternative configurations, which removing sym-
metries reduce to the two shown in this figure. The le� configuration is
fully symmetric, as the chain traversing each concave edge passes above
one intersection and below the other one. The right configuration exposes
all the three possible cases (one chain fully below, one chain fully above,
and one chain both below and above). The le�most configuration is be�er
because it only introduces valence 6 edges in the hexmesh, whereas the one
at the right also introduces valence 7 singular edges.

alternative ways to handle each one of them de�ne a combinatorial
space of 23 alternative solutions. Removing the symmetries, there
exist only two ways to handle a concave corner: in one case, each
concave turn involves a chain that passes above one intersection
and below the next one (Figure 8, left). In the other case, all the three
transitions shown in Figure 7 arise. Also in this case, our preference
goes to the left con�guration because it fully avoids the genera-
tion of singular edges with valence 7 in the output hexmesh and
minimizes the amount of valence 6 edges.
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Fig. 9. A non trivial transition involving a flat area, two concave edges, and
one convex edge. The basis of the flat and convex schemes conflict (right),
therefore basic transitions cannot be used directly, but must be combined in
order to produce hybrid schemes that adapt to the local shape of the grid.

5 SCHEMES
The basic transitions shown in the previous section cannot be di-
rectly used to transform an adaptively re�ned grid into a pure hex-
ahedral mesh. As shown in Figure 9, many local con�gurations
will necessitate hybrid transitions, which are a blend of the atomic
patterns designed for the �at, convex and concave cases.

To enumerate all the possible local con�gurations that may arise,
we can imagine working in a grid where only two alternative re�ne-
ment levels are possible: coarse and �ne. Note that this hypothesis is
not restricting: all grid-based methods assume that the adaptive grid
is balanced, which means that any couple of face, edge, or vertex
adjacent cells can di�er by at most one level of re�nement [Maréchal
2009]. It follows that indeed – at a local level – only two levels of
re�nement are possible.
Let us imagine having a cube split into 8 octants, and �lling

each octant either with a coarse 2� 2� 2 or with a �ner 4� 4�
4 sub-grid. Since for each octant there are two possible choices,
there exist 28 alternative assignments. Ignoring symmetries and
removing the two fully regular grids obtained by �lling all octants
with the same element, we obtain a set of 20 unique con�gurations,
which correspond to all the possible transitions that may arise in
a balanced adaptive grid (Figure 3). This combinatorial space is
equivalent to the one explored by primal approaches (Section 2),
and is also equivalent to that ofMarching Cubes [Lorensen and Cline
1987], which associates a sign to the cube’s corners and obtains the
same 20 possible binary assignments. This relation is even clearer
in the dual version of MC [Nielson 2004], which shows a lookup
table that, up to a volumetric interpretation, is equivalent to ours.
Similar surface schemes had already been introduced in the Cuberille
algorithm [Chen et al. 1985; Herman and Liu 1979].
Implementing a transition scheme for each of the 20 patterns

in Figure 3 is, therefore, the simplest way to have a lookup table
that exhaustively addresses all the cases. Note that this number is
much bigger than the three schemes often presented as exhaustive
in previous literature, and the reason is that prior works did not
present the actual schemes, but just a particular instance of the basic
transitions in Section 4.
To reduce the amount of con�gurations to the minimum, we

present here an alternative method we used to encode the patterns.

The basic idea is that many of the 20 schemes share some component,
sometimes exactly as it is, some other times up to a rotational and
re�ection degree of freedom. We exploit this redundancy to de�ne a
minimum set of 8 atomic elements, which never overlap, and can be
grouped together to reproduce all the 20 possible transitions. The
full set is depicted in Figure 10 and comprises: one �at element (F);
one hybrid �at and convex element (F+C); three convex elements
(C1, C2, C3) that handle 1, 2 or 3 prismatic chains incident to the
same grid cell; one element for concave edges (E), and two elements
for concave vertices, once for the center (VC) and one for its sides
(VS). The basic transitions discussed in Section 4 can be reproduced
by considering simple arrangements of these 8 elements. As an
example, the �at scheme in Figure 4 is composed of four elements
of type F which can be positioned by starting from one of them and
re�ecting it four times across one of its lateral faces. Similarly, all
the transitions shown in Figure 3 can be obtained by compositions
of the same 8 atomic elements.
A pictorial illustration of the installation process is shown in

Figure 11. Note that the sequence of operations is not mandatory.
Since these atomic blocks do not con�ict with each other, one can
start by positioning a single brick, and simply proceed by placing
the subsequent ones so as to preserve mesh conformity, always
obtaining the same result.

6 WEAKLY BALANCED GRIDS
All knownmethods for grid-based adaptive hexmeshing require that
the input grid is strongly balanced, which means that cells that di�er
by more than one level of re�nement must not share any vertex,
edge, or face. In this section we discuss a minimal extension of our
basic schemes, which allows to relax this stringent requirement,
embracing a much broader class of input grids and ultimately per-
mitting us to obtain coarser hexahedral meshes that fully preserve
the input prescribed re�nement .

Our key observation is that when there is high disparity in the re-
�nement associated to nearby cells, satisfying the strong balancing
criterion requires a conspicuous amount of additional re�nement,
signi�cantly increasing the cell count. Conversely, if the balancing
criterion was weaker, meaning that restrictions applied only to face-
adjacent cells, the amount of necessary subdivisions would be much
lower (Figure 13). From a combinatorial point of view, the exten-
sion to weak balancing opens conforming hexahedral meshing to a
much wider set of adaptively re�ned grids. Following the analogy
with the cube example in Section 5, one can enumerate all possible
con�gurations by considering a cube split into 8 octants, associating
to each octant either a 2�2�2, a 4�4�4, or a 8�8�8 sub-grid. Since
there are three alternative choices for octant re�nement, there exist
38 = 6561 possible con�gurations. Discarding all con�gurations that
are identical up to a rotation, the number of unique con�gurations
goes down to 332. Furthermore, discarding all con�gurations that
violate weak balancing (i.e., all grids where octants with 2�2�2
and 8�8�8 re�nement are face-adjacent), the number of remaining
unique con�gurations that must be handled is 58.
Weakly balanced grids may contain edges shared between cells

with three di�erent levels of re�nement, and vertices incident to
cells spanning four di�erent levels of re�nement. Luckily, the vertex
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Fig. 10. The 8 atomic schemes used to mesh all the transitions listed in Figure 3. Top: elements are color-coded with respect to their type. Green elements
belong to prismatic chains that suppress the hanging nodes of a refined cluster. Yellow elements allow the green chains to bend around convex and concave
edges. White elements are lids that fill the remaining volume. Bo�om: hexahedralized transitions obtained with standard mesh dualization.

position type E reflect reflect
(swich to F)

reflect
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reflect
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reflect reflect
(switch to C1)

Fig. 11. Example of installation of the atomic schemes in Figure 10 for a complex case involving flat, convex, and concave regions. All the necessary transitions
can be realized with a combination of rigid movements and reflections of the basic schemes. The installing sequence is not mandatory, and any alternative
sequence would provide the same result.

case does not require any special handling because – regardless of
the size disparity – any grid vertex has 8 incident cells and 6 incident
edges, which means that it always yields a hexahedron in the dual
mesh. This is also the reason why weakly balanced grids in 2D
do not necessitate dedicated schemes. Conversely, edges shared by
cells spanning three levels of re�nement generate hanging vertices
that must be incorporated into the mesh connectivity. As shown in
Figure 12 there are four possible cases, which correspond to an open
concave edge, or a concave corner where 1, 2 or 3 of the incident
concave edges contain additional hanging vertices.
It is interesting to notice that the concave edges where the ad-

ditional hanging nodes arise are convex edges for the (twice more
re�ned) grid minors opposite to the concavity. This means that the
schemes we need are essentially a blend between the basic convex
and concave schemes shown in Figure 10. A pictorial illustration of

how to realize this blend for open concave edges is shown in Fig-
ure 14. Note that the tetrahedra that realize the convex transition are
located across the polygonal faces that permit the concave bending,
transforming them from n�gons to (n + 1)�gons. Speci�cally, the
transition for concave edges required the use of pentagonal faces,
which now become hexagons. The transition for concave corners
required the use of hexagons, which now become heptagons. In
terms of output results, this means that weakly balanced grids can
be transformed into pure hexahedral meshes with singular edges
of valence 3, 5, 6, and 7 using the 8 schemes in Figure 10, plus 5
additional schemes shown in Figure 15.

7 DISCUSSION
We implemented the whole scheme set and the software neces-
sary to process an input grid in C++, releasing the code within
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Fig. 12. Weakly balanced grids may exhibit configurations where cells with
three di�erent levels of refinement are incident to the same edges, gener-
ating new hanging vertices that cannot be suppressed with prior schemes
(yellow dots). Each row shows one of the four possible cases: elements can all
be incident to the same concave open line, or to all (or a subset) of the three
concave lines that terminate in a concave corner. As can be noticed hang-
ing vertices belong to the finest sub-grids, and their suppression demands
a blend between a convex transition (for the yellow part) and a concave
transition (for the blue part).

the MIT licensed library CinoLib [Livesu 2019]. Speci�cally, the
8+5 atomic elements whose combination realizes all the possible
schemes for strongly and weakly balanced grids are hardcoded as
general polyhedral meshes. Each such element can be installed in
various alternative orientations, because the octahedral group O

contains 24 rotations [Nieser et al. 2011; Solomon et al. 2017]. The
code we released for installation is designed to translate, rotate, re-
�ect and scale the atomic blocks, reproducing any desired transition.
The so generated polyhedral meshes can be readily transformed
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0 0 5 0 0
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0 0 0 0 0

unbalanced weakly balanced

1 2 3 2 1

2 3 4 3 2

3 4 5 4 3
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strongly balanced
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Fig. 13. Starting from an unbalanced grid (le�), fulfilling strong balancing
demands 80 steps of extra refinement (middle). Ifweak balancing is permi�ed,
the amount of necessary refinement is reduced by 25%.

Fig. 14. Le�: hybrid convex/concave transition involving three di�erent
levels of refinement. Besides the three canonical chains of prisms of a
standard concavity (in red, blue, green), there are two extra chains that take
a convex turn around the concave edge (orange). Right: the two tetrahedral
elements that ensure the convex transition (orange) partially overlap with
the concave transition (yellow). As a result, the yellow faces – that were
pentagons in the basic concave transition – become hexagons.
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Fig. 15. Hybrid concave/convex schemes to handle weakly balanced grid
having cells with three levels of refinement incident to the same grid edges.
Top: green elements are pieces of the prismatic chains. Yellow elements
allow concave bending. Orange elements allow convex bending. White cells
are lids to complete the volume. Bo�om: hexahedralized transition blocks
obtained with standard mesh dualization.
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Fig. 16. A random subset of models used to validate our method. To produce these meshes we retained only the subset of grid elements completely internal to
the input shape, and projected and smoothed the boundary vertices using [Livesu et al. 2015].

into pure hexahedral meshes with standard mesh dualization, which
is also available in the same library.

7.1 Validation
To validate our schemes, we implemented a classical grid-based
meshing pipeline as described in Section 2. Given an input shape,
we initialized an empty octree covering its bounding box, and then
iteratively split octants intersected by the input surface until the grid
size was at least twice as big as the local thickness of the shape, mea-
sured with the SDF [Shapira et al. 2008]. We then applied additional
re�nement to satisfy the topological criteria necessary for process-
ing, and eventually installed the transition schemes described in
Sections 5 and 6, applying mesh dualization to produce the output
meshes. With this pipeline, we batch processed the dataset released
with [Gao et al. 2019], which comprises 202 organic and CAD mod-
els, and the clean version of the Thingi10K [Zhou and Jacobson
2016] dataset, released by the authors of [Hu et al. 2018]. In all
cases, our method was able to successfully produce a conforming
hexahedral mesh. A mosaic of hexahedral meshes produced with
our method and projected and smoothed with [Livesu et al. 2015] is

shown in Figure 16. Note that the focus of this work is purely on the
transition schemes, and this is just a simplistic work�ow that o�ers
no guarantees in terms of mesh quality and geometric �delity. As
reported in Section 2 scienti�c literature o�ers various alternative
choices for octree splitting rules, padding, feature preservation, and
robust surface projection. Our approach can be combined with any
of the existing techniques to obtain a fully-�edged meshing pipeline.

7.2 Comparisons with prior art
We provide both direct and indirect comparisons with prior art.
Our natural competitors are the original approach proposed by
Maréchal in [2009] and the alternative set of schemes recently pro-
posed in [Gao et al. 2019]. We considered the ability to converge to a
valid solution (i.e., conforming, all-hex), the amount and distribution
of singular edges, and the mesh size. Our method provides advan-
tages with respect to all these criteria, as detailed in the remainder
of this section.
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input [Gao et al., 2019] ours

Fig. 17. A failure case for the dual method proposed in [Gao et al. 2019].
In this case, their algorithm is not able to produce a conforming hexmesh
starting from an adaptive grid that is fully compliant with the minimum
requirements for hexahedral meshing. Overall, testing their reference im-
plementation on the Thingi10K dataset, we isolated 37 similar failures. All
adaptive grids were created with the reference implementation released by
the authors. On the same grids, our method was always able to produce
a valid mesh with the 8 schemes for strongly balanced grids proposed in
Section 5. Input and outputs grids are included in the additional material
for all failure cases.

Setup. Weperformed a direct comparison using the original source
code released by the authors of [Gao et al. 2019]. Their software re-
alizes a complete hexmeshing pipeline, interleaving grid re�nement
with surface projection, progressively increasing mesh density until
a target geometric accuracy is reached. Since our contributions are
purely on the topological step of the pipeline, we isolated from their
code the portions relative to adaptive grid generation, balancing
and dual scheme installation, �xing the octree depth re�nement in
the static range [4,7]. For each input model, we run their code to
produce a conforming hexahedral grid, and also dumped on a sepa-
rate �le the same grid prior to balancing and scheme installation,
which we loaded in our software and processed with our schemes.

Failures. Provided an adaptive input grid that ful�lls all topologi-
cal requirements (i.e. balancing and pairing), the �rst and foremost
property of a set of transition schemes is its ability to produce a
valid output mesh that contains only hexahedral cells and is con-
forming. As detailed in Sections 5 and 6 our schemes fully cover the
combinatorial space of patterns for strongly and weakly balanced
grids, and are therefore guaranteed to always produce a correct
mesh. This was also empirically veri�ed by processing our testing
datasets multiple times with varying settings (e.g., for balancing
and grid re�nement), producing more than 20 thousand hexahedral
meshes overall.
The schemes proposed in [Gao et al. 2019] permit to substitute hang-
ing nodes with a frustum (Figure 4 in their paper) and also provide
three topological bridges to account for adjacent frustums that form
a �at, convex, and concave open-angle (Figure 5 in their paper).
Concave corners are not taken into account, as well as con�icts that
arise between basic schemes (see, e.g., Figure 9). Restricting to the
four schemes they present, only 7 out of 20 possible cases shown in
Figure 3 can be handled. In their code, the authors complement their
schemes with a heuristic approach, which locally modi�es the mesh
connectivity in order to ensure mesh conformity. This approach is

Type ID F3 F4 F5 F6 F7
Flat F 5 10 5 - -
Flat + Convex F+C 9 9 4 2 -
Convex 1 cut C1 4 3 3 - -
Convex 2 cuts C2 8 1 4 1 -
Convex 3 cuts C3 12 - 3 3 -
Concave edge E 8 14 7 1 -
Concave vertex central VC 9 21 - 6 -
Concave vertex side VS 8 16 3 3 -
Concave edge E-MR 14 10 10 2 -
Concave vertex central VC1-MR 16 17 4 5 1
Concave vertex central VC2-MR 23 14 6 5 2
Concave vertex central VC3-MR 30 12 6 6 3
Concave vertex side VS-MR 15 12 7 2 1

Table 1. Topological details for all the transition schemes proposed in the
article. For each scheme we report the number of polygonal faces they con-
tain. Once dualized, each polygon translates to an edge in the hexmesh with
valence corresponding to the number of sides in the primal (the subscript i
in the Fi notation).

not documented in the article and, despite the software being able
to produce a conforming mesh in most of the cases, we isolated 37
failure cases in our testing dataset. Figure 17 shows a typical failure
case. All the other failures can be found in the attached material,
together with the associated input grids and our corresponding valid
solutions. Also [Maréchal 2009] does not propose an exhaustive set
of schemes. The article describes how to construct a �at transition
that is identical to ours (Figure 4), but it did not provide details on
how this can be modi�ed to enable bending and winding around
concave edges and corners. To our knowledge, none of the authors of
prior articles were ever able to reproduce the schemes in [Maréchal
2009], and comparisons were always based on a one-month trial
of the commercial software implementing this method [Dassault
Systèmes 2020]. The tool – formerly called MeshGems – has been
recently acquired by another group, and we were not able to obtain
an evaluation copy. An exhaustive set of schemes was likely devised
for this commercial tool, but we could not verify our assumption
due to the lack of reference software.

Singular Structure. Regarding the impact that transition schemes
have in the singular structure of the hexahedral mesh, in Table 1 we
detail the number of sides for each polygonal primal face. As men-
tioned in Section 3, primal faces with n sides transform into edges
with n incident hexahedra in the dual. Therefore, once dualized,
strongly balanced grids contain only singular edges with valence
3,5,6, whereas weakly balanced grids also contain valence 7 singular
edges, which appear when 4 out of the 5 additional schemes are used.
Since our schemes can be used as-is, without further modi�cation,
no edges with valence di�erent from the ones declared here are
possible.
Considering the portion of Thingi10K where [Gao et al. 2019] pro-
duced a valid output, our method resulted superior to its competitor
in that it never introduced singular edges with valence higher than
6, whereas the schemes of Gao and colleagues introduced valence 7
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Fig. 18. Distribution of edge valences for 7589 models from Thingi10K. Each column corresponds to a specific model in the dataset and its height is proportional
to the relative impact of that valence in the output mesh. Lateral numbers indicate the minimum and maximum relative impacts. The 37 failure cases of [Gao
et al. 2019] were omi�ed from the analysis.
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Fig. 19. Cumulative relative impact of edge valences across all models in
the Thingi10K dataset. The vast majority of edges is regular (valence 4),
and the impact of other valences is very similar for both methods, with the
exception of valence 7 edges, which are completely avoided by our schemes
if the input grid is strongly balanced.

edges in 7072 cases out of 7589 (93.2%). In Figure 19 we show a com-
parative analysis of the relative distribution of edge valences. As can
be noticed, the complete absence of valence 7 edges in our output
meshes does not impact the distributions of alternative valences,
which appear almost identical to the ones of our competitor. A more
detailed overview of valence distribution is depicted in Figure 18.

Avoiding high valence edges provides twofold advantages. On the
one hand, irregular edges with high valence impose tighter bounds
on maximum per element quality (Figure 2). Furthermore, they are
more di�cult to handle for modern local/global untangling methods
such as [Aigerman and Lipman 2013; Livesu et al. 2015; Marschner
et al. 2020; Overby et al. 2021]. In fact, these tools operate by �rst
computing a locally optimal solution for each element separately,
and then reconcile all local solutions in a global step. This approach
intrinsically su�ers the presence of high valence mesh elements,
because the number of alternative local solutions to be combined
grows, making it harder to �nd consensus between all of them.

Mesh size. In the general case, an adaptive grid that has been
split to faithfully approximate a target geometry cannot be read-
ily transformed into a conforming hexahedral mesh. For this to be
possible, the grid must undergo two processing steps: (i) additional
re�nement must be applied in order to ful�ll minimal topological
requirements for the application of the transition schemes; (ii) grid
elements around the hanging nodes must be substituted with small
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60%

10%
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40%
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60%

8.4KThingi10K [Gao et al., 2019]375 37 202

Fig. 20. Strongly balanced grids required up to 64% more elements than
weakly balanced grids in the Thingi10K dataset, and up to 46% more ele-
ments in the dataset released with [Gao et al. 2019]. In the plots above, each
column represents a di�erent shape in the dataset, and columns are ordered
for increasing growth. Mesh growth was measured as (HS � HW )/HW ,
with HS and HW being the number of grid cells obtained applying the
strong and weak balancing, respectively.

clusters of transition elements. We empirically observed that the
�rst operation consistently impacts mesh size much more than the
latter. This happened for all the test models in Thingi10k, where
step (i) more than doubled the original grid size on average and
increased it by a factor of 9x in the worst case, whereas the impact
of step (ii) was around 20% of the original grid size on average.
Being able to operate on a wider class of adaptive grids, our tran-
sition schemes mitigate the impact of step (i) on mesh size. This
is because processing a generic grid to ful�ll weak balancing is
likely to require less re�nement than the one necessary to ful�ll
the strong balancing criterion required by the schemes proposed
in [Gao et al. 2019; Maréchal 2009]. To give some numbers, for the
dataset released with [Gao et al. 2019], in 167 out of 202 cases (82.7%)
weakly balanced grids were coarser than strongly balanced ones. For
Thingi10K this happened on more than 8K cases out of 8.4K (95.6%).
The extent of the size reduction largely depends on the re�nement
patterns induced by the input geometry, which in turn depends on
the shape morphology and the octree splitting rule used. In our
experiments, strongly balanced grids required 16% more elements
than weakly balanced grids on average, and 64% more elements
in the worst case. The histograms in Figure 20 show the details of
this comparison for all the tested models. Considering that most
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applications involving hexmeshes require solving a global linear
system, and that the computational cost of a linear solve scales
cubically with the number of mesh vertices [Krishnamoorthy and
Menon 2013], weak balancing promises to introduce a signi�cant
speedup for applications. Perhaps a more concrete evidence comes
from a recent technical report published by Ferrari, where the car
maker declares that by reducing cell count by 15% it was able to run
300% more CFD simulations, helping the engineers to develop their
cars or new solutions faster [Ferrari 2020] .

8 CONCLUSIONS
We have extensively studied the topological schemes that permit to
transform an adaptively re�ned grid into a pure hexahedral mesh.
Previous literature had already proved that directly incorporating
hanging nodes into the hexahedral mesh is not always possible.
Therefore, our analysis and contributions are restricted to dual
schemes, which aim to generate a general polyhedral mesh that
yields only hexahedral elements when dualized.

We started our study from the seminal work of Maréchal [2009],
who pioneered dual approaches. We have shown that both his
schemes and the schemes proposed in later articles are not exhaus-
tive and do not contemplate ambiguities that arise when one tries
to implement them. We explicitly describe and release, for the �rst
time, a set of schemes that fully cover the combinatorial space of
adaptive balanced grids, also relaxing the notion of balancing from
strict – as it was used in prior art – to weak. As a result, we were
able to enlarge the class of grids that can be transformed into con-
forming hexahedral meshes, showing with an extensive empirical
analysis that the meshes produced with our method are signi�cantly
superior than prior art in terms of ability to produce a valid result
(i.e., conforming, all-hex), singular structure and element count.

At this stage, we believe that major improvements are unlikely to
come from alternative schemes for adaptive grids that are already
supported by the current ones, but rather on novel ideas to embrace a
broader class of input grids. In fact, based on our analysis the current
bottleneck in the pipeline is the amount of re�nement that adaptive
grids must undergo to ensure the applicability of the transitions. Our
extension to weakly balanced grids is a �rst step in this direction,
because it opens hexmeshing to a new class of inputs. We believe
that more can be done in this regard, and we will devote our future
e�orts to working in this direction.

Limitations and future works. While the transition schemes pro-
posed in this paper are topologically optimal, in the sense that they
minimize the extent of high valence irregular edges, they do not
guarantee that an embedded mesh with this connectivity will be
superior to a mesh obtained with alternative methods. Finding the
embedding that maximizes the geometric quality of a certain mesh
(e.g. to evaluate the quality of its connectivity) is an complex prob-
lem for which there exists no solution to our knowledge. The best
smoothing and untangling methods of which we are aware aim to
squeeze the maximum potential from a certain connectivity with
heuristic approaches. As mentioned in Section 7, since most of these
methods are local/global, we conjecture that they should bene�t
from our �ndings, and we will devote part of our future works to
further investigate this topic.
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