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Abstract

This paper investigates a new method to simulate pedestrian crowd movement in a large and complex virtual environ-
ment, representing a public space such as a shopping mall. To demonstrate pedestrian dynamics, we consider groups of
pedestrians of different size, sharing a crowded environment. A pedestrian has its own characteristics, such as gender,
age, position, velocity, and energy. The proposed method uses a multi-group microscopic model to generate real-time
trajectories for all people moving in the defined virtual environment. Additionally, a dynamic model is introduced for
modelling group behaviour. Based on the proposed method, all pedestrians in each group can continuously adjust their
attributes and optimize their path towards the desired visiting targets, while avoiding obstacles and other pedestrians.

Simulation results show that the proposed method can describe a realistic simulation of dynamic behaviour.

Keywords Crowd dynamics - Multi-group microscopic model - Agent-based model - Pedestrian movement

1 Introduction

Simulation of crowd dynamics has been studied in differ-
ent research fields, including computer graphics, virtual
reality, robotics, social science, statistical physics, pedes-
trian, and evacuation dynamics. Broadly speaking, most
techniques can be grouped in two main categories: mac-
roscopic and microscopic. The macroscopic techniques
focus on the aggregate behaviours of crowds. On the other
hand, microscopic techniques are used to create realistic
trajectories for individual pedestrians so that they can
naturally avoid static and dynamic obstacles, and other
pedestrians in the defined virtual environment [1].
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Using a similar analogy, a crowd simulation can be either
homogeneous or heterogeneous [1, 2]. Homogeneous crowds
correspond to instances where each agent has a very simi-
lar behaviour or goal. Many models have been proposed
for homogeneous crowd simulation, e.g. the continuum
model [1, 3] and the flow — based models [4, 5]. In heteroge-
neous crowds, each agent in the crowd maintains a distinct,
observable identity (see [6]). Many techniques have been
proposed for simulating heterogeneous crowds [7, 8], e.g.
agent — based models [9]. In the agent — based model, each
agent motion in the crowd is computed separately [1, 2]. The
computation of an agent motion is split in two distinct tasks:
global and local navigation [1, 2]. Global navigation aims
to compute a long-term collision-free path towards a goal
position that only the static obstacles consider. In contrast,
local navigation techniques take into account the motion of
dynamic obstacles and other agents in the environment and
steer each agent towards its goal position [1].

Crowd simulations based on the microscopic model have
been widely used in many applications [6]. However, most
methods do not implement the process of independently ani-
mating pedestrians in real-time. In addition, a crowd model
needs to address the dynamic interactions between pedes-
trians. Generally, people in a crowd move in groups (see
Fig. 1), where the behaviour and dynamics of a pedestrian
in a group are connected with other pedestrians, and the
interaction between pedestrians can significantly influence
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Fig.1 Screenshot of the shop-
ping mall: pedestrians move

in different directions to reach
their desired goal points on the
ground floor of the shopping
mall while avoiding the static
obstacles and pedestrians

crowd behaviour. Therefore, crowd simulation methods with
a strong computational performance for predicting each
pedestrian’s movement in each population in real-time are
needed.

Broadly speaking, our contribution is the introduction
of a mesoscopic model, specifically concerned with people
group’s dynamics; in particular:

e We propose a new method for simulating pedestrian

crowd movement in a large and complex virtual envi-
ronment in a public place such as a shopping mall,
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Obstacle

e A group of pedestrians can have a variable number of
pedestrians with different characteristics,

e Pedestrians, either as individuals or in groups, move
through the virtual environment in different directions
to reach their desired goal points,

e A multi-group microscopic model is proposed to gener-
ate a real-time trajectory for each pedestrian navigating
in the virtual environment.

To describe the group of pedestrians, let us consider a simulated
crowd scenario shown in Fig. 1. In this simulated scenario, the
crowd is organized in groups. Each group consists of a different
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number of pedestrian types (male and female) of different ages
(old, young, and child) to establish the range of personality
variation. Figure 15 and c illustrate an example, the small
marked groups of pedestrians consist of “3” pedestrians. The
first group (see Fig. 1b) consists of “1” young-man, “1”” young-
women, and “1” old-man. The second group (see Fig. 1¢) con-
sists of “1” young-women, “1”” old-man, and “1” child. In our
model, pedestrians always move with the same group. In any
simulation, groups of pedestrians enter the virtual environment
through the entrance, and they navigate inside the virtual envi-
ronment to visit several prefixed target points. Afterward, they
move toward the exit to leave the virtual environment.

In the rest of the paper, crowd simulation is the term used
to describe the entire dynamics of a scenario, and pedestri-
ans are referred to as agents. Our contribution is organized
as follows: Section 2 discusses related research, Section 3
formalizes the problem, Section 4 introduces the proposed
method, Section 5 introduces the crowd simulation and sum-
marizes the simulation results. Finally, Section 6 closes the
paper with final considerations.

2 Related work

Simulation of crowd movement and the interaction between
pedestrians have been studied in the literature [10]. For exam-
ple, authors in [3] present an approach for simulating crowds
using discrete agents as a single continuous system. Also, a
crowd model based on continuum dynamics has been pro-
vided by [11] using potential field integrated with global navi-
gation. The crowd flows has been investigated by [12] using
the particle methods and continuous pedestrian model. More-
over, the authors in [13] derived the governing equations of
motion for simulating different types of pedestrians in the 2D
environment. Additionally, there are many other approaches
to simulate crowd behaviour based on cognitive modelling
and behaviour [14], psychological or sociological factors [15],
personality models [8], and stress modelling [1, 16].

The effect of groups on crowd movement was investigated
in [17] using the least effort cellular automata algorithm. To
evaluate the impact of group dynamics on the crowd move-
ment, an agent-based model is proposed by [18, 19].

The authors in [20] suggested a multi-group microscopic
model based on the interacting particle system coupled with
the eikonal equation for describing groups’ behaviour. Fur-
thermore, [20] discussed a multi-behaviours microscopic
model combined with the social force model and optimal
path computation. The authors in [21] provided a literature
review from traditional models to recent models to introduce
the researchers’ crowd simulation models. In a real crowd
simulation application, the authors in [2] presented a crowd
simulation method for generating the human-like trajectories
in the simulated environment based on geometric techniques.

In animation and games, the authors in [22] combined steer-
ing behaviours to allow the character to navigate their world
in a life-like manner. Moreover, the problem of directing and
controlling virtual crowds has been addressed by [23]. To
perform multiple virtual agents’ path planning, the authors
in [24] present a multi-agent navigation graph for each agent
in real-time. In literature, several techniques are proposed
to animate crowds. Most of these techniques use a simple
representation for each agent, i.e. circular shape in 2D plane
or cylindrical object in 3D space [1, 14].

In real-world applications, crowd movement simulation
provides valuable tools for improving efficiency and safety
in public places such as airport terminals [18], shopping
malls, train stations [14], and theatres [20]. Moreover,
crowd movement simulations have been used to develop
a level-of-service concept, design elements of pedestrian
facilities, planning guidelines [25], safety planning [2],
and support transportation planners or managers to design
timetables [20]. Furthermore, realistic simulations based
on pedestrian behaviour such as obstacle avoidance, stress
response, and avoidance of other pedestrians have many
applications such as computer game designers, movies,
and virtual environments [2]. Considerable effort has
been made on locomotion, realistic pedestrian movement
behaviours, path planning, and navigation in large virtual
environments [15].

Finally, a crowd manifests itself with dynamics that are a
combination of individual, group, and global dynamics in a
given environment. Although the complexity of a very busy
scene might seem chaotic at first, such as a train station or an
airport concourse, individual and group dynamics shape the
dynamics of the crowd as a whole and an in-depth study at
microscopic or mesoscopic level can discern the underlying
dynamics. This duality of individual versus crowd dynamics
has been studied by social scientists, who employed nonlin-
ear dynamics to model trajectories and interactions. Notable
examples are the research contributions of Epstein [26, 27]
and Helbing [28-30].

With respect to the state-of-the-art discussed above, our
work proposes a method for simulating the crowd dynam-
ics of pedestrians in a very complex environment. In this
method, the crowd consists of a large number of pedestri-
ans in multiple groups with a different number and various
types of pedestrians with different intentions. Pedestrians in
each group continuously adjust their paths and update their
attributes independently in real-time.

3 Problem formulation
We study a crowd simulation of pedestrians with different

group sizes and category, moving through a virtual envi-
ronment for a limited amounted of time. Each group of
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pedestrians visits several goal points with varying sequences
of the visit. Moreover, the number of each type of pedestrian
in each group is different, and each type of pedestrian has its
own attributes, such as gender, age, position, velocity, and
energy. In the virtual environment, there are several obsta-
cles at different locations that prevent pedestrians from mov-
ing through, and pedestrians need to keep a certain distance
for safety reasons. For simulating the crowd movement, it
is required to formulate pedestrians with a wide variety of
characteristics. Based on the different schedule models,
pedestrians are appropriately introduced into the virtual
environment. After that, they will navigate inside the vir-
tual environment to visit several goal points, and then they
will leave the virtual environment. Sometimes, pedestrians
may consider undertaking other activities; this can happen
between two sequential visits. In this study, pedestrians have
to adjust their attributes and optimize their paths continu-
ously in the virtual environment. Moreover, pedestrians in a
group must move with the group to their destination, while
avoiding stationary obstacles and other pedestrians (the
dynamic obstacles) when they come in close proximity.

4 Proposed method for crowd simulation

The proposed method uses the multi-group microscopic
model for generating a real-time trajectory for each pedes-
trian while navigating in the walking area. Moreover, an
agent is introduced in the proposed method for modelling
pedestrian’s behaviours, where each type of pedestrian has
its own attributes. During the simulation, pedestrians move
in groups toward their destination points in the simulated
working environment, and avoid obstacles and other pedes-
trians when they move closer. Moreover, the goal point for
each group of pedestrians changes dynamically, and the
desired goal point is defined at each step from the list of goal
points. In the proposed method, pedestrians carry out vari-
ous crowd activities, such as tuning their parameters, avoid-
ing collisions, optimizing their paths, and changing their
behaviour. In this work, pedestrians use local knowledge to
avoid local collisions and interact with other pedestrians.
Furthermore, pedestrians use global knowledge for long-
term planning and provide goal-directing capability.

In this study, pedestrians continuously adjust their posi-
tion based on the proposed method in real-time. Therefore,
visualizing their motions is important to understand the tra-
jectories that pedestrians follow. For that reason, the virtual
environment and the virtual pedestrians are imported into
the 3D animation software package Autodesk Maya [31] via
a custom Python script. Then, the Maya’s key-frame system
is used to visualize the simulated scenario. In the proposed
method, we created Python script models and embedded
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them into the Autodesk Maya for generating real-time
trajectories.

The proposed method consists of three main steps: envi-
ronment setting, motion computation and steering behav-
iours, and locomotion, described in the three following
sections.

4.1 Environment setting

The first step is to introduce the working environment,
obstacles, pedestrians, and goal points. Moreover, this
step identifies the initial state of the pedestrian’s attributes:
gender, age, position, velocity, and energy. Also, interac-
tions between pedestrians with the environment have to be
defined.

Remark 1 During this simulation, the virtual pedestrian’s
position is defined along the x, y, and z axes. We assumed
that the pedestrian is restricted to move in a 2D space in
the proposed method. Therefore, the pedestrian’s position
is defined by two independent coordinates, x and z, and the
value of the y— coordinate is set to 0.

4.1.1 Virtual environment and obstacles

The walking area of the virtual environment is considered
a two-dimensional (2D) workspace (C) for all simulations.
The workspace centre is located on the origin point, and
the continuous workspace is divided into square grid cells
(x =1,z = 1) unit. In the proposed method, all the grid cells
of the given workspace meet the following equation:

I

C=Y Ces )

x=1 z=1

where w and [ represent the width and length of the simu-
lated workspace and C, , represents the grid cells in the
workspace. Afterwards, the obstacle model is imported into
the scene to prevent the pedestrians from walking through
the space occupied by obstacles. The region of space occu-
pied by the obstacles is denoted by C,,,, and the obstacle-
free region is represented by Cj,,. The grid cells have
integer coordinates in the form Cup €C, withl <x<w,
and 1 <z <. A given cell can correspond either to a nav-
igable area C, ., or to a space occupied by the obstacles
Cr) € C,p,- In this study, the obstacles are distributed at dif-
ferent locations in the free space. A safety zone with radius
R is created around the obstacles to avoid the possibility of
overlapping the paths traced by pedestrians with the obstacle
boundaries. The steps for constructing the workspace and
obstacles are illustrated in Algorithm 1, and a brief descrip-
tion of each step is provided as follows:
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Algorithm 1 Generate workspace and obstacles.

1: Inputs:
n3DObstacles

Cobiei=z [ ilalnee=] I
for i = —w/2 to w/2 do
6: for j = —1/2 to /2 do
: C(i,§) « 0

end for
9: end for

import the workspace model into the scene
width(w), length(l) < workspace inthe scene

10: import obstacles modelsintothe scene
11: move obstaclestodif ferent locations
12: create a safety zone around obstacles, (R = 1)

13: for obs = 1 to n3DObstacles do

14: 1,21 ¢ obstacles model

15: for k = 21 —rtoax +r do

16: for! =z —rtoz +rdo

17: if distance between (x1,z1) and (k,l) < R then C(k,l) + 1
18: end if

19: end for

20: end for

21: end for

22: for k = —w/2 to w/2 do
23: for | = —1/2 to /2 do

24: if C(i,7) = 1 then assign C(k,l) as Cops
25: else assign C(k,1) as Crpee

26: end if

27: end for

28: end for

Step 1: Define the number of obstacles n3DObstacles.
Algorithm 1-Line(1)

Step 2: Import the models of the workspace and obstacles
into the scene. Algorithm 1-Lines(2,10)

Step 3: Determine the values of width w and length [/ of
the simulated workspace from the model in the scene.
Algorithm 1-Line(3)

Step 4: Divide the continuous workspace into several
square grid cells, and determine the coordinates of each
grid cell in the form C;; , € C, where -w/2 <i <w/2,
and —1/2 < j <1/2. Algorithm 1-Lines(5-9)

Step 5: Set the value of each grid cell in the free space
Chree inside the working environment C to “0”. Algo-
rithm 1-Line(7)

Step 6: Create a safety zone around each obstacle with a
radius of R. There are n3DObstacles obstacles in the
scene. Each safety zone consists of a set of square
grid cells; the total number of the grid cells occupied
by obstacles is equal to nObstacles. The centre of the
grid cells occupied by obstacles is denoted by the

matrix C,pp, (h=1,2), (I = 1..nObstacles). Algo-
rithm 1-Line(13-21).

Step 7: Set the value of each grid cell of the space occu-
pied by obstacles C,;,, around each obstacle with a radius
of R inside the working environment C to “1”. Algo-
rithm 1-Line(17).

Step 8: Create 2D array from the grid cell values, where
the grid cells C, ,, can correspond either to the navigable
area C, ,, € Cy,, Or to a space occupied by obstacles
Cx.z) € C,ps- Algorithm 1-Lines(22-28).

4.1.2 Pedestrians

After generating the workspace with obstacles, the virtual
pedestrians are introduced into the scene. First, pedestrians
are assigned attributes; these include gender, age, position,
velocity, and energy. Algorithm 2 describes this in detail. A
brief description of each step follows:
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Algorithm 2 Generate pedestrians.

1: Inputs:
nGroups, nTypes, cp

2: nPedestriansrowd < ||

3: Pedestrians.rowa < ||

1: nPedestrians;,iq < 0

5: import 3D character models into the scene

6: for g, = 1 to nGroups do

7: nPedestrians g,oup < 0

8: Pedestrians gyoup <+ (|

9: for ¢;= 1 to nTypes do

10: nRandompypes < random number between [1, ¢
11: nPedestriansrypes < nRandomy e,

12: nPedestrians g,oup < nPedestriansgyoup + nPedestriansrypes
13: for p. = 1 to nPedestriansrypes do

14: get/set position of pedestrians

15: get/setvelocity of pedestrians

16: get /set energy level of pedestrians

17: Pedestrians gpoup-append(Pedestrian)

18: end for

19: end for

20: Pedestrians . owq-append(Pedestrians g,oup)

21: nPedestrians . owd.append(nPedestrians group)

22: nPedestriansorar < nPedestrians,oia + nPedestrians goup
23: end for

Step 1: Define the number of groups (nGroups), number
of pedestrian’s type nTypes, and constant c,;. Algo-
rithm 2-Line(1).

Step 2: Import the models of the pedestrians into the scene.
Algorithm 2-Line(5).

Step 3: Generate the crowd with several groups (nGroups),
where pedestrians in each group (Pedestrians,,,,,)
consist of a different number of pedestrians
(nPedestrians,,,,,). Algorithm 2-Line(6-24).

Step 4: Create pedestrians with their attributes such as
(position, velocity, energy level,... etc.) for each type
(nTypes) of pedestrians. This study classified pedestrians
into seven different types (nTypes="7") to establish the
range of variation; each type of pedestrian has associated
characteristics. Algorithm 2-Lines(13-18).

Step 5: Formulate all pedestrians in the crowd
(Pedestrians,,,, ;) with all their attributes by con-
catenation of all pedestrians (nPedestrians,,,,, and
Pedestrians,,,,) of all groups. Algorithm 2-Line(20-
21).

Step 6: Determine the total number of pedestrians in the
crowd (nPedestrians,,,,) by summing all pedestrians in
all groups. Algorithm 2-Line(22).
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4.1.3 Goal points

Each group of pedestrians is assumed to have different goal
points to visit in terms of the number and sequence of the
goal points. The goal points in the simulated environment
correspond to a specific region in the environment. The steps
for formulating the list of goal points for each group in the
simulated environment are illustrated in Algorithm 3, and a
brief description follows:

Step 1: Define the number of the goal points (nGoals)
and their locations (Goals,, ) in the crowd. Algo-
rithm 3-Line(1).

Step 2: Denote the list of all goal points existing in the
scene by GoalPoints"™', where we obtained the values
of x — coordinates (Goals,) and z — coordinate (Goals,)
of each goal in the scene; the y — coordinate (Goals,) is
set to zero vector. Algorithm 3-Line(3)

Step 3: Create the number of goal points randomly
(nRandom,, ) between [1, nGoals] for each group (g,),
and also the sequence of the goal points is generated
randomly. Algorithm 3-Line(6-14)

Step 4: Create the starting and the final destination points
for each group (g,), which are located outside the work-
ing environment. The x — coordinate for both the start
and the end points are generated randomly between

Rroup
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Algorithm 3 Generate goal points.

1: Inputs:
nGroups, nGoals

2: Goalserowd + [], Goalsgroup < [], nGoalscrowd < (]

3. Goal Points't « 3D model in the scene

4: for g, = 1 to nGroups do

5: nGoals group < 0

6: nRandomgeqs < between [1, nGoals|

7 for g, = 1 to nRandomgyqs do

8: nRandomgoaisinder < between [1, nGoals]

9; x — coordinate + Goal Points"*![n Randomgeais rndez)

10: y — coordinaten < 0

11: z — coordinate + Goal P()int.‘;”s'[nRa.nd()‘mg,,(,_l_., Indez)

12: goalpogition +— [ — coordinate,y — coordinate, z — coordinate]
13: Goals group-append(goal pogition)

14: end for

15: create the starting and final destination points

16: for g, = 1 to 2 do

17: x — coordinate « random number between|[(—w/2), (w/2))
18: y — coordinate 0

19: z — coordinate < 1/2+ cq

20: 90alpogition < [# — coordinate,y — coordinate, z — coordinate]
21: if g, = 1 then Goalsg,oup.append( first, goalyosition)

22: else if g, = 2 then Goalsg,oup.append(last, goal,,sition )

23: end if

24: end for

25 nGoalsgroup  nRandomgears + 2

26: nGoals.rowa < nGoalse,owd-append(nGoalsgpoup)

27 Goalsrowa-append(Goal s group)

28: end for

[(=w/2),(w/2)], the y — coordinate is set to “0”, and the
value of z — coordinate is equal to I/2 + ¢,,. The value
of constant c; represents how far the goal point from
the outside of the working environment in z direction.
Algorithm 3-Lines(15-24)

Step 5: Formulate the overall goal points’ array of the
crowd (Goals,,,,,) by concatenating of goal points’
array of all groups (Goals,,,,,). Algorithm 3-Line(27)

group

4.1.4 Initilization of a pedestrian

Each pedestrian is assigned a position and a velocity. Pedes-
trians and groups are distributed randomly outside the vir-
tual environment. Then, they start to move to reach the goal
point in the list of goal points. Steps to compute the initial
value of Posmonp and Velocity, for each pedestrian are
illustrated in Algorithm 4, and a bnef description follows:

Step 1: First, this algorithm starts with the previously
created input data: number of groups nGroups, num-

ber goal points nGoals, all pedestrians in the crowd
Pedestrians,,,,,;, number of pedestrians in the crowd
nPedestrians,,,,.;, the list of goal points of all groups of
pedestrians in the crowd Goals,,,,,;» and define constants
€15 Cpp and c¢p5. Algorithm 4-Line(1).

Step 2: Create random position for each pedestrian
Position, (p, =1,.., nPedestrians,,,,,[g,]) in each
group g,, (g, = 1, ..., nGroups) around the starting point
Goals,,,,,[1]. The distance between the randomly cre-
ated point(x, z) and the starting point depends on the
value of constant c;. The starting point represents the
first goal point in the goal points list Goals,,,,, that
belongs to the group g,. Algorithm 4-Lines(6-11).

Step 3: Check the distance between the generated position
Position,, and the position of all the other created pedes-
trians Position,,p,,,; the distance should not reside within
a certain value (cy,). Algorithm 4-Lines(12-23).

Step 4: Formulate the list of all pedestrian’s position in the
crowd (Pedestrians,,,,;) by concatenating all randomly
created positions of pedestrians Position, of all groups.

Algorithm 4-Line(24).

2 Springer
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Algorithm 4 Setting the initial state of the pedestrians in the crowd
Pedestriansgroup-

1: Inputs:
nGroups, nGoals, Pedestrians ,owd,
nPedestrians.rowda, Goalscrowd, Cr1, Cpa, Cf3
2. Positionscrowd < | ]
3: for g, = 1 to nGroups do
4: Pedestriansgroup < Pedestrianscrowd(gr), nPedestriansg oup
nPedestrians ,owd|gr]
5: Goalsgroup = Goalscrowd(gr]
6: for p. = 1 to nPedestriansg ou, do
7: Position,, + |[]
8 x — coordinate < (Goals group(1][0] + random.random() * ¢f1)
9: y — coordinate + ()
10: z — coordinate < (Goalsgroup|1][2] + random.random() x cf1)
11: Position,,, + [z,y,z|, nPede + 1
12: while nPede < P, do
13: inter fere < "True”
14: while inter fere < "True” do
15: find distance between Position,, and
Positions,owd[nPede]
16: if distance < cso then
17: create another random position
18: else
19: inter fere < " False”
20: end if
21: end while
22: nPede < nPede + 1
23: end while
24: Positionscrowd-append(Position,, )
25: update pedestrians’ positions Position,,_
26: create random velocity for Pedestriansgroup|pe)
27 Velocity,, + (]
28: v, — coordinate < random number * cy3
29: vy — coordinate 0
30: v, — coordinate < random number * cf3
31: Velocity,, « [vg,vy, ;)
32: update pedestrians’ velocity Velocity,,
33: end for
34: end for
Step5: Create random velocity values Velocitypt At intitialization, all pedestrians’ characteristics are set,

(p, = 1,..,nPedestrians

wroup|8,)) for each pedestrian in  including dynamics’ attributes position and velocity, and

each group g,, (g, = 1, ...,nGroups), where the value  personal attributes, such as gender, age, and energy. The
of the constant cy, creates diversity in walking velocity ~ groups’ initial configurations in terms of the number of the
Velocity, in a specific range. Algorithm 4-Lines(25-3). pedestrian, type of pedestrian, number of goal points and
Step 6: Update position in Pedestrians,,,,[p,] with  their sequence, pedestrian’s attributes, and most of the other

Position, (see Algorithm 4-Line(25)) and veloc- variables are generated at random.
ity in Pedestrians,,,,,[p,] with Velocity, (see Algo- In this study, pedestrians (Pedestrians,,,,,[8,],
rithm 4-Line(32)) in the scene. g, = 1, ...,nGroups) enter the simulated environment one
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at the same time. Pedestrians in the crowd need to decide
whether and when (key-frame kFrame) they start to move
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Algorithm 5 Create a list of random key-frame for activating groups of
pedestrians in the scene.

1: Inputs:

nGroups, Pedestrians rowd, Cal

kFrameactivate = (]
Activategroups = (]
Terminategroups = (]
for g, = 1 to nGroups do
6: randomyey frame < random integer between[l, nFrames  cq1))
kFrame,crivate-append(randomyey frame)
Activate gpoups-append(”of f)
9: Terminate gpoups-append(”of f7)
10: end for
11: sort Pedestrians . owq according to kFrame ciivate

Q.3

from the starting point. Pedestrian enter the virtual envi-
ronment following a specific schedule, as illustrated in
Algorithm 5. Based on this algorithm, each group g,,
(g, = 1, ..., nGroups) starts moving at randomly created key-
frames (kFrame,,,;,..[g,]) between (1, nFrames*c,,), where
nFrames represents the total number of frames and ¢, is a
constant.

4.2 Motion computation and steering behaviours

Pedestrians’ dynamics include actions such as obstacle
avoidance, pedestrian collision, avoidance, flocking with
neighbouring pedestrians, goal — directing, and combined
steering behaviours. Pedestrian behaviours are discussed in
the following subsections. In each key frame, pedestrians
move from the current position to the new updated position
at a variable walking pace. The new updated position and
velocity are calculated based on the steering behaviours with
the current pedestrian’s position and velocity.

Obstacle avoidance To direct pedestrians to avoid the
collision, we employed an extended version of a previous
method developed by us, called boundary node method
(BNM) which is used to generate a collision-free path for
each pedestrian when they move close to the obstacles in

Fig.2 A nine-node quadrilateral
element with a safety zone (a)
along with its motion directions p(7) p(4) pl1)
(b) and simulated pedestrian in
a virtual environment (c)

Centralnode
5)

pl
p2)

Safety
Zone

p(8)

PO ple) P

e(8)k—

real-time. The details of the BNM method are given in [32,
33].

Using the global path planning in real-time contexts is
difficult for modelling pedestrians’ behaviours by using the
agent-based model because it becomes computationally
expensive. Therefore, the agent-based models used in this
study separate local collision avoidance from global path
planning. Based on the extended BNM method, each pedes-
trian in the crowd is simulated by a nine-node quadrilateral
element. The nodes are denoted by p(g),(g = 1...9), the
centroid node p(5) represents the pedestrian’s location, as
illustrated in Fig. 2, and the nodes p(1 — 4) with p(6 — 9)
represent the eight-boundary nodes that help pedestrians
to move forward and avoid obstacles. As shown in Fig. 2b,
pedestrian and boundary nodes p(g), (g = 1...9) are restricted
to move in eight possible directions e(u), (u = 1...8) in the
workspace. The BNM method uses the length and width of
obstacles to generate a collision-free path. However, the
height of obstacles (that would allow pedestrians to identify
them) is not taken into account by this method. More details
on the BNM method for path planning and its applicability
to various problems are provided in [32]. While the dis-
tance between the pedestrian’s position and centre of the
obstacle is less than (r+R), the pedestrian interferes with
the safety zone around obstacles, where R and r represent

e(4)
e(7) | e
L

Agent
—»e(2)
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N
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Fig.3 Obstacle avoidance using
BNM: demonstrates the single
pedestrian exploration in a 2D
environment with obstacles \
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the radius of the safety zone around the obstacle and pedes-
trian, respectively. Based on the obstacles avoidance proce-
dure, the pedestrian and boundary nodes are steered to avoid
obstacles and change their motion direction by selecting a
new position in the free space Cj,,.

In order to explain the obstacle avoidance and demon-
strate how the pedestrians are steered to avoid obstacles and
change their moving direction with the help boundary nodes,
let us consider a very simple example with only one pedes-
trian, as shown in Fig. 3. In the first iteration of the simula-
tion, t = 1, the pedestrian (p(5)) is initially located at the
start point and the boundary nodes p(1 — 4) and p(6 — 9)
are generated around the pedestrian’s position. This is illus-
trated in Fig. 3a, where the boundary nodes are represented
by blue star objects and pedestrian is represented by the red

2| Springer

star object. At the iteration number 7 = 2, as the pedestrian
wants to move forward with the boundary nodes from the
current Positionpt (see Fig. 3a) to the new Positionpt (see
Fig. 3b), all the obstacles in the working environment are
examined for possible collisions. Let us assume that the
distance between the pedestrian position and the center
of the obstacle is greater than the sum of the radius of the
safety zone around the obstacle and pedestrian (R + r). In
this case, there is no interference with the obstacle, and the
pedestrian can safely change its position to a new one. In
the third iteration t = 3, as the pedestrian moves toward the
goal position, nodes p(1), p(4), and p(7) interfere with the
safety zone around the obstacle. In this case, the pedestrian
needs to investigate the workspace to find the next position
without colliding against obstacles. This implies that the
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pedestrian can only move in the x-direction, in this case:
therefore, the movement of the pedestrian is restricted to
either the left or right direction. Changing the motion direc-
tion depends on values E(2) and E(8) at the location p(2) and
p(8). The values of E(2) and E(8) are calculated based on the
potential function. The procedure of calculating the potential
value of E based on the new proposed potential function is
illustrated in detail in our previous work [32]. The results
of the calculated potential values of E(2) and E(8) based on
the potential function show that E(2) < E(8). This implies
that the next position of the pedestrian must be in the right
direction. The same procedure is repeated for the iteration
number ¢t = 3 — 6 by shifting the pedestrian to the right until
it passes the block of obstacles. At t = 8, as illustrated in
Fig. 3c, the pedestrian moves forward without collision with
any obstacles. Similarly, for the iterations t =9 — 11, the
pedestrian moves forward until it reaches the goal position
as shown in Fig. 3d —f.

Pedestrian collision avoidance During the crowd simu-
lation, pedestrians need to stay together and maintain
the group while pedestrians must keep a certain distance
(spaces) between themselves. The study of group behaviors
in a crowd simulation can help in better understanding and
respecting different personal spaces. However, the culture,
relationship between pedestrians, and crowd density are
essential factors affecting personal space. Besides, in cer-
tain circumstances, identifying the minimum personal space
requirements is needed to protect health and limit the spread
of potential disease.

Each moving pedestrian represents a dynamic obstacle for
the remaining pedestrians in the scene. Pedestrians should
not reside within the personal space requirement, the so-
called private sphere, of the other pedestrians. Usually, each
pedestrian has a safety zone with a radius r, and pedestrians
should keep a certain distance from the other neighbouring
pedestrians. We assume that the distance between pedestri-
ans should not be less than (2r). Suppose that the distance
between current and neighbouring pedestrian drops below
a specific value (2r). In such a case, the current pedestrian
changes its motion direction in surrounding areas to pre-
vent the collision. For this situation, we have proposed an
appropriate reactive behaviour, called pedestrian collision
avoidance, for avoiding collision between pedestrians walk-
ing closer. The current pedestrian steers to either left or right
for a newly calculated position, located on the third vertex
of an equilateral triangle. The overall process of pedestrian
collision avoidance is illustrated in Algorithm 6, and the
concept of collision avoidance is explained in the following
steps:

Step 1: First, this algorithm starts with the previously
created input data: position of all pedestrians in the
crowd Positions,.,,,, ., new calculated pedestrian’s posi-
tion Position,, , current pedestrian’s position Position,, ,
number of all pedestrians in the crowd nPedestrians,,,,;s.
Algorithm 6-Line(1).

Step 2: Check for interference between current pedes-
trian Position, and all pedestrians Position,

Algorithm 6 Pedestrian collision avoidance.

1: Inputs:
Positions rowd;

new Position,, ,currentPosition,, ,nPedestrians;yia

2: for p. = 1 to nPedestrians;yq do

3: find distance between new Position,,, and Positions.,owa|pe)
4: if distance < (2 x r) then
5: Az = newPosition,, [0] — Positions . owd|pe][0]
6: z = newPosition, [2] — Positions.,owa|pe|[2]
7 if random.random() < 0.5 then rotate,, e < 60.0
else rotateg,gre < —60.0
o: end if
10: « 4= rotategngre /180 * math.pi
11: new, < newPosition, (0] +math.cos(a)* Ax + math.sin(a) * Az
12: newy < 0
13: new, < newPosition,, [2]|+math.sin(—a)* Az +math.cos(a)* Az
14: newPosition,,, < [new,,new,, new,)
15: find distance between new Position,,, and Positions ., ewa|pe)
16: else if distance = 0 then
17: newPosition,,, < currentPosition,,,
18: end if
19: end for

a Springer
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(p, =1, ...,nPedestrians,,,) in the crowd, if the dis-
tance between current pedestrian Position, and the
other pedestrians in the crowd is less than 2 X r, then
the interference will occur and a new position Position,,
needs to be calculated. Algorithm 6-Line(2-6).

Step 3: Suppose a collision happens between pedestrians,
the proposed method implements pedestrian collision
avoidance to avoid collision between pedestrians. There
are two possibilities for the new pedestrian’s position
(right — hand side or left — hand side) located on the
third vertex of equilateral triangles. The pedestrian
will choose right — hand side or left — hand side to
avoid the collision based on the random value. Algo-
rithm 6-lines(7-13).

Step4: As long as the current pedestrian Position,, and the
other pedestrians in the crowd are not interfering, the
pedestrian will move from the current position Position,,
to the new calculated position Positionp’. Then, pedes-
trians update their positions Position,, in the crowd

P,
Positions. ...

Flocking behaviour We have considered a sort of coopera-
tion among pedestrians moving with the same group. The
pedestrians’ steering behaviours in the same group demon-
strate how pedestrians react, and pedestrians outside of the
group are ignored. We considered steering behaviours such
as separation, cohesion, and alignment related to the pedes-
trians. These behaviours influence the pedestrians’ motion,
more precisely, their position and velocity. The separation
steering behaviour gives a pedestrian the ability to main-
tain a certain separation distance from other pedestrians in
the same group, as shown in Fig. 4a. The separation steer-
ing behaviour is used to prevent pedestrians from crowding
together. Moreover, the cohesion steering behaviour gives a
pedestrian the ability to cohere with the other pedestrians, as
shown in Fig. 4b. At the same time, the alignment steering
behaviour tends to align pedestrians with its neighbouring
pedestrians, as demonstrated in Fig. 4¢. For details on the
steering behaviours, see [22, 34].

Goal-directed behaviour Pedestrians in each group walk
towards a well-defined goal at a certain point in the virtual
environment modelled by a goal-directed behaviour. The
distance between the current position of the pedestrian and
the current active goal is calculated. If the distance between
these two points is less than a certain value, then a new
goal point is assigned to the current group. Suppose the
current goal point is the last destination point. In that case,
the group will terminate the simulation, and this group will
not be active anymore. Otherwise, the goal_directed steer-
ing behavior calculates the goal,,,,,, and normalizes the
goal,,,,,, by applying a weighting goal as illustrated
in Algorithm 7.

weight >

2| Springer

Combining behaviours Combining behaviours can hap-
pen in two ways: (1) switching, (2) blending [22]. As the
walking circumstance changes in the simulated environment,
the pedestrian may “switch” between behavioural modes.
Alternatively, these behaviours, which are acting in parallel,
are commonly “blended” together. For example, in normal
situations, as the pedestrians move around through the simu-
lated environment toward their destination, they blend both
flocking and goal-directed behaviours to a single steering
force vector to allow the group to walk toward their goals.
Furthermore, suppose that a group of pedestrians approaches
an obstacle or other pedestrians in the same or different
groups. This situation leads to a behavioural switch from
moving to collision avoidance. All pedestrians try to avoid
collisions with obstacles and pedestrians, and pedestrians do
not prefer to remain with the group while avoiding obstacles.
The proposed method uses a Python script to evaluate pedes-
trians’ behaviours, to compute a new state of pedestrians,
and also generates 3D scenes and views in the animation
software package Autodesk Maya [31], as illustrated in the
following subsection.

4.3 Locomotion

The proposed method computes the pedestrians’ movement
taking into account the steering behaviours, and generates
locomotion for each pedestrian in the virtual environment
in real-time. In this study, the Maya’s key-frame is used for
3D animating motion for a large crowd of multi-groups of
pedestrians walking around through the virtual environment
toward their destination points. As an implementation of
the pedestrian movement, we used different types of pedes-
trians for this simulation. Then, we imported pedestrians
into Maya via Python scripts. Subsequently, Maya allows
the imported models to control the pedestrians. Based on
the proposed method, the position and the velocity of each
virtual pedestrian in the scene are updated in real-time.

5 Crowd simulation

This section describes the environment and the settings that
we have considered for the proposed method.

In this simulation, pedestrians in different group sizes
enter the virtual environment through the main entrance.
The entrance’s width is “15” unit (we assume that all dis-
tances in this study are measured in unit of length). The
width w and the length / of the simulated environment are
set to “105” and “330” unit, respectively. Inside the simu-
lated environment, there are “8” shops (goal points) that the
pedestrians want to visit (“4” shops on both the right- and
left-hand sides). Each goal point corresponds to a specific
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[Group of pedestrians (Group of pedestrian:

(Group of pedestrian:

(a) Separation

(b) Cohesion

(¢) Alignment

Fig.4 Three different types of steering behaviours: (a) separation, (b) cohesion, and (¢) alignment. A similar figure is provided by [22]

Algorithm 7 Goal-directed behavior.

1: Inputs:

current Goals gyoup, current Position,, (p. + index),

goulu.'cight.w Cgl
2. Goal; < Goalsindez|9r]

3. if (distance between current Position,, and current Goalsgroup) < Cgi

then
4: Goalsindez|9r] < Goalsinger|gr] + 1
5: if Goalsindez|gr] < length(Goalsgroup) then
6: terminate(g,] < "on”, activegrouplgr] < "of f7
7: end if
8. end if

9: g0alyector =4 subtracting(current Goals y,oup, current Position,, )
10: g0al yector < normalizing(goalyector, 90alyeight)

12: Combining with other behaviors, if thereis

region (shop) in the shopping mall environment. Moreo-
ver, there are “2” general service points. These points are
considered a temporary goal point. We add them to the list
of the goal points when the group needs them. The x- and
z — coordinates of the goal points are set to [37.5, 37.5, 37.5,
—37.5,-37.5,-37.5, -37.5,37.5] and [69, 10.5, —51, 10.5,
=51, 69, —109.5, —109.5], respectively, and the service
points are located at (0,0,0) and (0,0,—135). Sometimes,
pedestrians consider undertaking other activities during the
visit, and it can happen between two sequential visits. Exam-
ples of activities in the proposed model include having food
and using other mall services. In the simulated scenario,
pedestrians in the same group have the same goal points
(shops) to visit, and each group is assumed to have a differ-
ent list of goal points.

The simulated environment is confined by walls and
other stationary objects are present in the scene. For
example, there are several vases in the walking area of the
shopping mall at different locations (see Fig. 5). In this
study, the vases are used as static obstacles, and pedes-
trians need to pay attention and keep a certain distance.
We assume that there are four static obstacles located at
[(—20,0, 80), (20,0, 120), (—20, 0, 120), and (20, 0, 80)] and
a circular safety zone is created around each obstacle with a
radius of 4 units. Moreover, there are two stairs (static obsta-
cles) on the ground floor of the shopping mall, and the centre
of obstacles is located at [(—30, 0, —35), (30, 0, —35)], where
a circular safety zone is created around these obstacles as
well with a radius R of 7 units. While pedestrians move close
to the obstacles, they keep a safety distance.
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Fig.5 Screenshot of the shop-
ping mall with obstacles. The
walking area on the ground
floor of the shopping mall with
the 3D obstacles is shown

- Planting pot

In this study, pedestrians are divided in groups before
entering the shopping mall. Each group consists of mul-
tiple pedestrian types (male and female) of different ages
(old, young, and child) to establish the range of personality
variation. Several examples of the virtual pedestrian [35]
are shown in Fig. 6. Each pedestrian has a different energy
level, i.e. an old pedestrian has a lower energy level than a
young pedestrian. The energy level of a person will decrease
as he/she walks through the environment. Pedestrians rest at
the sitting place in a service point when their energy level
goes below the minimum energy level. During the simula-
tion, each pedestrian is considered a dynamic obstacle for
other pedestrians. Each pedestrian has a personal space
requirement with a radius, r, where other pedestrians can-
not interfere. In this simulation, the radius of the safety
space around pedestrians r is set to 0.9 units. The minimum
distance between pedestrians is set to 2r units, such that
pedestrians do not interfere with the other neighbouring
pedestrians. In this work, the proposed methods are imple-
mented in Python, and the crowd simulation was carried out
on a PC with Intel(R) core(TM) i5-8300H CPU 2.30GHz,
8RAM. The source code is available per request by sending
an email to the authors.

Fig.6 Shows different 3D char-
acters animation obtained from
Mixamo [35]

Type_2

2| Springer

"The ground floor of the shopping mall

5.1 Crowd simulation results

In our simulations, we present pedestrian movement in a
crowd made of “200” different small groups, each with
a distinct set of goal points at known locations. The total
number of pedestrians in the crowd is the sum of all pedes-
trians in all groups, which is equal to “696” pedestrians
(“696”). Pedestrians’ group size distributions in the crowd
are illustrated in Table 1. As shown in the table, the groups’
size is different in terms of the number of pedestrians. For
example, “8” groups (4% of the whole number groups) are
seen in the crowd. The number of each pedestrian’s type
(types of pedestrian="7"") in each group is generated ran-
domly between [0, N, ], and we assumed that N, = 1, and the
obtained results are presented in Table 2. From the table, it is
observed that the total number of each type of pedestrian in
the crowd is different. For example, the total number of the
first type of pedestrian (type;) is “108” pedestrians (15.5%
of the total number of pedestrians in the crowd).

Seven different types of characters (see Fig. 6) are used to
generate “200” groups of pedestrians with “696” pedestrians.
Initially, all groups of pedestrians are scattered in the front of
the virtual environment around the starting point, as shown
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T.able.l lf‘cde:stria'ns’ group 1p/ 2p/ 3p/ 4p/ Sp/ 6p/ Tp/
size distributions in the crowd,
where pedestrian is denoted group group group groop sroop group group
by p Number 8 29 65 46 38 9 1
Percent 0.04 0.145 0.325 0.23 0.19 0.045 0.005
Talie2: Pedesians’ typg type, type, type, type, types type, type,
contribution in the crowd
Number 108 93 97 92 99 104 103
Percent 0.155 0.134 0.139 0.132 0.142 0.149 0.148

in Fig. 7a. In this scenario, the x — coordinate for the start-
ing and ending points for pedestrians is generated randomly
between [—50, w + 50]. Moreover, the value of z — coordinate
is set to [ + ¢,;, where c,; is determined randomly between
[10, 60]. Afterwards, groups were appropriately introduced
into the shopping mall environment based on the defined
schedule.

Each group starts moving into the mall at a randomly cre-
ated key-frame between (1, nFrames*c,;), where c,, is set
to 0.5. Figure 8 illustrates the activation‘s’ key — frames of
all groups; the blue point objects represent the key — frames
for activating groups to move. The red circle represents
the groups’ size in terms of the number of pedestrians; a
larger circle represents a group with a higher number of
pedestrians.

At each key — frame, pedestrians’ attributes and their
positions are calculated and updated independently in real-
time. The maximum number of frames nFrames is set to
“200” key — frames. The simulation results of the pedes-
trians’ routes for all groups at each key — frame are illus-
trated in Fig. 7b. The figure shows that the proposed method
allows pedestrians to navigate the walking area from the
starting point to the final destination point. The results show

Shopping

that the proposed method prevents pedestrians from col-
liding with the obstacles in the scene by using the obsta-
cle avoidance method, as illustrated in Fig. 7b “Obstacles’
locations”. As the pedestrians move closer to an obstacle
or other pedestrians, they need to change their trajectory
to avoid potential collisions. Our method exploits the high
performance of BNM for collision avoidance. Moreover,
our BNM method makes sure pedestrians never get stuck
behind obstacles or against walls, always guaranteeing a
collision-free path.

Different screenshots of the simulation results from dif-
ferent viewpoints are presented in Figs. 1 and 9. As shown in
Fig. 1b&ec, pedestrians attempt to walk in different directions
to reach their desired goal points while avoiding obstacles
and other pedestrians in the scene. All pedestrians remain
with the group during the simulation. Different types of
walking states are demonstrated in Fig. 95, a closeup of a
particular part of the scene. For example, a pedestrian (A)
who has walked alone and changing his motion direction
to avoid stairs on his right. Moreover, a pedestrian (B) has
a limited space to move after leaving the shop — 6. At the
same time pedestrian (C) has a free moving space to move.
At the end of the simulation, all pedestrians are terminated

Obstacles’ locations

Pedestrian’s
Trajectory

Shops’ locations

Fig.7 Screenshot of pedestrian flow: () shows the initial configuration of the simulation, and (b) the pedestrians’ trajectories in the final stage

of the simulation
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Fig.8 Key-frames for activating
groups of pedestrians to move
in the virtual environment

key-frame 1o activale groups

*  Activate groups pomt
Groups size

Fig.9 Screenshot of the simulation: showing the pedestrian’s movement towards the goal points in a scene

in front of the shopping mall, as illustrated in Fig. 9a. The
figure showed that the most crowded area in the virtual envi-
ronment is found in front of the mall, where the distance
between pedestrians is very small. After the simulation runs
for “200” key — frames, the computed mean and standard
deviation reached “0.905” and “0.216”, respectively. The
increasing number of groups has the reverse effect on the
pedestrians’ mean velocity in the crowd. This is because
increasing the pedestrians normally slow down the pedestri-
ans’ movement. In our simulations, pedestrians change their
position and velocity based on various steering behaviours.
In each key — frame, the new position of each pedestrian is
calculated based on the proposed method. If a pedestrian
does not interfere with existing obstacles or pedestrians,
then the pedestrian’s current position will update to the
new determined position. If, on the other hand, a pedestrian
interferes with obstacles in the scene or pedestrians, the pro-
posed method finds another pedestrian position based on the
obstacle and pedestrian avoidance methods. Then the current
pedestrian’s position will update with the newly calculated
position. Different illustrative examples for obstacle and
pedestrian avoidance methods are presented in Figs. 10, 11,
and 12.

2| Springer

Figure 10 demonstrates the situation when a pedes-
trian tries to pass an obstacle (the stairs). At this point,
the pedestrian checks the path for collision with obstacles.
If the pedestrian were to move along the current direc-
tion, it would collide with the obstacle, as shown in the
figure. Therefore, the pedestrian changes his direction
of motion accordingly. The BNM method is employed to
find a collision-free path and guide the pedestrian to turn
left and then right to overcome the obstacle. Afterwards,
the pedestrian moves undisturbed to reach its destination
point. Similar actions are taken when two or more pedes-
trians are in danger of colliding. An illustrative example
of combined obstacle and pedestrian avoidance is shown
in Figs. 11 and 12. In this example, we consider a group of
two pedestrians moving forward to their goal point. Firstly,
at key — frame 94, as shown in Fig. 11a, if the pedestrians
moved along the current direction, they would collide with
the obstacle (a vase) because the obstacle blocks the path.
Therefore, the proposed method calculates their new direc-
tion of motion as shown in Fig. 11b&c at key — frame 95
and 96.

Secondly, after the pedestrians pass the obstacle, a col-
lision may happen between pedestrians at the key — frame
97. When the distance between pedestrians goes below
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Fig. 10 Screenshot of the simulation: shows a single pedestrian trying to move through the walking area toward the goal point, and he starts to
change his motion direction near the safety area around the stairs at key — frames (a) 118, (b) 122, and (c) 124

Fig. 11 Screenshot of the simulation: shows a group of pedestrians,
consists of two pedestrians (pedestrian A and pedestrian B), using the
obstacle avoidance method to pass the obstacle. Afterwards, pedes-
trians keep moving toward their desired goal points: (@) collision

Fig. 12 Screenshot of the
simulation: shows a group of
pedestrians, consists of two

pedestrians (pedestrian A and

B), passing each other using the Movement
pedestrian avoidance method. direction
(a) Collision avoidance takes

place between pedestrians A

and B at key — frame 97. (b)
Pedestrian B changes the motion
direction to avoid pedestrian

A without any collision at

key — frame 98, and then they
keep moving to reach their goal

point

2 X r, then pedestrian (B) employs the avoidance method
to resolve this situation (see Fig. 12a). Based on this
method, pedestrian (B) has to change his motion direction
to the right to avoid collision with its neighbouring pedes-
trian (A). Then pedestrians (A) and (B) keep moving at
key — frame 98 to reach their destination point, as shown in
Fig. 12b. The red circle objects represent the pedestrians’
movement, which can be seen clearly near the obstacle in

avoidance between pedestrians and obstacle at keyfram = 94, (b) col-
lision avoidance between pedestrian A and obstacle at keyfram = 95,
and (c¢) collision avoidance between pedestrian B and obstacle at
keyfram = 96

Pedestrian (B)
movement
direction

the walking area. The results show that the pedestrians can
avoid collisions and reach their goal points by using the
proposed method.

In order to illustrate the pedestrian’s movement in the
simulated environment, different screenshot views of a
simple illustrative example is presented in Fig. 14 at differ-
ent stages of the simulation, as shown in Fig. 13. A pedes-
trian (we consider a group that consists of one pedestrian)

2 Springer
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Fig. 13 Pedestrian’s trajectory: 400 400 -

the graph shows pedestrians’ — Goal sequen position m
movement in different directions ® Goal points .

in the simulated walking area 350 1 a11 1 ad

at different keyframes: 65, 100, L b10 ’f’

145, 165, 200, 230, 240, 270, 300 300 -

2
o

287, and 310. The red circle
objects represent the pedestri-
ans’ trace in the virtual environ-
ment at each key-frame. The
left graph shows the generated
planned pedestrian’s trajectory,
and the right graph shows the
simulation result of the pedes-
trian’s trajectory in the virtual
environment after the simula-
tion runs for 500 keyframes
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activates to move to enter the walking area at a randomly
created key-frame, as shown in Figs. 14a, 13 left (a0)
and 13 right (b0). Afterwards, the pedestrian enters the
walking area through the entrance at key-frame “65”, as
illustrated in Figs. 14a, 13 left (al) and 13 right (1), then
pass through the walking area to reach the goal points while
avoiding obstacles. The simulation results in Figs. 145, 13
left (a2) and 13 right (b2), present the time that the pedes-
trian comes closer to an obstacle at key-frame “100”, where
the pedestrian turns to the left to pass the obstacle without
collision. As the pedestrian reaches the first goal point, the
current goal point updates to the second goal point in the
goal point list. Then the pedestrian moves toward the new
goal point, as shown in Fig. 14c, 13 left (a3) and 13 right
(b3) at key-frame “145”. The pedestrian keeps changing
the motion direction in the walking area to determine a
collision-free path and track the goal points. The simula-
tion results at several locations at key-frame “165”, “200”,
%2307, “2407, and “270” are presented in Figs. 14d — h,
13 left (a4 — a8) and 13 right (b4 — bR). In this simula-
tion, the pedestrian visits the service point in the middle
of the simulated environment, as shown in Fig. 14, 13 left
(a9) and 13 right (b9) at key-frame “287”. Subsequently,
the pedestrian moves toward the entrance/exit to leave the
working environment, as illustrated in Figs. 14j, 13 left
(al0) and 13 right (b10) at key-frame “310”. At the last
stage of the simulation, the pedestrian continues moving
until it reaches the final destination point located at the
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End — point as shown in Figs. 13 left (al11) and 13 right
(b11).

The performance of our implementation was evalu-
ated by simulating pedestrian movements in the virtual
environment with a different number of groups (from
1 — 10 groups) and different group sizes. For each pedes-
trian in each group, the proposed method is used to gener-
ate pedestrians’ routes as shown in Fig. 1(a). We performed
“200” independent runs for each simulated scenario for
“200” frames. At each independent run, the average values
for the number of pedestrians and the total computational
time required to generate the pedestrians’ route are calcu-
lated. The obtained results are presented in Fig. 15. The
results demonstrate that the average value of the compu-
tational time is roughly linear, not increasing significantly
with increasing the number of pedestrians in the scene.
Moreover, the obtained results show that the proposed
method can generate the routes for pedestrians navigating
in the virtual environment to visit several destination points
within a reasonable computational time.

6 Conclusions

This study develops a new method for simulating pedes-
trian crowd movement in a virtual environment. We
have considered a public space such as a virtual working
environment. A large number of virtual pedestrians of
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Fig. 14 Screenshot of simulation at different stages: pedestrian’ tra-
jectory in the simulated walking area at different keyframes: (a) 65,
(b) 100, (c) 145, (d) 165, (e) 200, (f) 230, (g) 240, (k) 270, (i) 287,

different sizes and types move as groups inside the virtual
environment. Each group follows different directions to
reach their goal points. The proposed method generates
a real-time route for each pedestrian walking in the vir-
tual environment. The developed method demonstrates
how the pedestrians adapt their dynamics to avoid static
obstacles and other pedestrians. Based on our method,
each pedestrian in each group constantly adjust their
paths and parameters in real-time. The obtained results
show that the developed method performs well to generate

Pedestrian
movement
direction

Pedestrian
movement
direction

Pedestrian
movement
direction

Pedestrian
movement
direction

Pedestrian

movement
R —

direction

and (j) 310. The red circle objects represent the pedestrians’ trace in
the virtual environment at each keyframe

the pedestrian crowd movement with “200” different
small groups of pedestrians in a given virtual environ-
ment. After 200 keyframes, we obtained “4235” values
for pedestrian velocity, where the maximum value of the
pedestrian’s velocity reaches 1.14 units/timestep. The
mean and the standard deviation of the calculated velocity
are equal to 0.905 units/timestep and 0.216, respectively.
We concluded that the increasing number of groups of
pedestrians has the reverse effect on the pedestrian mean
velocity in the crowd.

2 Springer
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Fig. 15 The average value of the number of pedestrians and the com-
putational time required to find the routes for pedestrians in each

group
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the crowd

total number of pedestrians in the
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number of 3D obstacles in the scene
total number of the grid cells occupied
by obstacles

number of goal points on the ground
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goal points for each group

all goal points of all groups in the
crowd

number of goal points for each group
number of goal points of all groups in
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random number of goal points for
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goal index

random number for goal index
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