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1. Introduction

Cybersecurity models include provisions for legitimate user and agent authentication,
as well as algorithms for detecting external threats, such as intruders and malicious software.
In particular, we can define a continuum of cybersecurity measures ranging from user
identification to risk-based and multilevel authentication, complex application and network
monitoring, and anomaly detection. We refer to this as the “anomaly detection continuum”.

Machine learning and other artificial intelligence technologies can provide powerful
tools for addressing such issues, but the robustness of the obtained models is often ignored
or underestimated. On the one hand, AI-based algorithms can be replicated by malicious
opponents, and attacks can be devised so that they will not be detected (evasion attacks).
On the other hand, data and system contexts can be modified by attackers to influence
the countermeasures obtained from machine learning and render them ineffective (active
data poisoning).

This Special Issue presents ten papers [1–10] that can be grouped under five main topics.

2. Cyber Physical Systems (CPSs) [1–3]

AI techniques are particularly needed for the security of CPSs. This is due to the high
number and large variety of devices that cannot be manually controlled and monitored.
Security automation is also needed in this context because of the deployment of the target
infrastructure, which is often remote and difficult to access physically. The first paper [1]
reviews existing studies and datasets for anomaly detection in CPSs. In [2], the authors
propose a new approach for multi-vector attack detection in the IoT domain, using machine
learning algorithms and providing an experimental evaluation. In article [3], classifiers
obtained via machine learning were applied to the security monitoring of smart grids, and
an adaptive deep learning algorithm is proposed and evaluated with the NSL-KDD dataset.

3. Intrusion Detection [4,5]

Intrusion detection is traditionally a common target of AI applications in the context
of cybersecurity because machine learning can provide a means to train models that distin-
guish normal traffic from malicious attacks. The fourth paper [4] studies such issues in the
particular context of cooperative intelligent transportation systems, proposing algorithms
and an intrusion detection architecture evaluated on the NGSIM dataset. The fifth paper [5]
is devoted to network intrusion detection and addresses the problems of high false negative
rates and low predictability for minority classes.

4. Malware Analysis [6]

Malware detection, analysis, and response can be partly automated with artificial
intelligence. The number and variety of malware attacks make this a necessity, as manual
inspection, as well as ad hoc countermeasures, would be impossible. In [6], the authors
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compare different ensemble learning methods that have been proposed in this context:
Random Forests, XGBoost, CatBoost, GBM, and LightGBM. Experiments were performed
on different datasets, finding that tree-based ensemble learning algorithms can achieve
good performance with limited variability.

5. Access Control [7,8]

As stated above, access control can be viewed as another point in the anomaly detection
continuum. Again, distinguishing a legitimate user from impostors can be automated
through machine learning. The seventh paper [7] addresses this in the context of face
recognition systems (FRSs) and proposes a practical white box adversarial attack algorithm.
The method is evaluated with the CASIA WebFace and the LFW datasets. In [8], the authors
used the legitimate user’s iris image, combined with a secret key, to generate a public key
and subsequently use such data to limit access to protected resources.

6. Threat Intelligence [9,10]

Not only do we want to recognize and block attacks as they occur—we also need to
observe external data and the overall network context to predict relevant events and new
attack patterns, addressing the so-called threat intelligence landscape. In [9], the authors
used two well-known threat databases (CVE and MITRE) and proposed a technique to link
and correlate these two sources. The tenth paper [10] used formal ontologies to monitor
new threats and identify the corresponding risks in an automated way.

7. Conclusions

In conclusion, we observed that AI is increasingly being used in cybersecurity, with
three main directions of current research: (1) new areas of cybersecurity are addressed,
such as CPS security and threat intelligence; (2) more stable and consistent results are
being presented, sometimes with surprising accuracy and effectiveness; and (3) the pres-
ence of an AI-aware adversary is recognized and analyzed, producing more robust and
reliable solutions.
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the published version of the manuscript.
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Abstract: Cyberattacks on cyber-physical systems (CPS) can lead to severe consequences, and there-
fore it is extremely important to detect them at early stages. However, there are several challenges to
be solved in this area; they include an ability of the security system to detect previously unknown
attacks. This problem could be solved with the system behaviour analysis methods and unsuper-
vised or semi-supervised machine learning techniques. The efficiency of the attack detection system
strongly depends on the datasets used to train the machine learning models. As real-world data
from CPS systems are mostly not available due to the security requirements of cyber-physical objects,
there are several attempts to create such datasets; however, their completeness and validity are
questionable. This paper reviews existing approaches to attack and anomaly detection in CPS, with
a particular focus on datasets and evaluation metrics used to assess the efficiency of the proposed
solutions. The analysis revealed that only two of the three selected datasets are suitable for solving
intrusion detection tasks as soon as they are generated using real test beds; in addition, only one of the
selected datasets contains both network and sensor data, making it preferable for intrusion detection.
Moreover, there are different approaches to evaluate the efficiency of the machine learning techniques,
that require more analysis and research. Thus, in future research, the authors aim to develop an
approach to anomaly detection for CPS using the selected datasets and to conduct experiments to
select the performance metrics.

Keywords: anomaly detection; attack detection; cyber-physical system; machine learning; datasets;
evaluation metrics

1. Introduction

Cybersecurity risks are highly relevant nowadays. It is almost impossible to completely
exclude security risks for modern information systems, including cyber-physical systems
(CPS) and Internet of Things (IoT). Thus, it is essential to continuously detect cyberattacks
and anomalies to monitor security risks and provide security awareness.

Cyberattacks against cyber-physical systems can lead to severe impacts on physical,
environmental, as well as economical safety of the population [1]. For example, the attack
on the Colonial Pipeline disrupted fuel supply on the US East Coast in 2021 [2], and the
attack on the Venezuelan hydroelectric power plant led to a nationwide blackout in 2019 [3].
In 2022, Germany’s internal fuel distribution system was disrupted by a cyberattack [4].
Thus, it is extremely important to detect such attacks at early stages.

There are several challenges in this area, and one of the most critical challenges is the
detection of the previously unknown attacks. Another challenge relates to the availability
of the datasets used to train analytical models, as the performance of the attack detection
strongly depends on the quality of the training datasets. The first challenge relates to
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the fact that machine learning models are usually trained on datasets with known attack
patterns, and as a result, they are unable to detect previously unseen attacks. One of the
possible solutions is to use anomaly detection techniques based on the analysis of the
cyber-physical entities’ behaviour [5–7]. However, such approaches require high-quality
datasets to model normal behaviour or apply unsupervised or semi-supervised machine
learning techniques. The lack of datasets close to the real world is explained by the fact
that organizations do not want to share data, as they can include confidential data. There
are attempts to generate such datasets using cyber-physical or software test beds, but the
completeness and validity of such generated datasets are questionable. The last challenge
relates to the validation of the attack and anomaly detection models. The analysis of the
research papers has shown that different researchers use different approaches to calculate
performance metrics that complicate the comparison of the models.

In this paper, the authors review existing approaches to attack and anomaly detection,
outline the most commonly used datasets, and evaluate the applicability of the selected
datasets in the anomaly detection task. We also revealed that researchers use different
approaches to calculate performance metrics to evaluate machine learning models. These
metrics consider the fact that the anomalies in CPS have a certain duration, and malicious
activity may result in a delayed response of the system process; however, the variety of
used metrics makes the comparison of the obtained experimental results complicated.

Thus, the contribution of the research is as follows:

• analysis of the approaches to anomaly detection for the cyber-physical systems;
• analysis of the selected datasets, namely, ToN_IoT [8], SWAT [9], and HAI [10] con-

taining normal and anomaly related data for the cyber-physical systems, and selection
of the dataset for the experiments;

• overview of the metrics used to evaluate the anomaly and attack detection models.

The paper is organized as follows. Section 2 provides the results of the review of
the approaches to anomaly and attack detection for cyber-physical systems. Section 3
analyzes the datasets used for the attack and anomaly detection that contain the data from
the cyber-physical systems. Section 4 researches the metrics for the evaluation of the attack
and anomaly detection models. The paper ends with a conclusion.

2. Approaches to the Anomaly and Attack Detection for the Cyber-Physical Systems

Anomaly detection is the process of identifying anomalous events that do not match
the expected behaviour of the system. This allows the detection of new and hidden attacks.
Currently, anomaly detection approaches are often implemented using machine learning,
such as shallow (or traditional) learning and deep learning [7,11,12]. In this case, the profile
of normal behaviour can be built using many data sources.

Anomaly and attack detection in CPS based on shallow learning methods uses algo-
rithms such as support vector machine (SVM) [13], Bayesian classification [14], k-nearest
neighbor (kNN) [15], Random Forest (RF) [16,17], Isolation Forest [18], XGBoost [19], and
artificial neural networks (ANN) [20,21]. They are based on training intelligent models
to profile the normal behaviour of a cyber-physical system, and then inconsistent obser-
vations are identified as anomalies. For example, Elnour et al. [18] propose an attack
detection framework based on dual isolation forest (DIF). Two isolated forest models are
trained independently using normalized raw data and a preprocessed version of the data
using principal component analysis (PCA). The principle of the approach is to detect and
separate anomalies using the concept of isolation after analyzing the data in the original
and PCA-transformed representations. Mokhtari et al. [16] and Park and Lee [17] explore
such supervised learning algorithms for anomaly detection as k-nearest neighbours, deci-
sion tree classifier, and random forest. In both studies, the random forest shows the best
detection result.

The analysis of related works has shown that the research focus has now shifted
towards the use of deep neural networks to detect anomalies in technological processes. A
number of authors compare classical and deep learning approaches to anomaly detection.
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So Inoue et al. [22] compare one-class SVM with radial basis function kernel deep and
dense neural network with a layer of long short-term memory (LSTM), and the experiments
have shown that the deep learning model is characterized by a lower rate of false positive
alarms. Gaifulina and Kotenko [23] experimentally compare several models of deep neural
networks for anomaly detection. Shalyga et al. [24] propose several methods to improve
the quality of anomaly detection, including exponentially weighted smoothing to reduce
the false positive rate, individual error weight for each feature, non-overlapping prediction
windows, etc. The authors also propose their own anomaly detection model based on a
multilayer perceptron (MLP).

Traditional machine learning methods tend to be inefficient when processing large-
scale data and unevenly distributed samples. Deep learning models are more productive
when analyzing such data. Researchers often use autoencoders (AE) [5,6], recurrent neural
networks [25], convolutional neural networks (CNN) [26–28], and generative adversarial
networks (GAN) [29,30] as deep neural networks for anomaly detection in CPS. Often,
the approaches propose a hybrid use of neural network data. For example, Xie et al. [25]
and Wu et al. [31] use CNN for data dimensionality reduction and gated recurrent units
(GRU) for data prediction. GRU is one of the types of recurrent networks, as well as LSTM.
Bian X. [32] also uses GRU for anomaly detection. The main idea of the anomaly detection
method is to predict the value of the next moment and determine if an anomaly occurs due
to a deviation between the predicted value and the actual value.

The autoencoder is trained on normal data, and then the incoming events are recon-
structed based on the normal model. Exceeding the reconstruction error threshold indicates
an anomaly. Such an approach is used in the APAD (Autoencoder-based Payload Anomaly
Detection) model by Kim et al. [5]. Wang et al. [6] propose an approach to anomaly de-
tection using a composite model. The proposed model consists of three components: the
encoder and decoder used to reconstruct the error, and the LSTM classifier, which takes
the encoder output as input and makes predictions. To detect an anomaly, both model
outputs, i.e., reconstruction error and prediction value, are considered together to calculate
the anomaly score. The authors also compare the change ratio of each attribute during
the current period and the previous one, and those attributes that have changed more are
considered anomalous.

Generative adversarial networks can be used to investigate the distribution of nor-
mal data for recognizing anomalies from unknown data. The generator creates new data
instances, and the discriminator evaluates them for authenticity. In the MAD-GAN (Mul-
tivariate Anomaly Detection with GAN) approach by Li et al. [29], both generator and
discriminator components are represented by LSTM. The discriminator is trained to distin-
guish anomalies from normal data, and the anomaly score is computed as a combination
of the discrimination output and reconstruction error produced by the generator compo-
nent. A similar approach is proposed by Neshenko et al. [30]. The building blocks for the
proposed GAN are the recurrent neural network and convolutional neural network. The
authors also extended the anomaly detection approach by incorporating a module that
attributes potentially attacked sensors. This task is solved by the application of various
techniques starting with feature importance evaluation and finishing with KernelShap [33]
and LIME [34] techniques that are model agnostic methods.

We should also mention approaches to anomaly detection using graph probabilistic
models, such as Bayesian networks (BN) and Markov models. For example, Lin et al. [35]
propose TABOR (Time Automata and Bayesian netwORk). Time Automata simulate
the operation of the sensors and actuators, and the Bayesian network (BN) models the
dependencies among random variables from the sensors and the actuators. This approach
allows for the detection of timing anomalies, anomalies of sensor, and actuator value range,
as well as a violation in their dependencies. Another popular way to represent normal
behaviour is the hidden Markov model (HMM). Sukhostat L. [36] uses hierarchical HMM
to detect anomalies in sensor values.
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Application of the proposed techniques requires high-quality datasets that allow
proper modelling of the CPS system functioning. Depending on the technique, it is required
to have only normal data; some techniques require having both samples with normal and
abnormal behaviour.

The first group of datasets is the data containing the indicators of the sensors of the
cyber-physical system in the form of logs. The analysis of the research papers showed
that currently, the most commonly used CPS dataset is SWAT dataset [9]. It is used
in [5,6,18,24,25,29,30,35,36]. This dataset contains records from sensors, actuators, control
programmable logic controllers (PLCs), and network traffic. Another new dataset for
anomaly detection is HAI [10], which is used in research [16,17,32]. The dataset contains
the parameters of sensors for an industrial power generation system using steam turbines
and pumped storage power plants. To detect anomalies in IoT devices, the authors in the
papers [19,20,31] use the TON_IoT dataset [8]. The ToN_IoT dataset includes telemetry
from heterogeneous IoT and Industrial Internet of Things (IIoT) sensors.

Another group of datasets that are often used to detect anomalies and attacks in
CPS are represented by network traffic datasets. They include such datasets such as NSL-
KDD [37], CICIDS2017 [38] and UNSW-NB15 [39], and are used in the following research
papers [23,27,31,40]. However, these datasets are represented mainly by network data
that could be given in form of the PCAP (Packet Capture) files or labelled network flows.
Section 3 discusses datasets in detail.

We should note that differences in the experimental conditions affect the possibility
of comparing the results of anomaly detection. For example, Elnour et al. [18] exclude the
stabilization time from the SWaT dataset. The way metrics are calculated can also vary, and
research papers do not always provide a way to calculate these metrics. In general, the
above machine learning methods show high anomaly detection results and can be used in
further developments. A promising area of research and development is the creation of
hybrid machine learning models for anomaly detection. In particular, combined networks
with RNNs are used to capture temporal relationships [6,29], and combined networks with
CNNs are applicable for context analysis (e.g., packet order and content) [25,30].

3. Datasets for the Attack and Anomaly Detection

An essential challenge of anomaly detection research is generating or finding a suitable
dataset for the experiments. The authors analyzed existing datasets to select the dataset for
further research.

The authors specified the following requirements of the dataset based on the research
goal of anomaly detection in cyber-physical systems:

R1: the dataset should be gathered from the cyber-physical system;
R2: the dataset should contain event logs;
R3: the dataset should contain anomalies;
R4: the dataset should be labelled (what is normal and what is abnormal);
R5: the dataset should be close to real data (i.e., data from the real or semi-real system).
Currently, there are a lot of datasets available for various purposes and systems; they

represent the functioning of the computer networks and cyber-physical systems, including
the Internet of Things, Industrial Internet of Things, and Industrial Control Systems (ICS),
such as SCADA (Supervisory Control And Data Acquisition) system [41].

Alsaedi et al. [8] present the comparative analysis of the available datasets for se-
curity purposes. Thus, there are datasets containing computer network traffic that was
generated for attack detection purposes: KDDCUP99, NSL-KDD [37], UNSW-NB15 [39],
and CICIDS2017 [38]. Such datasets do not contain sensors’ data that is specific to CPS.
Moreover, they do not include CPS network traffic, both normal and abnormal.

There are also datasets generated for cyber-physical systems security research pur-
poses. Choi et al. [42] provide a comparison of the existing datasets generated for ICSs
security research based on attack paths. Lemay and Fernandez [43] generate the SCADA
network datasets (Modbus dataset) for intrusion detection research. The SCADA network
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datasets by Rodofile et al. [44] contain attacks on the S7 protocol. These datasets are SCADA
specific and contain a limited set of protocol specific attacks.

There are also multiple datasets for IoT and IIoT. Suthaharan et al. [45] propose
the labelled wireless sensor network dataset (LWSNDR). It contains homogeneous data
collected from a humidity-temperature sensor. The sensor is deployed in single-hop
and multi-hop wireless sensor networks (WSNs). The dataset does not contain attack
scenarios, but does contain anomalies introduced by the author using a hot water kettle.
Sivanathan et al. [46] propose the datasets gathered from a smart home testbed. It contains
network traffic characteristics of IoT devices. The dataset is generated for the IoT devices
classification. The dataset does not contain attack scenarios.

There are also multiple network-based IoT datasets [37–39,46–48]. These datasets
do not consider sensor data; thus, they do not allow for the detection of the attacks that
manipulate sensors’ data.

The datasets that are suitable considering the set requirements, i.e., that contain
labelled sensors and network data, are as follows: TON_IoT [8], SWaT [9], and HAI [10].
The authors conducted a more detailed analysis of these datasets.

3.1. TON_IoT Dataset Analysis

The TON_IoT dataset is created by the Intelligent Security Group of the UNSW
Canberra, Australia, and positioned by its authors as realistic telemetry datasets of IoT
and IIoT sensors. It contains data from seven IoT devices, namely, a smart fridge, GPS
tracker, smart sense motion light, remotely activated garage door, Modbus device, smart
thermostat, and weather monitoring system. All the data were generated using a testbed of
Industry 4.0/Industrial IoT networks developed by the authors. The data include several
normal and cyber-attack events, namely, scanning, DoS, DDoS, ransomware, backdoor,
data injection, cross-site scripting, password cracking attacks, and man-in-the-middle. The
TON_IoT dataset incorporates the ground truth indicating normal and attack classes for
binary classification, and the feature indicating the classes of attacks for multi-classification
problems. Statistics on class balance for device samples from the TON_IoT dataset are
presented in Table 1.

Table 1. The statistics on the TON_IoT dataset class balance by devices.

IoT Device Normal Attack Total Class Balance, %

Fridge 35,000 24,944 59,944 58/42
Garage Door 35,000 24,587 59,587 59/41
GPS Tracker 35,000 23,960 58,960 59/41
Modbus 35,000 16,106 51,106 68/32
Motion Light 35,000 24,488 59,488 59/41
Thermostat 35,000 17,774 52,774 66/34
Weather 35,000 24,260 59,260 59/41

Alsaedi et al. and Moustafa [8] also tried several popular machine learning methods
to show that the TON_IoT dataset may be used to train classifiers for intrusion detection
purposes. To justify the results and ensure that attacks are indeed identifiable, we have
tried to follow the course of the authors’ experiment with binary classification. It should be
mentioned that the authors reported very high accuracy for the majority of the investigated
methods (more than 0.8 for the F-measure in most cases). As we tried to follow the authors,
at first we applied the same preprocessing procedures, namely, transformed categorical
features with two unique values into binary ones, applied the min-max scaling technique
to numeric features, and randomly split data into train and test subsamples in 80% to 20%
stratified proportion.

It should be noted that during data preprocessing, we found several artefacts in the
data. For example, ‘temp_condition’ feature for the fridge contains values ‘high’, ‘low’, ‘low’,
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‘high’, ‘low’, ‘high’ values, and ‘sphone_signal’ for fridge contains ‘true’, ‘false’, ‘0’, ‘1’ values.
As there are no special notes about that in the paper or the dataset description, we supposed
that those were inaccuracies in the data and fixed them.

Figure 1 shows the correlation between features for different devices, both with each
other and with the anomaly behaviour label. We can note a high correlation between the
features of the dataset for a fridge, garage door, GPS tracker, and motion light. At the same
time, the correlation value between these features and the label is low. The correlation of
features for Modbus, thermostat, and weather is close to zero.

Figure 1. IoT device feature and label correlation.

We applied the same machine learning models to those mentioned in the original
paper, namely, Logistic Regression (LR), Linear Discriminant Analysis (LDA), k-Nearest
Neighbour (kNN), Classification and Regression Trees (CART), Random Forest (RF), Naïve
Bayes (NB), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM), with
the hyperparameters that authors specified, and also tried to tune those hyperparameters
using 4-fold cross-validation.

We did not manage to reach the reported accuracy for most of the datasets, in either
case. Table 2 shows the best values for F-measure that we received for classifiers trained on
80% of the data for each device calculated on the remaining 20% of the data.

Table 2. The F-measure values for the best hyperparameters of the model trained on the TON_IoT
dataset calculated for the test subsample.

IoT Device LR LDA kNN RF CART NB SVM LSTM

Fridge 0 0 0.37 0.02 0 0 0 0
Garage Door 0.58 0 0.56 0 0 0 0 0
GPS Tracker 0.51 0.43 0.95 0.95 0.93 0.43 0.81 0.85
Modbus 0 0 0.87 0.97 0.97 0 0 0
Motion Light 0 0 0.50 0 0 0 0 0
Thermostat 0 0 0.26 0.31 0.33 0 0 0
Weather 0.10 0.10 0.95 0.98 0.97 0.53 0.58 0.61

The best F-measure values were obtained for the GPS Tracker dataset. We assume that
this is due to the strongest correlation between features and anomaly class labels in this
device dataset in comparison to the other device datasets. For other datasets, correlations
are close to zero, that is, very weak. The strong correlations between features and the weak
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correlations between features and anomaly class labels for fridge, garage door, and motion
light may explain the low F-measure values for these datasets.

Further investigation of the data showed that anomaly class labels relate only to data
and time of device events; although, according to the authors’ experiment design, date and
time are not taken into account. Figure 2 shows an example distribution of anomaly class
labels in time for the temperature feature of the smart fridge.

Figure 2. Normal and attack events for temperature feature of smart fridge.

Conclusions. We analyzed the obtained results considering the set requirements. Re-
quirements R1, R2, and R4 are satisfied; requirement R3 is partially satisfied, as soon as
the dataset contains attack scenarios. However, the performed experiments showed that
these attacks do not affect IoT telemetry. The requirement R5 is not satisfied. The analysis
demonstrated that there is no connection between the data in the network dataset and the
data in the sensor’s dataset. Moreover, the sensors do not follow any normal behaviour
scenario and the obtained accuracy results are rather low. Thus, this data set is not suitable
for the goals of further research.

3.2. SWaT Dataset Analysis

The Secure Water Treatment (SWaT) dataset [9] is generated by the Singapore Uni-
versity of Technology and Design (SUTD). The researchers deployed a six-stage SWaT
testbed simulating a real-world industrial water treatment plant. The collected dataset
contains both normal and attack traffic. It should be noticed that the deployed plant was
run non-stop for eleven days: during the first seven it operated without any attacks, while
during the remaining days, cyber and physical attacks were conducted against the plant.
The collected dataset contains both the data from sensors and actuators of the plant (25 sen-
sors and 26 actuators) and network traffic. Currently, there are several versions of this
dataset; the researchers regularly update it by organizing cybersecurity events using it,
thus, generating new data with different attack types.

We conducted a series of experiments with different machine learning models for
anomaly detection using the SWaT dataset 2015 to evaluate this dataset and check its
compliance with the criteria proposed above. The dataset incorporates three CSV files
with anomaly (or attack) and normal data: “Attack_v0.csv”, “Normal_ v0.csv”, and “Nor-
mal_v1.csv”. The attacks were performed on different technological processes, and Table 3
shows the number of abnormal records for different technological processes. It should be
also noted that some network attacks do not impact the readings from physical sensors.
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Table 3. Distribution of the attacks per processes in SWaT dataset

Record Type Number of Impacted Processes Impacted Processes Number of Samples

Normal 0 0 399,157

Attack

1 P1 4053
1 P2 1809
1 P3 37,860
1 P4 1700
1 P5 1044
2 P3, P4 1691
2 P1, P3 1445
2 P3, P6 697
2 P4, P5 463

Experiment 1. For this experiment series, we tried both time and random train-test
splits on the “Attack_v0.csv” dataset containing 449,919 rows in total, including 395,298
normal records and 54,621 anomaly records that correspond to attacks, meaning that
the contamination rate is 0.138 for this subsample. For the time train-test split mode,
the training sample was incorporated all rows before 2 January 2016 , while the testing
sample contained rows after 2 January 2016 (inclusively). Due to uneven distribution of
anomalies across time, the class balance for train and test subsamples was different: the
train subsample included 344,436 normal instances and 51,483 attack instances meaning
that the contamination rate was equal to 0.149; the test subsample included 50,862 normal
instances and 3138 attack instances with a contamination rate of 0.062. The results of the
experiment for the train-test split mode and different anomaly detection machine learning
models are provided in Table 4. The best results were obtained for the K Nearest Neighbors
method (KNN) with F1-measure 0.784, AUC-ROC 0.935, and AUC-PRC 0.739 on the test
subsample.

Table 4. The results of Experiment 1 for the time split mode for the SWaT dataset.

Optimal
Threshold

Train Data Test Data

P R FPR F1 AUC-
ROC

AUC-
PRC P R FPR F1 AUC-

ROC
AUC-
PRC

Sklearn

ocSVM 0.300 0.795 0.205 0.436 0.723 0.087 0.355 0.193 0.807 0.250 0.654 0.051
isoF 0.045 0.240 0.760 0.076 0.868 0.072 0.065 0.839 0.161 0.120 0.567 0.051

PYOD

ECOD 0.806 0.668 0.331 0.731 0.879 0.772 0.310 0.270 0.730 0.289 0.791 0.240
COPOD 0.879 0.662 0.338 0.755 0.878 0.791 0.497 0.268 0.732 0.348 0.796 0.236
KNN 0.252 0.008 0.993 0.015 0.204 0.087 0.819 0.752 0.248 0.784 0.935 0.739
Deep-SVDD 0.803 0.011 0.989 0.022 0.633 0.187 0.965 0.079 0.921 0.147 0.566 0.143
VAE 0.729 0.745 0.255 0.737 0.892 0.666 0.364 0.493 0.507 0.419 0.785 0.201
AutoEnc 0.721 0.753 0.247 0.737 0.894 0.672 0.305 0.460 0.540 0.367 0.793 0.205
AnoGAN 0.896 0.653 0.347 0.756 0.875 0.777 0.422 0.212 0.788 0.282 0.695 0.182

For the random train-test split mode, we used 80% to 20% ratio so the train subsample
contained 316,238 normal instances and 43,697 attack instances, while the test subsample
contained 79,060 normal instances and 10,924 attack instances with a contamination rate
of 0.138 for both. The results of experiment 1 for the random train-test split mode and
different anomaly detection machine learning models are provided in Table 5. It can be
seen that rather close results were obtained for the ECOD (F1-measure 0.743, AUC-ROC
0.878, and AUC-PRC 0.758 on the testing sample), COPOD (F1-measure 0.744, AUC-ROC
0.874, and AUC-PRC 0.768 on the testing sample), VAE (F1-measure 0.766, AUC-ROC 0.892,
and AUC-PRC 0.661 on the testing sample), AutoEnc (F1-measure 0.767, AUC-ROC 0.892,
and AUC-PRC 0.660 on the testing sample), and AnoGAN (F1-measure 0.750, AUC-ROC
0.864, and AUC-PRC 0.753 on the testing sample).
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Table 5. The results of Experiment 1 for the random split mode for the SWaT dataset.

Optimal
Threshold

Train Data Test Data

P R FPR F1 AUC-
ROC

AUC-
PRC P R FPR F1 AUC-

ROC
AUC-
PRC

Sklearn

ocSVM 0.211 0.017 0.983 0.031 0.813 0.072 0.237 0.019 0.981 0.036 0.811 0.073
isoF 0.209 0.861 0.139 0.336 0.859 0.07 0.210 0.862 0.138 0.338 0.86 0.069

PYOD

ECOD 0.928 0.615 0.385 0.740 0.876 0.757 0.934 0.617 0.383 0.743 0.878 0.758
COPOD 0.942 0.610 0.390 0.741 0.873 0.769 0.946 0.613 0.387 0.744 0.874 0.768
KNN 0.121 1.000 0.000 0.217 0.227 0.085 0.121 0.999 0.000 0.217 0.232 0.085
Deep-SVDD 0.191 0.675 0.325 0.298 0.583 0.150 0.191 0.672 0.329 0.297 0.585 0.153
VAE 0.853 0.689 0.311 0.763 0.89 0.653 0.861 0.690 0.310 0.766 0.892 0.661
AutoEnc 0.853 0.690 0.310 0.763 0.89 0.652 0.860 0.691 0.309 0.767 0.892 0.660
AnoGAN 0.989 0.604 0.396 0.750 0.862 0.750 0.989 0.605 0.395 0.750 0.864 0.753

Experiment 2. For this experiment series, we used the data from “Attack_v0.csv“ and
“Normal_v0.csv” files to form train, test, and validation subsamples. The train and test
subsamples incorporated all instances before 2 January 2016, with 672,989 normal instances
and 41,186 attack instances for train and 168,247 normal instances and 10,297 attack in-
stances for test (contamination is equal to 0.061 for both) after 80% to 20% stratified train
test split. Meanwhile, the validation sample consisted of all instances after 2 January 2016
(inclusively), with 50,862 normal instances and 3138 attack instances and contamination
of 0.062. The results of experiment 2 for different anomaly detection machine learning
models are provided in Tables 6 and 7. It can be seen that rather close results are obtained
for the ECOD (F1-measure 0.718, AUC-ROC 0.864, and AUC-PRC 0.530 on the testing
sample), COPOD (F1-measure 0.729, AUC-ROC 0.867, and AUC-PRC 0.563 on the testing
sample), VAE (F1-measure 0.732, AUC-ROC 0.896, and AUC-PRC 0.505 on the testing
sample), AutoEnc (F1-measure 0.732, AUC-ROC 0.896, and AUC-PRC 0.505 on the testing
sample), and AnoGAN (F1-measure 0.746, AUC-ROC 0.851, and AUC-PRC 0.555 on the
testing sample).

Table 6. The results of Experiment 2 for the SWaT dataset (for train and test data).

Optimal
threshold

Train data Test data

P R FPR F1 AUC-
ROC

AUC-
PRC P R FPR F1 AUC-

ROC
AUC-
PRC

Sklearn

ocSVM 0.00 0.00 0.00 0.0 0.00 0.00 0.891 0.617 0.383 0.729 0.211 0.180
isoF 0.00 0.00 0.00 0.00 0.00 0.00 0.805 0.623 0.377 0.702 0.862 0.032

PYOD

ECOD 0.862 0.623 0.377 0.724 0.865 0.540 0.856 0.619 0.381 0.718 0.864 0.530
COPOD 0.897 0.621 0.379 0.734 0.868 0.575 0.890 0.617 0.383 0.729 0.867 0.563
KNN 0.058 1.000 0.000 0.109 0.209 0.040 0.058 0.999 0.000 0.109 0.213 0.041
DeepSVDD 0.067 0.832 0.168 0.124 0.490 0.054 0.067 0.826 0.174 0.124 0.489 0.055
VAE 0.772 0.696 0.304 0.732 0.896 0.509 0.770 0.696 0.304 0.732 0.896 0.505
AutoEnc 0.772 0.696 0.304 0.732 0.896 0.509 0.770 0.696 0.304 0.732 0.896 0.505
AnoGAN 0.899 0.644 0.356 0.751 0.854 0.568 0.893 0.641 0.359 0.746 0.851 0.555

Experiment 3. The data from “Attack_v0.csv”, “Normal_v0.csv”, and “Normal_ v1.csv”
files together were used to train algorithms in novelty detection or unsupervised mode in
this experiment series. The data contain 1,441,719 instances in total, including 1,387,098 nor-
mal instances and 54,621 attack instances with contamination of 0.039. To train algorithms,
all instances from “Normal_v0.csv” and “Normal_v1.csv” files (except stabilization period
of 3 hours) were used, while all instances from “Attack_v0.csv” file were used for testing.
The train sample included 972,000 normal instances and no attack instances. The test sam-
ple included 395,298 normal instances and 54,621 attack instances, that is, contamination is
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equal to 0.139. The results of experiment 3 for the novelty detection mode and different
anomaly detection machine learning models are provided in Table 8. It can be seen that
the results are rather close for different models with a rather low false positive rate on the
testing sample.

Table 7. The results of Experiment 2 for the SWaT dataset (for validation data).

Validation Data

ACC P R FPR F1

Sklearn

ocSVM 0.942 0.000 0.000 1.000 0.000
isoF 0.935 0.022 0.003 0.997 0.005

PYOD

ECOD 0.942 0.466 0.011 0.989 0.021
COPOD 0.942 0.000 0.000 1.000 0.000
kNN 0.058 0.058 1.000 0.000 0.110
DeepSVDD 0.601 0.045 0.293 0.707 0.079
VAE 0.933 0.000 0.000 1.000 0.000
AutoEncoder 0.933 0.000 0.000 1.000 0.000
AnoGan 0.943 0.672 0.043 0.957 0.081

Table 8. The results of Experiment 3 for the SWaT dataset.

Optimal Threshold
Train Data Test Data

ACC ACC P R FPR F1 AUC-
ROC

AUC-
ROC

Sklearn

ocSVM 0.990 0.936 0.998 0.585 0.415 0.738 0.808 0.082
isoF 0.960 0.777 0.124 0.932 0.068 0.219 0.833 0.072

PYOD

ECOD 0.900 0.833 0.981 0.598 0.402 0.743 0.858 0.758
COPOD 0.960 0.919 0.948 0.619 0.381 0.749 0.855 0.756
KNN 0.960 0.127 0.987 0.636 0.364 0.774 0.816 0.727
DeepSVDD 0.960 0.766 0.991 0.646 0.354 0.783 0.838 0.732
VAE 0.960 0.410 0.991 0.633 0.368 0.772 0.820 0.732
AutoEnc 0.960 0.410 0.991 0.633 0.368 0.772 0.820 0.732

Conclusions. We analyzed the obtained results considering the dataset requirements listed
above. All specified requirements are satisfied for this dataset. It is generated using physical
devices and components, and this impacts the efficiency of the network attacks; not all network
attacks result in changes in the readings of the sensors. Thus, we consider that this dataset is a
realistic one. The preliminary results of the analysis of the sensors data are in conformance with
the results obtained by other researchers [6,29,30,35,36]. Interestingly, all considered papers do
not analyze network and sensor data together, and we believe that joint analysis of such data
could significantly enhance the performance of the analysis models targeted to detect anomalies
and network attacks.

3.3. HAI Dataset Analysis

The dataset describes the parameters of an industrial control system testbed with
an embedded simulator. The testbed comprises four elements: a boiler, turbine, water-
treatment component, and a hardware-in-the-loop (HIL) simulator. The HIL simulation
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implements a simulation of the thermal power and pumped-storage hydropower genera-
tion.

When forming the dataset, several different attack scenarios were used, aimed at three
types of devices: the Emerson Ovation, GE Mark-VIe, and Siemens S7-1500.

During the attack, the attacker operates with four types of variables: set points,
process variables, control variables, and control parameters. The set of certain values of
these variables in a given period of time determines one of two behaviours of the system:
anomalous or normal. When the system is operating normally, the values of the process
variables change within a predefined range. To this end, the operator adjusts the set point
values, which allows for achieving stable and predictable results in the behaviour of the
sensors, and the entire system as a whole.

This dataset has three versions: HAI 20.07, HAI 21.03, and HAI 22.04. Statistical
information about each of them is given in Table 9.

Figure 3 shows 10 features which keep the highest correlation value with the class
label for files test1.csv within HAI 20.07, HAI 21.03, and HAI 22.04.

Table 10 contains the values of F-measure (F1) and accuracy (ACC) in percentages
for 5 classifiers: decision tree (DT), KNN, random forest, logistic regression, and neural
network (NN).

Conclusions. We analyzed the obtained results considering the set requirements. The
requirements R1, R2, R3, and R4 are satisfied. The requirement R5 is also satisfied; however,
considering the existence of the simulated part of the test bed, the quality of the dataset
depends on the quality of the simulated part of the test bed. The preliminary experimental
results are in line with the results obtained in other research papers. Thus, this dataset is
consistent and suitable for the intrusion detection task.

Table 9. Statistical data on the HAI dataset class balance by version.

File Normal Attack Total Class Balance, % Features

hai-20.07/train1.csv.gz 309,600 0 309,600 100/0 59
hai-20.07/train2.csv.gz 240,424 776 241,200 99.7/0.3 59
hai-20.07/test1.csv.gz 280,062 11,538 291,600 96/4 59
hai-20.07/test2.csv.gz 147,011 5989 51,106 96.1/3.9 59
hai-21.03/train1.csv.gz 216,001 0 216,001 100/0 79
hai-21.03/train2.csv.gz 226,801 0 226,801 100/0 79
hai-21.03/train3.csv.gz 478,801 0 478,801 100/0 79
hai-21.03/test1.csv.gz 42,572 629 43,201 98.5/1.5 79
hai-21.03/test2.csv.gz 115,352 3449 118,801 97.1/2.9 79
hai-21.03/test3.csv.gz 106,466 1535 108,001 98.6/1.4 79
hai-21.03/test4.csv.gz 38,444 1157 39,601 97.1/2.9 79
hai-21.03/test5.csv.gz 90,224 2177 92,401 97.6/2.4 79
hai-22.04/train1.csv 93,601 0 93,601 100/0 86
hai-22.04/train2.csv 201,600 0 201,600 100/0 86
hai-22.04/train3.csv 126,000 0 126,000 100/0 86
hai-22.04/train4.csv 86,401 0 86,401 100/0 86
hai-22.04/train5.csv 237,600 0 237,600 100/0 86
hai-22.04/train6.csv 259,200 0 259,200 100/0 86
hai-22.04/test1.csv 85,515 885 86,400 99/1 86
hai-22.04/test2.csv 79,919 2881 82,800 96.5/3.5 86
hai-22.04/test3.csv 58,559 3841 62,400 93.8/6.2 86
hai-22.04/test4.csv 125,177 4423 129,600 96.6/3.4 86
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(c) HAI 22.04 dataset.
Figure 3. Features with the highest correlation value with class label.
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Table 10. Result of evaluating classifiers on HAI dataset.

File
DT KNN RF LR NN

F1, % ACC, % F1, % ACC, % F1, % ACC, % F1, % ACC, % F1, % ACC, %

hai-20.07/test1.csv.gz 99.00 99.85 86.42 98.28 99.67 99.95 80.88 97.73 96.70 99.50
hai-20.07/test2.csv.gz 99.48 99.92 94.93 99.30 99.76 99.96 97.29 99.60 99.30 99.90
hai-21.03/test1.csv.gz 98.61 99.91 93.39 99.59 99.31 99.95 90.10 99.43 49.57 98.29
hai-21.03/test2.csv.gz 97.60 99.73 89.89 98.99 99.52 99.95 74.99 98.03 88.52 98.81
hai-21.03/test3.csv.gz 99.38 99.96 99.61 99.61 99.38 99.96 90.96 99.53 72.23 98.76
hai-21.03/test4.csv.gz 99.45 99.94 95.65 99.52 99.67 99.96 99.22 99.91 49.25 97.05
hai-21.03/test5.csv.gz 98.26 99.84 92.72 99.38 99.30 99.94 81.30 98.63 49.39 97.59
hai-22.04/test1.csv 98.66 99.95 90.87 99.67 99.11 99.97 78.76 99.39 49.75 98.99
hai-22.04/test2.csv 97.85 99.70 89.80 98.73 99.39 99.92 72.80 97.46 49.07 96.34
hai-22.04/test3.csv 98.79 99.73 94.45 98.83 99.64 99.92 90.00 98.03 94.30 98.65
hai-22.04/test4.csv 98.38 99.78 88.26 98.65 99.45 99.93 62.88 97.02 49.12 96.53

4. Performance Metrics for Anomaly and Attack Detection

Finally, in this section, we describe performance metrics used for anomaly and attack
detection. Precision, recall, and F-measure are the most used evaluation metrics. There
is no specialized metric to measure the performance of anomaly detection methods. The
listed metrics are classic for machine learning methods, on which most anomaly detec-
tion methods are based. However, we discovered that there are different approaches to
calculating them [28,49,50]. This section reviews proposed approaches.

Let us denote the time series signal observed from K sensors during time T as

X = {x1, . . . , xT}, xt ∈ RN .

The normalized signal is divided into a number of time windows:

W = {w1, . . . , wT−h+τ},
wt = {xt, . . . , xt+h−τ},

where h—window size, τ—step length.
The purpose of the time series anomaly detection method is to predict the binary label

of the presence of an anomaly (
∧
yt), either for individual X instances or for time windows

W. The labels are obtained by comparing the anomaly estimates A with a threshold δ. For
the specific instances:

∧
yt =

{
1, if A(xt) > δ,
0, otherwise.

For all windows in the test dataset:

∧
yt =

{
1, if A(wt) > δ,
0, otherwise.

A set of test data may contain several sequences (segments) of anomalies within a
certain period of time. Let us denote S as a set of M segments of anomalies:

S = {S1, . . . , SM},
Sm = {xtms , . . . , xtme},

where tms and tme are the Sm starting and ending time, accordingly.
Below, several approaches to calculate the performance metrics of anomaly detection

are described.
Point-wise calculation approach. The calculation of the performance metrics is imple-

mented using separate records within the dataset [28,49]. The calculation of precision (P),
recall (R), and F-measure (F1) is implemented using all points within the dataset:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2× P× R
P + R

,
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where

• TP—correctly detected anomaly (yt = 1,
∧
yt = 1);

• FP—false detected anomaly (yt = 0,
∧
yt = 1);

• TN—correctly assigned norm (yt = 0,
∧
yt = 0);

• FN—false assigned norm (yt = 1,
∧
yt = 0).

Point-adjusted (PA) calculation approach . The calculation of the performance metrics
is implemented using the corrected labels. If at least one observation of an anomalous
segment is detected correctly, all other observations of the segment are also considered to
be correctly detected, even if they were not detected [28,49]. Observations outside the true
anomaly segment are processed as usual. It can be specified as follows:

∧
y

pa

t =

{
1, if A(xt) > δ or ∃A(xt′ > δ), xt, x′t ∈ Sm,
0, otherwise.

The metrics are calculated considering the corrected labels in the dataset:

Ppa =
TPpa

TPpa + FPpa
, Rpa =

TPpa

TPpa + FNpa
, F1pa = 2× Ppa × Rpa

Ppa + Rpa
,

This idea is represented in Figure 4.

Figure 4. True, corrected, and predicted labels in case of the PA approach to metrics calculation.

Revised point-adjusted (RPA, event-wise) calculation approach. The calculation of metrics
is implemented using time windows of records [50]. If any point at the anomaly window
is labelled as anomalous, then one true positive result is fixed. If the anomalies were
not labelled, then one false negative result is fixed. Any predicted anomalies outside the
anomaly windows are considered false positives. This can be specified as follows:

Prpa =
TPrpa

TPrpa + FPrpa
, Rpa =

TPrpa

TPrpa + FNrpa
, F1pa = 2× Prpa × Rrpa

Prpa + Rrpa
,

where

• TPrpa—any part of the predicted anomaly sequence intersects with a sequence that
actually has an anomaly;

• FNrpa—if no sequence that is predicted to be anomalous intersects with a real anoma-
lous sequence;

• FPrpa—all predicted anomalous sequences that do not intersect with any really anoma-
lous sequence.

This idea is represented in Figure 5.
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Figure 5. True, predicted, and corrected labels in case of the RPA approach to the metrics calculation.

Another metric is the composite F1 score [50]. For this metric, precision is considered
as P (by the number of points), and recall is calculated as Rrpa (by the number of segments):

F1c = 2× P× Rrpa

P + Rrpa
.

This idea is represented in Figure 6.

Figure 6. True, predicted, and corrected labels in case of the composite F1 score approach to the
metrics calculation.

Conclusions. There are various approaches to the calculation of metrics for performance
evaluation of the machine learning models. In addition to the classical way of calculating
through TP, TN, FN, and FP, researchers present options with adjusted indicators. This
is aimed at improving the quality of anomaly detection in a large amount of data, or at
reducing the number of false positives. In this case, the choice of metrics strongly depends
on the detection problem being solved. To select the appropriate approach to calculation,
additional experiments are required: the authors plan to implement and compare all the
described metrics in future experiments with anomaly detection methods.

5. Conclusions

In the paper, the authors considered existing approaches in the anomaly detection
area, existing datasets that can be used for the experiments, and existing performance
metrics. The analysis of the related works showed that the research focus has shifted to
the application of deep neural networks to anomaly detection in technological processes;
however, there are still solutions based on classical anomaly detection techniques. The
application of machine learning techniques requires high-quality datasets. High-quality
datasets are datasets that are relevant to the subject domain, meaningful, and reliable. We
formulated five requirements for the datasets that consider these properties and evaluated
three different datasets that are currently proposed for testing and evaluation of cybersecu-
rity applications. The selected datasets are SWaT, HAI, and TON_IoT. Our experiments
revealed that TON_IoT is not suitable for the intrusion detection task, as we did not dis-
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cover any relations between sensor data and network data. We consider that SWaT and
HAI datasets are more relevant for cybersecurity tasks, primarily due to the fact that they
were generated using real physical test beds. The SWaT dataset contains both network and
sensor data; this makes it preferable for intrusion detection, as authors believe that joint
analysis of the network and sensor data could benefit the early detection of the attacks a
lot, including multi-step attacks.

Another interesting finding relates to the performance evaluation of the machine
learning techniques proposed to detect anomalies. These techniques consider the specificity
of the anomalies of the CPS systems—their duration and the delayed response of the system.
Although these features could significantly enhance the evaluation process of the proposed
cybersecurity solutions, they require more analysis and research.

Finally, in future research, the authors plan to develop an approach to anomaly
detection in cyber-physical systems that will provide accurate and explainable results, and
will conduct experiments to select the performance metrics.
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Abstract: Cybersecurity is a common Internet of Things security challenge. The lack of security in IoT
devices has led to a great number of devices being compromised, with threats from both inside and
outside the IoT infrastructure. Attacks on the IoT infrastructure result in device hacking, data theft,
financial loss, instability, or even physical damage to devices. This requires the development of new
approaches to ensure high-security levels in IoT infrastructure. To solve this problem, we propose
a new approach for IoT cyberattack detection based on machine learning algorithms. The core of
the method involves network traffic analyses that IoT devices generate during communication. The
proposed approach deals with the set of network traffic features that may indicate the presence of
cyberattacks in the IoT infrastructure and compromised IoT devices. Based on the obtained features
for each IoT device, the feature vectors are formed. To conclude the possible attack presence, machine
learning algorithms were employed. We assessed the complexity and time of machine learning
algorithm implementation considering multi-vector cyberattacks on IoT infrastructure. Experiments
were conducted to approve the method’s efficiency. The results demonstrated that the network traffic
feature-based approach allows the detection of multi-vector cyberattacks with high efficiency.

Keywords: Internet of Things; cybersecurity; cyber threats; malware detection; machine learning;
network traffic

1. Introduction
1.1. Motivation

The Internet of Things is a concept that aggregates many technologies and physical
objects—devices that exchange data and interact over the internet, as well as big data that
generate these devices. Internet of Things devices have various purposes and complexities,
from wearable things or technology to intelligent devices in smart homes and critical
infrastructure. The Internet of Things was designed to make many areas of human life
more comfortable and safer. However, the Internet of Things not only brings increased
comfort but also new challenges and problems related to cybersecurity [1,2].

Security issues surrounding the Internet of Things infrastructure are determined by
the specific features of an environment. One possible feature involved in building an IoT in-
frastructure is an IoT system of groups of identical or similar technical characteristic devices.
If a specified device has a vulnerability, such homogeneity multiplies its impact [3–5].

Important issues include security issues with protocols used in the internet infras-
tructure, the use of unsafe network services, such as Telnet and SSH, and vulnerabilities
in routers and open ports. With the ability to monitor and collect data on the IoT, even
specialized compromised IoT devices with limited resources can be used to leverage critical
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infrastructure systems, such as database servers. Vulnerability in the IoT device commu-
nication protocol can spread to other devices that use the vulnerable protocol in the IoT
infrastructure [6].

Thus, vulnerabilities in the protocols used in the IoT network can have devastating
effects on the entire IoT infrastructure. The criticalities of these effects depend on the
environments in which the compromised IoT devices operate.

Moreover, in some cases, the deployment conditions of IoT devices make it difficult or
impossible to reconfigure or upgrade IoT devices. Often, IoT devices cannot be upgraded
due to the discontinuation of device support from the manufacturer. This leads to the
possibility of new vulnerabilities and threats to the IoT device in the future, as the current
security mechanisms of device deployment may be out of date. Technical support and man-
agement of IoT smart devices are important cybersecurity issues in the long run. Another
specific problem surrounding IoT cybersecurity is the fact that the internal operation of a
smart device and the data streams generated by the device may be unknown to the user.
The situation is complicated by the constant availability of IoT devices on a network and
the ignorance of users (i.e., concerning potential cybersecurity risks). It may lead to the
use of dangerous settings on IoT devices (default), direct network connections of internet
devices to the internet, the use of obsolete or unreliable devices, and weak passwords.

One important IoT cybersecurity risk is that the functionality of smart devices can
be changed by the device manufacturer without the consent or knowledge of the user (by
updating the device firmware). It creates a new vulnerability that can allow the smart
device to partially change the functionality or perform undesirable actions on the user’s
device, such as collecting sensitive user data without the user’s knowledge.

However, the risks are not limited to data confidentiality. Attacks on IoT infrastructure
can not only target compromised devices to steal sensitive data or cause financial losses but
also disrupt or damage IoT devices physically. Compromised IoT devices can even lead to
the injuries or deaths of people who depend on these devices or work with them.

Thus, non-compliance with basic security requirements (for both manufacturers and
the users of smart devices) is the main cause of IoT cybersecurity problems. Common
causes of security breaches in IoT infrastructure due to manufacturers are vulnerabilities in
the IoT device software, lack of support for automatic updates, lack of firmware updates,
and dangerous update mechanisms. This situation is often caused by manufacturers at-
tempting to launch new smart devices as soon as possible. Vulnerabilities in software and
web applications can lead to the theft of sensitive information or the spread of malicious
firmware updates. Another common problem is unsafe authentication methods provided
by the device manufacturers. The above weaknesses of the current IoT state of affairs,
as well as the heterogeneity of the IoT environment, make IoT devices more vulnerable
than computers and servers on conventional networks. Vulnerable components of IoT can
be IoT devices, device software, and communication channels of the IoT infrastructure.
The main threats in IoT infrastructure are distributed denial of service (DDoS), disclo-
sure of confidential information, falsification, spoofing, and elevation of privilege. These
threats are commonly used by cybercriminals as entry points, followed by other criminal
activities: infecting devices with malicious software, stealing sensitive data, or blocking
network connections.

Mentioned factors contribute to the high probability of compromising IoT devices, the
spread of malicious software, and various multi-vector cyberattacks on IoT infrastructure
(MVIA). At the same time, compromised IoT devices can be used as sources of attacks both
inside and outside the IoT infrastructure.

The next subsection presents a brief analysis of the modern ideas and methods ad-
dressed to solve the problem of IoT malware detection by analyzing the advantages
and disadvantages.
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1.2. Objectives and Contribution

The main objectives of the work were to study the possibility of a multi-vector cy-
berattack detection in the IoT infrastructure based on a flow analysis and a deeper traffic
analysis that takes into account IoT protocol features. This research aims to improve de-
tection efficiency via various machine learning algorithm usages. The proposed approach
deals with the set of network traffic features that may indicate the presence of cyberattacks
in the IoT infrastructure and compromised IoT devices.

Thus, the novelty of this work involves the approach used for IoT multi-vector cy-
berattack detection, which involves a flow-based features analysis. It enables decreased
detection time and is scalable. On the other hand, if the flow-based feature analysis was
unable to conclude the attack presence, a deep analysis of network traffic with the use of
MQTT-based, DNS-based, and HTTP-based features analysis was employed.

This paper is organized as follows. Section 2 presents the state-of-the-art. Section 3
describes the machine learning algorithms for cyberattack detection. Section 4 discusses the
stages of the proposed IoT multi-vector cyberattack detection technique based on machine
learning algorithms with the traffic features analysis. Section 5 proposes the experiments
and the efficiency of the proposed approach. Finally, we present our conclusions and
future research.

2. The State-of-the-Art

The scientific community is focusing on the increasing problems concerning cyber-
security today. Solutions devoted to cyberattack detection against Internet of Things
infrastructure are widely presented [7,8]. Quite possibly, the most encouraging approaches
for IoT cyberattack detection are based on machine learning algorithms (MLA) [9–13].

To solve the cyberattack detection problem, the authors of [14] proposed an approach
that executes the IoT malware traffic analysis. It is based on the usage of multilevel
artificial intelligence and involves neural networks and binary visualization. In addition,
the approach proposes efficiency improvement via learning from the misclassification
approach, which includes three main stages, is designed to collect the network traffic,
perform the binary visualization to store the collected network traffic in ASCII, convert
it to 2D images, and process/analyze the obtained binary image. An analysis of the
binary images is executed using the TensorFlow tool, an end-to-end open-source platform
designed to use machine learning for different problem solutions. It can find and classify
patterns automatically. The main advantage of the tool is the ability to organize the system
retraining as well as the possibility to make the image recognition. The approach proposes
the use of the algorithm to perform the visualization of the collected traffic characteristics
as an image (in the form of tiles using the Binvis tool). The TensorFlow machine tool can
make predictions. The use of graphic tiles allows the determination of the tile combination
on which the image is based. It is able to detect needed objects regardless of the location
within the obtained image. The provided method can perform the IoT device protection on
the gateway level, bypassing the IoT environment constraints.

The authors of [15] presented a survey on the experimental studies with a detailed
analysis of a set of machine learning algorithms. The article included comparative data
concerning the algorithm detection efficiency of anomalous behavior in IoT networks. Ex-
perimental results have shown that the best efficiency concerning used datasets is produced
by the random forest algorithm. Nevertheless, all investigated machine learning algo-
rithms demonstrated to be very close to random forest algorithm and detection efficiency
results; sometimes the choice of an appropriate algorithm depends on the nature of the
analyzed data.

Article [16] is devoted to machine learning classifiers involved in the botnet traffic
analysis in the IoT environment. Nine IoT devices were employed for dataset construc-
tion, consisting of several botnet attack types. To evaluate the efficiency of the proposed
approach, true positive, true negative, false positive, false negative, F1-score accuracy,
precision, and recall were used. The experimental results of the research demonstrated that
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the random forest algorithm produced the best results while the support vector machine
produced the lowest results. The main disadvantage of the approach is the strong need for
data analysis of all features in processed datasets.

The IoT cyberattack detection approach for the IoT network is presented in [17]. It
is based on the use of intelligent technologies. The produced intelligent system operates
with a set of network features. The approach aims to reduce the feature number via its
ranking with the usage of the correlation coefficient, random forest algorithm, and the gain
ratio. The base for the experimental research involves three feature sets, where using the
proposed algorithm is to be combined to obtain an optimized feature set. The means of data
processing the authors used were K-nearest neighbor, random forest, and XGBoost machine
learning algorithms. All experiments were based on the usage of NSL-KDD, BoT-IoT, and
DS2OS datasets. The investigation of the detection efficiency of the proposed system was
executed. For this purpose, the metrics of accuracy, detection rate, F1-score, and precision
were evaluated.

An approach for IoT attack detection based on the usage of cloud technologies and
software-defined networks (SDNs) is presented in [18]. It employs a decentralized two-
layer SDN and is able to perform attack mitigation in the wireless IoT infrastructure. To
execute the network traffic control for each subnet domain, the predefined local domain
controller of the specified domain was employed. The core of the approach is a special
controller connected to a local controller and it is placed in the cloud environment. The
approach also involves some special local controllers to perform the traffic collection from
the investigated domains to perform the feature extraction, and, as a result, to find out
the facts of the DDoS attack presence in the domain. The attack detection process is based
on the analysis of 155 features, collected via the SPAN function of the Cisco switch. The
obtained feature values were evaluated by detection modules placed within all defined
local controllers to detect DDoS attacks. The approach used an extreme learning machine
(ELM) as a decision-maker for attack detection. The feed-forward neural network with
semi-supervised learning was used. The main advantage of ELM implementation is the
training time reduction as it performs the random selection of the initial parameters. As
a result, usage of ELM decreases the detection time. An attack mitigation module is also
presented on each local controller. There is the possibility to organize the data exchange
between each local controller, as well as with the universal controller. The proposed attack
mitigation technique involves a set of attack mitigation scenarios able to perform in the
wireless internet environment for different fixed devices.

The authors of [19] propose an intrusion detection system for IoT infrastructures. It
is based on deep learning (DL-IDS). The approach for the IoT infrastructure intrusion
detection involves the network traffic analysis; the data normalization procedure (to avoid
the uncertainties in the obtained dataset); the data similarity evaluation on the usage of
the Minkowski distance (to take into account the missing values, to eliminate possible
redundancy, and to remove from the dataset the redundant and duplicate data); the
replacement of the missing feature values in the obtained dataset (taking into account
the evaluated values of the nearest neighbor on the basis of the K-nearest neighbor in the
Euclidean distance to produce the average values for proceed data (to not take into account
the classification results based on the data obtained from the more frequent entries); the
traffic feature selection procedure on the basis of the spider monkey optimization algorithm
usage (the set of features that are able to indicate the intrusion into the IoT infrastructure);
and the exact intrusion detection procedure based on the stacked-deep polynomial network
for the incoming data classification to mark it as normal or abnormal. The proposed
approach is able to detect intrusions concerning the IoT environment (a remote-to-local
attack, a DDoS attack, a probing attack, a user-to-root attack, etc.).

The study [20] provides research devoted to the usage of machine learning algorithms
for anomaly detection in the Internet of Things infrastructures. To do this, the authors
investigated the effectiveness and the main aspects of the usage of several single algorithms
or their combinations for detection. The efficiency of the anomaly detection involved
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performance metrics, such as false positives, false negatives, specificity, sensitivity, and
overall accuracy. The experimental part of the study is based on the Nemenya and Friedman
tests that made it possible to perform a statistical analysis of the classifiers’ differences.
Another aspect of the research was the evaluation of the classifiers’ response time. For
this purpose, specific IoT infrastructure (as part of the implemented IDS) was employed.
As a result of the conducted experiments, the authors of the study concluded that the
most acceptable classification accuracy and the time of response were provided by the
classification trees, regression trees, and extreme gradient boosting.

An approach for cyberattack detection as an AD-IoT system is presented in [21].
The proposed system is designed for the smart city infrastructure and is based on the
random forest machine learning algorithm. The system aims to detect the compromised IoT
devices that are placed in the distributed fog nodes. The division of normal and malicious
behaviors of IoT devices is executed on the basis of monitoring and analyzing the fog
nodes’ network traffic. Such analysis is performed to verify whether the fog level attacks
are detected and to inform the cloud security services concerning the evaluated results. The
presented approach demonstrates sufficient detection efficiency and applies to the smart
city infrastructure.

An approach for DDoS attack detection is presented in [22]. It is based on the hybrid
optimization algorithms of Metaheuristic lion and Firefly. It was designed to perform data
collecting, data preprocessing for noise removing, and filling missing data. The feature
extraction was performed by employing recursive feature elimination (RFE). An important
item of the proposed technique is the possibility of detecting low-rate attacks using the
hybrid ML-F optimization algorithm. For the attack classification, a random forest classifier
was used.

The article [23] introduces an IDS, which is based on the technique that uses an
ensemble-based voting classifier. This approach uses multiple classifiers as a base learner.
The final prediction is formed via producing the classifier’s vote for the traditional classifier
predictions. As the mean of the efficiency evaluation of the presented approach, a set of IoT
devices with the usage of different sensors (garage door, light motion, GPS sensor, fridge
sensor, thermostat, modbus, and weather) were employed. Multi-class attacks, such as XSS,
Ransomeware, scanning injection, DDoS, and backdoor, were involved in the technique
efficiency verification. The efficiency of the presented method was compared with the
set of new intrusion detection approaches provided by scientists. The comparison was
constructed on the basis of the accuracy, precision, recall, and F-score metrics. Furthermore,
a set of machine learning algorithms, such as decision tree, naive Bayes, random forest, and
K-nearest neighbors were involved in the comparison procedure. The experimental results
demonstrated that the proposed approach has a high detection efficiency.

The authors of [24] propose a detection method for DoS/DDoS attacks against the IoT
using machine learning. The approach aims to detect and apply the mitigation scenarios
in the situation of DoS/DDoS attacks. To do this, the approach employs a multiclass
classifier (“Looking back”). In addition, the ability of the technique to detect “malicious”
packets makes it possible to apply mitigation measures against attacks that employ specific
packet types.

The approach in [25] provides a botnet detection system for IoT devices. It is based on
the algorithm named local–global best bat, which is used for neural networks and is able to
process the botnet’s feature sets to distinguish malicious and benign network traffic. As an
experimental part of the study, the botnets Mirai and Gafgyt were used to infect several
commercial IoT devices. In addition, to classify 10 botnet classes, the proposed algorithm
was used. It was designed to tune the neural network hyperparameters and optimize the
weight. The authors made the efficiency comparison of the provided algorithm with other
approaches. The experimental results demonstrated that the proposed botnet detection
approach accuracy was up to 90%, while BA-NN was 85.5%, and PSO-NN was 85.2%.

The authors of [26] proposed a taxonomy of intrusions detection systems that utilizes
the data objects as the dimensions to summarize and classify machine learning- and
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deep learning-based IDS. The survey clarifies the concept of IDSs. Moreover, machine
learning-based algorithms, metrics, and benchmark datasets frequently used in IDSs were
introduced. IDSs applied to various data sources, i.e., logs, sessions, packets, and flow,
were analyzed. The proposed taxonomic system was presented as a baseline and key
IDS issues with using machine learning and deep learning algorithms. Moreover, future
developments and challenges of IDS were discussed.

The authors of [27] introduced a probabilistic-driven ensemble (PDE)-based approach.
This approach operates with several classification algorithms, wherein the effectiveness
of these algorithms has been improved by applying a probabilistic criterion. Thus, the
proposed approach allows maximizing the possibility of detecting intrusion events, regard-
less of the operational scenario, using several evaluation models. This makes it possible
to distinguish ordinary events from related events to all classes of attacks. Experiments
performed by using real-world data show that the proposed ensemble approach has better
capability in detecting intrusion events (concerning known solutions).

The authors of [28] presented machine learning-based IDS. The feature reduction
approach has two components: (1) Auto-encoder as a deep learning instance for dimension-
ality reduction; and (2) principal component analysis. The resulting set of low-dimensional
features from both approaches was used to build different classifiers, i.e., Bayesian network,
random forest, linear discriminant analysis, and quadratic discriminant analysis for design-
ing IDS. The obtained experimental findings show better performance in terms of detection
rate, false alarm rate, accuracy, and F-measure for binary and multi-class classification. This
approach is able to reduce the feature dimensions of the CICIDS2017 dataset from 81 to 10,
with high accuracy in both multi-class and binary classifications.

The objective of [29] was to apply various approaches for handling imbalanced datasets
to design an effective IDS from the CIDDS-001 dataset. The effectiveness of sampling
methods based on CIDDS-001 was studied and experimentally evaluated via random forest,
deep neural networks, variational autoencoder, voting, and stacking machine learning
classifiers. The developed system makes it possible to detect attacks with high accuracy
when processing an unbalanced distribution of classes using a smaller number of samples.
It makes it possible to apply the proposed system to data classification problems if it is
necessary to merge data in real-time.

In [30], the authors were devoted to solving cybersecurity problems, such as the
difficulty in distinguishing illegitimate activities from legitimate ones due to their high
degrees of heterogeneity and similar characteristics. To solve this problem, a local feature
engineering approach was proposed. This approach is based on the adoption of a data pre-
processing strategy that allows reducing the number of network event patterns, increasing
their characterization. The main distinguishing feature of the approach is that it operates
locally in the feature space of each single network event, allowing to introduce new features
and discretizing their values. The experimental results showed that the proposed approach
improves the performance of known solutions.

The results of the machine learning algorithm efficiency analysis for detecting cyberat-
tacks in the Internet of Things infrastructure are presented in Table 1.

The analysis of related works allows concluding that most studies had good detection
accuracy; nevertheless, the main disadvantage of the investigated works is that they do not
cover most features that may indicate the attack presence.

The analysis shows that the known approaches for detecting IoT cyberattacks demon-
strate high-efficiency levels. Nevertheless, there are limitations—the inability to detect
and respond to unknown attacks (zero-day attacks), the low efficiency of detection of
multi-vector attacks; a high level of false positives, a significant response time that is
unacceptable for real-time systems, and the need for significant amounts of computing
resources. Another important aspect is the need to select a minimum and sufficient set of
informative network traffic features that are able to indicate the presence of cyberattacks in
the IoT infrastructure.

27



Algorithms 2022, 15, 239

Table 1. Machine learning algorithm (MLA) efficiency for cyberattack detection in the Internet of
Things infrastructure.

Authors Goal MLA Data Set Result

Shire, R.; Shiaeles, S.;
Bendiab, K.; Ghita B.;
Kolokotronis, N. [14]

malware detection,
zero-day malware

classification

Convolutional Neural
Network and binary

visualization

Real network
environments

Accuracy of 91.32%,
Precision of 91.67%,

Recall of 91.03%

Elmrabit, N.;
Zhou, F.; Li, F.;
Zhou H. [15]

anomaly detection,
attack detection

Logistic Regression, Decision
Tree, Adaptive boosting, KNN,
Random Forest, Naive Bayes,

Gated Recurrent Units, Simple
Recurrent Neural Network,

Convolutional Neural
Network and Long short-Term

Memory, Convolutional
Neural Network, Long

short-Term Memory, Deep
Neural Network

UNSW-NB15,
CICIDS-2017, ICS

Cyberattack

Performance about
99.9% using Random
Forest (CICIDS-2017)

Bagui, X. Wang;
Bagui, S. [16] intrusion detection Logistic regression, SVM,

random forest

UCI Machine
Learning

Repository
Accuracy of about 99%

Kumar, P.;
Gupta, G.P.;

Tripathi, R. [17]

cyber-attack detection
against IoT networks

K-nearest neighbor, random
forest, XGBoost

DS2OS, NSL-KDD,
BoT-IoT

Accuracy up to 99%,
detection 90–100%

Ravi N.;
Shalinie S.M. [18]

DDoS attacks
detection and

attacks mitigation

ELM, semi-supervised extreme
learning machines UNB-ISCX Accuracy of

about 96.28%

Otoum, Y.; Liu, D.;
Nayak A. [19]

DoS, user-to-root
(U2R),

remote-to-local (R2L)
detection,

probe, intrusions

Stacked-deep
polynomial network NSL-KDD

Accuracy up to 99.02%,
Precision up to 99.4%,

recall up to 98.3%,
F1-score up to 98.8%

Verma, A.;
Ranga, V. [20]

Survey on machine
learning algorithms

for DoS
attacks detection

AdaBoost, extremely
randomized trees, multilayer
perceptron, classification and

regression trees, random forest,
gradient boosted machine,
extreme gradient boosting

UNSW-NB15,
NSL-KDD,
CIDDS-001

Regression trees,
classification trees, and
EG boosting show the
best results—accuracy
up to 96.7%, specificity
up to 96.2%, sensitivity

up to 97.3%

Alrashdi, I.;
Alqazzaz, A.;

Aloufi, E.;
Alharthi, R.;
Zohdy, M.;

Ming, H. [21]

Detection of
DDoS attacks Bat Algorithm N-BaIoT Accuracy up to 90%

Krishna, E.S.;
Thangavelu, A. [22]

Detection of the
DDoS attacks Random Forest NSL-KDD, NBaIoT

Accuracy up to 99.98%,
precision up to 99.87%,

recall up to 100%,
and F-score up

to 99.73%

Mihoub, A.;
Fredj, O.B.;

Cheikhrouhou, O.;
Derhab, A.;

Krichen, M. [23]

Investigation of
DoS/DDoS attacks

detection for IoT
based on ML
algorithms

Looking-back-enabled
random forest IoT-Bot Accuracy up to 99.81%
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Table 1. Cont.

Authors Goal MLA Data Set Result

Khan, M.A.;
Khan Khattk, M.A.;
Latif, S.; Shah, A.A.;

Ur Rehman, M.;
Boulila, W.;

Ahmad, J. [24]

intrusion detection

Combined decision tree, naive
Bayes, random forest, and

K-Nearest Neighbors using a
voting-based technique

TON IoT

Accuracy up to 88%,
Precision up to 90%,

Recall up to 88%,
F-score of 88% for

DT-RF-NB based on
binary classification

with a combined
IoT dataset

Alharbi, A.;
Alosaimi, W.;
Alyami, H.;

Rauf, H.T. [25]

detection of
DDoS attacks Bat algorithm N-BaIoT Accuracy up to 90%

Saia, R.; Carta, S.;
Recupero, D.R. [27]

intrusion
events detection

Multilayer perceptron,
decision tree, adaptive

boosting, gradient boosting,
random forests

NSL-KDD

Better performance
compared to single

classifiers in terms of
specificity, without

significant degradation
in other aspects, since

there is little
degradation in terms of

mean F-score, but a
positive mean AUC

(compared to
competitor

approaches),
demonstrates the
effectiveness of
the approach

Abdulhammed, R.;
Musafer, H.;
Alessa, A.;

Faezipour, M.;
Abuzneid, A. [28]

developing the
features

dimensionality
reduction approaches

for machine
learning-based IDS

Bayesian network, random
forest, linear discriminant

analysis, quadratic
discriminant analysis

CICIDS2017

Reducing the feature
dimensions of a dataset
from 81 to 10, with high

accuracy of 99.6% in
both multi-class and
binary classification

Abdulhammed, R.;
Faezipour, M.;
Abuzneid, A.;

AbuMallouh, A. [29]

applying various
approaches for

handling imbalanced
datasets to design

effective IDS

Random forest, deep neural
networks, variational

autoencoder, voting, stacking
CIDDS-001 Attacks detection with

up to 99.99% accuracy

Carta, S.; Podda, A.S.;
Recupero, D.R.;

Saia, R. [30]

solving such
cybersecurity

problems, as the
difficulty of

distinguishing
illegitimate activities
from legitimate ones

Random forests, decision tree,
gradient boosting, adaptive

boosting, multilayer
perceptron

NSL-KDD,
CICIDS2017,
UNSW-NB15

Improving the
performance of the

state-of-the-art
canonical solutions

To summarize, there is a strong need to evolve new methods for cyberattack detec-
tion in the IoT infrastructure. To do this, we are to eliminate technique drawbacks and
increase the detection efficiency of detecting known and unknown cyberattacks in the IoT
infrastructure.
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3. Machine Learning Algorithms for Cyberattack Detection

The current study has involved five MLAs for IoT multi-vector cyberattack detections, as
they were mostly used in (recent) research for efficient object classification [15–17,20,22,30];
we relied on our own experience in MLA use for cyberattack detection [11]:

1. Decision tree (DT) [31,32];
2. Random forest (RF) [33–38];
3. K-Nearest Neighbor (KNN) [39];
4. Extreme Gradient Boosting (XGBoost) [40];
5. Support Vector Machine (SVM) [41–43].

4. IoT Multi-Vector Cyberattack Detection Based on Machine Learning Algorithms
4.1. Detection Steps

The approach for IoT cyberattack detection includes the following steps (Figure 1):

1. Traffic obtaining;
2. Grouping packets by type, source device, and time. Packets from each device are

grouped by type and by N records, according to the last connection time;
3. Feature extraction;
4. Feature classification based on the machine learning algorithm;
5. Result producing.
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4.2. Features Description

An important task is to speed up the detection of attack traffic. Early detection of
attack traffic provides an opportunity to increase the security of the Internet of Things
infrastructure, as it prevents the further spread of malicious software compromising not
yet infected devices in the IoT infrastructure. Therefore, to speed up the detection of
cyberattacks in the infrastructure, four types of features are involved:

• Flow-based features;
• MQTT-based features;
• DNS-based features;
• HTTP-based features.

Using only flow-based features (Table 2) makes it possible to speed up the detection of
attacks on the network by faster extraction of features from streams and their analyses. In
the case of suspicious traffic behavior that cannot be unambiguously classified as an attack,
an in-depth traffic analysis is applied with the MQTT-based (Table 3), DNS-based (Table 4),
and HTTP-based (Table 5) feature extractions.

Table 2. Flow-based features.

# Features Designation Value Description

1 f1 Protocol type
2 f2 Source IP address
3 f3 Destination IP address
4 f4 Source port
5 f5 Destination port
6 f6 Last connection time
7 f7 Transaction bytes from f2 to f3
8 f8 Transaction bytes from f3 to f2
9 f9 Mean packet size transmitted by f2
10 f10 Mean packet size transmitted by f3
11 f11 Source bits per second
12 f12 TTL value, f2 to f3
13 f13 TTL value, f3 to f2
14 f14 Interpacket interval
15 f15 Bandwidth
16 f16 Packet jitter

Table 3. MQTT-based features.

# Features Designation Value Description

1 f18 The amount of connections to f3 in N gathered records according to f6
2 f19 The amount of connections of f2 in N gathered records according to f6
3 f20 The amount of connections of f2 and f5 in N gathered records according to f6
4 f21 The amount of connections to f3 and f4 in N gathered records according to f6
5 f22 The amount of connections of f2 and f3 in N gathered records according to f6

Table 4. HTTP-based features.

# Features Designation Value Description

1 f48 HTTP request method (GET, POST, HEAD)
2 f49 HOST header value
3 f50 Length of the HOST header value
4 f51 URL in the request
5 f52 Length of URL
6 f53 HTTP pipelining depth
7 f54 Uncompressed size of the transferred data from the client
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Table 4. Cont.

# Features Designation Value Description

8 f55 Uncompressed size of the transferred data from the server
9 f56 Percentage of f48 with the same f49 in N records according to f6
10 f57 Percentage of the f49 the with same the f51 in N records according to f6
11 f58 Percentage of f48 with the same f51 in N records according to f6

Table 5. DNS-based features.

# Features Designation Value Description

1 f23 Requested domain name
2 f24 Value specifying the request type
3 f25 Length of f23
4 f26 Amount of unique characters in f23
5 f27 Entropy of f23

6 f28
TTL-period, mode (the value that appears most often in a set of data), in N records

according to f6

7 f29
TTL-period, median (the numerical value separating the higher half of a data sample

from the lower half), in N records according to f6
8 f30 TTL-period, average value, in N records according to f6

9 f31
Amount of A-records corresponding to f23 in the incoming DNS messages (the feature

is used if value f31 > 1), in N records according to f6

10 f32
Amount of IP addresses concerned with f23 (feature is used if value f31 = 1), in N

records according to f6

11 f33
Average distance between the IP addresses concerned with f23 (feature is used if value

f31 = 1), in N records according to f6

12 f34
Average distance between the IP addresses in the set of A-records for f23 in the

incoming DNS message (feature is used if value f31 > 1), in N records according to f6

13 f35
Amount of unique IP addresses in sets of A-records corresponding to f23 in the DNS

messages (feature is used if value f31 > 1), in N records according to f6

14 f36
Average distance between unique IP addresses in sets of A-records corresponding to
f23 in the DNS messages (feature is used if value f31 > 1), in N records according to f6

15 f37
Domain name amounts that share IP addresses corresponding to f23, in N records

according to f6

16 f38

Sign of the usage of uncommon types of DNS records, or DNS records that are not
commonly used by a typical client (e.g., TXT are most often used for tunneling

(excluding mail servers), KEY, or NULL)

17 f39
The entropy of the DNS records, which are contained in the DNS messages (CNAME,

TXT, NS, MX, KEY, NULL, etc.)
18 f40 Maximum size of the DNS messages about f23, in N records according to f6

19 f41
Sign of success of DNS query (f41 = 0 if DNS query failed, and f41 = 1 if DNS query

was successful)
20 f42 Answer length
21 f43 Mean class value in N records according to f6
22 f44 Mean type value in N records according to f6
23 f45 Amount of f2 and f23 in N records according to f6
24 f46 Amount of f23 to the same f2 in N records according to f6
25 f47 Percentage of the domain in N records according to f6

This section presents the involvement of four feature types for multi-vector cyberattack
detection in the IoT infrastructure. The features based on flow analysis enable the possibility
of speeding up attack detections through faster analyses and make the detection algorithm
scalable, allowing us to analyze high-bandwidth IoT traffic. On the other hand, the features
based on deep packet analyses enable us to improve the accuracy of detection in cases
where the use of a sign based on flow analysis does not provide an unambiguous answer
about the presence of a cyberattack (and also allows detecting the multi-vector attacks).
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5. Experiments
5.1. Evaluation Setting

To conduct the experiments, a Wi-Fi network of IoT devices was created. A Raspberry
Pi 3 was configured as a middlebox, which acted as a Wi-Fi access point. To simulate DoS
attacks as a source of malicious traffic, a computer system with a virtual Kali Linux was
used. As a victim of DoS attacks, Raspberry Pi 2 with an installed Apache web server was
used. All devices were connected to create a Wi-Fi network access point.

Three IoT devices (router, thermostat, camcorder) were also connected to the Wi-Fi
network. To obtain normal traffic, a simulation of user interactions with the devices of
the created IoT network was performed. To do this, actions such as transmitting video
from the camera and installing software updates on connected IoT devices were performed.
To obtain malicious traffic, a simulation of performing the most common classes of DoS
attacks was executed.

An HTTP GET flood attack was simulated with the Goldeneye tool [44]; TCP SYN and
UDP flood were simulated with Kali Linux hping3 utility [45]. The iodine utility was used
to perform DNS tunneling attacks [46].

Malicious/benign traffic was collected at the Wi-Fi access point. The IoT traffic
collection was executed via the Zeek tool [47]. It gives capacities to the network intrusion
detection systems (IDS) and empowers security operation centers (SOC). The Zeek tool
was used as a network traffic analyzer with an in-built classification engine.

In the collected DoS traffic samples, the source IP addresses and MAC addresses
were substituted for the IP addresses and MAC addresses of the devices of the created IoT
network. The time of sending malicious packets was modified so that the total collected
IoT traffic replicated the activity of the attacking and normal activity devices.

Thus, the execution of DoS attacks of different types by each IoT device was simulated.

5.2. Dataset Description

To hold the experiments, the traffic generated by Mirai, Gafgyt, Dark Nexus botnets,
UCI Machine Learning Repository, DS2OS, Bot-IoT, N-BaIoT, CIDDS, UNSW-NB15, and
NSL-KDD traffic datasets [48–54] were used.

The DS2OS dataset contains traces gathered from the application layer of the IoT
environment from devices such as movement sensors, light controllers, thermometers,
batteries, thermostats, smart doors, etc. This dataset can be used to assess anomaly-based
attack detection algorithms.

The UNSW-NB15 dataset contains data on nine types of attacks, such as Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. A
total of 49 features were extracted to describe these types of attacks.

The N_BaIoT dataset offers real-world IoT traffic data collected from nine IoT devices
infected by Mirai and BASHLITE. Malicious data are divided into 10 attacks as well as
harmless data (with 115 different features).

The Kitsune Network Attack Dataset contains nine network capture datasets in total
that relate to different types of attack traffic against the IoT Infrastructure.

The BoT-IoT dataset was created by deploying a realistic IoT infrastructure network
environment and it includes legitimate IoT network traffic as well as various types of
attacks. The BoT-IoT includes DDoS and DoS for different protocols, OS scan, service scan,
data exfiltration, and keylogging attacks.

The CIDDS and NSL-KDD datasets are built on network intrusion data describing
“bad” connections, which are called intrusions (or attacks) and “good” connections (le-
gitimate connections). These databases describe a wide range of intrusions and take into
account user behavior scenarios.

Furthermore, experiments dealt with the set of traffic features presented in the above-
mentioned datasets for three IoT devices: router, thermostat, and camcorder that were
infected by Mirai, Gafgyt, and Dark Nexus botnets. The set of traffic features corresponds
to four types of attacks (TCP, UDP, HTTP GET, and DNS tunneling).
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As each dataset contains different samples and features, the preprocessing and feature
selection processes were executed via each file type analysis and their parsing into the
needed presentation for the next preprocessing. Such files as .csv, .pcap, Argus files, Zeek
files, and .txt were processed.

Mirai is well-known malware that is able to infect an IoT device and turn such a smart
device into a remotely-controlled network of bots—a botnet. The main negative impact
of Mirai is the ability to launch massive DDoS attacks, as well as the ability to scan the
internet for IoT smart devices based on the ARC processor. Such vulnerability as the usage
of a stripped-down Linux version makes it possible to perform the logging into the device
and execute malicious actions. In addition, the Mirai botnet uses a great amount of hijacked
IoT devices to increase its spread and it is very dangerous for its mutating [55].

Gafgyt is a botnet that uses the vulnerabilities of IoT devices. It employs infected de-
vices for large-scale (DDoS) attack execution. Moreover, Gafgyt uses known vulnerabilities
(e.g., CVE-2017-17215, CVE-2018-10561) to implement the downloading of the next-stage
payloads to compromised devices. New versions of the Gafgyt botnet include Mirai-based
components to perform DDoS attacks; HTTP flooding to send a great number of HTTP
requests to server targets to overwhelm them; UDP flooding to send special UDP packets
to server victims to exhaust them; TCP flood attacks; STD attacks to send a random string
to a specified IP address [56].

Dark Nexus is an IoT botnet that launches DDoS attacks. It was designed to launch
credential stuffing attacks against different kinds of IoT devices (video recorders; DLink,
Dasan Zhone, ASUS routers, thermal cameras, etc.) [57].

5.3. Training and Testing

The proposed approach involves five ML algorithms (decision tree, random forest,
K-nearest neighbor, extreme gradient boosting, and support vector machine) to compare
their detection possibilities. All algorithms were trained and tested using the dataset with
training and testing percentages of 75% and 25%.

The BotGRABBER framework uses the scikit-learn library–an open-source platform
for MLA in Python [58]. The configuration of each used MLA relies on the appropriate set
of algorithm parameters. The optimal used values of algorithm parameters are presented
in Tables 6–10 [59–63].

Table 6. Decision tree algorithm parameters [59].

Parameter Value Description

criterion gini The function to measure the quality of a split.
splitter best The strategy used to choose the split at each node.

max_depth None The maximum depth of the tree.
min_samples_split 3 The minimum number of samples required to split an internal node.
min_samples_leaf 1 The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf 0.0 The minimum weighted fraction of the sum total of weights (of all the
input samples) required to be at a leaf node.

max_features auto The number of features to consider when looking for the best split.
random_state RandomState instance Controls the randomness of the estimator.
class_weight balanced Weights associated with classes.

ccp_alpha 0.0 Complexity parameter used for minimal cost complexity pruning.

Table 7. Random forest algorithm parameters [60].

Parameter Value Description

n_estimators 100 The number of trees in the forest.
criterion gini The function to measure the quality of a split.

max_depth None The maximum depth of the tree.
min_samples_split 2 The minimum number of samples required to split an internal node.
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Table 7. Cont.

Parameter Value Description

min_samples_lea 1 The minimum number of samples required to be at a leaf node.
min_weight_fraction_leaf 0.0 The minimum weighted fraction of the sum total of weights.

max_features log2 The number of features to consider when looking for the best split.
class_weight balanced Weights associated with classes.

ccp_alpha 0.0 Complexity parameter used for minimal cost complexity pruning.

Table 8. K-Nearest Neighbor algorithm parameters [61].

Parameter Value Description

n_neighbors 5 Number of neighbors.
weights distance Weight function used in prediction.

algorithm kd_tree The algorithm used to compute the nearest neighbors.
leaf_size 30 Leaf size passed to KDTree.

p 2 Power parameter for the Minkowski metric.
metric str The distance metric to use for the tree.

metric_params dict The number of parallel jobs to run for the neighbors’ search.

Table 9. Extreme gradient boosting algorithm parameters [62].

Parameter Value Description

loss exponential The loss function to be optimized.
learning_rate 0.1 Learning rate shrinks the contribution of each tree.
n_estimators 100 The number of boosting stages to perform.

subsample 1.0 The fraction of samples to be used for fitting the individual base
learners.

criterion squared_error The function to measure the quality of a split.
min_samples_split 2 The minimum number of samples required to split an internal node.

min_weight_fraction_leaf 0.0 The minimum weighted fraction of the sum total of weights (of all the
input samples) required to be at a leaf node.

max_depth 3 The maximum depth of the individual regression estimator.

random_state RandomState instance Controls the random seed given to each tree estimator at each boosting
iteration.

max_features None The number of features to consider when looking for the best split.
max_leaf_nodes None Grow trees with max_leaf_nodes in the best-first fashion.

validation_fraction 0.1 The proportion of training data to set aside as the validation set for
early stopping.

n_iter_no_change None The decision as to whether early stopping will be used to terminate
training when the validation score does not improve.

tol 1 × 103 Tolerance for the early stopping.
ccp_alpha 0.0 Complexity parameter used for minimal cost complexity pruning.

Table 10. Support vector machine parameters [63].

Parameter Value Description

C 1.0 Regularization parameter.
kernel rbf Specifies the kernel type to be used in the algorithm.

gamma auto Kernel coefficient.
tol 1 × 103 Tolerance for stopping criterion.

cache_size 100 Specify the size of the kernel cache (in MB).
max_iter −1 Hard limit on iterations (no limit).

random_state RandomState instance Controls the pseudo-random number generation to shuffle the data for
probability estimates.
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5.4. Implementation Platform

To perform the feature extraction, the feature classification based on the machine
learning algorithm, as well as the result of production, the BotGRABBER framework was
employed. It is a multi-vector protection system that can perform network and host activity
analyses. The BotGRABBER framework presents the tool, not only for botnet detection
but also to produce the needed security scenario of the network reconfiguration according
to the type of cyberattack performed by the detected botnet [11,13,43]. The mentioned
tool includes several units aimed at traffic collection, packet processing, feature extraction,
feature classification based on machine learning algorithms, and producing results. The
feature classification unit of the framework is based on the scikit-learn library usage. It is a
free software ML library for the Python programming language [58].

5.5. Results

Experimental results are presented in Tables 11–19.
As examples, comparisons of the different MLA efficiencies for Router/Mirai botnet

detection (TCP attack, UDP attack, HTTP GET attack, and DNS tunneling) are presented in
Figures 2–4.

As examples, comparisons of the different MLA efficiencies for Router/Mirai botnet
detection (TCP attack, UDP attack, HTTP GET attack, and DNS tunneling) are presented in
Figures 2–4.

Table 11. Classification results (router—Mirai).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Router/
Mirai

TCP

RF 0.999479 3620 2 4 2024 0.9994748 0.999896 0.999572 0.999615
DT 0.998584 3612 3 5 2030 0.99917 0.998618 0.998894 0.998994

kNN 0.999469 3603 1 2 2044 0.999723 0.999445 0.999584 0.999692
XGBoost 0.998938 3562 5 1 2082 0.998598 0.999719 0.999158 0.999573

SVM 0.996991 3544 6 11 2089 0.99831 0.996906 0.997607 0.997881

UDP

RF 0.999767 7531 5 2 2012 0.999937 0.999835 0.999935 0.999841
DT 0.999267 7515 4 3 2028 0.999468 0.999601 0.999534 0.99975

kNN 0.999476 7470 2 3 2075 0.999732 0.999599 0.999665 0.999821
XGBoost 0.999686 7465 1 2 2082 0.999866 0.999732 0.999799 0.999827

SVM 0.998534 7455 10 17 2068 0.998678 0.998678 0.998678 0.999174

HTTP
GET

RF 0.999694 6434 3 3 2060 0.999834 0.999734 0.999734 0.999839
DT 0.999412 6419 1 4 2076 0.999844 0.999377 0.999611 0.999793

kNN 0.999412 6387 1 4 2108 0.999843 0.999374 0.999609 0.999458
XGBoost 0.999529 6340 2 2 2156 0.999685 0.999685 0.999685 0.999671

SVM 0.997412 6381 5 14 2100 0.998636 0.99637 0.997502 0.999051

DNS
tunneling

RF 0.999624 5978 3 4 2005 0.999798 0.999731 0.999615 0.999944
DT 0.999249 5935 2 4 2049 0.999663 0.999326 0.999495 0.999928

kNN 0.999374 5920 3 2 2065 0.999493 0.999662 0.999578 0.999632
XGBoost 0.998999 5903 5 3 2079 0.999154 0.999492 0.999323 0.999186

SVM 0.997247 5899 5 14 2072 0.998649 0.99542 0.997032 0.997547
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Table 12. Classification results (router—Gafgyt).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Router/
Gafgyt

TCP

RF 0.999714 11984 2 2 2002 0.999833 0.999833 0.999833 0.999835
DT 0.999571 11963 2 4 2021 0.999833 0.999666 0.999749 0.999757

kNN 0.999357 11917 4 5 2064 0.999664 0.999581 0.999623 0.999792
XGBoost 0.999643 11881 3 2 2104 0.999748 0.999832 0.99979 0.999734

SVM 0.998713 11888 7 11 2084 0.999412 0.999076 0.999244 0.999523

UDP

RF 0.999738 4498 2 1 1999 0.999656 0.999878 0.999667 0.999882
DT 0.999077 4453 4 2 2041 0.999103 0.999551 0.999327 0.99947

kNN 0.999385 4430 3 1 2066 0.999323 0.999774 0.999549 0.999648
XGBOOST 0.999077 4391 5 1 2103 0.998863 0.999772 0.999317 0.999712

SVM 0.998308 4433 6 9 4433 0.999056 0.998867 0.998961 0.998861

HTTP
GET

RF 0.999784 21082 2 3 2013 0.999905 0.999858 0.999881 0.999913
DT 0.99987 21034 1 2 2063 0.999952 0.999905 0.999929 0.999912

kNN 0.999697 20997 2 5 2096 0.999905 0.999762 0.999833 0.999971
XGBoost 0.999827 20990 1 3 2106 0.999952 0.999857 0.999905 0.999845

SVM 0.998961 20986 6 17 18684 0.998409 0.996144 0.997275 0.999221

DNS
tunneling

RF 0.999846 3191 2 4 2003 0.999674 0.999748 0.999561 0.999783
DT 0.998269 3153 5 4 2038 0.998417 0.998733 0.998575 0.999548

kNN 0.998654 3115 2 5 2078 0.999358 0.998397 0.998878 0.999539
XGBoost 0.999615 3074 1 1 2124 0.999675 0.999675 0.999675 0.999882

SVM 0.996154 3121 10 11 1485 0.998919 0.995688 0.997301 0.997861

Table 13. Classification results (router—Dark Nexus).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Router/
Dark
nexus

TCP

RF 0.999333 5490 4 1 2005 0.999272 0.999818 0.999545 0.999691
DT 0.9992 5472 5 1 2022 0.999087 0.999817 0.999452 0.999982

kNN 0.998933 5455 3 5 2037 0.99945 0.999084 0.999267 0.999836
XGBOOST 0.9992 5417 2 4 2077 0.999631 0.999262 0.999446 0.999285

SVM 0.9976 5394 9 9 2088 0.998334 0.998334 0.998334 0.999444

UDP

RF 0.999344 10196 5 3 1996 0.99951 0.999706 0.999608 0.999488
DT 0.999672 10171 1 3 2025 0.999902 0.999705 0.999803 0.999932

kNN 0.999426 10146 3 4 2047 0.999704 0.999606 0.999655 0.999835
XGBOOST 0.999426 10120 2 5 2073 0.999802 0.999506 0.999654 0.999844

SVM 0.998279 10137 7 9 10137 0.998301 0.997736 0.998019 0.998421

HTTP
GET

RF 0.999771 19767 2 3 2018 0.999899 0.999848 0.999874 0.999853
DT 0.999725 19746 3 3 2038 0.999848 0.999848 0.999848 0.999995

kNN 0.999679 19716 2 5 2067 0.999899 0.999746 0.999823 0.999931
XGBOOST 0.999771 19666 1 4 2119 0.999949 0.999797 0.999873 0.999794

SVM 0.99899 19665 4 18 19665 0.99909 0.995918 0.997502 0.999452

DNS
tunneling

RF 0.999298 9351 3 5 2041 0.999679 0.999466 0.999572 0.999457
DT 0.999474 9301 4 2 2093 0.99957 0.999785 0.999678 0.999974

kNN 0.999737 9285 2 1 2112 0.999785 0.999892 0.999838 0.999859
XGBOOST 0.999386 9243 5 2 2150 0.999459 0.999784 0.999621 0.999482

SVM 0.997895 9302 7 10 9302 0.998109 0.99542 0.996763 0.998561
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Table 14. Classification results (thermostat—Mirai).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Thermostat/
Mirai

TCP

RF 0.999938 3623 1 5 2021 0.999724 0.999622 0.999773 0.999913
DT 0.998938 3618 1 5 2026 0.999724 0.99862 0.999171 0.999446

kNN 0.998938 3569 5 1 2075 0.998601 0.99972 0.99916 0.999017
XGBOOST 0.999646 3528 1 1 2120 0.999717 0.999717 0.999717 0.999923

SVM 0.996106 3535 5 17 2093 0.998588 0.995214 0.996898 0.999678

UDP

RF 0.999986 7495 2 1 2052 0.999933 0.999897 0.9999 0.999865
DT 0.999791 7451 1 1 2097 0.999866 0.999866 0.999866 0.999834

kNN 0.999372 7446 1 5 2098 0.999866 0.999329 0.999597 0.999701
XGBOOST 0.999476 7407 1 4 2138 0.999865 0.99946 0.999663 0.999991

SVM 0.997906 7446 3 10 7446 0.999056 0.997172 0.998113 0.999816

HTTP
GET

RF 0.999859 6438 4 4 2054 0.999879 0.999779 0.999779 0.999861
DT 0.999529 6391 2 2 2105 0.999687 0.999687 0.999687 0.999722

kNN 0.999412 6369 4 1 2126 0.999372 0.999843 0.999608 0.999893
XGBOOST 0.999294 6343 5 1 2151 0.999212 0.999842 0.999527 0.999791

SVM 0.997176 6402 9 10 6402 0.998409 0.996144 0.997275 0.999465

DNS
tunneling

RF 0.999649 5976 1 5 2008 0.999833 0.999864 0.999498 0.999692
DT 0.998874 5967 4 5 2014 0.99933 0.999163 0.999246 0.999617

kNN 0.999249 5925 3 3 2059 0.999494 0.999494 0.999494 0.999828
XGBOOST 0.999374 5876 4 1 2109 0.99932 0.99983 0.999575 0.999422

SVM 0.996996 5890 10 15 5890 0.998379 0.995152 0.996763 0.998059

Table 15. Classification results (thermostat—Gafgyt).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Thermostat/
Gafgyt

TCP

RF 0.999943 11973 3 2 2012 0.999849 0.999833 0.999891 0.999954
DT 0.999714 11942 2 2 2044 0.999833 0.999833 0.999833 0.999876

kNN 0.999571 11919 2 4 2065 0.999832 0.999665 0.999748 0.999744
XGBOOST 0.999786 11903 1 2 2084 0.999916 0.999832 0.999874 0.999962

SVM 0.99857 11885 7 13 2085 0.999411 0.998907 0.999159 0.998787

UDP

RF 0.999815 4494 4 5 1997 0.999811 0.999889 0.999993 0.999972
DT 0.998923 4459 2 5 2034 0.999552 0.99888 0.999216 0.998947

kNN 0.999538 4435 2 1 2062 0.999549 0.999775 0.999662 0.999642
XGBOOST 0.998923 4400 3 4 2093 0.999319 0.999092 0.999205 0.999741

SVM 0.996769 4420 6 12 4420 0.99849 0.997548 0.998019 0.998866

HTTP
GET

RF 0.999784 21087 3 2 2008 0.999858 0.999905 0.999881 0.999862
DT 0.99961 21042 4 5 2049 0.99981 0.999762 0.999786 0.999649

kNN 0.99974 21025 1 5 2069 0.999952 0.999762 0.999857 0.999824
XGBOOST 0.99974 20983 1 5 2111 0.999952 0.999762 0.999857 0.999743

SVM 0.999351 20992 8 10 20992 0.998409 0.998182 0.998295 0.999371

DNS
tunneling

RF 0.999931 3187 3 1 2009 0.99976 0.999886 0.999773 0.999842
DT 0.999231 3170 2 2 2026 0.999369 0.999369 0.999369 0.999636

kNN 0.999231 3125 1 3 2071 0.99968 0.999041 0.99936 0.999325
XGBOOST 0.998654 3084 2 5 2109 0.999352 0.998381 0.998866 0.998948

SVM 0.995962 3137 7 9 3137 0.998649 0.995688 0.997166 0.998563
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Table 16. Classification results (thermostat—Dark Nexus).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Thermostat/
Dark nexus

TCP

RF 0.999067 5484 5 2 2009 0.999889 0.999735 0.999862 0.999807
DT 0.999333 5457 4 1 2038 0.999268 0.999817 0.999542 0.999866

kNN 0.999067 5440 2 5 2053 0.999632 0.999082 0.999357 0.999787
XGBOOST 0.9988 5409 4 5 2082 0.999261 0.999076 0.999169 0.999392

SVM 0.9972 5386 9 12 2093 0.998332 0.997777 0.998054 0.998168

UDP

RF 0.99988 10188 5 5 2002 0.99988 0.99988 0.99988 0.99988
DT 0.999344 10146 3 5 2046 0.999704 0.999507 0.999606 0.999544

kNN 0.999262 10140 5 4 2051 0.999507 0.999606 0.999556 0.999830
XGBOOST 0.999344 10130 5 3 2062 0.999507 0.999704 0.999605 0.999510

SVM 0.998033 10073 3 16 10073 0.99849 0.996984 0.997736 0.998590

HTTP
GET

RF 0.999633 19765 3 5 2017 0.999848 0.999747 0.999798 0.999937
DT 0.999541 19730 5 5 2050 0.999747 0.999747 0.999747 0.999730

kNN 0.999725 19716 2 4 2068 0.999899 0.999797 0.999848 0.999950
XGBOOST 0.999679 19680 3 4 2103 0.999848 0.999797 0.999822 0.999980

SVM 0.999082 19644 4 13 19644 0.998182 0.997275 0.997728 0.999110

DNS
tunneling

RF 0.999649 9381 3 1 2015 0.99968 0.999893 0.999787 0.999683
DT 0.999737 9345 1 2 2052 0.999893 0.999786 0.99984 0.999960

kNN 0.999211 9335 4 5 2056 0.999572 0.999465 0.999518 0.999830
XGBOOST 0.999561 9305 3 2 2090 0.999678 0.999785 0.999731 0.999730

SVM 0.998421 9339 4 13 2044 0.998379 0.996763 0.99757 0.999860

Table 17. Classification results (camcorder—Mirai).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Camcorder/
Mirai

TCP

RF 0.999292 3639 2 2 2007 0.999451 0.999451 0.999451 0.99907
DT 0.998584 3623 4 4 2019 0.998897 0.998897 0.998897 0.999863

kNN 0.999646 3598 1 1 2050 0.999722 0.999722 0.999722 0.999781
XGBOOST 0.998938 3592 3 3 2052 0.999166 0.999166 0.999166 0.999396

SVM 0.996106 3560 8 14 2068 0.997758 0.996083 0.99692 0.998166

UDP

RF 0.999872 7545 2 4 1999 0.999835 0.99987 0.999603 0.99983
DT 0.999267 7497 5 2 2046 0.999334 0.999733 0.999533 0.999701

kNN 0.998953 7451 5 5 2089 0.999329 0.999329 0.999329 0.999833
XGBOOST 0.999581 7444 1 3 2102 0.999866 0.999597 0.999731 0.999515

SVM 0.997592 7412 6 9 7412 0.998867 0.996796 0.99783 0.998597

HTTP
GET

RF 0.999529 6479 2 2 2017 0.999691 0.999691 0.999691 0.99993
DT 0.999412 6461 2 3 2034 0.999691 0.999536 0.999613 0.999737

kNN 0.999412 6437 3 2 2058 0.999534 0.999689 0.999612 0.999959
XGBOOST 0.999412 6421 2 3 2074 0.999689 0.999533 0.999611 0.999982

SVM 0.998353 6405 7 10 6405 0.998409 0.998409 0.998409 0.999113

DNS
tunneling

RF 0.999249 5978 4 2 2006 0.999331 0.999666 0.999498 0.99968
DT 0.998999 5959 4 4 2023 0.999329 0.999329 0.999329 0.999963

kNN 0.999124 5942 4 3 2041 0.999327 0.999495 0.999411 0.999832
XGBOOST 0.998874 5914 5 4 2067 0.999155 0.999324 0.99924 0.999737

SVM 0.997121 5914 5 8 5914 0.99757 0.996225 0.996897 0.999861
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Table 18. Classification results (camcorder—Gafgyt).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Camcorder/
Gafgyt

TCP

RF 0.999971 11981 5 1 2003 0.999983 0.999917 0.99985 0.999889
DT 0.999643 11941 1 4 2044 0.999916 0.999665 0.999791 0.999486

kNN 0.999571 11924 5 1 2060 0.999581 0.999916 0.999748 0.999991
XGBOOST 0.999571 11916 3 3 2068 0.999748 0.999748 0.999748 0.999364

SVM 0.998713 11920 10 8 2052 0.999162 0.999329 0.999246 0.999484

UDP

RF 0.999923 4496 4 3 1997 0.999811 0.999833 0.999822 0.999913
DT 0.998615 4465 5 4 2026 0.998881 0.999105 0.998993 0.999888

kNN 0.999077 4430 1 5 2064 0.999774 0.998873 0.999323 0.999442
XGBOOST 0.999231 4387 2 3 2108 0.999544 0.999317 0.99943 0.999591

SVM 0.997231 4365 8 11 1193 0.998301 0.998301 0.998301 0.997732

HTTP
GET

RF 0.99974 21056 3 3 2038 0.999858 0.999858 0.999858 0.999965
DT 0.999827 21049 1 3 2047 0.999952 0.999857 0.999905 0.999425

kNN 0.999784 21006 4 1 2089 0.99981 0.999952 0.999881 0.999628
XGBOOST 0.99974 20958 5 1 2136 0.999761 0.999952 0.999857 0.999901

SVM 0.999091 21005 8 20 21005 0.998636 0.996596 0.997615 0.999821

DNS
tunneling

RF 0.999038 3182 4 1 2013 0.999745 0.999686 0.999215 0.999491
DT 0.998077 3176 5 5 2014 0.998428 0.998428 0.998428 0.999020

kNN 0.998846 3165 2 4 2029 0.999368 0.998738 0.999053 0.999290
XGBOOST 0.998462 3160 4 4 2032 0.998736 0.998736 0.998736 0.999390

SVM 0.996923 3123 5 9 3123 0.998379 0.997301 0.99784 0.997460

Table 19. Classification results (camcorder—Dark Nexus).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Camcorder/
Dark

Nexus

TCP

RF 0.999722 5423 5 1 2071 0.999779 0.999816 0.999747 0.99986
DT 0.998933 5403 3 5 2089 0.999445 0.999075 0.99926 0.999869

kNN 0.9988 5378 4 5 2113 0.999257 0.999071 0.999164 0.999911
EGB 0.9992 5359 1 5 2135 0.999813 0.999068 0.999441 0.999932
SVM 0.997867 5336 10 6 2148 0.998129 0.998877 0.998503 0.999542

UDP

RF 0.999918 10187 5 5 2003 0.999809 0.999839 0.999851 0.999861
DT 0.99959 10139 4 1 2056 0.999606 0.999901 0.999753 0.998747

kNN 0.999426 10132 4 3 2061 0.999605 0.999704 0.999655 0.999406
EGB 0.999262 10124 4 5 2067 0.999605 0.999506 0.999556 0.999904
SVM 0.998115 10105 7 16 2072 0.999308 0.998419 0.998863 0.999489

HTTP
GET

RF 0.999633 19769 3 5 2013 0.999848 0.999747 0.999798 0.999851
DT 0.999587 19733 5 4 2048 0.999747 0.999797 0.999772 0.999996

kNN 0.999862 19726 1 2 2061 0.999949 0.999899 0.999924 0.999952
EGB 0.999633 19709 4 4 2073 0.999797 0.999797 0.999797 0.999766
SVM 0.999036 19704 8 13 2065 0.999594 0.999341 0.999467 0.999123

DNS
tunneling

RF 0.999474 9385 4 2 2009 0.999574 0.999787 0.99968 0.999921
DT 0.999386 9344 5 2 2049 0.999465 0.999786 0.999626 0.998696

kNN 0.999649 9318 3 1 2078 0.999678 0.999893 0.999785 0.999282
EGB 0.999386 9305 2 5 2088 0.999785 0.999463 0.999624 0.999645
SVM 0.998421 9317 8 10 2065 0.999142 0.998928 0.999035 0.998664
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6. Conclusions and Future Work

A flow-based traffic analysis allows detecting malicious behavior without the need for
an in-depth packet analysis. Meanwhile, a packet content analysis provides an opportunity
to decide whether the intercepted traffic belongs to the attack traffic or normal traffic in
cases where the flow-based analysis does not give an unambiguous result. Attempting to
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cover features (as many as possible) that indicate the presence of attacks in the Internet of
Things infrastructure has its weaknesses. Such an approach requires some time to analyze
in-depth, and it is poorly scalable.

The main experiment results concerning MLA involvement showed that SVM demon-
strated the worst results, while the RF algorithm demonstrated the best results.

In addition, the involvement of different IoT multi-vector cyberattack features based
on flow analysis and features based on the most commonly used IoT protocols caused
the detection of TCP, UDP, HTTP GET, and DNS tunneling attacks approximately at the
same level.

In this paper, we reviewed the known approaches to detect attacks on the Internet of
Things infrastructure based on machine learning and investigated their effectiveness. We
investigated the possibility of detecting traffic attacks on the Internet of Things infrastruc-
ture based on flow analysis and the most commonly used IoT protocols, such as HTTP,
MQTT, and DNS.

Traffic from well-known botnets, such as Mirai, Dark Nexus, and Gafgyt was taken
from well-known databases that represent common attacks on the Internet of Things
infrastructures, such as TCP, UDP, HTTP GET, and DNS tunneling, used as malicious traffic.

In addition, attack traffic was generated using known utilities, and benign IoT traffic
was collected from devices such as a router, a thermostat, and a camcorder.

The features presented in the work were classified using various methods of machine
learning and were removed from the received traffic.

The levels of detection of the multi-vector attacks on the Internet of Things infras-
tructure largely depend on the involved objects of training and test samplings/settings of
machine learning algorithms. This important aspect is the subject of further research.

Therefore, future work will focus on the following issues:

1. Different Internet of Things protocols [64] to remove signs of traffic, which will
improve the accuracy of attack detection in the lack of flow-based analysis cases;

2. Efficient ways to reduce the number of traffic features sufficient to detect attacks;
3. Development of ML-based methods for dependability assurance of IoT systems by

combining attacks and intrusion detection, redundancy, and recovery procedures [65].
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Abstract: Modern smart grids are built based on top of advanced computing and networking
technologies, where condition monitoring relies on secure cyberphysical connectivity. Over the
network infrastructure, transported data containing confidential information, must be protected as
smart grids are vulnerable and subject to various cyberattacks. Various machine learning based
classifiers were proposed for intrusion detection in smart grids. However, each of them has respective
advantage and disadvantages. Aiming to improve the performance of existing machine learning
based classifiers, this paper proposes an adaptive deep learning algorithm with a data pre-processing
module, a neural network pre-training module and a classifier module, which work together classify
intrusion data types using their high-dimensional data features. The proposed Adaptive Deep
Learning (ADL) algorithm obtains the number of layers and the number of neurons per layer by
determining the characteristic dimension of the network traffic. With transfer learning, the proposed
ADL algorithm can extract the original data dimensions and obtain new abstract features. By
combining deep learning models with traditional machine learning-based classification models, the
performance of classification of network traffic data is significantly improved. By using the Network
Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) dataset, experimental results
show that the proposed ADL algorithm improves the effectiveness of existing intrusion detection
methods and reduces the training time, indicating a promising candidate to enhance network security
in smart grids.

Keywords: deep learning; machine learning; intrusion detection; smart grid; neural networks

1. Introduction

Aiming to provide secure and dependable electrical services, the smart grid integrates
power generation, transmission and distribution through digital communication technolo-
gies to detect and react to local changes in usage. The smart grid has two core subsystems:
Advanced Metering Infrastructure (AMI) and Supervisory Control And Data Acquisition
(SCADA), where AMI realises bi-directional data exchange between the electricity sup-
plier and the customer to improve the efficiency of electricity consumption, while SCADA
enables real-time monitoring and controlling of the transmission network [1]. However,
due to the dependence among components in smart grid, a cyber attack could still lead to
catastrophic failure of the entire grid [2]. Obviously, it is important to ensure the security of
smart grid. In the National Institute of Standards and Technology Interagency Report (NIS-
TIR) 7628, Guidelines for Smart Grid Cyber Security [3], information security in the smart
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grid consists of three essential elements: confidentiality (only authorised users can access the
information), integrity (data must be accurate and consistent) and availability (information must
be available with low-latency to authorized parties when needed). Therefore, smart grid should
have self-healing and recovery capabilities to ensure communication and data security.

Cyber attacks on smart grid networks include control signal attacks, measurement
attacks, and control-signal-measurement attacks [4]. Typical threats that impede data
availability include flooding, route destruction, selective forwarding, wormhole, Byzantine
attacks and denial-of-service (DoS) attacks. In general, security solutions can be divided into
two main techniques, called prevention techniques and detection techniques. Prevention
techniques aim to protect network data from being intercepted and encryption is usually
adopted. Detection techniques aim to detect intruders [5], which include signature-based
detection and anomaly-based detection. The former compares the observed attack patterns
with known ones. The latter compares network traffic parameters with normal ones, where
a change from normal traffic simply declares the presence of an intruder.

This paper presents an adaptive deep learning (ADL) neural network model to im-
prove the recognition efficiency of anomalous attacks in smart grids. The proposed algo-
rithm determines the number of layers and neurons per layer of the model, depending on
the size of the smart grid. The contribution of this paper is threefold: Firstly, we propose an
adaptive deep learning algorithm with a data pre-processing module, a neural network
pre-training module and a classifier module, which work together classify intrusion data
types using their high-dimensional data features. Secondly, the proposed ADL algorithm
complements existing classification methods, and it can deployed with any existing fea-
ture classification algorithms to improve the classification performance. Finally, through
experiments using the NSL-KDD dataset, we show that the robustness and flexibility of the
proposed ADL algorithm. Altogether, by adding the proposed ADL algorithm, existing
classifier algorithms can effectively discriminate between large ranges of network traffic,
improve the accuracy of intrusion detection, converge faster, and reduce detection time
significantly. The rest of the paper is organised as follows. Section 2 discusses the related
work, while Section 3 presents the proposed ADL neural network model. Section 4 dis-
cusses the results, and Section 5 concludes the paper. For the sake of readability, Table 1
lists the abbreviations used in this paper.

Table 1. Nomenclature.

Abbreviation Term

ACE asymmetric convolutional encoder

ADL Adaptive deep learning

AMI Advanced Metering Infrastructure

BPNN Back Propagation Neural Network

CFS correlation-based feature selection

DBN deep belief network

DDoS distributed denial of service

DoS denial-of-service

DT Decision Tree

FDIA false data injection attacks

HAN Home Area Network
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Table 1. Cont.

Abbreviation Term

HEMS home energy management system

IDS Intrusion Detection System

IoT Internet of Things

KDD Knowledge Discovery in Databases

KNN K-nearest neighbour

LSTM long-short-term-memory

NISTIR National Institute of Standards and Technology
Interagency Report

NSL-KDD Network Security Laboratory - Knowledge
Discovery in Databases

R2L root-to-local

ReLU rectified linear activation function

SCADA Supervisory Control And Data Acquisition

SDF symbolic dynamic filtering

SVM Support Vector Machine

U2R user-to-root

WAN Wide Area Network

2. Related Work

A smart grid consists of Home Area Network (HAN), Neighborhood Area Network
(NAN) and Wide Area Network (WAN). The HAN consists of smart sensors, actuators
and a user interface like home energy management system (HEMS). The NAN collects
data from multiple HANs and transmits the data to the corresponding High Level Control
Centres [6]. The NAN is therefore a dedicated channel for information exchange between
the HAN and the WAN. Finally, the WAN connects multiple NANs, controlling the power
transmission.

The Intrusion Detection System (IDS) monitors and detects malicious behaviour by
collecting data information from key host nodes, building assessment models and analysing
the network for the presence of illegal behaviour [7,8]. The IDS detects the attack trajectory
of an attacked host and reports warnings to ensure the integrity of the network’s central
host system. This will make the smart grid resistant to external network attacks [9].

Intrusion detection involves data acquisition, intrusion analysis and intrusion response.
It reviews information from host logs, network segment protocol packets and gateways,
and checks the network data using anomaly detection algorithms and discriminatory
models [10]. The intrusion response module is used when anomalous attacks are reported
by the intrusion analysis module. The module takes pre-defined measures, such as network
disruption and alarm response, to prevent further deterioration of the situation.

Intrusion detection models are divided into host-based models, network-based models
and feature-based models. Host-based models analyse the operating system’s audit trail
and log messages of a single host [11]. They can detect viruses, malicious programs and
destructive intrusion attacks on hosts [12]. However, the model monitors a host’s memory,
which adversely affect the host’s performance. Additionally, its high memory space require-
ment does not support the handling of multiple attacks. For network-based models, they
protect hosts by monitoring the number of network packets in a gateway to determine the
network communication traffic of multiple hosts. This model can monitor large network
sections with less memory [13]. However, the model cannot analyse the information flow
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of an encrypted network. It results in low detection accuracy in large-scale high-speed
networks, thus it cannot handle fragmentation attacks. For feature-based detection model,
it matches network intrusions to defined attack features through the misuse detection
analysis system, which usually defines a separate feature for each anomalous event and
uses a database to store the features for maintenance and matching [14]. This model enables
efficient detection of correlated intrusion without generating excessive warning reports.
However, this model requires constant updating of the feature database to maintain the
system security, and it is unable to prevent malformed network attacks.

Intrusion detection methods include anomaly detection and misuse detection. The
former is behavioural detection, which assumes that all network attacks are anomalous
behaviour, then builds a model to differentiate normal behaviours from anomalous ones by
comparison. Anomaly detection requires a simplified and accurate amount of features and
reasonable threshold settings to ensure the optimal performance [15]. Anomaly detection
can quickly detect network intrusions, but it requires heavy computation, leading to
relatively high resource requirements. The latter monitors data at the gateway, compares
the data signature with those in the database to determine if an intrusion is present [16].
However, it is impossible to locate the intrusion. Additionally, digital signatures are system
dependent, making it difficult to standardise the detection procedure.

The KDD99 dataset was the data set used for The Third International Knowledge
Discovery and Data Mining Tools Competition, which was held in conjunction with The
Fifth International Conference on Knowledge Discovery and Data Mining (KDD-99). The
KDD99 dataset is the most widely used dataset for intrusion detection. It consists of
network data collected by Lincoln Laboratory over 69 days simulating the US Air Force
LAN system with various types of network hosts and attacks [11]. The Network Security
Laboratory - Knowledge Discovery in Databases (NSL-KDD) dataset is an improved version
of the KDD99 dataset. It removes most of the duplicate data from the original KDD99
dataset. Each data entry in NSL-KDD contains 41-dimensional features and 1-dimensional
label feature. Four types of feature data are available in the NSL-KDD, whose data label
can indicate whether the data is normal data or not [12], with the data tag indicating the
attack type.

The NSL-KDD data set includes four main parts, KDDTrain+, KDDTest+, KDDTrain+_
20Percent and KDDTest-21 [17], where KDDTrain+ and KDDTest+ contain 125,973 and
22,543 data sets, espectively. The redundant part of the KDD99 data set is eliminated,
KDDTrain+_20Percent provides an additional subset for training. In this dataset, network
data is divided into five types: Normal, DoS attacks, user-to-root (U2R) attacks, root-to-local
(R2L) attacks and Probe attacks. The normal type represents normal data; DoS attacks
prevent the destination host from responding to external requests and cause a waste of
resources; U2R attacks are user-unauthorised attacks, which attempt to gain root access;
R2L attacks are login and access attacks by unauthorised hosts on the system; Probe attacks
are port monitoring or port scanning. These five types include a total of 39 subtypes of
attack types [18]. The specific classifications are shown in the Table 2.

In this paper, NSL-KDD dataset is used for the experiments. The dataset is first
normalised to generate a standard dataset. With classical machine learning methods, a
classifier is built for the standard dataset as a control group, and then the data features are
extracted by the proposed ADL algorithm, and the generated data features are used to build
a classifier to evaluate the effectiveness and usefulness of the proposed ADL algorithm.
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Table 2. Summary of attacks types labeled in the NSL-KDD dataset.

Type Attack Description

Normal Normal data traffic Normal data type

DoS

Back, Land, Neptune,
Pod, Smurf, Teardrop,
Mailbomb, Processtable,
UDPstorm, Apache2, Worm

Denial of service attacks,
which make computers and
networks unable to provide
normal services

Probe
Satan, Nmap, Mscan, Saint,
IP sweep, Portsweep

Port attack, scan port
vulnerabilities to attack

U2R
Buffer overflow, Sql attack,
XtermLoadmodule, Rootkit,
Perl, Ps

Unauthorized users obtain
root vulnerabilities through
network vulnerabilities and
perform illegal operations

R2L

Guess password, Imap,
Multihop, Ftp write, Phf,
Warezmaster, Xclock,
Xsnoop, Snmpguess,
Snmpgetattack, Sendmail,
Httptunnel, Named

Remote attack, users remotely
log in operate illegally
through accounts and
passwords

2.1. Classification Algorithms

Intrusion detection scheme for smart grid based on machine learning refers to: con-
verting the network intrusion problems into a packet type classification problems based on
different intrusion types of packets, and using machine learning methods to train classifi-
cation models to identify and classify intrusion packet types. However, due to the large
number of network data features, if various features are used for training, it will increase
the training time and model complexity, and the hardware requirements will also increase.
To solve the problems of too many dimensions of network data features, there are various
methods to extract data feature dimensions for reducing data feature dimensions. Conse-
quently, intrusion detection can be treated as a packet type classification problem using
machine learning. Feature extraction is usually adopted to reduce computation, whose
common methods include correlation-based feature selection and encoding of data packets.
The former uses a correlation function to select subsets of data, thereby reducing data size.
The latter uses encoding to extract data features. Typical feature classification algorithms
include K-nearest neighbour (KNN), Naïve Bayes (NB) classifier, Back Propagation Neural
Network (BPNN) and Decision Tree (DT).

KNN Algorithm–The KNN algorithm first selects the value of K, which denotes the
number of nearest neighbours. Between a given data point x and its neighbour y, their
distance in the n-dimensional Euclidean space is

dxy =
√

∑n
i=1 (xi − yi)

2 (1)

Then it takes the K nearest neighbours as per the calculated Euclidean distance. Among
these K neighbours, the algorithm counts the number of points in each class. Finally,
it assigns x to that class for which the number of neighbours is maximum. The KNN
algorithm is relatively accurate with simple implementation. Nevertheless, its efficiency
will significantly decrease as the number of data points increases.

Naïve Bayes Algorithm—The Naïve Bayes classifier calculates conditional probability to
perform classification.

y = arg max
{

p(y = Ck)∏ p(x|y = Ck)
}

(2)
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With x = (x1, x2, . . . , xn), assuming that all features x are mutually independent, from
Bayesian theorem we have

p(Ck)p(x|Ck) = p(Ck)∏n
i=1 p(xi|Ck) (3)

Therefore, p(Ck|x) ∝ p(Ck)∏n
i=1 p(xi|Ck). With Laplace Smoothing, the prior proba-

bility is given by (where λ is the smoothing parameter)

pλ(Ck) =
∑N

i=1 I(yi = Ck) + λ

N + Kλ
(4)

The conditional probability is calculated using

pλ

(
x1 = aj|y = Ck

)
=

∑N
i=1 I

(
x1 = aj, yi = Ck

)
+ λ

∑N
i=1 I(yi = Ck) + Aλ

(5)

where K denotes the number of different values in y and A denotes the number of different
values in aj. Usually λ = 1.

BPNN–The BPNN consists of an input layer, a hidden layer and an output layer. Given
training set D = (x1, y1), (x2, y2), . . . , (xn, yn), x ∈ Rd, y ∈ RI , as shown in Figure 1, for the
jth node (neuron), x1, x2, . . . , xi are the inputs of the neuron, which are connected by the
weights of wj1,wj2, . . . ,wji to adjust the proportion of the input. Take the linear weighted
sum as input and θj as decision variable, hidden layer yj output is

yj = f
(
∑n

i=1 wjixi − θj

)
(6)

Figure 1. Illustration diagram shows how a Back Propagation Neural Network works.

The parameters are set through the training data to obtain a parametric model of the
prediction error, and the parameters are updated using the Gradient Descent method.

DT Algorithm–A DT consists of a root node, internal nodes and leaf nodes. The root
node contains the entire data set. The internal nodes use different features to make category
judgements and each leaf node represents the final judgement category. The complexity of
the DT model is related to the number of layers of the tree. Under DT, information gain is
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the expected reduction in entropy of target variable Y for data sample S, due to sorting on
variable A

G(S, A) = H(A)−∑v∈Values(A)

|Sv|
|S| H(Sv) (7)

Next, the impurity (e.g., data partition) of S is given by

Gini(S) = 1−
K

∑
i=1

( |Ci,S|
|S|

)2

(8)

2.2. Feature Extraction Methods

Correlation-Based Feature Extraction–Correlation-based feature selection (CFS) uses the
evaluation function to select a feature subset. For two continuous random variables X and
Y, their linear correlation coefficient is given by

rXY =
∑i (xi − xi)(yi − yi)√

∑i (xi − xi)
2
√

∑i (yi − yi)
2

(9)

Automatic Encoder–Asymmetric Convolutional Encoder (ACE) can be used with a
convolutional neural network [19] for unsupervised feature learning to extract the local
features of the original data. The output of a hidden layer can be used as the input of the
next layer. In each round of training operation of the convolutional layer, the algorithm
first initialises k convolution sum, each convolution with weight w and bias b,

hk = f
(

x ∗ wk + bk
)

(10)

The convolutional layer output from the upper layer is reconstructed (with bias c)
to obtain the output data characteristics, which are adjusted by comparing the input and
output data.

y = f

(
K

∑
k=1

hk ∗ wk + ck

)
(11)

This method uses multiple iterations of convolution, which increases the computa-
tional complexity.

Recently, intrusion detection was also studied for Internet of Things (IoT) and Jan et al.
presented a lightweight intrusion detection method using supervised machine learning-
based support vector machine (SVM) to detect malicious data injection [20]. However, it is
difficult to apply it directly in smart grids due to different types of attacks. In [21], Karim-
ipour et al. presented an unsupervised anomaly detection based on statistical correlation
between measurements and time series partitioning to discover causal interactions between
the subsystems. It adopted feature extraction utilising symbolic dynamic filtering (SDF) to
reduce computational burden. In [22], Takiddin et al. presented an anomaly detector using
stacked autoencoders with a long-short-term-memory (LSTM)-based sequence-to-sequence
structure to detect electricity theft cyberattacks in smart grids. Inayat et al. presented an
extensive survey on various cybersecurity enhancements of smart grids to detect false data
injection attacks (FDIA), DoS attacks, distributed denial of service (DDoS) attacks, and
spoofing attacks [23]. Interestingly, Zhou et al. presented a comprehensive survey for deep-
learning-based abnormality detection in smart grids using multimodal image data [24],
which include visible light, infrared, and optical satellite images. In [25], Berghout et al.
reviewed different machine learning tools to detect cyberattacks in smart grids. In addition,
it also highlighted various challenges, drawbacks and possible solutions of machine learn-
ing based cybersecurity applications in smart grids. A latest anomaly detection approach
based on federated learning was proposed in [26], where machine learning models were
trained locally in smart meters without sharing data with a central server, thus ensuring
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user Privacy. Table 3 compares our work with those machine learning based works found
in the literature.

Table 3. Comparison of machine learning based intrusion detection techniques.

Works Learning Type Key Techniques Datasets

[5] Supervised
Particle swarm optimisation
based neural network

KDD99 and NSL-KDD

[13] Supervised Work embedding-based
deep learning

Intrusion Detection
Evaluation Dataset
(ISCX2012)

[14] Semi-supervised
Long short-term memory and
extreme gradient boosting with
genetic algorithm

NSL-KDD

[18] Unsupervised
Nonsymmetric deep
autoencoder KDD99 and NSL-KDD

[20] Supervised Support vector machine
Intrusion Detection
Evaluation Dataset
(CIC-IDS2017)

[21] Unsupervised
Feature extraction using
symbolic dynamic filtering

Data from testbed
from Matpower

[22] Supervised
Long short-term memory
with stacked autoencoders

State Grid Corporation
of China Dataset

[26] Supervised Federated Learning
KDD99, NSL-KDD and
CIDDS-001 datasets

This work Supervised
Adaptive deep learning
using deep belief network NSL-KDD

3. Proposed Adaptive Deep Learning

The proposed ADL algorithm consists of a data pre-processing module, a neural
network pre-training module and a classifier module. In the data pre-processing module,
the original dataset is normalised to generate a standard dataset. In the neural network
pre-processing module, the algorithm is used to train the model and adjust the parameters
to obtain a highly adaptive network model. The classifier module used high-dimensional
data features to train a classifier to determine the intrusion data type on the test dataset.

With the proposed ADL algorithm, we extract data features through hidden layer
neurons and change the distribution and structure of the data. The data features after
each hidden layer are more accurate and essential. Transfer learning is embedded in the
model so that it can be used for new tasks and improve the generalisation of the model.
Next, deep belief networks (DBNs) enable compressed coding of raw data to accurately
represent data features. A DBN consists of a multilayer Boltzmann machine network and a
supervised back propagation network. The proposed algorithm combines DBNs to infer
the appropriate number of hidden layers and the number of neurons per hidden layer
for the neural network based on the original input data, allowing the pre-trained model
to better match the size of the dataset and reduce the number of hidden layers. Too few
hidden layers lead to under-reporting, while too many hidden layers lead to over-fitting.
In the proposed ADL algorithm, parameters are used to control the training speed of the
model and the accuracy of classification prediction. As shown in Figure 2, by adjusting
the hidden layer, different data characteristics will be generated and transfer learning is
adopted as shown in Figure 3.
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Figure 2. Illustration diagram of the adaptive deep learning framework.

Figure 3. Illustration diagram of the model of transferring learning.

As explained in Algorithm 1, by the proposed ADL algorithm, the number of hidden
layers and the number of neurons are determined by the dimensionality of the original
training data and the parameter θ, which balances training time, output accuracy and
convergence speed. The range of θ is set from 0 to 1, with a step size of 0.1.

The ADL algorithm defines the number of neurons in each hidden layer of the deep
neural network. The neurons before the output layer are the dimensions of the neurons in
the highest layer. When θ is set close to 1, the feature dimension of the last hidden layer
of the pre-trained model is close to that of the original data; when θ is set close to 0, the
feature dimension of the last hidden layer of the pre-trained model is lower. The number
of neurons in the first layer of the neural network is pre-set to be the same as the original
data, and the data features are transformed through the hidden layers. The number of
hidden layers and the number of neurons are determined by the original training data and
θ. After the pre-training of the model, the back-propagation algorithm is used to adjust the
parameters of the preset network model. The error gradient between the input training data
vi and the model output data v′ i is adjusted, δh is the weight of the node from the hidden
layer to the next layer, and δj is the error gradient of node j. The training results were
obtained using the rectified linear activation function (ReLU), but experiments showed that
the normal ReLU may result in the weights not being updated. Therefore, when x ≤ 0, αx
is used instead of 0 and the value of α is set to a smaller value to ensure that the weights
can be updated correctly and speeds up the convergence of the network.

A(x) =
{

αx, x ≤ 0
x, x > 0

(12)

The output layer uses a sigmoid function to fit the output, ranging from 0.1 to 1, which
determines the behaviour and legitimacy of the data.

s(x) =
1

1 + e−x (13)
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Algorithm 1 Proposed ADL algorithm: where v is number of training data samples, θ is the
key parameter to balance the training speed and classification accuracy, η is the learning
rate. N represents the set of neurons in the neural network; l is the number of neuron
layers; D represents the dimension of the training data; and ni is the ith neuron. δk, δh, Wij,
and Oi∆Wij are the intermediate variables, Wij denotes the weights, and bj is the bias.

procedure ADL(v, θ, η) . adaptive deep learning
Ntraining_data ← v
if θ is empty then

θ ← 0.3
end if
if η is empty then

η ← 0.1
end if
N ← ∅
D ← sizeof(Ntraining_data)
l ← D/5
ni ← θ ∗ D
i← 2
while i ≤ l − 1 do

ni ←
(

D
/

i2
)
+ θ ∗ D

N.append(ni)
i← i + 1

end while
i← 1
while i ≤ l do

use N to build the current layer and the ni neuron node
end while
output layer function s(x)← 1

/
(1 + e−x)

for each training sample vi do
calculate the actual output of the model v′i

end for
δk ← v′i ∗ (1− v′ i) ∗ (vi − v′ i)
δh ← v′h ∗ (1− v′h) ∗Whk ∗ δk
Wij ←Wij + ∆Wij
Oi∆Wij ←Wij + η ∗Oi ∗ δj
bj ← δ ∗ bj

return x ∗W + b
end procedure

After the model has been trained, the remaining part of the network other than the
output layer is removed and the resultant model for the network is used for pre-processing.
The number of neurons in the last layer of the hidden layers is the feature dimension of the
output data. The algorithm determines the structure of the neural network through θ and
the data dimension. The features of the data output from the hidden layers are considered
as a downscaling of the original data. The smaller the dimension of the features generated
by the model, the faster the detection, at the expense of reduced accuracy.

Four performance metrics are evaluated, namely accuracy, precision, recall, and F1-
score. TP denotes the number of intrusion network data is correctly identified as intrusion
network data. TN denotes the number of normal network data is correctly identified
as normal network data. FP denotes the number of normal network data is incorrectly
identified as intrusion network data. FN denotes the number of intrusion network data is
wrongly identified as normal network data.

Accuracy is given by

sA =
TP + TN

TP + TN + FP + FN
(14)
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Precision is given by

sP =
TP

TP + FP
(15)

Recall rate is given by

sR =
TP

TP + FN
(16)

F1-score is given by

sF1 =
2sPsR

sP + sR
(17)

4. Results and Discussion
4.1. Preprocessing of Data

(a) IP Addresses and Port Numbers Removal—IP addresses and port numbers are
removed from source and destination hosts because IP address and port numbers in the
original dataset may lead to overtraining of neural networks and classifiers.

(b) Spaces Removal—Some tags in the dataset contain spaces that have no meaning in
the actual data representation, but return different results in the data classification process,
resulting in different classification of the packets. Thus, these spaces are removed.

(c) Label Encoding—The label of each piece of data is encoded. The label of each piece
of data in the dataset contains the type of attack corresponding to that data, with different
attack types corresponding to different specific strings. Encoding the strings into a specific
value simplifies the learning process for the classifier. In the machine learning module, the
classifier can learn the category values for each array.

(d) Data Normalisation—As the range of values taken from the data in the dataset
does not meet the requirements of the classifier, the data range and format needs to be
normalised to specify a minimum value for each data attribute. The normalisation and
standardisation of the data provides a consistent value for the classifier, improving the
correlation between the data and reducing the variability between the data features and
improves the efficiency of the classifier.

4.2. Performance Evaluation

There are two types of classifiers considered in this paper–those based on four tradi-
tional machine learning models and those based on adaptive deep neural networks. As
the training and test samples of the classifiers are the same, the interference of the data
samples on the model results is effectively eliminated and the confidence of the comparison
is improved.

80% of the data was used to train the proposed ADL model, while 80% of the remaining
20% data is used to train the classifier and 20% for testing. To verify the effectiveness of the
ADL algorithm, we compare its performance with that of a traditional machine learning
model for feature extraction. The experimental procedure uses the KNN, the DT, the NB
algorithm and the BPNN to train the classifier. The raw data was passed through an
adaptive deep neural network to obtain data features, which improved the classification
accuracy of the classifier overall and also reduced the detection time of the network for
abnormal data.

4.2.1. Two-Class Machine Learning Model

For the KNN algorithm, the value of K was set in the range of [3, 15] with a step
size of 2. The average accuracy of the classifier with different parameters was tested. The
experimental results show that the KNN algorithm produces better overall experimental
results for the classifier, with the highest accuracy rates at K = 3 and K = 5. Hereafter, we
use K = 3.

For the DT algorithm, the maximum depth of the tree and the minimum number
of samples are needed for the leaf nodes. The range of values for depth is set to [10, 30]
and the range of values for the minimum number of samples required by a leaf node is
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[2, 20]. First, the accuracy of classification of the DT algorithm at different depths was
tested. Experimental results show that by the DT algorithm has the highest accuracy when
the depth is 26 and the minimum number of leaf nodes is 2.

The confusion matrix is also known as the error matrix. It uses a matrix to visualize
the performance of a machine learning algorithm. The column data of the confusion matrix
represents the predicted values, while the row data represents the actual values. The
confusion matrix is introduced to indicate whether there is confusion between different
categories, i.e. whether there is a misclassification. The results of the confusion matrix
produced by different algorithms are shown in Figure 4. The X-axis represents the predicted
values and the Y-axis represents the true values. The values in the first quadrant represent
data where the predicted value is an attack and the true value is normal. The values in the
second quadrant represent data where the predicted value is normal and the true value is
normal. Values in the third quadrant represent data where the predicted value is normal
and the true value is an attack. A value in the fourth quadrant represents data for which
the predicted value is an attack and the true value is an attack. From Figure 4, we can see
that KNN outperforms other three classification techinques, followed by DT and BPNN.
The performance of Naïve Bayes is the worst in terms of two-class classification.

Figure 4. The confusion matrix results of two-class classification using the existing four classification
methods: KNN, Naïve Bayes, BPNN and DT.

The experimental results are shown in Figure 5. Results show that with two classi-
fications, all packets were divided into two categories–abnormal data and normal data.
The abnormal data was not further classified and the sample imbalance was relatively less
of a problem. However, in practical applications, the categories of abnormal data need
to be further divided, so the effect of sample imbalance on the training results should be
considered in the subsequent multi-classification cases.

Figure 5. Performance comparison of two-class classifications using the existing four classification
methods: KNN, Naïve Bayes, BPNN and DT.
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4.2.2. Multi-Class Machine Learning Model

In the same process as for the two classifications, dataset machine learning models
were used for training and testing. In order to more accurately simulate network attacks in
real life situations and to classify different attacks. This paper extends the two classifications
into multiple classifications to identify different types of attacks.

(1) KNN algorithm parameter setting: In order to save computational effort and
processing time, the range and step size of K values were set to be the same as in the case
of two classification. The experimental results show that the highest classification accuracy
is achieved with K = 3. The value of K is set in line with the case of two classification,
which reduces the complexity of the comparison and the difficulty of the calculation to
some extent.

(2) Decision Tree algorithm parameter setting: As in the case of two classification,
the algorithm needs to determine the maximum depth and minimum number of samples
required for the leaf nodes in the multi-level classification case. The range of values and
step size of each parameter are set to the same as in the two classification case.

The experimental results showed that the classification accuracy was stable at 99.84%
when the maximum depth of the tree was greater than or equal to 27. To reduce the
computational effort and the complexity of machine learning as much as possible, the
maximum depth of the tree was set to 27. Subsequently, the number of leaves and he
minimum number of samples of nodes was tested. The experimental results showed
that when the depth of the Decision Tree is 27, the classification accuracy of the classifier
decreases as the minimum number of samples of the leaf nodes increases. So the maximum
number of samples of the leaf nodes was set to 2.

For the KNN algorithm, K = 3 provides the best results. For the DT algorithms, result
show that optimal results are achieved when the maximum depth of the tree is 27 and the
maximum number of samples of the leaf nodes is 2. Figure 6 shows the confusion matrix
for multi-class classification by KNN, Naive Bayes, BPNN and DT. Figure 7 shows the
results for multiple classifications.

Figure 6. The confusion matrix results of multi-classification using the existing four classification
methods: KNN, Naïve Bayes, BPNN and DT.

After 10 experiments comparing the sF1 of the ADL neural network model and the
traditional machine learning classification model, it was demonstrated that the classification
performance of the ADL neural network model was better. Since the sF1 refers to the
weighted average of precision and recall, it can be concluded experimentally that the sF1 of
the ADL classifier reaches its highest value when θ = 0.8. By applying the ADL algorithm
with the traditional machine learning algorithm, the performance metrics of the classifier
were significantly improved. In particular, the sA of the NB algorithm improved from
94.84% to 98.77% and the sR improved from 95.06% to 99.75%. The improvements in
accuracy and recall were more pronounced than those model without the ADL algorithm
to extract features. The performance metrics are summarised in Table 4.
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Figure 7. Performance comparison of multi-classification using the existing four classification meth-
ods: KNN, Naïve Bayes, BPNN and DT.

In traditional machine learning, the NB algorithm has the worst performance, whose
performance is summarised in Table 5. Next, after adding the ADL algorithm to the
NB algorithm, Table 6 shows the effect of using the ADL algorithm on the performance
improvement of the NB algorithm. The reason for the negligible performance improvement
for the DoS data is that the main attacks in the network come from DoS attacks, so the
number of DoS attacks is large and better classification can be achieved without feature
extraction. R2L and U2R are relatively small data in the dataset and the performance
is greatly improved after feature extraction. The SA of R2L is improved from 84.13% to
91.32%, the SP increased from 91.23% to 96.44%, the SA of U2R increased from 28.49% to
43.83%, and the SP increased from 66.88% to 75.02%.

Table 4. Performance comparison of existing classifiers with and without the proposed adaptive deep
learning algorithm.

Model sA (%) sP (%) sR (%) SF1 (%)

kNN 99.89 99.89 99.89 99.89

kNN with ADL 99.23 99.49 98.74 99.15

Decision Tree 99.82 99.82 99.82 99.82

DT with ADL 99.58 99.72 99.58 99.65

Bayes 94.84 95.91 94.84 95.06

Bayes with ADL 98.77 95.25 99.75 97.70

BPNN 98.84 98.86 98.84 98.05

BPNN with ADL 99.15 99.36 99.82 99.13
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Table 5. Results using Naïve Bayes classifier.

Data Type sA (%) sP (%) sR (%) SF1 (%)

Normal 99.24 98.86 99.43 99.81

DoS 99.85 99.86 98.85 99.85

Probe 95.64 97.42 95.43 96.41

R2L 84.13 91.23 83.23 87.07

U2R 28.49 66.88 28.57 40.02

Table 6. Results using Naïve Bayes classifier together with the proposed ADL Algorithm.

Data Type sA (%) sP (%) sR (%) SF1 (%)

Normal 99.91 98.65 99.90 99.78

DoS 99.85 99.88 98.85 99.87

Probe 98.83 99.75 99.87 99.34

R2L 91.32 96.44 90.39 93.31

U2R 42.83 75.02 42.85 54.45

To investigate the effect of ADL algorithm on the classifier performance at different θ
values, parametric analysis of θ was carried out on selected datasets. The output efficiency
of the model was determined by comparing the accuracy of the classifier at different values
of θ. From the experimental results, θ can affect the accuracy of the classifier by adjusting
the dimensionality of feature extraction. When θ was set to [0.1, 0.5], the SA of the ADL
algorithm improved gracefully. When θ > 0.6, the SA of the ADL algorithm is saturated
and the stability of the ADL algorithm is high.

Through experiements using the NSL-KDD dataset, the performance of the naïve
Bayesian algorithm classifier is greatly improved after processing by the ADL algorithm
(see Table 6). The reason for the smaller performance improvement for the DoS data is that
the main attacks in the network environment come from Dos attacks, so the number of Dos
attacks is larger and better classification can be achieved without feature extraction. R2L
and U2L are relatively small data in the dataset and the performance is greatly improved
after feature extraction. The accuracy of R2L is improved from 84.13% to 91.32%, the
accuracy rate increased from 91.23% to 96.44%, the accuracy rate of U2L increased from
28.49% to 43.83%, and the accuracy rate increased from 66.88% to 75.02%.

Based on the CFS method, the data features of the subset are extracted using specific
measurement indicators, the correlation matrices of different feature subsets are established,
and the function values of the subset matrices are solved to select the best correlation
feature matrix A subset. The results of CFS are shown in Table 7. Next, coding-based
feature extraction methods often use ACE for feature extraction. Thus, for the sake of
comparison, we also present results of ACE in Table 8.

Table 7. Results using the Correlation Feature Selection Algorithm.

Data Type sA (%) sP (%) sR (%) SF1 (%)

Normal 99.58 100 97.2 83.9

DoS 99.76 97.5 99.3 89.7

Probe 99.81 84.7 99.7 91.6

R2L 24.36 55.6 99.7 90.3

U2R 60.17 82.3 99.7 72.08

61



Algorithms 2023, 16, 288

Table 8. Results using the Asymmetric Convolutional Encoder algorithm.

Data Type sA (%) sP (%) sR (%) SF1 (%)

Normal 99.58 100 99.64 99.82

DoS 99.76 100 99.81 99.90

Probe 99.81 100 99.32 96.61

R2L 24.36 100 88.36 93.83

U2R 10.17 41.32 47.23 44.08

The experimental results show that the proposed ADL algorithm together with the
NB algorithm (see Table 6) has a greater improvement in the classification accuracy of R2L
and U2R compared to the ACE algorithm, and the overall performance of the algorithm
is also better. This indicates that the algorithm is more efficient in intrusion detection for
small sample data. Also, the use of encoders is avoided, as is the possibility of increased
computational complexity. However, the sF1 of the ADL algorithm is relatively low and
could be improved in future work.

Results showed that the classification accuracy of the ADL algorithm increased as θ
increased in [0.1, 0.5]. The accuracy tends to saturate when θ is greater than 0.6, demonstrat-
ing the stability and feasibility of the proposed ADL algorithm. Meanwhile, comparison
results proved that the ADL algorithm is better than the CFS feature extraction algorithm
when the amount of sample data is large. Compared with the ACE feature extraction
algorithm, the ADL algorithm improves the classification accuracy of R2L and U2R.

5. Conclusions

This paper proposes an adaptive deep learning algorithm that determines the number
of hidden layers and neurons of a neural network by extracting the dimension of the
original data. By setting parameters to balance the detection time and output accuracy,
the proposed ADL algorithm can adapt to different network environments and network
sizes. Moreover, by combining the ADL algorithm with traditional machine learning
algorithms, they can effectively discriminate between large ranges of network traffic,
improve the accuracy of intrusion detection, converge faster, and reduce detection time
significantly. In particular, Naïve Bayes classification produces the worst performance
as compared to KNN, DT and BPNN. After adding the proposed ADL to Naïve Bayes
classification, its performance can be improved significantly. For example, the accuracy of
R2L is improved from 84.13% to 91.32%, the accuracy rate increased from 91.23% to 96.44%,
the accuracy rate of U2L increased from 28.49% to 43.83%, and the accuracy rate increased
from 66.88% to 75.02%. The proposed ADL algorithm can also improve the performance of
the other three traditional classifiers to different extent. For future work, a real-time packet
capture platform can be adopted for analysis and further optimisation of the proposed
ADL algorithm.

For future work, a real-time packet capture platform can be set up for further analysis
and optimisation of the proposed ADL algorithm. In particular, the experiment utilised
a combination of deep neural networks and traditional machine learning algorithms,
with specific parameters set for different network sizes to reduce the training time of the
network. However, the current process of parameter learning is resource-intensive in
terms of computational power and computational time, and future research could optimise
the learning time of parameters and the requirement for hardware computational power.
In addition, to study the complex data patterns and low footprint stealth attacks of the
contemporary network traffic, we plan to verify the performance of our proposed ADL
algorithm using the UNSW-NB15 dataset [27].
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Abstract: The adoption of cooperative intelligent transportation systems (cITSs) improves road safety
and traffic efficiency. Vehicles connected to cITS form vehicular ad hoc networks (VANET) to exchange
messages. Like other networks and systems, cITSs are targeted by attackers intent on compromising
and disrupting system integrity and availability. They can repeatedly spoof false information causing
bottlenecks, traffic jams and even road accidents. The existing security infrastructure assumes that
the network topology and/or attack behavior is static. However, the cITS is inherently dynamic in
nature. Moreover, attackers may have the ability and resources to change their behavior continuously.
Assuming a static IDS security model for VANETs is not suitable and can lead to low detection
accuracy and high false alarms. Therefore, this paper proposes an adaptive security solution based on
deep learning and contextual references that can cope with the dynamic nature of the cITS topologies
and increasingly common attack behaviors. In this study, deep belief networks (DBN) modeling was
used to train the detection model. Binary cross entropy was used as a loss function to measure the
prediction error. Two activation functions were used, Relu and Softmax, for input–output mapping.
The Relu was used in the hidden layers, while the Sigmoid was used in the last layer to map the real
vector to output between 0 and 1. The adaptation mechanism was incorporated into the detection
model using a moving average that monitors predicted values within a time window. In this way, the
model can readjust the classification thresholds on-the-fly as appropriate. The proposed model was
evaluated using the Next Generation Simulation (NGSIM) dataset, which is commonly used in such
related works. The result is improved accuracy, demonstrating that the adaptation mechanism used
in this study was effective.

Keywords: cooperative intelligent transportation systems (cITSs); IDS; vehicular ad-hoc networks
(VANET); adaptive model; deep belief network (DBN)

1. Introduction

Cooperative intelligent transportation systems (cITSs) collect data from the end nodes
(i.e., endpoints). These data are stored locally and shared with the other nodes [1–3]. The
cITS adopts one of the two information-sharing standards, the European standard [4]
and the American standard [4]. On the one hand, the European standard defines two
types of messages, the Cooperative Awareness Message (CAM) and the Decentralized
Environmental Notification Message (DENM) [5]. The CAMs are sent periodically and
carry information about the vehicles such as their position, size, speed, and angle of steering
wheel. The DENM messages carry information about events which occur on sections of
road section such as lane changes and (sudden) braking. On the other hand, the American
standard defines context information messages called basic safety messages (BSMs), which
carry different information such as position, heading, speed, acceleration, steering wheel
angle, vehicle role, vehicle size and status of vehicle lights [6]. If an event happens, then
the BSM also carries those event-related information.
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Notwithstanding, cITSs enable information sharing among neighboring nodes (i.e.,
vehicles). Unfortunately, this comes at the cost of needing to address several threats that
target data and system integrity [7,8]. These threats could be imposed by either human-
crafted attacks or malware [7,9–11]. Threats which target cITS systems can disable or
disrupt the function of one or more components in the vehicle’s navigation system [12]. For
example, threats can spoof the exchanged data to inject false mobility information which
is then exchanged among neighboring vehicles causing erroneous actions and calamitous
outcomes.

Threat actors use sophisticated strategies and employ malware to carry out various
attacks against cITSs [13,14]. These attacks could come from nodes inside or outside the
network. Outside attacks by threat actors that are not part of the network are easy to detect,
whereas inside attacks are usually carried out via legitimate but compromised vehicles.
Such inside attacks are more challenging to detect. Typical cITS targeted attacks include
jamming, replay, Sybil, and data falsification.

Jamming is carried out by overwhelming individual cITS nodes by an enormous
amount of messages, which disrupt the connectivity with the cITS, a denial-of-service
attack type [15]. The consequences include message loss within the cITS, causing a data
insufficiency situation that adversely affects the accuracy of the intrusion detection systems
(IDS) trained on such data. Replay attacks occur if the attacker can impersonate an original
node enabling the interception of messages exchanged between the vehicles and thereby
injecting false data by re-sending them to a victim node [16]. Likewise, a Sybil attack
creates several identities and uses them to poison (fake) BSM messages that deceive victim
nodes; as such, a Sybil attack compromises network services when an attacker subverts the
service’s reputation system by creating a large number of pseudonymous identities and
then using them to gain a disproportionately large influence. Thus, false data injection can
be used to share and promote false information about the current traffic situation on the
road for the purpose of disrupting traffic flow and triggering congestion.

Data falsification is another type of attack that can be conducted to compromise BSM
messages exchanged between cITS nodes. The first step is to compromise a legitimate
node and employ it to share false data with neighboring vehicles. Since the compromised
node has been previously authenticated, a trust relationship was established with other
nodes in the cITS network. Attackers can utilize this fact to spread the false data using the
compromised node [5]. Attackers thus manipulate the BSM and inject false data which
is then share with neighboring nodes [17]. The false data may cause a vehicle to take
unexpected actions such as sudden braking, lane changing, and/or sudden acceleration.
Therefore, taking security measures to protect BSM messages is crucial [6].

2. Related Works

The current solutions proposed for protecting the cITSs can be categorized into node-
centric and data-centric IDSs. Some of these solutions tried to protect the system against
threats coming from the outside caused by Sybil, malware, and DoS attacks. By comparing
the patterns from incoming traffic with the patterns of normal applications, those solutions
can detect suspicious threats and raise alarms. Moreover, other solutions focus on detecting
misbehaving nodes in cITSs. These solutions aim to protect the system against threats
carried out by legitimate yet compromised nodes, which is more challenging as those nodes
are trusted and thus less suspicious [18]. Nonetheless, most of these solutions assume that
the cITS is stationary. Such an assumption is not realistic as the ephemeral nature of cITSs
make it a very dynamic constantly changing topology. Developing data-driven detection
solutions on presumed stationary data prohibits handling the numerous and rapid changes
typical inside the cITS. These solutions quickly become outdated and consequently, their
accuracy decreases. Some studies have tried to rectify the issue by adopting solutions with
the dynamic nature of the operating environment in mind [8]. These solutions, again, are
typically categorized into node-centric and data-centric.
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The existing IDS proposal for cITS relies on the BSM messages exchanged between the
communicating vehicles as well as the contextual metadata that describes the operating
environment. Such data in many studies are static, which might not be suitable for such a
dynamic cITSs where the node’s operational environment changes continuously. Therefore,
static security thresholds become outdated more often. This represents a major issue for
existing IDS solutions. To address this issue, some studies have proposed solutions, such
as the context-aware data-centric misbehavior detection scheme (CA-DC-MDS) developed
by [13]. This solution overcomes the aforementioned drawbacks. Static thresholds are
replaced by a dynamic threshold statistically determined using a contextual model, which is
constructed and updated online. The sequential analysis of temporal and spatial correlation
is conducted using Kalman and Hampel filters to assess the consistency of mobility data
exchanged between neighboring vehicles. The Kalman filter tracks mobility data from the
neighboring vehicles, while the Hampel filter assesses the consistency of these data. Based
on the proximity from the threshold, the message containing the data is classified as either
normal or suspicious. However, the scheme assumes that data collected at the early phases
after the model has updated its profile are sufficient for consistency assessment. This is not
realistic in most cases, as the contextual data that describe the new situation are not yet
ready for a variety of reasons as described below.

Node-centric IDSs determine whether a vehicle is malicious based on how it behaves
on the road section [19]. The trustworthiness of legitimate vehicles is also assessed based
on such behavior, which can be perceived by observing the number and validity of BSM
messages shared by the vehicle [20,21]. Reputation-based evaluation is usually adopted for
the trustworthiness estimation of each node in the cITS. The estimation is performed by a
voting strategy whose outcome relies on the majority concept. However, relying on node
behavior is sub-optimal because the cITS is non-stationary and since nodes change their
behavior as the topology changes [22,23]. Moreover, relying on a voting approach for the
trustworthiness estimation is always biased towards the majority, which in some cases, can
be compromised when the attacker gains a majority foothold. A case in point occurs when
attackers use advanced and sophisticated attack strategies such as malware and botnets to
create a majority of rogue nodes enabling them to control the trustworthiness estimation.
Consequently, such reputation-based mechanisms used by node-centric solutions cannot
be trusted for the early identification of misbehaving or faulty vehicles [6].

Another set of IDSs for cITS adopt the data-centric detection approach by inspecting
the BSM messages exchanged between the neighboring vehicles. These solutions perform
several checks to determine whether the messages are falsified. BSM messages are checked
against several criteria such as consistency and plausibility to determine whether they
are trustworthy [6]. The consistency checks that BSM messages undergo in data-centric
solutions determine whether the data shared by the node are consistent with the general
context from the particular cITS. By vetting these BSMs, data-centric solutions can also
identify the plausibility of the shared data to help in determining validity (i.e., whether
they are in-line with those coming from other nodes in the cITS system).

The node-centric and data-centric approaches adopted in existing IDS solutions for
cITS rely on estimating the reputation of the nodes and trustworthiness of the data they
share with each other. However, both approaches have inherent weaknesses and may not
be suitable for tumultuous environments such as cITSs. In such dynamic systems, the
nodes join and leave the network frequently, which creates an unstable topology. This
makes it difficult to capture sufficient and consistent patterns that represent all behavioral
aspects of the nodes. Therefore, existing security solutions with rigid thresholds are not
suitable as they do not have the sufficient data needed for accurate decisions. Therefore,
these solutions suffer from a high rate of false alarms. Thus, data insufficiency makes it
difficult for adaptive mechanisms used by some solutions to accurately calculate the new
thresholds, which also have a negative effect on IDS accuracy.

The contribution of this study is two-fold:
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• A bi-variate moving average (BiMAV) technique was proposed. Unlike existing
methods that only rely on the values estimated at the output layer, BiMAV correlates
the changes of the output layer with the averaged input variables. Such an approach
provides precise change detection by avoiding the instantaneous changes that could
compromise the stability of the detection model.

• The proposed method was incorporated into the detection model, which helps to
prevent the unnecessary re-adjustment of security thresholds at the output layer of
the DBN classifier thanks to the bivariate-based moving average used to monitor and
detect the change in the classification accuracy estimation.

The rest of the paper is organized as follows. Section 3 presents the methodology
in which we describe the proposed solution. The results are analyzed and discussed in
Section 4 along with a comparison with existing related work. Section 5 concludes the
paper with a summary of the contribution and findings.

3. Methodology

Given the literature reviewed above, we have concluded that the ephemeral nature of
cITSs is a major challenge that makes many existing solutions ineffective. To overcome such
a challenge, herein we propose an adaptive IDS for cITS. Our adaptive approach has the
ability to cope with the dynamical nature of the cITS operating environment. A bi-variate
moving average (BiMAV) method was developed to detect the (potential) diversion, in
practice, from the existing threshold used by the detection model. Unlike existing methods
that rely only on the values estimated at the output layer, BiMAV correlates the change
of output layer with the averaged input variables. Such an approach provides precise
change detection by avoiding the instantaneous changes that will eventually compromise
the stability of the detection model. The proposed method prevents the unnecessary re-
adjustment of security thresholds at the output layer of the DBN classifier thanks to the
bivariate-based moving average used to monitor and detect the change in the classification
accuracy estimation. This is important for dynamic environments such as cITSs where
sufficient data might not be available. Based on the amount of change, adaptation can be
triggered. in other words, if the difference exceeds a certain limit (i.e., according to the
standard deviation), retraining the model is triggered. Model retraining will be performed
based on the new data. If the difference does not exceed the threshold, there is no need
for retraining.

The proposed solution here relies on the supervised learning approach. The deep
belief network (DBN), one of the famous deep learning algorithms, is used to train the IDS
based on data collected from the BSM messages. Before training, the data are pre-processed
to make them suitable for ingestion by the DBN. As part of the preparation, noise data are
removed, and data normalization is carried out. During data normalization, the values of
all attributes are converted to a range of 0–1. This ensures that all attributes are in the same
scale and prevents those with higher ranges from having undue influence over the model’s
output decision.

The data are now ready for the mutual information feature selection (MIFS) process
that selects out discriminative features to reduce data dimensionality. This avoids the over-
fitting problem that negatively affects the accuracy of the IDS [24,25]. By selecting the most
relevant features, the model also generates less false alarms, which contributes to higher
precision. Furthermore, reducing data dimensionality helps decrease the model complexity,
which is more favorable for ephemeral environments such as cITSs. The MIFS ranks the
features based on the entropy, such that those with higher entropy value correspond to a
lower rank. Then, the MIFS selects the n-top ranking features (n experimentally chosen to
give higher accuracy). The selected features are then used as input for the DBN algorithm.

During the model’s training phase, the DBN is trained using the data and features
selected by the MIFS. The DBN model is composed of several layers, namely input, output
and hidden. The number of input layer nodes is determined by the number of features
selected by the MIFS. These nodes receive data and process them into the hidden layers,
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after being scaled (i.e., multiply) by an input weight. In our methodology, the hidden part
of the DBN is constructed from three layers. The number of hidden layers is determined
based on an overfitting factor during the training phase. The number of nodes in the
hidden layer is thus determined based on the bias factor during the training phase as well.
The value of the bias factor was set to 0.25, multiplied by the standard deviation σ(W)
of the previous window. Therefore, the number of nodes in hidden layers were taken as
a percentage of the original number. As we start with 18 nodes (because the number of
nodes in a hidden layer should be lower than then nodes in input layer), in the hidden
layers, the data are processed based on the activation function used by the hidden nodes.
The Relu function is used as the activation function in all nodes in the hidden layers of
the DBN, except the layer that precedes the output, where the sigmoid function was used.
These activation functions are used to map the output of nodes into values between 0 and
1, which are needed for prediction. The output layer receives the data from the sigmoid
functions in the last hidden layer and determines whether the instance is malicious or
normal based on a threshold σ, where values greater than σ are considered as attacks.

Training and Testing

The DBN model was trained using the 10-fold cross-validation method, wherein data
are divided into two sets. During the training/testing process, the data were divided into
two sets, i.e., training and testing. The training builds the model while testing evaluates its
accuracy. The size of training set was 90% of the data and, naturally, the testing set was
10% of the data. This process was repeated 10 times and the accuracy of the model was
recorded. At the end of the training/testing process, the averaged accuracy was calculated,
which determines the overall model accuracy.

4. Model Adaptation Using Bi-Variate Moving Average

Our proposed model, as described above, is aimed at improving detection within the
dynamic cITS environment. Therefore, here we describe an adaptation capability needed
to ensure that the model can better handle the constantly changing network topology. We
propose a bi-variate moving average (BiMAV) model adaptation method that observes the
model performance and adapts to the change in the operating environment. The proposed
method follows the progressive modeling used by works that rely on time series data [26].
The method uses a two-dimensional window for change detection. That is, the window
defines two variables, the aggregated input values and the estimated output. Within
this window, the accuracy trend is monitored against a threshold calculated based on the
standard deviation from previous windows. Equation (1) implements the BiVAM method:

BiMAV =
∑i=n−1

i=0 Xi

n
×

∑
j=l−1
j=0 Yj

l
(1)

where Xi and Yj are the input features and estimated output values, respectively. The
variable n represents number of features while l represents number of instances in the
window. The retraining is triggered if the value of BiMAV is higher than the standard
deviation of the previous windows, as expressed by Equation (2):

BiMAV =

{
i f < σ(W) then No retraining
i f > σ(W) then Retraining

(2)

where σ(W) represents the standard deviation of the previous windows. The decision that
Equation (2) makes is binary as it determines whether the re-training is needed or not based
on the threshold σ(W).

5. The Dataset

The dataset used for this study was the Next Generation Simulation (NGSIM) Vehicle
Trajectories Dataset [7]. NGSIM is an open source publicly available dataset with a collection
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of real-world vehicles’ trajectories collected by smart vehicles. It contains a detailed vehicle
trajectory data on southbound US 101 and Lankershim Boulevard in Los Angeles, CA,
eastbound I-80 in Emeryville, CA and Peachtree Street in Atlanta, Georgia. Data in NGSIM
were collected through a network of synchronized digital video cameras. NGVIDEO,
a customized software application developed for the NGSIM program, transcribed the
vehicle trajectory data from the video. This vehicle trajectory data provides the precise
location of each vehicle within the study area every one-tenth of a second, resulting in
detailed lane positions and locations relative to other vehicles. Moreover, NGSIM consists
of many patterns representing different drive situations and driver behavior [7]. In addition,
NGSIM provides high-quality contextual data that describe realistic real-world scenarios on
different road sections [19]. Particularly, NGSIM was built by collecting data from vehicles
moving on a road section with 500 m-long and seven-lane highway. For each vehicle,
the data are collected (recorded) for 45 min using 16 sensors. Each record in the dataset
contains s set of basic elements regarding the vehicle like position, speed, time, direction,
and acceleration. Although there are similar datasets such as the Connected Vehicles Pilot
(CVP), the NGSIM dataset was chosen in this study to be consistent when comparing with
the related works as they used the NGSIM as well.

The dataset represents the ground truth information and each vehicle represents a
cITS node. In real-world deployment, the dataset needs to be fed each cITS node. That
is, each node should have a copy of the dataset to run its own applications and adjust
its communication or driving behavior. As such, the collection of accurate and reliable
context information is crucial. The context information in the dataset combines two types
of messages, cooperative awareness message (CAM) and decentralized environmental
notification message (DENM) into a basic safety message (BSM). While CAMs are sent
periodically, DENMs are event-driven that only sent when an event has occurred. The CAM
consists of information about the vehicles such as the position, size, speed, and steering
wheel angle.

In contrast, DENM contains information about a certain event such as lane changing
and sudden braking. BSM combines CAM and DENM messages. The first part of BSM,
as well as CAM in the European standard, carries information about position, heading,
speed, acceleration, steering wheel angle, vehicle role, vehicle size, and the status of vehicle
lights [4,27,28]. Unlike the first part of BSM that is included in all BSM messages, the second
part of BSM (which corresponds to DENM in the European standard) is only included
when an event happens, to carry information about such an event.

6. Experimental Environment Setup

To implement the different components of the proposed mode and evaluate its perfor-
mance, the development and experimental evaluation will be conducted using several tools
and software including Python, TensorFlow, Scikit Learn, SKFeature, and Numpy. These
tools and libraries are all included in the Anaconda development platform. Meanwhile, the
preparation of data samples, implementation of algorithms, and the analysis of the results
will be carried out on a machine with Intel(R) Core (TM) i7-4790 CPU @ 3.60 GHZ and
16 GB RAM.

Evaluation Metrics

To evaluate the performance of the proposed IDS for cITS, this paper uses the accuracy,
detection rate, and the false alarms rate as they are common metrics widely used by the
extant research. Equations (3)–(6) are used to calculate the detection accuracy, detection
rate, precision, false positive rate, and the F measure, respectively.

ACC =
TP + TN

TP + TN + FP + FN
(3)

DR =
TP

TP + FN
(4)
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FPR =
FP

FP + TN
(5)

F1 =
2× Precision × Recall

Precision + Recall
(6)

where TP, TN, FP, and FN denote the true positive, true negative, false positive, and false
negative, respectively.

7. Experimental Results

Table 1 shows the accuracy (ACC), detection rate (DR), false positive rate (FPR), and F1
measure of the proposed adaptive deep belief network-based IDS (ADBN-IDS). In addition,
Tables 2 and 3 show the results of the IDS built using conventional machine learning classifiers,
namely the support vector machines (SVMs), and the logistic regression (LR). As pointed
out previously, the ACC, DR, FPR, and F1 were calculated based on Equations (3)–(6). In the
tables, the first column in each table lists the accuracy of the proposed; while the second
lists the detection rat; the third column lists the false positive rate; and the fourth column
lists the F1 measure of the proposed and related models. The tables’ rows are used to list
feature sets with different sizes. The feature sizes range between 5 and 25 incremented by 3.
The results show that the proposed ADBN-IDS achieved higher accuracy over the other two
classifiers (i.e., SVM and LR) [28,29]. This is attributed to the ability of the BiMAV method
(incorporated into ADBN-IDS) to detect the degradation in the model’s performance and
trigger the training on the right time. This contributes to keeping the model up to date and
prevent the concept drift from affecting the accuracy of the model.

The results also show that the accuracy increased when more features were added,
until the number of features reached 20. After that, the model experienced a decrease in the
accuracy. This also can be observed from the other evaluation metric, namely DR, FPR, and
F1. The same trend was observed not only for the ADBN-IDS, but also for SVM and LR.
The reason is that the model needs sufficient features to make correct decisions. However,
when the number of features exceed a certain limit, the model would suffer from high
variance that makes it prone to overfitting. The situation exacerbates when the coming
observations lack the sufficient attack patterns necessary for clear and accurate decision.
This would result to a model that can only recognize the patterns that it has seen, and if
new patterns that have less similarity with the known ones are encountered, the likelihood
that the model could miss the true classification becomes high.

Figures 1–4 show the comparison between the proposed ADBN-IDS and the models
built using the SVM and LR, in terms of accuracy, detection rate, false positive rate, and
F measure, respectively. The x axis represents the number of features used for training,
and the y axis represents the value of performance measure achieved. The comparison
was conducted between the ADBN-IDS that employed the BiMAV for adaptation and the
conventional approach used in the existing studies [28,29]. As depicted in the figures, the
proposed ADBN-IDS outperformed the related techniques in terms of accuracy, detection
rate, false positive rate, and the F measure. It can also be observed that the ADBN-IDS
maintain a stable increment in the performance for the four measures when the number of
features increase until it reaches 20 features where the performance shows declining trend.
This is attributed to the efficacy of the BiMAV incorporated for the model adaptation and
the reliance on the combination of output and averaged inputs for proximity calculation
from the threshold. Such an approach makes the change detection mechanism robust,
which avoids unnecessary re-training and only triggers it if the change in the cITS topology
or attack behavior is significant. It is also worth noting that the frequency of adaptation
varies based on the threshold. When the threshold is set to a higher value, the rate of
adaptation becomes less frequent. When the threshold value is set to low, the adaptation
frequency increases. Moreover, Figure 5 shows the area under the curve of the proposed
model under several thresholds. The x axis represents the false positive rate while the y axis
represents the true positive rate. It can be observed that the false positive rate decreases
when the detection rate increases.
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Table 1. The experimental evaluation results for the proposed ADBN-IDS in terms of accuracy,
detection rate, false positive rate, and F measure.

Metric and Number of Features ACC DR FPR F1

5 0.92 0.924 0.132 0.927
8 0.929 0.926 0.128 0.931

11 0.946 0.937 0.113 0.947
14 0.968 0.965 0.084 0.969
17 0.97 0.968 0.076 0.973
20 0.974 0.972 0.071 0.978
23 0.973 0.97 0.072 0.975
25 0.969 0.971 0.077 0.972

Table 2. The experimental evaluation results for the proposed SVM-IDS in terms of accuracy, detection
rate, false positive rate, and F measure.

Metric and Number of Features ACC DR FPR F1

5 0.892 0.89 0.176 0.894
8 0.9 0.894 0.179 0.892

11 0.91 0.913 0.15 0.915
14 0.951 0.95 0.132 0.954
17 0.956 0.953 0.129 0.958
20 0.957 0.953 0.122 0.958
23 0.951 0.948 0.13 0.953
25 0.947 0.942 0.154 0.951

Table 3. The experimental evaluation results for the proposed LR-IDS in terms of accuracy, detection
rate, false positive rate, and F measure.

Metric and Number of Features ACC DR FPR F1

5 0.898 0.894 0.162 0.9
8 0.904 0.902 0.157 0.907

11 0.919 0.917 0.144 0.918
14 0.943 0.94 0.14 0.946
17 0.958 0.952 0.131 0.96
20 0.954 0.951 0.137 0.956
23 0.95 0.948 0.139 0.952
25 0.945 0.943 0.142 0.948

Figure 1. Comparison of the proposed ADBN-IDS with SVM and LR in terms of detection accuracy.
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Figure 2. Comparison of the proposed ADBN-IDS with SVM and LR in terms of detection rate.

Figure 3. Comparison of the proposed ADBN-IDS with SVM and LR in terms of false positive rate.

Figure 4. Comparison of the proposed ADBN-IDS with SVM and LR in terms of F measure.
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Figure 5. Area under the curve comparison for several detection thresholds.

8. Conclusions and Summary

In this paper, our adaptive deep belief network-based intrusion detection system
(ADBN-IDS) for cITS is described. ADBN-IDS is composed of three components: pre-processing,
feature selection, and training/testing. Thus, the model is created from the deep belief network
(DBN) classifier, and includes the bi-variate moving average (BiMAV) method as our adaptation
technique. This inclusion allows the model to cope with the dynamic nature of the cITS
environment and has never been tested using the NGSIM dataset.

The classifier was trained using the NGSIM dataset and tested using 10-fold cross
validation. The performance of the model was evaluated using several metrics including
accuracy, detection rate, false positive rate, and the F1 measure. The evaluation of our
results demonstrate that the proposed ADBN-IDS achieved higher performance in terms of
accuracy, detection rate, false positive rate, and F1, which indicates the importance of the
BiMAV adaptation mechanism in achieving and maintaining a safer more resilient cITS.

In summary, our proposed ABDN-IDS model, for the NGSIM dataset, showed on
average, an improvement of 2.35%, 2.47%, and 42% in terms of accuracy, detection and
false positive rate, respectively.
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Abstract: Network Intrusion Detection Systems (NIDS) represent a crucial component in the security
of a system, and their role is to continuously monitor the network and alert the user of any suspicious
activity or event. In recent years, the complexity of networks has been rapidly increasing and network
intrusions have become more frequent and less detectable. The increase in complexity pushed
researchers to boost NIDS effectiveness by introducing machine learning (ML) and deep learning (DL)
techniques. However, even with the addition of ML and DL, some issues still need to be addressed:
high false negative rates and low attack predictability for minority classes. Aim of the study was to
address these problems that have not been adequately addressed in the literature. Firstly, we have
built a deep learning model for network intrusion detection that would be able to perform both
binary and multiclass classification of network traffic. The goal of this base model was to achieve at
least the same, if not better, performance than the models observed in the state-of-the-art research.
Then, we proposed an effective refinement strategy and generated several models for lowering the
FNR and increasing the predictability for the minority classes. The obtained results proved that
using the proper parameters is possible to achieve a satisfying trade-off between FNR, accuracy, and
detection of the minority classes.

Keywords: NIDS; deep learning; false negative rate; machine learning; artificial neural network

1. Introduction

Since the introduction of the first Intrusion Detection Systems, one of the biggest
challenges they faced was a high False Positive Rate (FPR) which means that they generate
many alerts for non-threatening situations. Security analysts have a massive amount of
threats to analyze, which can result in some severe attacks being ignored or overlooked [1].
Another challenge was the False Negative Rate (FNR), which was still not low enough.
A high FNR presents an even bigger problem than a high FPR because it is more dan-
gerous to falsely classify an attack as regular network traffic than vice versa. Because of
the constant technological improvements and network changes, new and more sophisti-
cated types of attacks emerge, creating the need for continuous improvement of Intrusion
Detection Systems.

One way of improving IDSs, on which the researchers have been working in the last
years, is using machine learning techniques to reduce the FPR and FNR and improve
general detection capabilities [2]. A good example can be found in [3], where the authors
developed a prototype IDS which aimed to detect data anomalies by using the k-means
algorithm implemented in Sparks MLib. The reason behind using ML algorithms is that
they can analyze massive amounts of data and gather any information which can then be
used to enhance the capabilities of IDSs [1]. Another reason for using ML algorithms is that
they are not domain-dependent and are very flexible- functional for multiple problems [4].

Researchers identified two primary issues in the literature regarding the already-
existing deep learning models used for IDS [5]. The first issue is that some have low
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detection accuracy, especially when dealing with unbalanced data [6]. Most of the research
that focuses on the problem of machine learning and deep learning intrusion detection
systems uses the same publicly available datasets. After analyzing the extensive work
available on this topic, it emerges that some classes had meager detection rates when it
comes to multiclass classification, as will be presented in Section 3. The second issue is that
some models have somewhat high accuracy but also high False Positive and False Negative
Rates, which can lead to lower detection efficiency and weaken the network security [7,8].
Aside from these problems, the datasets used in some research are very aged and might not
reflect the modern-day network traffic, so the question arises: can these Intrusion Detection
Systems detect modern-day attacks? Moreover, how much can NIDS based on Deep Neural
Networks reduce the quite dangerous false negatives?

The objective of this research is tackle the above mentioned problems, and propose a
robust solution to improve the detection quality of Network Intrusion Detection Systems
using deep learning techniques, namely artificial neural networks. More specifically,
the idea is to lower the FNR and FPR and increase the attack predictability of the less
represented attack types. We state that, from a security perspective, we could tolerate
a slight increase in the FPR if this is a price for nullifying the FNR because it is more
dangerous to wrongly classify an attack as benign traffic than the other way around.

We start building a deep neural network for network intrusion detection purposes.
The deep neural network will be fed using two different datasets for binary and multiclass
network traffic classification. The models will be able to differentiate between regular
network traffic and attacks, as well as between different categories of attacks. We then
propose a strategy to lower the False Negative Rate of the models by doing various
experiments with different methods to reduce the FNR while keeping the False Positive
Rate low and the other metrics such as accuracy, precision, and recall high. The strategy
we use can be summarized in three steps: modifying the distribution of the training and
testing datasets, reducing the number of dataset features, and using class weights. For our
purposes, we used two different datasets, NSL-KDD [9] and UNSW-NB15 [10]. The idea
was to train the neural network models using an older and a more recent dataset and, in
that way, include a more extensive range of network attacks that the network will be able
to detect.

The rest of the paper is structured as follows: the next section provides the theoretical
background, with the introduction of the building blocks of our research. Section 3 describes
the used dataset and surveys the literature’s main results related to the deep learning
approach for NIDS. This section will show the reduced concern of the related work about
lowering false positives and false negatives. Section 4 provides the details of our approach,
while Sections 5 and 6 report the descriptions and the results of the experimental campaign.
Finally, Section 7 concludes the paper with some overall observations and some future
investigation directions.

2. Theoretical Background

In this section we present the fundamental elements to have a reference background,
namely Intrusion Detection Systems and artificial neural networks for deep learning.

2.1. Intrusion Detection Systems

An Intrusion Detection System is a software application or a device that monitors
network traffic and computer usage intending to detect any suspicious actions that go
against regular or expected use of the system, for example, a harmful activity or a policy
breach, in order to allow for system security to be maintained. Once the system detects
such actions, it alerts the user and collects information on the suspicious activity [11].

Network Intrusion Detection Systems are designed to protect the whole network,
not just a single host. NIDS are placed in strategic positions, for example, at the edge of
the network, where a network is most vulnerable to attacks [12]. NIDS analyze inbound
and outbound traffic to see if it fits the expected average behavior or matches known
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attack patterns. One positive aspect of this type of IDS is that it can be tough to detect
its presence in a system, which means that, usually, an attacker will not even realize that
NIDS is scrutinizing his actions. On the other hand, one negative aspect is that this type of
IDS analyzes enormous amounts of traffic, which leaves space for making mistakes and
generating an excess of false positives, or even some false negatives [13]. To avoid this, they
need more fine-tuning done by the administrator to ensure that they are working correctly
and not missing anything that might be crucial to the network’s security.

IDS need to know how to differentiate between suspicious and regular behavior.
For this purpose, there are different methods that they can use. The two main detec-
tion approaches are called signature-based detection and anomaly-based detection [11]. The
signature-based approach, also known as knowledge-based or definition-based, uses a database
of known vulnerabilities, signatures (byte combinations), or attack patterns. It identifies
attacks by comparing them to this database [12]. The underlying idea is to have a database
of anomalies recognized as attacks so that IDS can detect, promptly alert, and possibly
avoid the same (or similar) events in that database.

The anomaly-based approach, also known as the behavior-based, focuses on identify-
ing instances of malicious behavior, or in other words, system or network activity that does
not fit the expected behavior. These instances are called outliers, and once the IDS detects
an outlier, it is supposed to warn the administrator about it. Unlike signature-based IDS,
anomaly-based IDS can detect and alert the administrator when they discover a suspicious
behavior unknown to them. Instead of searching through a database of known attacks,
anomaly-based IDS use machine learning to train their detection system to recognize a
normalized baseline, which typically represents how the system behaves. Once the baseline
is determined, all the activity is compared to this baseline to see what stands out from the
typical network behavior [14].

2.2. Artificial Neural Networks for Deep Learning

Machine Learning (ML) is a specific branch of computer science and artificial intelli-
gence (AI) that focuses on using existing data and algorithms to mimic how people think,
learn and make decisions while gradually improving the accuracy of the decision-making
process and its results [15]. ML algorithms build a mathematical model using sample
data, also known as training data, aiming to make decisions that they are not explicitly
programmed to make [16].

Artificial neural networks (ANN), usually only called neural networks (NN), are
computing systems that contain a group of artificial neurons used to process data and
information. The architecture of the ANNs, and the idea behind building them, is based on
the biological neural networks found in human brains. The artificial neurons (nodes) are a
collection of connected units loosely modeled on the human brain’s neurons. The idea is
that these neurons should replicate how the human brain works. At its core, the neuron is
a mathematical function, which takes an input, does a calculation and transformation on it,
and gives an output.

Deep learning is essentially a subfield of machine learning, and it represents a particu-
lar case of an artificial neural network having more than one hidden layer. As previously
mentioned, these types of neural networks aim to simulate the human brain and learn
from large amounts of data [17]. The idea behind adding additional hidden layers is to
increase accuracy and optimize the model. The difference between deep learning and
machine learning is in the type of data they use and the methods they use to learn. Machine
learning usually uses structured, labeled data to make predictions. Even if the data are not
structured, they usually go through the data preparation phase to be organized in a way
that the learning model can use. On the other hand, deep learning can use data that are not
structured, such as images and text, which means that these algorithms can shorten the
processing phase or even remove it altogether [18].

In recent years, machine learning methods have been extensively used to build effi-
cient network intrusion detection systems [1]. The use of machine learning methods has
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significantly impacted and improved the detection accuracy of these intrusion detection
systems. However, there are still some downsides and limitations to using shallow machine
learning methods. In particular, they still require a high level of human interaction and a
significant amount of expert knowledge to process data and identify patterns [19], making
them expensive, time-consuming, and unsuitable for high-dimensional learning with a
large amount of data. Another negative side of using shallow machine learning techniques
is that their learning efficiency decreases as the network complexity increases. When there
are many multi-type variables, logistic regression can underfit with low accuracy, decision
trees can overfit, and Support Vector Machines are inefficient, mainly when dealing with
large amounts of data [20].

To address these limitations, researchers have identified Deep Learning as a valid
alternative to shallow learning techniques in the above mentioned situations. Advantages
of DL over ML are, for example, automatic feature learning and flexible adaptation to novel
problems, making it easier to work with big data [20].

3. Related Work

Deep Learning for NIDS is an emerging topic that has generated a new research
branch. There have been many novel approaches proposed by authors, such as in [21],
where the authors have proposed a modified bio-inspired algorithm, which is the Grey
Wolf Optimization algorithm (GWO), that enhances the efficacy of the IDS in detecting
both normal and anomalous traffic in the network. Another example is [22], where the
researchers analyzed the evolutionary sparse convolution network (ESCNN) intrusion and
threat activities in the Internet of things (IoT) with the goal to improve the overall attack
detection accuracy with a minimum false alarm rate. In this section, we report our analysis
of the main proposals found in the literature. The discussion will include an analysis of
the deep learning methods and the datasets used, the models produced, and the results
obtained for each research paper. We separated the different research proposals according
to the dataset they adopted to build their deep neural network models, namely the NSL-
KDD [9] and NSW-NB15 [10] datasets. The selection process of the related literature was
based on the following criteria:

1. Usage of the NSL-KDD and UNSW-NB15 datasets
2. Being relevant to Network Intrusion Detection Systems
3. Usage of deep learning algorithms

3.1. Datasets for Training Deep Learning Based NIDS

Training machine learning algorithms requires huge amounts of data, and the quality
of these data is crucial. Since most problems are very dependent on the type and the
quality of data, high quality datasets need to be used. Both NSL-KDD and UNSW-NB15
datasets have been used in many previous IDS researches, as described in the following
Sections 3.2 and 3.3.

The original researchers produced the NSL-KDD dataset to try to solve the shortcom-
ings and problems of the KDD Cup 99 dataset, once the most widely used dataset for the
evaluation of anomaly detection methods, prepared by Stolfo et al. [23]. The KDD Cup
99 dataset’s biggest problem was biased results due to redundant and duplicate records.
The NSL-KDD dataset consists of selected records from the complete KDD Cup 99 dataset.
This new dataset removes the identical records, resulting in around 78% of the training
dataset records and around 75% of the test dataset records [24]. Moreover, the number of
selected records from each difficulty level group is inversely proportional to the percentage
of the records in the original KDD Cup 99 dataset [25]. The NSL-KDD dataset contains
both regular traffic and traffic representing network attacks, so all the data in the dataset
are labeled as either normal or attack.

The NSL-KDD dataset is divided into four datasets: KDDTest+, KDDTrain+, KDDTest-
21, and KDDTrain+20%, where the latter are subsets of the former two, respectively. The
KDDTest-21 is a subset of the KDDTest+ and excludes the most challenging records. Simi-
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larly, the KDDTrain+20% is a subset of the KDDTrain+ and contains 20% of the records in
the entire training dataset [26].

The training dataset consists of 21 different attack types, while the testing dataset has
39 different types of attacks. The attack types in the training dataset are considered known
attacks, while the testing dataset consists of the known attacks, plus the additional, novel
attacks. The attacks are grouped into DoS, Probe attacks, U2R, and R2L. More than half of
the records are regular traffic, while the distribution of the R2L and U2R attacks is low. On
the other hand, a lower distribution corresponds to real-life internet traffic attacks, where
these types of traffic are very rarely seen [26]. The dataset includes a total of 43 features. The
first 41 are related to the traffic input and are categorized into three types: basic features,
content-based features, and traffic-based features.

The distribution of the above mentioned attack types is skewed and the breakdown of
the data distribution can be seen in Table 1. More than half of the records are normal traffic,
while the distribution of the R2L and U2R attacks is low.

Table 1. NSL-KDD record distribution.

Total Normal DoS Probe U2R R2L

KDDTrain+ 125,973 67,343
(53%)

45,927
(37%)

11,656
(9.11%)

52 (0.04%) 995
(0.85%)

KDDTest+ 22,544 9711
(43%)

7458
(33%)

2421 (11%) 200 (0.9%) 2654
(12.1%)

The UNSW-NB15 dataset is a relatively new network dataset, released in 2015 and
used in developing NIDS models [10]. The authors reported several main reasons for
making this new dataset. They wrote, in fact, that available datasets were too old, did not
reflect modern network traffic, and did not include some essential modern-day attacks.
The original dataset consists of 2,540,044 records, which can be classified as regular traffic
and network attacks. The authors have also made two smaller subsets, the training, and
testing subsets, consisting of 175,341 and 82,332 records, respectively. The original dataset
distinguishes a total of 49 features, and the authors arranged 35 in four categories: flow,
basic, content, and time features. These 35 features hold the integrated gathered information
about the network traffic. The following 12 features are additional and grouped into
two groups based on their nature and purpose. The first group contains features 36–40,
considered general-purpose features, while the remaining 41–47 are considered connection
features [10]. Each of the general-purpose features has its purpose from the defense point
of view, while the connection features give information in different connection scenarios.
The remaining two features, 48 and 49, are the label features, and they represent the attack
category and the traffic label, which shows whether the record is regular traffic or an attack,
respectively.

Similarly to the NSL-KDD dataset, the UNSW-NB15 dataset is also very unbalanced.
The breakdown of the data distribution can be seen in Table 2.

Table 2. UNSW-NB15 record distribution. Normal traffic accounts for 87% of the total, while some
attacks are <0.00005% (i.e., Shellcode and Worms).

Normal Fuzzers Analysis Backdoors DoS
2,218,761 24,262 2677 2329 16,353

Exploits Generic Reconnaissance Shellcode Worms
44,525 215,481 13,987 1511 174

Total
2,540,044
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3.2. Related Research Using the NSL-KDD Dataset

This section surveys the research papers which used the NSL-KDD dataset for training
and testing of the model.

Jia et al. [27] considered the two datasets, KDD Cup 99 and NSL-KDD, and proposed
a network intrusion detection system based on a deep neural network with four hidden
layers. Each hidden layer has 100 neurons and uses the ReLU activation function. The
output layer is fully connected and uses the softmax activation function. The authors have
built a multiclass classifier with the final aim to increase the model’s accuracy. In the end,
they have obtained an accuracy of >98% on all the classes except the U2R and R2L attacks.
The authors claimed that the main reason is the severely unbalanced nature of the datasets,
since there are too few records for these classes. We can observe two main downsides of
this research: it uses a very old dataset (KDD Cup 99), and the two used datasets are very
similar. This last point could mean that, even though this model performs well on these
datasets, it might not perform as well when detecting in a real network environment.

Vinayakumar et al. [28] proposed an intrusion detection system based on a hybrid
scalable deep neural network. They tested their model using six different datasets: KDD
Cup 99, NSL-KDD, Kyoto, UNSW-NB15, WSN-DS, and CICIDS 2017. The proposed
model consists of an artificial neural network with five hidden layers using the ReLU
activation function. Each hidden layer has a different number of neurons ranging from
1024 in the first hidden layer to 128 in the last. The authors evaluated both binary and
multiclass classification, obtaining broadly varied results. Depending on the dataset used,
the proposed models obtained the best accuracy for the KDD Cup 99 and the WSN-DS, and
the worst for the NSL-KDD and the UNSW-NB15. The authors’ main goal was to develop
a flexible model that can detect and classify different kinds of attacks, which is why they
used multiple datasets. The downsides of the proposed approach are that the obtained
model is very complex and has a lower detection rate for some of the classes.

Another research on this topic was done by Yin et al. [29]. Their study proposed a
network intrusion detection system based on a Recurrent Neural Network (RNN) model.
The dataset used in this research is the NSL-KDD dataset, and the authors have trained
an RNN model to do both binary and multiclass classification. The idea behind the study
was to build a model that will achieve higher performance in attack classification than the
models using the more traditional machine learning algorithms, such as Random Forest,
Support Vector Machine, etc. After the data preparation phase, the dataset used to train the
model consisted of 122 features, while the final model consisted of 80 hidden nodes. The
accuracy results obtained when testing the model were: 83.28% for binary classification
and 81.29% for multiclass classification. The authors state that these results are better than
those of other machine learning algorithms. Some downsides of this approach are that the
detection rates for the R2L and U2R classes are still low, and the model’s performance is
lower than other deep learning IDS models.

Potluri et al. [30] propose a DNN architecture of a feed-forward network where each
hidden layer is an auto-encoder, trained with the NSL-KDD dataset. Using auto-encoders
as hidden layers allows the training process to be done one layer at a time. The network has
three hidden layers: the first two are auto-encoders, with 20 and 10 neurons, respectively;
the third layer uses the softmax activation function and has five neurons. The first two
layers are used in the pre-training process: they perform a feature extraction phase and
reduce the number of features used by the DNN first to 20 and in the end to 10. The
third hidden layer selects five features out of 10 as a fine-tuning phase. The experiments
considered binary and multiclass classification: the detection accuracy for the binary
classification is high (>96%). In contrast, the detection accuracy for multiclass classification
varied considerably: it was satisfactory (>89%) for DoS, Probe, and regular traffic and low
for U2R and R2L. Similar to other research papers mentioned, the low detection accuracy
for some classes is a downside of this model.

Kasongo et al. [31] also proposed a network intrusion detection system based on a
feed-forward deep neural network using the NSL-KDD dataset. The goal of the research
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was to build a model that would perform better, meaning it would have a higher detection
accuracy than the existing machine learning models used for intrusion detection. The
authors divided the original training dataset into two subsets: one for training and one
for the evaluation after the training process. The initial test dataset was used to test the
performance of the model. The experiment included binary and multiclass classification in
two scenarios: the first used all 41 features of the dataset, and the second used a reduced
number of features (21 features) extracted during the feature selection phase. The model
with all the features showed a detection accuracy of 86.76% for binary and 86.62% for
multiclass classification. On the other hand, when using the reduced number of features,
the detection accuracy was 87.74% for binary and 86.19% for multiclass classification.
Among the downsides of this model were lower detection rates for R2L and U2R classes
and lower accuracy compared to other deep learning models used for intrusion detection.

The research paper by Shone et al. [19] also focuses on building a network intrusion
detection system based on a deep learning model using the KDD Cup 99 and the NSL-KDD
datasets. The proposed model is constructed by stacking non-symmetric deep auto-encoders
and combining them with the Random Forest classification algorithm. One of the research
purposes is to develop a technique for unsupervised feature learning, and the authors have
done this by using another non-symmetric deep auto-encoder. The authors proposed two
classifications: a 5-class classification for both datasets and a 13-class classification for the
NSL-KDD dataset. The average detection accuracy for the 5-class classification was 97.85%
with the KDD Cup 99 dataset, and 85.42% for the NSL-KDD dataset, while achieving 89.22%
for the 13-class classification with the NSL-KDD dataset. The downside of this model is that it
has low detection accuracy for classes with a lower number of records.

The research paper by Fu et al. [32] proposes a deep learning model for network
intrusion detection with the goal to address the issue of low detection accuracy in imbal-
anced datasets. The authors have used the NSL-KDD dataset for the training and testing
of the model. The model combines an attention mechanism and the bidirectional long
short-term memory (Bi-LSTM) network, by first extracting sequence features of data traffic
through a convolutional neural network (CNN) network, then reassigning the weights
of each channel through the attention mechanism, and finally using Bi-LSTM to learn
the network of sequence features. This paper employs the method of adaptive synthetic
sampling (ADASYN) for sample expansion of minority class samples, in order to address
data imbalance issues. The experiments included both binary and multiclass classification
and the accuracy and F1 score of the proposed network model reached 90.73% and 89.65%
on the KDDTest+ test set, respectively.

3.3. Related Research Using the UNSW-NB15 Dataset

This section discusses the research papers which used the UNSW-NB15 dataset for
training and testing of the model.

In the research by Kanimozhi et al. [33], the authors proposed a network intrusion
detection system based on an artificial neural network, trained and tested on the UNSW-
NB15 dataset. The authors used deep learning in combination with other machine learning
algorithms to extract the most relevant features of the dataset and use them for training
the model. The goal was to increase the detection accuracy and decrease the False Alarm
Rate. During the feature extraction phase, the authors used a combination of the Random
Forest and the Decision Tree algorithms for feature extraction. In the end, they selected
four features out of 45 in the original dataset. The authors have decided to do only binary
classification, meaning that the model will only classify a record as an attack or regular
traffic. The accuracy obtained in the testing phase was 89%, which is still lower than the
accuracy of other proposals with deep learning approaches.

Mahalakshmi et al. [34] have implemented an intrusion detection system based on a
convolutional neural network (CNN). The goal was to make a model that would overtake the
existing machine learning models used for intrusion detection concerning detection accuracy.
The proposed algorithm is a CNN used for binary classification, with an accuracy of 93.5%.

83



Algorithms 2022, 15, 258

The research done by Al-Zewairi et al. [35] uses the whole dataset, with all 2,540,044 records,
instead of the separate training and testing datasets prepared by the authors of the UNSW-
NB15 dataset. The proposed model is a deep artificial neural network consisting of five
hidden layers and a total of 50 neurons. The neural network is feed-forward and uses
backpropagation and stochastic gradient descent. The research aimed to find the optimal
network hyperparameters to achieve the best performance for binary classification. The
authors conducted experiments to find the best activation function for their model and the
optimal features to be used for training. The activation function that proved optimal for this
research was the rectifier function without the dropout method. The second experiment
regarding the optimal features showed that using the top 20% features, which were selected
during feature extraction, gave the best results. After testing the proposed model, the
evaluation showed high accuracy (98.99%) and a low false alarm rate (0.56%).

We can note that few researchers, from the ones mentioned in this section, included
the FPR and FNR as an evaluation metric in their research. However, most of them focused
on calculating the accuracy. The main problem with this approach is that the datasets used
are significantly unbalanced. Therefore the accuracy is not a good metric because it does
not distinguish between the records of different classes that were correctly classified. With
this concern in mind, in this paper we propose to focus on lowering the FNR and increasing
the predictability for the minority classes.

3.4. Summary and Comparison of the Related Research

A summary and comparison of all of the surveyed research papers are in Table 3. We
can observe that only half of the authors included the FPR and FNR as an evaluation metric
in their research since most of them focused on improving the accuracy. Moreover, only
two of the authors that considered the False Rates also proposed a multiclass classification.

The main problem of focusing on the accuracy metric is that the datasets used are
significantly unbalanced. Therefore the accuracy is not a good metric because it does not
distinguish between the records of different classes that were correctly classified. Thus,
in the next we focus on a strategy to improve the FNR and FPR, while improving the
detection of the less represented attack classes. In order to provide a better overview and
the possibility to compare the related work with the results which were achieved by the
model proposed in this research, we have included a brief summary of the proposed model
as the last row in Table 3.

Table 3. Summary and comparison of related works.

Researchers Year Dataset(s) Algorithm(s) Classification
Type

Accuracy FPR and FNR

Jia et al. [27] 2019 KDD Cup 99 and
NSL-KDD

Deep neural network Multiclass >98% on all classes
except U2R and R2L

FNR = 0.5%,
FPR = 0.3%

Vinayakumar
et al. [28]

2019 KDDp Cup 99,
NSL-KDD, Kyoto,

UNSW-NB15,
WSN-DS and
CICIDS 2017

Deep neural network Binary and
multiclass

Big variations
between datasets

Big variations
between datasets

Yin et al. [29] 2017 NSL-KDD Recurrent neural
network

Binary and
multiclass

83.28% for binary
and 81.29% for

multiclass

N/A

Potluri
et al. [30]

2016 NSL-KDD Deep neural network
with auto-encoders as

hidden layers

Binary and
multiclass

>96% for binary;
>89% for multiclass

N/A

Kasongo
et al. [31]

2019 NSL-KDD Deep neural network Binary and
multiclass

All features: 86.76%
(binary), 86.62%
(multiclass); 21
features: 87.74%

(binary) and 86.19%
(multiclass)

N/A
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Table 3. Cont.

Researchers Year Dataset(s) Algorithm(s) Classification
Type

Accuracy FPR and FNR

Kanimozhi
et al. [33]

2019 UNSW-NB15 Deep neural network Binary 89% FNR = 15%

Mahalakshmi
et al. [34]

2021 UNSW-NB15 Convolutional neural
network

Binary 93.5% N/A

Shone et al. [19] 2018 KDD Cup 99 and
NSL-KDD

Stacked non-symmetric
deep auto-encoder

network with Random
Forest classification

algorithm

Multiclass (5
and 13 classes)

97.85% (5-class
KDD Cup 99);
85.42% (5-class
NSL-KDD) and
89.22% (13-class

NSL-KDD)

Only FPR
considered, big

variations between
experiments (from
2.15% to 14.58%)

Al-Zewairi
et al. [35]

2017 UNSW-NB15 Deep neural network Binary 98.99% FPR = 0.56%

Fu et al. [32] 2022 NSL-KDD Deep neural network Binary and
multiclass

90.73% Lowest FPR for U2R
class (1.73%),

highest for Normal
class (13.44%)

Mijalkovic J.,
Spognardi A.

(proposed
model)

2022 NSL-KDD and
UNSW-NB15

Deep neural network Binary and
multiclass

>99% for NSL-KDD
and >97% for
UNSW-NB15

Lowest
FNR = 0.049%;

lowest FPR = 0.33%

4. Materials and Methods

In this section, we present the strategy we propose to achieve our research goals, while
in the next Section 5, we report the experimental campaign that confirms our approach.

Our strategy to reduce FNR and FPR and increase the detection of low-represented
attack categories consists of three points, as depicted in Figure 1. The first point, distribution
alteration, refers to the idea of altering the distribution of the original datasets. The rationale
is that the split proposed by the original dataset’s authors is sub-optimal, limiting the final
accuracy of the trained model. Our idea is that by reshuffling the datasets, it is possible to
improve the detection rate of most of the attack categories.

The second point, feature reduction, is the canonical approach of reducing the number
of features [36], selecting the more suitable for the primary goal.

The final point, class weight, refers to the idea of altering the importance of the different
categories of the data samples used in the network. The rationale is that we can reduce
the number of false negatives and improve the detection of the less common attacks at the
price of a low increase in the number of false positives.

Distribution
alteration  

Feature  
reduction Class weight

1 2 3

Figure 1. An overview of the proposed strategy.

In the Experiment section (Section 5), we reported and evaluated all the intermediate
results to show the improvement introduced by each of the points of our strategy.

4.1. Strategy Implementation

Figure 2 shows the details of the phases we took to construct and evaluate the gener-
ated models. In the following, we give an overall description of each phase, and the details
of the data preparation and model architecture in Sections 4.3 and 4.2, respectively.

The first step was to collect the data. As mentioned in Section 3.1, we selected NSL-
KDD and UNSW-NB15 to have two different datasets considered among the most suitable
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for our research. Since both datasets are divided into smaller datasets, the following were
chosen for our research: KDDTrain+, KDDTest+, and the full UNSW-NB15 dataset, which
we split into 4 CSV files.

Figure 2. An overview of the steps taken to build and evaluate the Deep Learning model.

The next step is to prepare the datasets so they can be ready to be used for training
our model. In this phase, we processed the datasets by removing missing and redundant
values, normalizing the numerical data, and encoding the categorical data into numerical.
Section 4.2 gives a detailed explanation of this step.

The third phase is constructing the deep neural network used in the research and
setting all of its parameters. A detailed explanation of the architecture and the parameters
chosen for the model is given in Section 4.3.

The fourth step is essential in deep learning and consists of training the neural network
since the dataset is used to train the model and enhance its ability to make predictions.

After the training of the model, the fifth step is to evaluate the model to see how it
performs. The testing datasets are used in this step, in order to see how well the model will
perform on the data that it has never seen before.

After the evaluation process, the next step is to tune the hyperparameters to see
if it would be possible to improve the learning process and achieve better results. The
hyperparameters are the parameters used to control the learning process, as opposed to
other parameters, such as node weights, whose values come from training. Some of the
parameters modified in this phase to obtain better results are, for example, the number of
epochs and the learning rate. We detail all the values and the obtained results of this step
in Section 4.3.

The final step is the prediction step, in which we achieve the final results of the
model. In this step, we conclude how well the model performed and if it reached the
experiment’s goal. The predictions of each experiment and the evaluation of their results
are in Sections 5 and 6, respectively.

4.2. Data Preparation

Preparing the data is a crucial step and can significantly impact the model’s learning
process. If we do not give appropriate input to the model, it might not give us the result
that we want to obtain. As mentioned earlier, we have two datasets used in this research,
the NSL-KDD and the UNSW-NB15 datasets. Both of these datasets need to be processed,
and since they have a similar structure, we used the same preparation process.

4.2.1. Preparation of the NSL-KDD Dataset

As a starting point in the data preparation of the NSL-KDD dataset, we have two
subsets of data already divided by the authors, the KDDTrain+ and the KDDTest+. These
subsets have 43 features, while the KDDTrain+ subset has 125,793 records and the KDDTest+
subset 22,544. We processed and verified that both subsets do not contain any missing
values. Therefore, we could proceed with doing the rest of the data preparation on the
subsets as they are.

The goal of multiclass classification is to correctly classify records that represent a
network attack as the attack category they belong to. Therefore, it is necessary to change
the label for every record from the attack type to the class to which that attack type belongs.
This step is repeated for both subsets. For the model to learn from this data, we need
to transform it into numerical values. For this transformation, we employed one-hot
encoding. One-hot encoding is a technique used for categorical features where no ordinal
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relationship exists. Therefore it is not enough to just do integer encoding (assign each
category an integer). One-hot encoding creates new binary columns for each possible
unique categorical feature value. In other words, it converts the categorical data into a
binary vector representation. We applied one-hot encoding to training and test subsets
specifically for the following features: protocol_type, service, and flag. Ultimately, we
removed the original categorical columns and obtained a dataset with 124 columns.

The next step was the encoding of the label. For binary classification, the ’normal’
value was represented by a 0, while all the others ’abnormal’ were given the value 1. For
multiclass classification, again, the ’normal’ value was given the value 0, and the rest of the
values were integer encoded. The multiclass values range from 0 to 4. This was done for
both subsets.

The next step was to strip the label and attack category columns from the train and
test datasets, building the effective subsets used to generate the model. The combination of
the original subset with the label column is used for the binary classification, while the com-
bination with the attack category column is used for the multiclass classification.Thus, we
divided the training and the testing subsets into 6 subsets: train f , train`, trainc, test f , test`,
and testc. The subsets train f and test f contain all the columns with the features of the
original training and testing datasets except for label and attack category columns: they
will be given to the model as the input. The label column for training and testing for binary
classification went in train` and test`, respectively, while the attack category column went
in trainc and testc.

The last preparation step was to normalize the data in the train f and test f subsets
using the min-max method. For every feature, the minimum value is changed to 0, the
maximum value is changed to 1, and every other value is transformed into a decimal value
between 0 and 1 using the following formula value−min

max−min . The final subsets used, train f and
test f , now contain 123 columns each, and all the data is encoded into numerical values
and normalized.

4.2.2. Preparation of the UNSW-NB15 Dataset

Unlike the NSL-KDD dataset, we opted to use the original full UNSW-NB15 dataset,
which contains 2,540,044 records, instead of using the two subsets pre-divided by the
authors. The authors have provided four separate CSV files which contain the records of
this dataset. The first step was to load all four CSV files and merge them into one dataset.

The next step was to check if there were any duplicate records and remove them. The
removal of the duplicates is essential to avoid having the same records in the training and
testing subsets because the testing subset should contain only the records that were not
previously seen by the neural network. During this phase, we removed 480,625 dupli-
cate records.

The next step was to check if the dataset contains any missing values. Three features
contained missing values: ‘ct_flw_http_mthd’, ‘is_ftp_login’ and ‘ct_ftp_cmd’. The missing
values were then replaced with ‘0’. It has been noted that the dataset contains the value ’–’
for the feature ‘service’ in a significant number of records, so this value was renamed as
‘undefined’ to give more meaning to it. Then, we removed the columns ‘srcip’ and ‘dstip’.
We also fixed some white-space inconsistencies among records with the same values and
other minor typos (i.e., ‘Backdoors’ instead of ’Backdoor’ in the ’attack_cat’ field).

We repeated the one-hot encoding for the whole dataset, changing the categorical
features ‘proto’, ‘service’, and ‘state’. At the end of this process, the dataset contained
202 columns.

While the column ‘label’ used for binary classification already contained 0 for regular
traffic and 1 for abnormal, the ‘attack category’ required an encoding for the multiclass
classification. Thus, in the next step, we encoded with a 0, the ‘normal’ (no-attack) value,
and assigned values from 1 to 9 to the other attack categories.
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The next step was to split the dataset into training and testing subsets. The training
subset was a random sample with 80% of the original records, while the testing subset
contained a random sample with 20%.

As for the NSL-KDD dataset, we separated the feature data columns (train f and test f )
from the label (train` and test`) and attack category (trainc and testc) columns.

As for the NSL-KDD dataset, the final step was the normalization of the numerical
variables of the train f and test f subsets of the features with the min-max normalization
method. In the end, these subsets contain 200 columns.

4.3. Model Architecture

After the data preparation phase, we started training the deep neural network. We
adopted the same model architecture for both datasets to evaluate which would perform
better. Different activation functions are used for different layers of the neural network. We
differentiated the model for the binary classification and the one for multiclass classification,
changing the number of nodes in the output layer and the activation function for the output
layer. The hyperparameters related to the training algorithm are:

• Batch size. This is a training parameter that indicates the number of records passed
and processed by the algorithm before updating the model.

• Number of epochs. This is also a training parameter which indicates the number of
passes done through the complete training dataset.

• Optimizer. Optimizer is an algorithm, or a method, which is used to change the
attributes of the network such as weights and learning rate in order to reduce the loss.
The most used optimizers, among the others, are gradient descent, stochastic gradient
descent, adagrad, and adaptive moment estimation (Adam) [37]. The optimizer used
for the model is stochastic gradient descent (SGD) with Nesterov momentum.

• Momentum. This parameter is used to help predict the direction of the next step,
based on the previous steps. It is used to prevent oscillations. The usual choice is a
number between 0.5 and 0.9.

• Learning rate. The learning rate is a parameter which controls the speed at which the
neural network learns. It is usually a small positive value in range between 0.0 and 1.0.
This parameter controls how much we should change the model in order to respond
to the estimated error each time the weights of the model are updated [38].

• Loss function. The loss function in a neural network is used to calculate the difference
between the expected output and the output that was generated by the model. This
function allows acquiring the gradients that the algorithm will use to update the neural
network’s weights. The loss function used for this model for binary classification is the
binary cross-entropy loss function. On the other hand, we used a sparse categorical
cross-entropy loss function for multiclass classification.

At the end of our experiments, the final values chosen for the training are provided
in Table 4. These final values were reached after a process of manual hyperparameter
tuning which included a series of trials with different values. The number of epochs shown
in Table 4 indicates the maximum number of epochs, but Early Stopping is used in the
experiments in order to prevent overfitting.

The neural network used for the experiment is a feed-forward neural network, which
means that the connections between the nodes do not form any cycles and the data in
the network moves only forward from the input nodes, going through the hidden nodes,
and in the end reaching the output nodes. The algorithm used to train the network is the
backpropagation algorithm. As mentioned earlier, backpropagation is short for “backward
propagation of errors”. Given an error function and an artificial neural network, the
backpropagation algorithm calculates the gradient of the error function with respect to the
weights of the neural network [39].
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Table 4. Final values chosen for the training phase.

Hyperparameter Value

Batch Size 64

Epochs 100

Optimizer Stochastic Gradient Descent (SGD) with Nesterov momentum

Momentum 0.9

Learning rate 0.01

Regularization 1 × 10−6

Moreover, the number of layers in the network is six: one input layer, one output layer
and four hidden layers. The input layer takes the input dimension which is equal to the
number of features used in the training dataset. The first hidden layer uses the Parametric
Rectified Linear Unit (PReLU) activation function and it has 496 neurons. The PReLU
activation function generalizes the traditional rectified unit with a slope for negative values
and it is formally defined as [40]:

f (yi) =

{
yi if yi > 0
aiyi if yi ≤ 0

(1)

The other hidden layers use the Rectified Linear Unit (ReLU) activation function. This
function was designed to overcome the vanishing gradient problem and it works in the
way that it returns 0 for any negative input, but for a positive input, it returns the value of
the input back. It can be defined as:

f (x) = max(0, x) (2)

The second, third and fourth hidden layers have 248, 124 and 62 nodes, respectively.
The output layer has a different activation function and a different number of neurons
based on the type of classification which is being done. For binary classification, the output
layer uses the sigmoid activation function and has only one neuron. The sigmoid function
takes a value as the input, and outputs another value between 0 and 1. It can be defined as:

f (x) =
1

1 + e−x (3)

On the other hand, for the multiclass classification, the output layer has the number
of neurons which is equal to the number of the attack categories in the dataset, and the
activation function which is used is the softmax function. This function converts a vector of
K real values into a vector of K real values that sum to 1 [41]. It can be defined as:

fi(~x) =
exi

∑J
j=1 exj

for i = 1, ..., J (4)

Additionally, to prevent overfitting during the training phase, we implemented the
dropout on all the hidden layers. Dropout is a regularization method that causes some of
the neurons of a layer to be randomly dropped out (ignored) during the training of the
network. Dropping out the neurons means that they will not be considered during the
specific forward or backward passing through the neural network. The dropout rate chosen
for this network, for each hidden layer, was equal to 0.1. This means that 10% of the units
will be dropped (set to 0) at each step. The units that are not dropped are scaled up by

1
(1−rate) so that the sum of all the units remains unchanged. A graphical representation of
the architecture of the neural network can be seen in Figure 3.
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Figure 3. A graphical representation of the DNN architecture.

4.4. Development Tools

The data preparation, model implementation, training, testing, and evaluation were
all done in Python using the following libraries:

• NumPy.This is a Python library which provides support for working with large multi-
dimensional arrays. It allows the user to perform different mathematical operations
on such arrays and it guarantees efficient calculations [42].

• Pandas. Pandas is a Python library used for data analysis and manipulation. It
provides support for manipulating numerical tables and time series [43].

• Matplotlib. This is a Python library that provides support for data visualization. It is
used to create static, animated and interactive graphs and other visualizations [44].

• Scikit-learn. This is a machine learning Python library used for predictive analysis. It
is built on NumPy, SciPy and Matplotlib and it can provide features for classification,
regression, model selection, clustering, preprocessing and so on. Another name for it
is sklearn [45].

• Tensorflow. This is a Python library for machine learning. It provides features for
building and training machine learning models and it allows users to create large scale
neural networks with many layers [46].

• Keras. This is a Python library which provides an interface for artificial neural net-
works. It is built on top of Tensorflow and it acts as a frontend for it [47].

• Jupyter notebook. This is an interactive computational environment which allows
the user to edit the code live, create equations, visualizations, and much more. It
is practical for research because it allows the researcher to combine code, output,
explanations, and multimedia resources in one document [48].

• PyCaret. This is an open-source Python library used for automation of the machine
learning processes. It gives the user many options which include automatic data
preparation, automatic model construction, training of the models, and evaluation and
comparison of the models [49]. For this experiment, PyCaret was used to automate
the data preparation and feature selection process.
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All the experiments were conducted on a HP Pavilion Power laptop with the Intel(R)
Core(TM) i7-7700HQ CPU @ 2.80 GHz processor. The rest of the hardware specifications of
the laptop used for the experiment can be seen in Table 5.

Table 5. Hardware specifications of the computer used for training.

Hardware Specification

GPU NVIDIA GeForce GTX 1050

Memory 16 GB system memory

Storage 256 GB SSD

GPU Memory 4 GB GPU memory

5. Experiments

Our experimental campaign aimed to achieve the lowest False Negative Rate (FNR)
while keeping the False Positive Rate (FPR) low. When it comes to multiclass classifications,
an additional goal was to improve the accuracy of some of the classes which have a smaller
number of records. The purpose of the experiments has been to find which architecture
and hyperparameters give us the lowest FNR. Additionally, other performance metrics
mentioned in Section 1 were compared for each experiment. A total of 14 experiments were
conducted: 4 for binary classification on the NSL-KDD dataset, 4 for multiclass classification
on the NSL-KDD dataset, three for binary classification on the UNSW-NB15 dataset, and
three experiments for multiclass classification on the UNSW-NB15 dataset.

5.1. Experiments on the NSL-KDD Dataset

Since both binary and multiclass classification were done on this dataset, the first part
of the experiments which will be explained were conducted for binary classification, and
the second part for the multiclass classification.

5.1.1. NSL-KDD Binary—Full Features

The first binary classification experiment considered the training of the model with all
the features extracted during the data preparation phase (Section 4.2). Since the NSL-KDD
subsets used for training and testing (train f and test f ) had a total of 123 columns each, the
neural network’s input layer has 123 nodes.

The first step is to train the neural network on this version of the training subset and
assess the results achieved. We used the Keras library to build the model and fine-tune
the hyperparameters, as mentioned in Section 4.3. We used Early Stopping (ES) to prevent
overfitting the network. One problem which can lead to overfitting is using too many
epochs to train the network. Hence, ES allows the user to set many training epochs, but it
stops the process once the model performance reaches the best possible result and before it
drops. The confusion matrix for this model can be seen in Table 6. The confusion matrix
makes it easier to see which classes are easily confused by the model, and from this matrix
it can be seen that the number of False Negatives (FN) is 3296, which is very high. This
means that the model wrongly classified 3296 attack records as normal traffic. The number
of false positives is equal to 662, which means that the model wrongly classified 662 records
as attacks.

Table 6. Confusion matrix for NSL-KDD “full features” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 9049 662

Attack 3296 9537
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5.1.2. NSL-KDD Binary—Modified Distribution

The second binary classification experiment considered using the same 123 features of
the data preparation stage but slightly changing the training and testing subsets distribution.
The idea behind this was that, maybe, the neural network could not learn from the training
subset prepared by the authors. This experiment aims to see if a different distribution of
records in the training and the testing subsets will give better results.

To obtain the new subsets, we combined the two subsets together into one dataset,
shuffling the data and then splitting them again so that 80% of the records are used for the
training of the network, and 20% of the records are used for testing. The training subset
contained 118,813 records and the testing subset 29,704 records. The architecture of the
neural network was the same as for the first experiment, and again, Early Stopping was
used. The confusion matrix for this experiment can be seen in Table 7. It can be seen that
the number of false negatives in this experiment is equal to 32, which is significantly lower
than in the “NSL-KDD binary—full features” experiment. The number of false positives is
is 52, which is also lower when compared to the previous experiment.

Table 7. Confusion matrix for NSL-KDD “modified distribution” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 15,371 52

Attack 32 14,249

5.1.3. NSL-KDD Binary—Reduced Features

For the third binary classification experiment, we used feature selection to reduce
the False Positive and the False Negative Rates. The testing and training subsets used
for this experiment were the same ones which were used for the second experiment. The
feature selection process was automatized by using the Python library PyCaret. This library
makes feature selection on a dataset by combining several supervised feature selection
methods to select a subset of features that contribute the most to the prediction of the target
variable [50].

After the feature selection process, the total number of features selected as the most
important was 41 out of 123. This means that the model for this experiment had 41 neurons
in the input layer. The rest of the architecture remained unchanged, including the use of the
Early Stopping method. The confusion matrix for this experiment can be seen in Table 8.
The number of false negatives in this experiment is 147, which is slightly higher than in
the previous experiment, but still significantly lower than in the first NSL-KDD binary
experiment. The number of false positives is 215, which is higher than in the previous
experiment, but again, lower than in the first experiment.

Table 8. Confusion matrix for NSL-KDD “reduced features” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 15,185 215

Attack 147 14,157

5.1.4. NSL-KDD Binary—Class Weights

The fourth binary classification experiment included the use of class weights. When
dealing with an imbalanced dataset, assigning weights to different classes can help the
model make more accurate predictions. For our research, we consider the false negatives
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more dangerous than false positives. Hence, we needed a way to make the model penalize
the false negatives by assigning different class weights. We assigned a weight of 1 for the
normal class (which has the label 0) and 2 for the attack class (which has the label 1). Aside
from assigning weights to the classes, this experiment uses the same hyperparameters as
the first and the second. The input dimension is equal to the second experiment since we
considered the same 41 features of the feature selection phase. We used early Stopping in
this experiment as well. The confusion matrix for this experiment can be seen in Table 9.
From the confusion matrix it can be seen that the number of false negatives is 115, which
is slightly lower than in the previous experiment, but still higher than in the “NSL-KDD
binary—modified distribution” experiment. The number of false positives is higher than in
the previous experiment.

Table 9. Confusion matrix for NSL-KDD “class weights” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 15,024 376

Attack 115 14,189

5.1.5. NSL-KDD Multiclass—Full Features

The first multiclass classification experiment included the usage as an input in the
neural network of all 123 features produced in the data preparation phase. The initial
training and testing subsets provided by the authors were used. After the division of
the subsets into input and output subsets during the data preparation phase, train f and
test f contain the 123 features and will be used as inputs in the training and testing of the
network. As described in Section 4.2, trainc and testc subsets, which contain the attack
category, will be used as the output in the training and the testing phase. Hence, the
neural network’s input layer has 123 nodes, like the “NSL-KDD binary—full features”
experiment. The output layer has five nodes, one for each of the four attack categories and
an additional one for the records which represent regular traffic. As mentioned earlier, the
loss function used for the multiclass classification is the sparse categorical cross-entropy
function. We opted for this function since it is recommended when the output is made of
integers. The other hyperparameters are the same as explained in Section 4.3. As for binary
classification, we used Early Stopping to prevent the model from over-fitting. Table 10
shows the confusion matrix for this example. To calculate the False Negative Rate, the class
‘Normal’ will be considered as the negative class, and the others as the positive classes.
By taking a look at the confusion matrix, it can be concluded that the last column of the
matrix shows the classes which were predicted as the ’Normal’ (negative) class, so in the
intersection of the last column and the last row, we have the number of True Negatives
(TN). The TN in this case are the records which actually belong to the ’Normal’ class and
were correctly classified as the ‘Normal’ class. The other elements of the last column are
false negatives (FN), meaning that they are records which actually belong to other classes
and were wrongly classified as the ‘Normal’ class. Furthermore, the other elements in the
last row are false positives (FP) since they actually belong to the ‘Normal’ class but were
wrongly classified as attacks. All the other elements can be considered as true positives
(TP) in this case. Taking this into account, the False Negative Rate can be calculated using
these values and it is equal to 31.17%, which is a very unsatisfactory value.
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Table 10. Confusion matrix for NSL-KDD “full features” multiclass classification experiment.

Predicted

DoS Probe R2L U2R Normal

A
ct

ua
l

DoS 5836 223 71 0 1330
Probe 266 1835 1 0 319
R2L 105 289 148 2 2341
U2R 2 25 22 8 10

Normal 387 243 3 0 9078

5.1.6. NSL-KDD Multiclass—Modified Distribution

The second multiclass classification experiment was conducted using the same logic
as for the second binary classification experiment. Again, all 123 features were used as
the input in the neural network, therefore the input layer has 123 nodes. The two original
subsets provided by the authors are mixed into one, shuffled, and split, to obtain a different
distribution of the testing and training subsets. After the split, the training subset contains
80% of the records, while the testing subset contains 20%. After the split, the training
subset contains 118.813 records and the testing subset contains 29.704 records. Again, the
Early Stopping method was used. The confusion matrix for this experiment can be seen
in Table 11. Using the same logic as in the previous experiment, for calculating the False
Negative Rate, the “Normal” class will be considered as the negative class. The FNR in
this experiment is equal to 0.17%. By looking at the confusion matrices in Tables 10 and 11,
it can be seen that the classes R2L and U2R have less records in the testing subset than in
the previous experiment. By having more records in the training subset, and less in the
testing one, the network learned to better classify records belonging to these classes. In fact,
the testing subset used for this experiment contains 716 records belonging to the R2L class,
and 20 belonging to the U2R class, and in case of the “full features” experiment, the testing
subset contained 2885 R2L and 64 U2R records.

Table 11. Confusion matrix for NSL-KDD “modified distribution” multiclass classification
experiment.

Predicted

DoS Probe R2L U2R Normal

A
ct

ua
l

DoS 10,666 2 1 0 7

Probe 4 2806 1 0 9

R2L 0 2 706 5 6

U2R 0 1 5 12 2

Normal 3 4 25 0 15,437

5.1.7. NSL-KDD Multiclass—Reduced Features

This experiment considered the use of the same subsets generated in the previous
experiment, preforming feature selection with PyCaret and then training the network by
using only the selected features. Out of 123 features, only 35 features were selected for this
model. The next step was to train the neural network by using these 35 selected features,
which means that the input layer of the neural network in this case had 35 nodes, one
for every feature used for training. The confusion matrix for this experiment is shown in
Table 12. The FNR for this experiment was equal to 0.133%. By looking at Tables 11 and 12
it can be concluded that the “NSL-KDD multiclass—modified distribution” model achieves
better performance for the minority classes. On the other hand, the “NSL-KDD multiclass—
reduced features” model achieves a lower FNR.
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Table 12. Confusion matrix for NSL-KDD “reduced features” multiclass classification experiment.

Predicted

DoS Probe R2L U2R Normal

A
ct

ua
l

DoS 10,666 3 1 0 6

Probe 1 2803 8 1 7

R2L 1 10 702 2 4

U2R 0 0 9 9 2

Normal 8 26 62 0 15,373

5.1.8. NSL-KDD Multiclass—Class Weights

For this experiment, we used the training and testing subsets of the previous experi-
ment and the 35 features selected using feature selection. In addition, we introduced the
class weights. The goal of setting specific class weights, in this case, is to make the neural
network learn to better differentiate between the classes with a smaller number of records
(U2R and R2L), and that is done by giving those classes a higher weight. Moreover, by
correctly classifying records that belong to those classes, the FNR should also be lowered.
We resolved to use the Scikit-learn method compute_class_weight for computing the class
weights. Because very few records belong to the U2R class, the weights returned by this
function needed to be slightly altered to avoid overfitting and falsely classifying many
records belonging to the U2R class. The final class weights used were: 0.55 for the DoS
class, 2.11 for the Probe class, 7.51 for the R2L class, 24.03 for the U2R class, and 0.38 for the
Normal class. Again, the network’s input layer had 35 nodes for the 35 selected features.
The confusion matrix is shown in Table 13. The FNR for this experiment was the lowest,
and it was equal to 0.049%.

Table 13. Confusion matrix for NSL-KDD “class weights” multiclass classification experiment.

Predicted

DoS Probe R2L U2R Normal

A
ct

ua
l

DoS 10,629 19 23 0 5

Probe 1 2799 13 6 1

R2L 0 5 706 7 1

U2R 0 0 6 14 0

Normal 27 76 88 0 15,278

5.2. Experiments on the UNSW-NB15 Dataset

As for the NSL-KDD dataset, for this dataset we built binary and multiclass classifica-
tion models.

5.2.1. UNSW-NB15 Binary—Full Features

The first binary classification experiment included using all 200 features obtained
during the data preparation phase by splitting the original dataset. The neural network
architecture, and the training hyperparameters, are explained in Section 4.3. The neural
network’s input layer has 200 nodes, one for each feature used. As for the NSL-KDD
experiments, we used Early Stopping for the UNSW-NB15 experiments, to prevent the
neural network from overfitting. The confusion matrix is shown in Table 14. The number
of false negatives is equal to 1662 and the number of false positives is 2965.
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Table 14. Confusion matrix for UNSW-NB15 “full features” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 389,003 2965

Attack 1662 18,254

5.2.2. UNSW-NB15 Binary—Reduced Features

The second binary classification experiment considered using a minimized set of
features obtained using a combination of several feature selection methods implemented by
PyCaret. The feature selection picked 53 features out of 200, which were labeled as the most
relevant for the classification process. Hence, the neural network’s input layer consisted of
53 nodes, while the training hyperparameters were the same as in the other experiments.
The rest of the network architecture was the same as the one presented in Section 4.3. The
whole process included, again, the Early Stopping mechanism. The confusion matrix is
shown in Table 15. The number of false negatives is equal to 1431 and the number of false
positives is 3257. The number of FN is slightly lower than in the previous experiment,
while the number of FP slightly increased.

Table 15. Confusion matrix for UNSW-NB15 “reduced features” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 388,177 3257

Attack 1431 18,485

5.2.3. UNSW-NB15 Binary—Class Weights

In this experiment, we incorporated the class weights into the network of the previous
experiment. We used the same subsets for training and testing and the 53 features selected
during the feature selection process. The training hyperparameters and the rest of the
network architecture are the same as in the previous experiment. The class weights were
assigned in the following manner: 1 for the normal class (labeled with 0) and 3 for the
attack class (labeled with 1). The confusion matrix is shown in Table 16. The number of
false negatives is equal to 56, which is the lowest value in all three binary experiments.
The number of false positives increased, and is equal to 5536. The increase was expected,
because there is a trade-off between the false positives and false negatives.

Table 16. Confusion matrix for UNSW-NB15 “class weights” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 386,432 5536

Attack 56 19,860

5.2.4. UNSW-NB15 Multiclass—Full Features

The first multiclass classification experiment included the usage of all 200 features
obtained during the data preparation process, as well as the subsets generated by splitting
the main dataset. The input layer has 200 nodes, one for each feature, and the output layer
has ten nodes, one for each possible class representing normal traffic and the other nine for
each attack category. The loss function used for this model is the sparse categorical cross-
entropy function, and the activation function in the output layer is the softmax function.
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Early Stopping was used. The confusion matrix can be seen in Table 17. The confusion
matrix shows that the model was not able to correctly predict any of the attacks that belong
to the class ‘Worms’. The reason for this is the fact that the dataset is very unbalanced,
and there were only 38 records belonging to this class in the testing dataset. Other classes,
besides the class ‘Worms’ which have a low number of records are: Shellcode, Backdoor,
and Analysis. Considering the ‘Normal’ class as the negative class, looking at the Table 17,
the number of true negatives can be found in the intersection of the 7th row and the 7th
column, and it is equal to 390,912. The false positives are all the records that belong to the
‘Normal’ class, but were wrongly classified as an attack, and they can be seen in the 7th row.
The false negatives are the records that represent an attack, but were wrongly classified as
belonging to the ‘Normal’ class, and they can be seen in the 7th column. Based on this, the
FNR can be calculated, and it is equal to 16.48%.

Table 17. Confusion matrix for UNSW-NB15 “full features” multiclass classification experiment.

Predicted

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Recconnaissanse Shellcode Worms

A
ct

ua
l

Analysis 7 20 4 25 310 0 89 0 0 0
Backdoor 8 11 10 49 261 3 11 41 0 0

DoS 9 8 28 496 359 53 62 62 15 0
Exploits 9 21 21 4232 459 70 345 427 12 0
Fuzzers 11 20 2 127 1560 20 2536 123 12 0
Generic 0 0 6 406 356 4175 52 38 5 0
Normal 0 0 0 190 540 11 390,912 180 13 0

Recconnaissanse 0 0 1 102 309 4 172 2122 0 0
Shellcode 0 0 0 22 20 4 34 140 84 0

Worms 0 0 0 27 3 5 2 1 0 0

5.2.5. UNSW-NB15 Multiclass—Reduced Features

For this experiment, we used the same data subsets as the previous one and included
a feature selection process to use only the most relevant features for the classification of the
records in each of the ten categories. By using the feature selection method from PyCaret,
44 features were selected as the most important. The input layer has 44 nodes, one for
each of the selected features. Early Stopping was used. The confusion matrix is shown
in Table 18. In comparison to the results obtained in the previous experiment, in this
experiment, the model had worse performance when it comes to correctly classifying the
minority classes. None of the records belonging to the ‘Analysis’, ‘Backdoor’ and ‘Worms’
classes were correctly classified. However, the FNR for this experiment was equal to 12.69%,
which was a bit lower than in the “UNSW-NB15 multiclass—full features” experiment.
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Table 18. Confusion matrix for UNSW-NB15 “reduced features” multiclass classification experiment.

Predicted

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Recconnaissanse Shellcode Worms

A
ct

ua
l

Analysis 0 0 15 167 131 0 82 60 0 0
Backdoor 0 0 19 138 116 6 16 99 0 0

DoS 0 0 28 625 144 62 42 173 18 0
Exploits 0 0 28 4218 212 111 163 849 15 0
Fuzzers 0 0 14 413 1346 63 2101 456 18 0
Generic 0 0 8 518 164 4186 31 125 6 0
Normal 0 0 3 393 582 47 390,217 586 18 0

Recconnaissanse 0 0 5 149 129 8 91 2328 0 0
Shellcode 0 0 0 13 17 5 17 178 74 0

Worms 0 0 0 25 0 7 0 5 1 0

5.2.6. UNSW-NB15 Multiclass—Class Weights

This experiment included the usage of the same subsets as for the previous experiment
(44 selected features) but with the addition of the class weights. The weights were calculated
using the function compute_class_weight from the Python library Scikit-learn. We further
refined the obtained weights to avoid over-fitting. The final weights used for training were
the following: 9 for class 0 (no-attack), 10 for class 1, 5 for class 2, 3 for class 3, 3 for class 4,
3 for class 5, 1 for class 6, 4 for class 7, 15 for class 8 and 20 for class 9. The neural network
architecture was the same as in the second experiment, and Early Stopping was used. The
confusion matrix can be seen in Table 19. When compared to the first two experiments,
the “UNSW-NB15 multiclass—class weights” experiment has seen an improvement in the
performance metrics for these classes. The FNR is equal to 0.77%, which is the lowest of all
three experiments.

Table 19. Confusion matrix for UNSW-NB15 “class weights” multiclass classification experiment.

Predicted

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Recconnaissanse Shellcode Worms

A
ct

ua
l

Analysis 14 349 0 23 0 0 69 0 0 0
Backdoor 0 322 0 11 9 0 3 46 0 3

DoS 0 376 30 456 45 52 12 92 28 1
Exploits 8 442 13 3964 209 73 53 682 142 10
Fuzzers 0 387 2 202 3076 103 8 443 190 0
Generic 1 339 1 390 41 4154 6 59 32 15
Normal 38 11 6 382 3886 78 386,630 684 131 0

Recconnaissanse 0 323 2 12 101 6 4 2237 25 0
Shellcode 0 0 0 1 21 4 0 142 136 0

Worms 0 0 0 26 0 1 0 5 1 5

6. Results

This Section provides a detailed explanation of the results which were obtained from
the experimental campaign, with a comparison of the results.

6.1. Results of the NSL-KDD Experiments

The results which were obtained in the 4 binary experiments done on the NSL-KDD
dataset can be seen in Table 20.
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Table 20. Comparison of the results achieved in the NSL-KDD binary classification experiments.

Experiment Training
Accuracy

Prediction
Accuracy

Precision Recall F1 Score ROC AUC
Score

FPR FNR

Full features 99.77% 82.44% 93.51% 74.32% 82.82% 83.75% 6.82% 25.68%

Modified
distribution

99.76% 99.72% 99.64% 99.78% 99.71% 99.72% 0.33% 0.22%

Reduced
features

98.94% 98.78% 98.5% 98.97% 98.74% 98.79% 1.4% 1.03%

Class weights 98.32% 98.35% 97.42% 99.2% 98.3% 98.38% 2.44% 0.8%

Observing the table, we can see that the “NSL-KDD binary—modified distribution”
experiment achieved the best results, with the lowest FPR and FNR. The “NSL-KDD binary—
full features” experiment achieved the lowest results, which could mean that the initial
training and testing subsets distribution was not appropriate. The “NSL-KDD binary—
reduced features” and the “NSL-KDD binary—class weights” experiments achieved more
or less similar results, with the fourth one having a slightly lower FNR, which was the
goal. On the other hand, the FPR in the “NSL-KDD binary—class weights” experiment was
higher than in the “NSL-KDD binary—reduced features” one, which was expected because
there is a trade-off between the false positives and false negatives.

Table 21 reports the results obtained in the 4 multiclass experiments with the NSL-
KDD dataset.

Table 21. Comparison of the results achieved in the NSL-KDD multiclass classification experiments.

Experiment Training
Accuracy

Prediction
Accuracy

Precision Recall F1 Score ROC AUC
Score

FNR

Full features 99.82% 74.99% 74.68% 74.99% 70.89% 93.55% 31.17%

Modified
distribution

99.82% 99.74% 99.74% 99.74% 99.74% 99.9% 0.17%

Reduced features 99.59% 99.49% 99.51% 99.49% 99.49% 99.99% 0.133%

Class weights 99.09% 99.06% 99.14% 99.06% 99.09% 99.97% 0.049%

Observing the results in Table 21, we can see that the lowest FNR was reached in
the “NSL-KDD multiclass—class weights” experiment and the highest in the “NSL-KDD
multiclass—full features” experiment. In fact, all the evaluation metrics from the “NSL-
KDD multiclass—full features” experiment show very poor performance, which again
might mean that the datasets which were pre-made by the authors need a feature selec-
tion when facing the FNR minimization problem. The “NSL-KDD multiclass—modified
distribution” experiment has slightly higher precision, recall, and F1 score than the “NSL-
KDD multiclass—reduced features” and the “NSL-KDD multiclass—class weights” experi-
ments. Overall, the “NSL-KDD multiclass—modified distribution”, “NSL-KDD multiclass—
reduced features”, and “NSL-KDD multiclass—class weights” experiments all have per-
formance metrics that are >99%, and that can be considered a satisfactory result. When
it comes to the specific performance of the classes with a lower number of records, the
U2R and R2L classes, the best performance for them was achieved in the “NSL-KDD
multiclass—modified distribution” experiment.

As mentioned earlier, another one of the goals of this research is to increase the
detection rates of some specific classes which were shown to have low detection rates in
previous works by other authors, as shown in Section 3. For this dataset, the classes that
had the lowest detection rates were R2L and U2R, so we report the following performance

99



Algorithms 2022, 15, 258

metrics specifically for these two classes: precision, recall, and F1 score. For the NSL-
KDD multiclass experiments, the detailed results of those metrics are in Table 22. The
column “No. of records” refers to the number of records belonging to those classes in the
testing dataset.

Table 22. Performance metrics for U2R and R2L classes in NSL-KDD multiclass experiments.

Experiment Class Precision Recall F1 Score No. of Records

Full features
R2L 60% 5% 9% 2885

U2R 80% 12% 21% 67

Modified distribution
R2L 96% 98% 97% 719

U2R 71% 60% 65% 20

Reduced features
R2L 90% 98% 94% 719

U2R 75% 45% 56% 20

Class weights
R2L 84% 98% 91% 719

U2R 52% 70% 60% 20

When it comes to the specific performance of the classes with a lower number of
records, the U2R and R2L class, the best performance for them was achieved in the “NSL-
KDD multiclass—modified distribution” experiment. Since Early Stopping was used in
order to prevent the model from overfitting, the average number of epochs needed to
reach the optimal result while training the model on the NSL-KDD dataset was 25. The
average time needed to train the network for this dataset was approximately 3 min for each
experiment.

6.2. Results of the UNSW-NB15 Experiments

The results achieved in the three binary classification experiments with the UNSW-
NB15 dataset are in Table 23. We can observe that the prediction accuracy is very similar in
all three experiments. However, there is a considerable variation between the precision and
recall, especially between the “UNSW-NB15 binary—full features” and the “UNSW-NB15
binary—class weights” experiments. The observed reduction is likely because the “UNSW-
NB15 binary—class weights” experiment produced more false positives and fewer false
negatives. After all, there is a trade-off between those two when using class weights. The
goal was to lower the FNR as much as possible, and the model used in the “UNSW-NB15
binary—class weights” experiment was the most successful.

Table 23. Comparison of the results achieved in the UNSW-NB15 binary classification experiments.

Experiment Training
Accuracy

Prediction
Accuracy

Precision Recall F1 Score ROC AUC
Score

FPR FNR

Full features 98.87% 98.88% 86.03% 91.65% 88.75% 95.45% 0.76% 8.34%

Reduced features 98.86% 98.86% 85.02% 92.81% 88.75% 96% 0.83% 7.18%

Class weights 98.63% 98.64% 78.2% 99.72% 87.66% 99.15% 1.41% 0.28%

Three multiclass classification experiment results for the UNSW-NB15 dataset are
in Table 24. We can observe that the lowest FNR was achieved in the “UNSW-NB15
multiclass—class weights” experiment, jointly with the best performance for minority
classes. The same experiment also reached the highest precision. However, it is noticeable
as there was not a significant variation between the other metrics among all the performed
experiments. Since the dataset has a minimal number of records representing attacks
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compared to records representing regular traffic, even introducing the class weights, it is
hard for the network to learn how to distinguish between the different classes since there
are too few samples.

Table 24. Comparison of the results achieved in the UNSW-NB15 multiclass classification
experiments.

Exp. Name Training
Accuracy

Prediction
Accuracy

Precision Recall F1 Score ROC AUC
Score

FNR

Full features 97.91% 97.87% 97.55% 97.87% 97.65% 99.87% 16.48%

Reduced features 97.91% 97.7% 97.44% 97.7% 97.48% 99.85% 12.69%

Class weights 97.25% 97.25% 98.2% 97.25% 97.55% 99.83% 0.77%

The dataset’s lowest number of records classes are Worms, Shellcode, Backdoor, and
Analysis. The goal is to try to increase the prediction capability for these classes, so we
report in Table 25 the class-specific precision, recall, and F1 score for these four classes. As
for the other dataset, the column “No. of records” refers to the number of records belonging
to those classes in the testing dataset.

Table 25. Performance metrics for minority classes in UNSW-NB15 multiclass experiments.

Experiment Class Precision Recall F1 Score No. of Records

Full features

Analysis 16% 2% 3% 455

Backdoor 14% 3% 5% 394

Shellcode 60% 28% 38% 304

Worms 0% 0% 0% 38

Reduced features

Analysis 0% 0% 0% 455

Backdoor 0% 0% 0% 394

Shellcode 49% 24% 33% 304

Worms 0% 0% 0% 38

Class weights

Analysis 23% 3% 5% 455

Backdoor 13% 82% 22% 394

Shellcode 20% 45% 28% 304

Worms 15% 13% 14% 38

When compared to the first two experiments, the “UNSW-NB15 multiclass—class
weights” experiment has seen an improvement in the performance metrics for all these
classes. Since Early Stopping was used in order to prevent the model from overfitting, the
average number of epochs needed to reach the optimal result while training the model on
the UNSW-NB15 dataset was 20. The average time needed to train the network for this
dataset was approximately 30 min for each UNSW-NB15 experiment.

7. Conclusions

This research focused on building a deep neural network and training it on two modern
datasets for binary and multiclass classification. Despite other works in the literature, the
primary goals of our research were to lower the False Negative Rate as much as possible
while still keeping the False Positive Rate low and increasing the detection rate of minority
classes (classes with a low number of records). We proposed a strategy made of three points:
correction of the training and testing subset distribution, feature selection, and usage of
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class weights. We ran an experimental campaign for two well-established datasets to verify
the effectiveness of our strategy in lowering the FNR and increasing the performance of
minority classes. In almost all of the experiments, a combination of feature selection and the
assignment of correct class weights during the training phase of the neural network gave
the best results in lowering the FNR. We observed that the assignment of the class weights
needs to be used with caution since it can easily lead to over-fitting and an increase in the
FPR. Even when used correctly, it will still give a slight increase in the FPR, as seen from
the experiments in this research, but the number is still considered low enough. Only in the
case of binary classification for the NSL-KDD dataset the usage of class weights was not
the best method for achieving the lowest FNR. A more effective correction was modifying
the distribution of the train and test subsets. Regarding multiclass classification, feature
selection with class weights proved to be the best method to increase the performance of
the minority classes.

Compared to the work surveyed in Section 3, the neural network models constructed
in our research incidentally outperform all of them in terms of accuracy, except [35]. This
comparison can be seen in the overview given in Table 3. In terms of accuracy, our model
reached accuracy values >99% for the NSL-KDD dataset, which is higher than the accuracy
achieved by other models on the same dataset, both for binary and multiclass classification.
When it comes to the results achieved for the UNSW-NB15 dataset, our proposed model
reached the accuracy of >98% for binary classification, and >97% for multiclass classification.
Once again, it has overcome most of the other models on the same dataset when it comes
to accuracy, with the exception of [35], in which the model has achieved the accuracy of
98.99% for binary classification and the FPR of 0.56%. However, because the datasets used
in this research are unbalanced, accuracy is not the best metric to evaluate the performance.
Therefore, this research also uses precision, recall, F1 score, and ROC AUC score to assess
the performance. The best results for the NSL-KDD dataset show that all of these metrics
were >99%, and for the UNSW-NB15, they were >98% for binary classification and >97% for
multiclass classification. When it comes to the FPR and FNR, when compared to the models
surveyed in Section 3 where the authors focused on calculating these values, the values
achieved by our proposed model, once again, outperform most of the surveyed models.
The exception is once again [35], when it comes to binary classification for UNSW-NB15
dataset specifically.

The main limitation of our work is that we have limited evidence of the generalization
of our strategy. This is because we used only two of the most established datasets to
validate our approach. A natural extension of our experiment to other datasets would
further confirm the validity of our approach.

We acknowledge that our results for the lowest-represented attack classes are not
optimal, and there is still space for increasing the performance. However, the major
problem remains: the number of their records is still too low for a deep neural network
to learn from it. One of the possible directions could be finding a way to improve these
datasets to fix the imbalance and therefore increase the detection rates for minority classes.
One idea is to generate and add more records to the minority classes. Another alternative
is to use oversampling techniques. Most of the hyperparameter tuning in this research
was done manually by doing different experiments. One possible alternative we should
consider in future research would be using automatic parameter tuning methods to achieve
better performance. Another direction for future work would be to test these models in a
live system with actual attacks to see how well they would perform in the real world.
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Abstract: Given their escalating number and variety, combating malware is becoming increasingly
strenuous. Machine learning techniques are often used in the literature to automatically discover
the models and patterns behind such challenges and create solutions that can maintain the rapid
pace at which malware evolves. This article compares various tree-based ensemble learning methods
that have been proposed in the analysis of PE malware. A tree-based ensemble is an unconventional
learning paradigm that constructs and combines a collection of base learners (e.g., decision trees), as
opposed to the conventional learning paradigm, which aims to construct individual learners from
training data. Several tree-based ensemble techniques, such as random forest, XGBoost, CatBoost,
GBM, and LightGBM, are taken into consideration and are appraised using different performance
measures, such as accuracy, MCC, precision, recall, AUC, and F1. In addition, the experiment
includes many public datasets, such as BODMAS, Kaggle, and CIC-MalMem-2022, to demonstrate
the generalizability of the classifiers in a variety of contexts. Based on the test findings, all tree-based
ensembles performed well, and performance differences between algorithms are not statistically
significant, particularly when their respective hyperparameters are appropriately configured. The
proposed tree-based ensemble techniques also outperformed other, similar PE malware detectors
that have been published in recent years.

Keywords: portable executable malware; tree-based ensemble; performance comparison; statistical
significance test

1. Introduction

Malware (e.g., malicious software) is commonly recognized as one of the most potent
cyber threats and hazards to modern computer systems [1,2]. It is an overarching word that
refers to any code that potentially has a destructive, harmful effect [3]. On the basis of their
behavior and execution processes, malicious softwares are categorized as worms, viruses,
Trojan horses, rootkits, backdoors, spyware, logic bombs, adware, and ransomware. Com-
puter systems are hacked for a variety of reasons, including the destruction of computer
resources, financial gain, the theft of private and confidential information and the use of
computing resources, as well as the inaccessibility of system services, to name a few [4].

Malware is recognized using signature-based or behavior-based methods. The signature-
based malware detection techniques are quick and effective, but obfuscated malware can
quickly circumvent them. In contrast, behavior-based methods are more resistant to obfus-
cation. Nonetheless, behavior-based methods are relatively time-intensive. Therefore, in ad-
dition to the signature-based and behavior-based malware detection techniques, numerous
fusion techniques exist that contain the benefits of both [5,6]. The goal of these fusion
strategies is to address the shortcomings of signature and behavior-based approaches.

While we work to defend ourselves from malware, cybercriminals continue to create
increasingly complex techniques to obtain and steal data and resources. Conventional
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methods (i.e., rule-based, graph-based, and entropy-based) for analyzing and detecting
malware focus on matching known malicious signatures to alleged malicious programs.
Such static solutions require a known harmful signature, rendering them unsatisfactory
against new (e.g., zero-day) attacks, and depend on end users to maintain system updates.
Attackers are aware that these methods may also be vulnerable to obfuscation, such as
code obfuscation to avoid detection against known signatures [7]. Hence, it is necessary
to update and build malware detection mechanisms that are capable of withstanding
significant attacks [8].

Machine learning offers the potential to construct malware detectors that are capable
of combating newer versions of malware, and different supervised and unsupervised-
algorithm-based machine learning methods have been reported in the literature [9–11].
More specifically, ensemble learning approaches have been utilized and achieved excellent
results in malware detection [12–17]. In most cases, ensemble learning algorithms yield
superior results as compared to individual classification algorithms, i.e., support vector
machine, decision tree, naive Bayes, and neural networks. However, although classifier
ensembles demonstrate a significant performance, the majority of these ensembles are
deployed in a restricted manner without adequate hyperparameter tuning. Moreover,
the performance of classifier ensembles is validated using a single dataset; consequently,
no generalizable results are produced.

The tree-based ensemble technique is an ensemble learning paradigm in which a
collection of base learners (e.g., decision trees or CART) are constructed and combined
from the training data [18]. For instance, random forest [19] is comprised of a large number
of individual decision trees that operate as an ensemble. It uses feature randomness
to generate an uncorrelated forest of decision trees. In a similar fashion, the gradient
boosting decision tree algorithms combine a collection of individual decision trees to form
an ensemble. However, unlike random forest, the decision trees in gradient boosting are
constructed serially (e.g., additively). Gradient boosting decision tree algorithms have
recently been proposed and have demonstrated remarkable results in many domains, such
as protein–protein interaction prediction [20], neutronic calculation [21], human activity
recognition [22], etc. However, their performance in classifying and detecting malware
remains questionable. This motivated us to employ ensembles of tree-based algorithms to
classify PE malware. This paper makes the following contributions to the current literature.

(a) Fine-tuned tree-based classifier ensembles, i.e., random forest [19], XGBoost [23],
CatBoost [24], GBM [25], and LightGBM [26], to detect PE malware are employed.

(b) The performance differences between classifier ensembles over the most recent
datasets, i.e., BODMAS [27], Kaggle, and CIC-MalMem-2022 [28] are benchmarked
using statistical significance tests. This study is among the first to utilize the most
recent malware BODMAS and CIC-MalMem-2022 datasets. On the BODMAS and
CIC-Malmem-2022 datasets, our proposed approaches outperform other baselines
with a 99.96% and 100% accuracy rate, respectively.

(c) An in-depth exploratory analysis of each malware dataset is presented to better
understand the characteristics of each malware dataset. The analysis includes a
feature correlation analysis and t-SNE visualization of pairs of samples’ similarities.

The remainder of the paper is structured as follows. An overview of PE malware
detection based on classifier ensembles is provided in Section 2. Next, we present the
background of tree-based classifier ensembles and datasets in Section 3. Section 4 discusses
the experimental results, and in the end, Section 5 concludes the paper.

2. Related Work

Ucci et al. [7], Maniriho et al. [10] provide the machine learning taxonomy for malware
analysis, while [11] present an overview of malware analysis in CPS and IoT. Malware
analysis can be accomplished via either static or dynamic analysis, or a mix of the two,
depending on how the information extraction procedure is carried out. Approaches based
on static analysis evaluate the content of samples without necessitating their execution,
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whereas dynamic analysis examines the behavior of samples by executing them. This study
analyzes a static analysis of PE files, since it can yield a plethora of useful information,
e.g., the compiler and symbols used.

Meanwhile, machine learning techniques were largely employed in malware detec-
tion [29,30]. Malware samples were examined and the extracted features are used to train
the classification algorithm. An overview of the machine learning techniques used for
the classification of malware is provided in the following. We particularly explore mal-
ware detectors that employ at least one ensemble learning technique. Vadrevu et al. [31],
Mills et al. [17], Uppal et al. [32], Kwon et al. [33] utilized random forest for malware
detection based on PE file characteristics and networks. Furthermore, Mao et al. [34],
Wüchner et al. [35], Ahmadi et al. [36] developed a random forest classifier to detect mal-
ware using various features, such as system calls, file system, and Windows registry. Amer
and Zelinka [13] proposed an ensemble learning strategy to address the shortcomings of
the existing commercial signature-based techniques. The proposed technique was able to
focus on the most salient features of malware PE files by lowering the dimensionality of the
data. Dener et al. [37] and Azmee et al. [38] compared the use of various machine learning
algorithms to detect PE malware and showed that XGBoost and logistic regression were the
best-performing methods.

Liu et al. [39] employed data visualization and adversarial training on ML-based
detectors to effectively detect the various types of malware and their variants in order to
address the current issues in malware detection, such as the consideration of attacks from
adversarial examples and the massive growth in malware variants. In [40], a deep feature
extraction technique for malware analysis was addressed in light of the current progress in
deep learning. Deep features were obtained from a CNN and were fed to an SVM classifier
for malware classification. Moreover, a CNN ensemble for malware classification was
proposed in [15,16]. The proposed architecture was constructed in a stacked fashion, with a
machine learning algorithm providing the final classification. A meta-classifier was selected
after various machine learning algorithms were analyzed and evaluated. Most recently,
Hao et al. [41] proposed a CNN-based feature extraction and a channel-attention module to
reduce the information loss in the process of feature image generation of malware samples.
Specific deep learning architectures, such as a deep belief network and transformer-based
classifier, were also considered when classifying Android [42,43] and PE malware [44],
respectively. Table 1 presents a summary of the existing malware detectors described in
the literature.

Table 1. Summarization of the existing PE malware detectors.

Study Algorithm(s) Data Set Validation Technique Best Result

Mills et al. [17] RF Private 7-CV -
Vadrevu et al. [31] RF Private CV and Holdout TPR: 90%, FPR: 0.1%
Uppal et al. [32] NB, DT, RF, and SVM Private 10-CV Accuracy: 98.5%

Kwon et al. [33] RF Private 10-CV TPR: 98.0%, FPR: 2.00%,
F1: 98.0%, AUC: 99.8%

Mao et al. [34] RF Private Repeated hold-out TPR: 99.88%, FPR: 0.1%
Wüchner et al. [35] RF Malicia 10-CV DR: 98.01%, FPR: 0.48%
Ahmadi et al. [36] XGBoost Kaggle 5-CV Accuracy: 98.62%
Amer and Zelinka [13] RF and extra trees Kaggle Hold-out Accuracy: 99.8%, FPR: 0.2%
Liu et al. [39] CNN and autoencoder MS BIG and Ember 10-CV Accuracy: 96.25%

Asam et al. [40] CNN and SVM MalImg Hold-out
Accuracy: 98.61%, precision:
96.27%, recall: 96.30%,
F1: 96.32%

Azeez et al. [15] 1D CNN and Extra
trees Kaggle 10-CV Accuracy: 100%, precision:

100%, recall: 100%, F1: 100%

Damaševičius et al. [16] Stacked CNN ClaMP 10-CV Accuracy: 99.9%, precision:
99.9%, recall: 99.8%, F1: 99.9%
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Table 1. Cont.

Study Algorithm(s) Data Set Validation Technique Best Result

Hou et al. [42] DBN Comodo cloud 10-CV Accuracy; 96.66%
Hou et al. [43] DBN and SAEs Comodo cloud 10-CV Accuracy: 96.66%

Azmee et al. [38] XGBoost Kaggle 10-CV Accuracy: 98.6%, AUC: 0.99,
TPR: 99.0%, FPR: 3.7%

Jingwei et al. [41] CNN MS BIG and
BODMAS 10-CV (MS BIG) accuracy: 99.40%,

(BODMAS) accuracy: 99.26%

Lu et al. [44] Transformer BODMAS and MS
BIG Hold-out

(MS BIG) accuracy: 98.17%,
F1: 98.14%, (BODMAS)
accuracy:96.96%, F1: 96.96%

Dener et al. [37] Logistic regression CIC-MalMem-
2022 Repeated hold-out Accuracy: 99.97%

3. Materials and Methods

This study evaluates the performance of ensembles of tree-based classifiers in detecting
PE malware. Figure 1 depicts the stages involved in our comparative analysis. Several
tree-based ensemble approaches are trained on three distinct PE malware training datasets
in order to generate classification models. The performance of classification models is
then determined by validating them on a testing dataset. Finally, a two-step statistical
significance test is then utilized to evaluate the performance benchmarks. In the following
section, we provide a brief summary of the malware datasets and tree-based classifier
ensembles utilized in this study.

Figure 1. Performance comparison methodology of tree-based ensembles for PE malware detection.

108



Algorithms 2022, 15, 332

3.1. Datasets

One of the most problematic aspects of using machine learning to solve malware
detection problems is producing a realistic feature set from a large variety of unidentified
portable executable samples. In essence, the dataset used to train machine learning models
determines their level of sophistication. Hence, developing a solid, labeled dataset that
represents all analyzed samples is more helpful for malware detection. In light of this, we
utilize more recent public datasets that depict the characteristics and attack behaviors of
contemporary malware:

(a) BODMAS [27]
The dataset contains 57,293 malicious and 77,142 benign samples (134,435 in total).
The malware samples were arbitrarily picked each month from the internal malware
database of a security company. The data were collected between 29 August 2019
and 30 September 2020. The benign samples were gathered between 1 January 2007
and 30 September 2020. In order to reflect benign PE binary distribution in real-
world traffic, the database of the security company is also processed for benign
samples. In addition, SHA-256 hash, the actual PE binary, and a pre-extracted feature
vector were given for each malicious sample, whereas only SHA-256 hash and the
pre-extracted feature vector were provided for each benign sample. BODMAS is
comprised of 2381 input feature vectors and 1 class label feature, of which 0 is labeled
as benign and 1 is labeled as malicious.

(b) Kaggle (https://tinyurl.com/22z7u898, access on 25 August 2022)
The dataset was developed using a Python library called pe f ile (https://tinyurl.
com/w75zewvr, accessed on 25 August 2022), which is a multi-platform module
used to parse and work with PE files. Kaggle dataset contains 14,599 malicious and
5012 benign samples (19,611 in total). The dataset is comprised of 78 input features,
denoting PE header files and one class label attribute.

(c) CIC-MalMem-2022 [28]
Unlike the two above-mentioned datasets, CIC-MalMem-2022 is an obfuscated mal-
ware dataset that is intended to evaluate memory-based obfuscated malware detection
algorithms. The dataset was designed to mimic a realistic scenario as accurately as
possible using reowned malware. Obfuscated malware comprises malicious software
that conceals itself to escape detection and eradication. The dataset consists of an
equal ratio of malicious and benign memory dumps (58,596 samples in total). In addi-
tion, CIC-MalMem-2022 is made up of 56 features that serve as inputs for machine
learning algorithms.

3.2. Tree-Based Ensemble Learning

The tree-based ensemble is a non-ordinary learning paradigm that constructs and
combines a set of base learners (e.g., decision trees or CART) as opposed to the common-
place learning paradigm that attempts to construct individual learners from training data.
Normally, an ensemble is formed in two processes, i.e., by first producing the base learners
and then integrating them. For a decent ensemble, it is commonly considered that the
base learners must be as accurate and diversified as possible [18]. This study considers
four tree-based ensemble learning algorithms. It is worth mentioning that tuning the
hyperparamters for each algorithm is carried out using random search approach [45].

(a) Random forest [19]
As its name implies, a random forest is a tree-based ensemble in which each tree is
dependent on a set of random variables. The original formulation of random forest
algorithm provided by Breiman [19] is as follows. A random forest employs trees
hj(X , Ω) as its base learners. For training data D = {(x1, y1), . . . , (xα, yα)}, where
xi = (xi,1, . . . , xi,p)

T represents the p predictors and yi represents the response, and a
specific manifestation ωj of Ωj, the fitted tree is given as ĥj(x, ωj, D). More precisely,
the steps involved in the random forest algorithm are described in Algorithm 1.
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We use a fast random forest implementation called ranger [46], available in R, which
is suitable for high-dimensional data such as ours. The list of random forest’s hy-
perparameters for each malware dataset is provided in Table 2. We set the search
space for each hyperparameter tuning is as follows. Number of trees = {50, 100, 250,
500, 750, 1000}, split rule = {‘gini’,‘extratrees’}, minimum node size = {1, 2, . . . , 10},
mtry = number of features × {0.05, 0.15, 0.25, 0.333, 0.4}, sample fraction = {0.5, 0.63,
0.8}, and replace = {TRUE, FALSE}.

Algorithm 1: A common procedure of random forest algorithm for classifica-
tion task.

Training:
Require: Original training set D = {(x1, y1), (x2, y2), . . . , (xα, yα)},
with xi = (xi,1, . . . , xi,p)

T

1. for j = 1 to J
2. Perform a bootstrap sample Dj of size α from D .
3. Using binary recursive partitioning, fit a tree on Dj.
4. end for
Testing:
Require: An instance to be classified x.
1. f̂ (x) = arg maxy ∑J

j=1 I(ĥj(x) = y)

where ĥj(x) denotes the response variable at x using the j-th tree.

Table 2. The final learning parameters of random forest used for each dataset after performing a
random search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Number of trees 100 1000 500
Split rule ‘gini’ ‘gini’ ‘extratrees’
Minimum node size 4 8 6
mtry 119 30 18
Sample fraction 0.63 0.80 0.63
replace FALSE FALSE TRUE

(b) Gradient Boosting Decision Trees
In this paper, we also considered various tree-based boosting ensemble approaches for
malware detection, such as XGBoost [23], CatBoost [24], GBM [25], and LightGBM [26].
As a rule, GBDT ensembles are a linear additive model, where a tree-based classifier
(e.g., CART) was utilized as their base model. Let D = {(xi, yi)|i ∈ {1, . . . , α},
xi ∈ Rη , yi ∈ R} denote the malware dataset comprising η features and α samples.
Considering a collection of j trees, the prediction output y(x̂)j for an input x is obtained
by calculating the predictions from each tree y(x̂)j, as shown in the following formula.

y(x̂)j =
j

∑
i=1

fi(x) (1)

where fi represents the output of the i-th regression tree of the j-tree ensemble. GBDTs
minimize a regularized objective function Objt in order to create the (j + 1)-th tree,
as follows.

min{Obj( f )t} = min{Ω( f )t + Θ( f )t} (2)

where Ω( f )t represents loss function and Θ( f )t is a regularization function to control
over-fitting. The loss function Ω( f )t measures the difference between the prediction
ŷi and the target yi. On the other hand, the regularization function is defined as
Θ( f )t = γT + 1

2 λ ‖ w ‖2, where T and w indicate the number of leaves and leaf
weights in the tree, respectively.
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(i) XGBoost [23]
XGBoost is a scalable end-to-end tree-boosting strategy that generates a large
number of sequentially trained trees. Each succeeding tree corrects the er-
rors made by the preceding one, resulting in an efficient classification model.
Through sparsity-aware metrics and multi-threading approaches, XGBoost
not only addresses the algorithm’s overfitting problem, but also boosts the
speed of most real-world computational tasks. This study utilizes two dif-
ferent XGBoost implementations, such as native implementation in R [47]
and H2O [48]. We set the search space of native XGBoost’s hyperparameters
are as follows. Maximum depth = {2, 3, . . . , 24}, eta = {0, 0.1, 0.2, . . . , 1.0},
subsample = {0.5, 0.6, 0.7, 0.8}, and column sample by tree = {0.5, 0.6, 0.7,
0.8, 0.9}. Moreover, we set the search space of XGBoost’s hyperparameters
implemented in H2O are as follows. Maximum depth = {1, 3, 5, . . . , 29},
sample rate = {0.2, 0.3, . . . , 1}, column sample rate = {0.2, 0.21, 0.22, . . . , 1},
column sample rate per tree = {0.2, 0.21, 0.22, . . . ,1}, and minimum rows =
{0, 1, . . . , log2× number of rows-1}. The final learning parameters for both
XGBoost implementations are presented in Table 3.

Table 3. The final learning parameters of XGBoost used for each dataset after performing a ran-
dom search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Native

Maximum depth 11 19 19
eta 0.2 0.3 0.1
Subsample 0.6 0.8 0.6
Column sample by tree 0.7 0.5 0.6

H2O

Maximum depth 24 23 26
Sample rate 0.52 0.94 0.99
Column sample rate 0.42 0.62 0.6
Column sample rate per tree 0.6 0.25 0.5
Minimum rows 2 2 2

(ii) CatBoost [24]
CatBoost is built with symmetric decision trees. It is acknowledged as a classi-
fication algorithm that is capable of producing an excellent performance and
ten times the prediction speed of methods that do not employ symmetric de-
cision trees. CatBoost, unlike other GBDT algorithms, is able to accommodate
gradient bias and prediction shift to increase the accuracy of predictions and
generalization ability of large datasets. In addition, CatBoost is comprised
of two essential algorithms: ordered boosting, which estimates leaf values
during tree structure selection to avoid overfitting, and a unique technique
for handling categorical data throughout the training process. An implemen-
tation of CatBoost in R is employed in this paper, whereas the search space of
each hyperparameter is considered as follows. Depth = {1, 2, . . . , 10}, learning
rate = {0.03, 0.001, 0.01, 0.1, 0.2, 0.3}, l2 leaf regularization = {3, 1, 5, 10, 100},
border count = {32, 5, 10, 20, 50, 100, 200}, and boosting type = {“Ordered”,
“Plain”}. The final learning parameters of CatBoost for each malware dataset
are given in Table 4.
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Table 4. The final learning parameters of CatBoost used for each dataset after performing a ran-
dom search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Depth 10 4 2
Learning rate 0.2 0.2 0.2
L2 leaf regularization 5 3 5
Border count 100 100 50
Boosting type “Plain” “Plain” “Ordered”

(iii) Gradient boosting machine [25]
GBM is the first implementation of GBDT to utilize a forward learning tech-
nique. Trees are generated in a sequential manner, with future trees being
dependent on the results of the preceding trees. Formally, GBM is achieved
by iteratively constructing a collection of functions f 0, f 1, . . . , f t, given a
loss function Ω(yi, f t). We can optimize our estimates of yi by discovering
another function f t+1 = f t + ht+1(x), such that ht+1 reduces the estimated
value of the loss function. In this study, we adopt GBM implementation
in H2O, whereas the hyperparameters’ search space is specified as follows.
Maximum depth = {1, 3, 5, . . . , 29}, sample rate = {0.2, 0.3, . . . , 1}, column
sample rate per tree = {0.2, 0.21, 0.22, . . . , 1}, column sample rate change
per level = {0.9, 0.91, . . . , 1.1}, number of bins = 2{4,5,...,10}, and minimum
rows = {0, 1, . . . , log2× number of rows − 1}. Table 5 shows a list of all the
final GBM hyperparameters that were used on each malware dataset.

Table 5. The final learning parameters of GBM used for each dataset after performing random search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Maximum depth 24 25 27
Sample rate 0.52 0.44 0.72
Column sample rate per tree 0.42 0.64 0.61
Column sample rate change per level 1.02 1.04 0.92
Number of bins 64 512 1024
Minimum rows 2 2 8

(iv) LightGBM [26]
LightGBM is an inexpensive gradient boosting tree implementations that
employs histogram and leaf-wise techniques to increase both processing
power and prediction precision. The histogram method is used to combine
features that are incompatible with each another. Before generating a n-
width histogram, the core idea is to discretize continuous features into n
integers. Based on the discretized values of the histogram, the training data
are scanned to locate the decision tree. The histogram method considerably
reduces the runtime complexity. In addition, in LightGBM, the leaf with the
greatest splitting gain was found and then divided using a leaf-by-leaf strat-
egy. Leaf-wise optimization may result in overfitting and a deeper decision
tree. To ensure great efficiency and prevent overfitting, LightGBM includes
a maximum depth constraint to leaf-wise. In this study, we employed a
LightGBM implementation in R with the following hyperparameter search
space; Maximum bin = {100, 255}, maximum depth = {1, 2, . . . , 15}, number
of leaves = 2({1,2,...,15}, minimum data in leaf = {100, 200, . . . , 1000}, learning
rate = {0.01, 0.3, 0.01}, lambda l1 = {0, 10, 20, . . . , 100}, lambda l2 = {0, 10,
20, . . . , 100}, feature fraction = {0.5, 0.9}, bagging fraction = {0.5, 0.9}, path
smooth = {1× 10−8, 1× 10−3}, and minimum gain to split = {0, 1, 2, . . . , 15}.
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Table 6 contains the list of all final LightGBM hyperparameters used for each
malware dataset.

Table 6. The final learning parameters of LightGBM used for each dataset after performing ran-
dom search.

Hyperparameter BODMAS Kaggle CIC-MalMem-2022

Maximum bin 100 100 255
Maximum depth 10 9 3
Number of leaves 8192 8 512
Minimum data in leaf 1000 800 700
Learning rate 0.29 0.27 0.07
Lambda l1 40 0 0
Lambda l2 90 20 90
Feature fraction 0.5 0.9 0.9
Bagging fraction 0.5 0.5 0.5
Path smooth 0.001 1× 10−8 0.001
Minimum gain to split 2 15 11

4. Result and Discussion

This section analyzes and discusses the results of the tree-based classifier ensembles
applied to malware classification. The results of exploratory analysis are presented first,
followed by a performance comparison between the tree-based ensemble models.

4.1. Exploratory Analysis

We first provide a correlation analysis between multiple variables in each malware
dataset. Figure 2 shows the correlation coefficient score matrix measured by Pearson
correlation. Correlation analysis is useful to understand the relationship between variables
in a dataset, since the Good input features of a dataset should have a high correlation
with target features, but should be uncorrelated with each other. Figure 2 confirms that
both BODMAS and Kaggle datasets have fewer uncorrelated features than CIC-MalMem-
2022. Hence, to mitigate the curse of dimesionality, it is strongly recommended to employ
feature selection before employing a machine learning method on CIC-MalMem-2022.
Highly correlated features have a negligible effect on the output prediction but raise the
computational cost.

(a) (b) (c)

Figure 2. Feature correlation analysis of each malware dataset: (a) BODMAS, (b) Kaggle, and
(c) CIC-MalMem-2022.
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In addition, we ran a t-SNE algorithm [49] with a learning rate = 5000 and
perplexity = 100. The t-SNE is an approach that converts a set of high-dimensional points
to two dimensions in such a way that, ideally, close neighbors remain close and far points
remain far. Figure 3 provides a spatial representation of the dataset in two dimensions.
The t-SNE provides a pliable border between the local and global data structures. It also
estimates the size of each datapoint’s local neighborhood based on the local density of the
data by requiring each conditional probability distribution to have the same perplexity (e.g.,
Gaussian kernel). Furthermore, Figure 3 demonstrates that both BODMAS and Kaggle
datasets are highly imbalanced as compared with CIC-MalMem-2022.

(a) (b) (c)

Figure 3. Two-dimensional visualization of instance pairs using t-SNE technique of each malware
dataset: (a) BODMAS, (b) Kaggle, and (c) CIC-MalMem-2022.

4.2. Comparison Analysis

In the experiment, we employed a k cross-validation technique (k = 10), where the
final performance outcome for each tree-ensemble model is the mean of the ten folds.
The performance of each model was measured based on six performance metrics, such
as accuracy, MCC, precision, recall, AUC, and F1. These metrics are chosen to provide
more accurate estimates of the behavior of the classifier ensembles under the experiment.
Especially, Chicco et al. [50] have shown that MCC is more informative than accuracy
and F1, which yield reliable estimates when used to balanced datasets, but misleading
outcomes when applied to imbalanced data sets. For a binary classification problem,
the outcome of a tree-based classifier ensemble is typically derived from a contigency

matrix, T =

(
TP FN
FP TN

)
, where TP is true positive, FN is false negative, FP is false

positive, and TN is true negative. Let ξ+ = TP + FN and ξ− = TN + FP be the number
of samples labeled as malware and non-malware, respectively. Hence, the performance
metrics used in this study can be calculated as follows.

Accuracy =
TP + TN
ξ+ + ξ−

(3)

MCC =
TP× TN − FP× FN

((TP + FP)× ξ− × (TN + FN)× ξ+)1/2 (4)

Precision =
TP

TP + FP
(5)

Recall =
TP
ξ+

(6)
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AUC =
∫ 1

0
Recall× FP

ξ−
d

FP
ξ−

=
∫ 1

0
Recall×

(
FP
ξ−

)−1

(x)dx (7)

F1 =
2TP

2TP + FP + FN
(8)

Figure 4 presents the performance score of each algorithm on each dataset. Overall,
considering MCC as a performance indicator, LightGBM is the worst-performing algorithm,
while XGBoost (native) is the best-performing on BODMAS and Kaggle datasets, followed
by GBM (H2O). Interestingly, random forest has also performed well on the remaining
dataset. Using accuracy as a performance metric, it is also apparent that there are modest
performance disparities amongst algorithms (e.g., all algorithms achieve 100% accuracy).
Consequently, our results support the findings stated by [50]. In Table 7, we provide
the performance average of each algorithm over various datasets and demonstrate that
XGBoost (native) is superior to any competitors on the board in terms of accuracy, MCC,
and precision metrics. On the other hand, when recall, AUC, and F1 metrics are utilized,
GBM (H2O) shows a superior performance.

Figure 4. Performance comparison of various tree-based ensemble models on different datasets,
i.e., (a) BODMAS, (b) Kaggle, and (c) CIC-MalMem-2022.

Table 7. Performance average of each ensemble technique over various malware datasets.

Ensemble Algorithms Accuracy MCC Precision Recall AUC F1

CatBoost 0.9940 0.9851 0.9943 0.9856 0.9988 0.9899
XGBoost (native) 0.9968 0.9922 0.9975 0.9923 0.9994 0.9949
LightGBM 0.9927 0.9823 0.9945 0.9828 0.9977 0.9885
Random forest 0.9961 0.9906 0.9959 0.9921 0.9994 0.9940
GBM (H2O) 0.9967 0.9920 0.9964 0.9978 0.9995 0.9971
XGBoost (H2O) 0.9960 0.9902 0.9956 0.9977 0.9994 0.9967

This section includes a two-step statistical significance test using Quade omnibus test
and Quade post-hoc test [51] to better comprehend the performance difference between
tree-based ensemble models. Using a significant threshold α = 0.05 and MCC as a perfor-
mance indicator, the Quade omnibus test demonstrates that at least one classifier performs
differently than others (p-value = 0.01725). Since we found significance in the previous
test, we then applied the Quade post-hoc test to determine the pairwise performance
difference between classifiers. Here, we considered XGBoost (native) as a control classifier
for comparison with the remaining algorithms. Table 8 depicts the p-value of the pairwise
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comparison. It is clear that the performance differences between XGBoost and the other
algorithms are not statistically significant (p-value > 0.05).

Table 8. The p-value of Quade post-hoc, in which XGBoost (native) is used as a control algorithm.

CatBoost XGBoost (Native) LightGBM Random Forest GBM (H2O) GBM (H2O)

0.250153 - 0.125201 0.7014781 0.6092802 0.8983268

To demonstrate the efficacy of tree-based ensemble models for malware detection, we
compared our performance findings to those of previous studies for each dataset. Table 9
denotes the performance comparisons in terms of several performance measures, such
as accuracy, precision, recall, and F1. Please note that the comparison is conducted as
objectively as possible, given that the prior experiment may have been conducted under
different settings, such as validation techniques and the number of training and testing
samples. Nevertheless, this study shows that the top-performing tree-based ensemble
examined for each dataset outperforms prior research, with a comparable result. More
precisely, GBM (H2O), XGBoost (native), and random forest are the best performers on the
Kaggle, BODMAS, and CIC-MalMem-2022 datasets, respectively, which also outperform
other state-of-the-art malware detection techniques available in the recent literature.

Table 9. Performance comparisons over existing studies. The best performance value on each dataset
is shown in bold.

Study Accuracy (%) Precision (%) Recall (%) F1 (%)

Kaggle

Hou et al. [42] 93.68 93.96 93.36 93.68
Hou et al. [43] 96.66 96.55 96.76 96.66
Azmee et al. [38] 98.60 96.30 99.00 -
This study (GBM (H2O)) 99.39 99.27 99.92 99.59

BODMAS

Jingwei et al. [41] 99.29 98.07 98.26 94.23
Lu et al. [44] 96.96 - - 96.96
This study (XGBoost (native)) 99.96 99.65 99.81 99.73

CIC-MalMem-2022

Dener et al. [37] 99.97 99.98 99.97 99.97
This study (Random forest) 100.00 100.00 99.99 100.00

5. Conclusions

This article examined tree-based ensemble learning algorithms that analyze PE mal-
ware. Several tree-based ensemble techniques, including random forest, XGBoost, CatBoost,
GBM, and LightGBM, were assessed based on a number of performance criteria, such as
accuracy, MCC, precision, recall, AUC, and F1. In addition, we incorporated cutting-edge
malware datasets to comprehend the most recent attack trends. This work contributed
to the prior research in several ways, including by providing a statistical comparison of
fine-tuned tree-based ensemble models utilizing several malware datasets. Furthermore,
this article can be expanded in a number of ways, including by looking at the explainability
of tree-based ensemble models and signature-based malware classification. Furthermore,
a deep neural network model for tabular data, such as TabNet [52], has been underexplored
in this application domain, providing a new direction for future research. Finally, it is
anticipated that tree-based PE malware detection will be deployed in various real-world
settings, such as in host, network, and cloud-based malware detection components.
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Abstract: Small perturbations can make deep models fail. Since deep models are widely used in
face recognition systems (FRS) such as surveillance and access control, adversarial examples may
introduce more subtle threats to face recognition systems. In this paper, we propose a practical
white-box adversarial attack method. The method can automatically form a local area with key
semantics on the face. The shape of the local area generated by the algorithm varies according to
the environment and light of the character. Since these regions contain major facial features, we
generated patch-like adversarial examples based on this region, which can effectively deceive FRS.
The algorithm introduced the momentum parameter to stabilize the optimization directions. We
accelerated the generation process by increasing the learning rate in segments. Compared with the
traditional adversarial algorithm, our algorithms are very inconspicuous, which is very suitable for
application in real scenes. The attack was verified on the CASIA WebFace and LFW datasets which
were also proved to have good transferability.

Keywords: adversarial examples; face recognition; mask matrix; targeted attack; non-targeted attack

1. Introduction
1.1. Introductions

In the field of computer vision, deep learning has become a major technology for
applications such as self-driving cars, surveillance, and security. Face verification [1] and
face recognition [2] have outperformed humans. The recently proposed ArcFace [3] is
an improvement on the previous face recognition model, which uses the loss function in
angle space to replace the one in the CosFace [4] model. Earlier, the loss of the Euclidean
distance space was used in the FaceNet [5] model. Furthermore, in some face recognition
competitions such as the Megaface competition, ArcFace models are comparable to those of
Microsoft and Google, and the accuracy rate reached 99.936%. Moreover, many open-source
datasets such as LFW [6], CASIA-WebFace [7], etc. are available to researchers.

Despite the extraordinary success of deep neural networks, adversarial attacks against
deep models also pose a huge threat in computer vision such as face recognition [8] and
person detecton [9]. Szegedy, C. [10] and Goodfellow, I.J. [11] proved from the principle and
experiment that the adversarial example is the inherent property of the deep model and
proposed a series of classical algorithms. Dong, Y. [12] proposed the momentum algorithm
on this basis, which is also one of the research bases of this paper.

However, the fine adversarial noise based on the whole image is not easy to realize,
yet adversarial patch is an excellent option. Adversarial patches are covered to an image
making it lead to misclassification or undetectable recognition by highlighting salient fea-
tures of the object classification [13]. In the task of detection and classification, adversarial
patches can be on the target or the background, regardless of the location [14]; a sticker
on a traffic sign may cause the misclassification of traffic signs [15]; Refs. [16,17] Make it
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impossible for detctor to detect the wearer by creating wearable adversarial clothing(like a
T-shirt or jacket). Ref. [18] is a very powerful attack that uses adversarial glasses to deceive
both the digital and physical face recognition system; Based on this idea, researchers turned
to the application of adversarial patches in the field of face recognition, and achieved a
high success rate [19]. Therefore, adversarial examples are a non-negligible threat in the
security field and have received a lot of attention.

1.2. Motivations

There are numerous methods for targeting face recognition models, and many of them
have been validated in real scenarios. Ref. [11] proposed that the perturbation direction
is the direction of the gradient of the predicted the target category labels; in addition, a
GAN-based AGN [1] generates an ordinary eyeglass frame sticker to attack the VGG model.
Ref. [3] proposed a new, simple, and replicable method attack the best public Face ID
system ArcFace. Adversarial patches generally have a fixed position and visible scale, and
also need to consider deformation and spatial mapping [7].

The second idea is rooted in the pixel level, which tricks the FRS with subtle pertur-
bations. As previously described, generating adversarial examples against the full image
ignores the semantic information within faces [9]. Such algorithms theoretically validate the
feasibility of the attack, but are too restrictive in terms of the environmental requirements,
making it difficult to realize. Meanwhile, existing algorithms launch undifferentiated
attacks on all the targets in the picture. In real scenes, there are multiple objects in the
complex background and foreground, and attacking multiple objects at the same time
makes it easy to attract the attention of defenders. To address the above problems, we pro-
pose an adversarial example generation algorithm that targets local areas with distinctive
facial features.

1.3. Contributions

As shown in Figure 1, our algorithm combines the advantages of adversarial patches
and perturbations, generating invisible adversarial examples in the form of a patch. We
first extracted a face from the image, and then generated the adversarial example based on
the local key features of the face. The adversarial example can be targeted or non-targeted,
which can effectively mislead FRS.
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Figure 1. Face-based targeted attack and non-targeted attack diagram. The FRS could identify the
first pair of images belonging to the same person but was unable to tell whether the face under attack
was the same as the original person.

The work in this paper is as follows.

1. We proposed a white-box adversarial example generation algorithm (AdvLocFace)
based on the local face. We circled an area with intensive features on the face to
construct an patch-like adversarial example within this range.

2. A momentum optimization module with a dynamic learning rate was proposed. By
adopting a dynamic piecewise learning rate, the optimization algorithm can acceler-
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ate convergence; the momentum parameter was introduced to avoid the algorithm
oscillating near the best point, which improved the attack efficiency.

3. By dynamically calculating the attack threshold, the optimal attack effect parameters
were estimated, which reduced the number of modifications to the pixels in the clean
images and effectively improved the transferability of the adversarial examples.

4. We compared the algorithm with several traditional algorithms. The experiments
showed that the algorithm had a high success rate in the white-box setting, and to
also obtain an ideal transferability.

2. Preliminaries
2.1. Deep Model of Face Recognition

DeepFace [1] is the first near-human accuracy model using Labeled Faces in the Wild
(LFW) [20] and applies neural networks to face recognition models with nine layers to
extract the face vectors. FaceNet [5] computes the Euclidean distance of the feature vectors
of face pairs by mapping the face images into the feature space. In addition, they introduced
triplet loss as a loss function so that after training, the distance of matched face pairs with
the same identity would be much smaller than the distance of unmatched face pairs with
different identities [4]. Sphereface [21] uses angular softmax loss to achieve the requirement
of “maximum intra-class distance” to be less than “minimum inter-class distance” in the
open-set task of face recognition. ArcFace [3] introduces additive angular margin loss,
which can effectively obtain face features with high discrimination. The main approach
is to add the angle interval m to the θ between xi and Wij to penalize the angle between
the deep features and their corresponding weights in an additive manner. The equation is
as follows:

L3 = − 1
N

N

∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) + ∑n
j=1,j 6=yi

es·cosθj
(1)

2.2. Classic Adversarial Attacks Algorithms

Adversarial examples are delicately designed perturbations imperceptible to humans
to the input that leads to incorrect classifications [9]. The generation principle is shown in
the following equation:

X′ = X + ε·sign(∇X L( f (x), y)) (2)

where ε is set empirically, which indicates the learning rate. L( f (x), y) is the linear loss
function with the image x and label y. Update the input data by passing back the gradient
∇xL( f (x), y), and use the sign() to calculate the update direction.

The fast gradient sign method (FGSM) is a practical algorithm for the fast generation of
the adversarial examples proposed by Goodfellow et al. [11]. To improve the transferability
of the adversarial examples, Dong et al. [12] proposed the momentum iterative fast gradient
sign method by adding the momentum term to the BIM, which prevents the model from
entering the local optima and generating overfitting. The C&W [13] attack is a popular
white-box attack algorithm that generates adversarial examples with high image quality,
and transferability, and is very difficult to defend. Lang et al. [22] proposed the use of the
attention mechanism to guide the generation of adversarial examples.

2.3. Adversarial Attacks on Face Recognition

The attack on the face not only needs to deceive the deep model but also requires the
semantic expression of the attack method. Ref. [23] studied an off-the-shelf physical attack
projected by a video camera, and project the digital adversarial mode onto the face of the
adversarial factor in the physical domain, so as to implement the attack on the system.
Komkov et al. [19] attached printed colored stickers on hats, called AdvHat, as shown
in Figure 2.
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In the context of the COVID-19 epidemic, Zolfi et al. [24] used universal adversarial
perturbations to print scrambled patterns on medical masks and deceived face recognition
models. Yin et al. [25] proposed the face adversarial attack algorithm of the Adv-Makeup
framework, which implemented a black-box attack with imperceptible properties and
good mobility. The authors in [26] used a generation model to improve the portability
of adversarial patches in face recognition. This method not only realized the digital
adversarial example but also achieved success in the physical world. In [27], they generated
adversarial patches based on FGSM. The effectiveness of the attack was proven by a series
of experiments with different numbers and sizes of patches. However, the patch was still
visible and still did not take into account the feature information of the face. The study
in [28] introduced adversarial noise in the process of face attribute editing and integrated it
into the high-level semantic expression process to make the example more hidden, thus
improving the transferability of adversarial attacks.

3. Methodology and Evaluations
3.1. Face Recognition and Evaluation Matrix

We used a uniform evaluation metric to measure whether a face pair matched or not.
A positive sample pair is a matched face pair with the same identity; a negative sample
pair is a mismatched face pair. To evaluate the performance of the face recognition model,
the following concepts are introduced.

The True Positive Rate (TPR) is calculated as follows:

TPR =
TP

TP + FN
(3)

where TP indicates the matching face pair and is correctly predicted as a matching face pair,
and FN means a matching face pair and is incorrectly predicted as a mismatched face pair.
TPR is the probability of correctly predicted positive samples to all positive samples, which
is the probability of correctly predicted matched face pairs to all matched face pairs.

The False Positive Rate (FPR) is calculated as follows:

FPR =
FP

FP + TN
(4)

where FP denotes a face pair whose true label is mismatched and is incorrectly predicted
as a matched face pair. TN denotes a face pair whose true label is mismatched and is
correctly predicted as a mismatched face pair. FPR is the probability that the incorrectly
predicted negative samples account for all negative samples, and in the face recognition
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scenario is the probability that the incorrectly predicted mismatched face pairs account for
all mismatched face pairs.

Therefore, the accuracy rate (Acc) of the face recognition model is calculated as follows:

Acc =
TP + TN

TP + FN + TN + FP
(5)

That is, the accuracy of the face recognition model is the ratio of the number of
correctly predicted face pairs to the total number of face pairs. Meanwhile, we chose five
face recognition models with different network architectures for validation. These networks
are described in the following sections.

3.2. Adversarial Attacks against Faces

The adversarial attacks are classified into non-targeted attacks and targeted attacks.
An intuitive way to do this is to set a threshold. When the distance between two faces and
this threshold is compared, if the result is less than the threshold, the two faces are from
the same person and vice versa. This is obviously more difficult for the FRS to mistake the
target face for another designated one [18].

Suppose that for input x, the true label f (x) = y is output by the classification model
f . The purpose of the adversarial attack is to generate an adversarial example xadv by
adding a small perturbation, and there exists

∣∣∣
∣∣∣xadv − x

∣∣∣
∣∣∣

p
≤ ε, where p can be 0, 1, 2, ∞.

For the non-targeted attack, the generated adversarial example makes f
(

xadv
)
6= y and

the results of the classifier were different from the original label; for the targeted attack, it
makes f

(
xadv

)
6= y∗, where y∗ 6= y, a previously defined specific class.

3.3. Evaluation Indices of Attack

Our goal is to generate adversarial patches to deceive FRS within a small area of the
human face. The patch is generated by optimizing the pixels in the area, changing the
distance between pairs of faces. The smaller the patch, the less likely it is to be detected by
defenders. We explain the process of generating these patches.

1. Cosine Similarity is calculated by the cosine of the angle between two vectors, given
as vector X and vector Y, and their cosine similarity is calculated as follows.

cos(X, Y) =
X ·Y

‖ X ‖‖ Y ‖ =
∑n

i=1 XiYi√
∑n

i=1 X2
i

√
∑n

i=1 Y2
i

(6)

where Xi and Yi are the individual elements of vector X and vector Y, respectively.
The cosine similarity takes values in the range [–1, 1], and the closer the value is to 1,
the closer the orientation of these two vectors (i.e., the more similar the face feature
vectors). Cosine similarity can visually measure the similarity between the adversarial
example and the clean image.

2. Total variation (TV) [19], as a regular term loss function, reduces the variability
of neighboring pixels and makes the perturbation smoother. Additionally, since
perturbation smoothness is a prerequisite property for physical realizability against
attacks, this lays some groundwork for future physical realizability [18]. Given a
perturbation noise r, ri,j is the pixel where the perturbation r is located at coordinate
(i, j). The TV(r) value is smaller when the neighboring pixels are closer (i.e., the
smoother the perturbation, and vice versa). The TV is calculated as follows:

TV(r) = ∑
i,j

((
ri,j − ri+1,j

)2
+
(
ri,j − ri,j+1

)2
) 1

2 (7)
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3. We used the L2 constraints to measure the difference between the original image and
the adversarial example. L2 is used as a loss function to control the range of perturbed
noise. In the application scenario of attacking, it can be intuitively interpreted as
whether the modified pixels will attract human attention.

Given vector X and vector Y, their L2 distances (i.e., Euclidean distances) can be
calculated as follows:

‖ X, Y ‖2=

√
n

∑
i
(xi − yi)

2 (8)

where xi and yi are the elements of the input vector X and the output vector Y, respectively.
The larger the L2 distance between the two vectors, the greater their difference.

4. Our Method
4.1. Configurations for Face Adversarial Attack

After the image preprocessing, we extracted the features from the two face images and
calculated their distance. For the input face image x, the face recognition model f extracted
the features. For the input face pairs {x1, x2}, the face feature vector f (x1) and f (x2) were
mapped to 512-dimensional feature vectors, respectively.

Therefore, we compared the distance of f (x1) and f (x2) with the specified threshold
to determine whether the face pair matched or not. We calculated the angular distance by
cosine similarity, which is as follows.

Similarity = cos( f (x1), f (x2)) (9)

D( f (x1), f (x2)) =
arccos(Similarity)

π
(10)

where cos(·, ·) is the cosine similarity of the feature vector of the face pair in the range of
[−1, 1]. Therefore, D( f (x1), f (x2)), based on the cosine similarity, ranged from [0, 1]. The
closer the distance is to 0, the more similar the face feature vector and the more likely the
face pair is matched, and vice versa. Equation (11) is used to predict the matching result of
the face pair.

C(x1, x2) = I(D( f (x1), f (x2)) < threshold) (11)

where I(·) is the indicator function; the threshold is the baseline of the detection model
that is different depending on the model used. C(·, ·) outputs the matching result, if C = 1,
the face pair is matched; if C = 0, the face pair is not matched. A unified attack model is
established based on the I(·) indicator function to implement targeted and non-targeted
attacks. The flow of face pair recognition based on the threshold comparison is shown
in Figure 3.
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4.2. Local Area Mask Generation

The human eye region contains critical semantic information despite its small area [23].
The local region matrix is generated according to the human eye position as the range of
constraint against adversarial perturbance. Due to various poses, illumination, and occlu-
sions, we applied a deeply cascaded multitasking framework to integrate face detection
and alignment through multitasking learning. First, since images have different sizes, the
key points of the extracted face were affined to the unit space using affine transformation
to unify the size and coordinate system. The detection and alignment of faces were ac-
complished by building a multi-level CNN structure containing three stages. Candidate
windows will be quickly generated by a shallow CNN. Then, the windows were optimized
by more complex CNNs to discard a large number of non-facial windows. Finally, it refines
the results. by using a more powerful CNN and outputs the facial marker positions.

The algorithm flow is shown in Figure 4. In Figure 4b, for a given image, we first
adjusted it to different scales to construct the image pyramid. In Figure 4c, we referred to
the method in [29] to obtain the candidate windows and their bounding box regression
vectors. The estimated bounding box regression vectors were then used to calibrate the
candidate boxes; in Figure 4d, we used non-maximal suppression (NMS) to merge the
highly overlapping candidate objects. In Figure 4e, all candidate frames were used as
input to the CNN of the optimization network, which further discarded a large number of
incorrect candidate frames, calibrated them using bounding box regression, and merged the
NMS candidate frames. Finally, Figure 4f shows the CNN-based classification network that
generated a more detailed description of the faces and outputs the critical facial positions.
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Figure 4. The process of face recognition and face alignment. (a) Clean image of a child. (b) Image
pyramid. (c) Bounding box regression. (d) Merging the candidate objects. (e) Face location. (f) Key
point location.

Pixels are randomly sampled within the range of key points as the corresponding
feature pixel [29]. The feature pixels select the closest initial key point as the anchor
and calculate the deviation. The coordinate system of the current pixel after rotation,
transformation, and scaling should be close to the initial key point. It acts on the deviation
and adds its own position information to obtain the feature pixel of the current key point.
Then, we constructed the residual tree and calculated the deviation of the current key point
from the target key point. We split the sample and updated the current key point position
based on the average residual of the sample. Back to the previous step, it reselected the
feature key points, fit the next residual tree, and finally combined the results of all residual
trees to obtain the key point locations. According to the default settings, the coordinates of
the points 0, 28, 16, 26–17 in the image for the human eye area are shown in Figure 5.
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Figure 5. Schematic diagram of key point detection for human face. (a) Sixty-eight key points on a
human face. (b) Face that needs to be matched. (c) Key points and face fitting.

We located the human eye region based on the key points of the detected eye in the
image and drew the mask against the attacked region. The range of pixel values in the
generated mask image was normalized to [0.0, 1.0] to generate a binary-valued mask matrix.
This is shown in Figure 6.

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 18 
 

  
(a) (b) 

Figure 6. Schematic diagram of eye area matrix generation. (a) Locating key areas of the human eye. 
(b) Generating a human eye area mask. 

We generated adversarial examples combining the eye region matrix and full face 
region, respectively, to test the effect of the attacks. Figure 7a shows the clean image used 
for testing while Figure 7b shows the visualization of the perturbation based on the eye 
region and the full-face region. Figure 7c is the adversarial example. After testing, both 
images could successfully deceive the face detector. The adversarial perturbation gener-
ated based on the human eye region accounted for 17.8% of the total pixels, while the 
number of pixels of the adversarial perturbation generated based on the whole face ac-
counted for 81.3% of the image. 

   
(a) (b) (c) 

Figure 7. Schematic diagram of key point generation matrix based on eye detection. (a) Clean image 
of a child. (b) Adversarial perturbation based on the human eye and full face. (c) Adversarial exam-
ples based on the human eye and full face. 

4.3. Loss Functions 
As above-mentioned, this algorithm optimizes the 𝐶(𝑥, 𝑥 ) function in the local 

region. For the targeted attack and non-targeted attack, the relationship between the clean 
face image 𝑥 and the three target images  𝑥  and the adversarial example image 𝑥  
was compared. 
(1) For the non-targeted attack, an adversarial example 𝑥  was generated for the in-

put image 𝑥 so that the difference between them was as large as possible. When the 
difference was larger than the threshold value calculated by the deep detection 
model, the attack was successful; on the other hand, for the targeted attack, the gen-
erated adversarial example 𝑥  needed to be as similar as possible to the target im-
age 𝑥 . The loss function ℒ𝑜𝑠𝑠1 is shown as Equation (12). ℒ𝑜𝑠𝑠1 = 𝛼 ∙ cos 𝑓(𝑥), 𝑓(𝑥 ) − (1 − α) ∙ cos 𝑓(𝑥 ), 𝑓(𝑥 )  (12) 

Figure 6. Schematic diagram of eye area matrix generation. (a) Locating key areas of the human eye.
(b) Generating a human eye area mask.

We generated adversarial examples combining the eye region matrix and full face
region, respectively, to test the effect of the attacks. Figure 7a shows the clean image used
for testing while Figure 7b shows the visualization of the perturbation based on the eye
region and the full-face region. Figure 7c is the adversarial example. After testing, both
images could successfully deceive the face detector. The adversarial perturbation generated
based on the human eye region accounted for 17.8% of the total pixels, while the number
of pixels of the adversarial perturbation generated based on the whole face accounted for
81.3% of the image.
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4.3. Loss Functions

As above-mentioned, this algorithm optimizes the C
(

x, xadv
)

function in the local
region. For the targeted attack and non-targeted attack, the relationship between the clean
face image x and the three target images xtar and the adversarial example image xadv

was compared.

(1) For the non-targeted attack, an adversarial example xadv was generated for the input
image x so that the difference between them was as large as possible. When the
difference was larger than the threshold value calculated by the deep detection model,
the attack was successful; on the other hand, for the targeted attack, the generated
adversarial example xadv needed to be as similar as possible to the target image xtar.
The loss function Loss1 is shown as Equation (12).

Loss1 = α· cos
(

f (x), f
(

xadv
))
− (1− α)· cos

(
f
(

xadv
)

, f
(
xtar)) (12)

where cos(·, ·) is the cosine similarity of the feature vector calculated by Equation (10);
α takes the value of 0 or 1, representing the non-targeted attack and targeted attack,
respectively.

(2) The perturbation size is constrained by the L2 norm, thus ensuring that the visi-
bility of the perturbation is kept within a certain range when an effective attack is
implemented. The loss function in this section constrains the perturbation after the
restriction as follows.

Loss2 = L2(mask� r) (13)

where r is the perturbation. The mask is that generated from the first face image
of the face pair to restrict the perturbation region. It is a [0, 1] matrix scaled to the
same size as the image. The � symbol indicates the dot product operation between
the elements.

(3) The TV is used to improve the smoothness of the perturbation through Equation (14),
and the loss function of this part also deals with the perturbation after restriction,
as follows.

Loss3 = TV(mask� r) (14)

In summary, for the above targeted and non-targeted attacks, the loss function is
minimized by solving the following optimization problem of Equation (15), which can
generate the final adversarial perturbation r :

min
r
Loss = min

r
(λ1Loss1 + λ2Loss2 + λ3Loss3) (15)

The hyperparameters λ1, λ2, and λ3 are used to control the relative weights of the
perturbation losses. The correlation coefficients of the two regular term loss functions Loss2
and Loss3 are gradually reduced as the number of iterations increases.

4.4. Momentum-Based Optimization Algorithms

To solve the optimization problem above, the adversarial perturbation is optimized
by using an iterative gradient descent method to minimize the objective function. A
momentum parameter superimposes in the gradient direction and dynamically stabilizes
update directions in each iteration step [12].

In the updating process, due to the different iterations of updating for different scenes,
we divided the updating process into several stages, and the learning rate of different
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stages gradually decreased. The gradient is calculated as follows.Meanwhile, the learning
rate α∆t is changed according to the number of iterations it and stages st.

grad = β·mi +
∇xLoss(xadv ,y)
||∇xLoss(xadv ,y)||1

mi+1 = grad
rt+1 = rt − α∆i ∗ grad

α∆i =
(

it
st

)i
a∆(i−1) + a∆(i−1)

(16)

where
∣∣∣
∣∣∣∇xLoss

(
xadv, y

)∣∣∣
∣∣∣
1

is the regularized representation of the gradient of∇xLoss
(

xadv, y
)

.
The parameter β is the decay factor, adjusting for the influence of momentum on the gradi-
ent calculation. rt is the adversarial perturbation generated in the t iteration. The parameter
α∆t is dynamically adjusted and is related to the iterations it and the current stages st. If it
is high, then * can be set bigger. As it increases, st will become smaller.

xadv
t+1 = clipx,ε(x + mask� rt+1) (17)

where clipx,ε(·) serves to restrict the adversarial examples after superimposed perturbation
to a reasonable range (after normalization) of [−1, 1] at the end of each iteration.

The final elaborate perturbation is processed and added to the original face image
so that the final adversarial example is generated by restricting the perturbation to a
reasonable range of [0, 255] using clipx,ε(·). The process is shown in Figure 8.
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Figure 8 shows that the feature vectors are first extracted from the aligned faces. The
attack region is mapped by keypoint detection and the adversarial perturbation infor-
mation is generated based on this region. The local aggressive perturbation is obtained
through the optimization of the loss functions. This perturbation information can effectively
mislead FRS.

5. Experiments
5.1. Datasets

In this paper, we used CASIA WebFace [7] as the training dataset. All of the pictures
are from movie websites and vary in light and angle. In order to verify the effect of the
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algorithm on different datasets, we choose LFW [22] as our test dataset. It provides 6000 test
face pairs, of which 3000 are matched pairs and 3000 are mismatched pairs.

For face detection and alignment, MTCNN [30–34] was used to uniformly crop the
images to 112 × 112. Experimentally, there were 500 pairs of matched faces with the same
identity for non-targeted attacks and 500 pairs of unmatched faces with different identities
for targeted attacks.

5.2. Performance Evaluation for Face Recognition Models

Five mainstream pre-trained face recognition models were used for comparison,
namely ResNet50-IR (IR50) [31], ResNet101-IR (IR101) [32], SEResNet50-IR (IR-SE50) [33],
MobileFaceNet [8], and ResNet50 [33]. In order to show the success rate of adversarial
attacks more intuitively, the metrics were the True Accept Rate (TAR) and False Accept Rate
(FAR) [20]. Given a face pair (x1, x2), let the matched face pair be Ps and the unmatched
face pair be Pd. Given a threshold, the calculation of TAR and FAR is as follows.

TA =

{
(x1, x2) ∈ Ps,

with D( f (x1), f (x2)) < threshold

}
(18)

FA =

{
(x1, x2) ∈ Pd,

with D( f (x1), f (x2)) < threshold

}
(19)

TAR =
|TA|
|Ps|

(20)

FAR =
|FA|
|Pd|

(21)

where |TA| is the number of all matched pairs whose distance is less than the threshold;
|Ps| is the number of all matched pairs; |FA| is the number of all unmatched pairs whose
distance is less than the threshold; and |Pd| is the number of all unmatched face pairs.

Different models will have different thresholds that can objectively reflect the success
rate of the attack. Accordingly, the threshold was determined according to different values
of FAR, and was chosen when FAR = 1× 10−2 or 1× 10−3. We traversed the range of
thresholds and used the 10-fold cross-validation method to find the threshold closest to the
target FAR.

As shown in Figure 9, the TPR of each model (i.e., the proportion of correctly pre-
dicted matched face pairs to all unmatched face pairs) was maintained above 96.5% when
FAR = 1× 10−6. When FAR = 1× 10−2, the TPR reached more than 98.5%. This indicates
that the performance of these backbone network models had excellent performance.
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The test results of the five models on the LFW at a FAR of about 0.01 are shown in
Table 1. The value of TAR@FAR = 0.01 (i.e., the probability of correctly identifying matching
face pairs when the FAR is close to 0.01) was maintained at more than 98.9%.
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Table 1. The TAR and corresponding thresholds for different models.

Models TAR (%) FAR Threshold Sim-Threshold

IR50 99.596 0.00995 0.43326 0.20814
IR101 98.984 0.01259 0.41311 0.26960

IR-SE50 99.396 0.01025 0.42920 0.22060
ResNet50 99.596 0.00836 0.45207 0.15001

MobileFaceNet 99.196 0.01076 0.43763 0.19469

5.3. Attack Method Evaluation Indicators

The accuracy of a face recognition model intuitively reflects the predictive ability of
the model. The attack success rate (ASR) is calculated as follows:

ASR = 1− Acc (22)

The higher the ASR, the more vulnerable the model is to adversarial attacks; the lower
the ASR, the more robust the model is to adversarial attacks and is able to withstand a
certain degree of adversarial attacks.

In order to evaluate the magnitude of the difference between the generated adversarial
example and the original face image after the attack, this experiment used the peak signal-to-
noise ratio (PSNR), and structural similarity (SSIM) [34], which are two metrics to measure
the image quality of the adversarial example.

The PSNR is defined and calculated by the mean squared error (MSE). The following
equation calculates the PSNR for a given image I.

PSNR = 20 · log10(MAXI)− 10 · log10(MSE) (23)

where MAXI is the maximum pixel value of the image; MSE is the mean square error. The
larger the PSNR, the less distortion and the better quality of the adversarial example [3].

Considering human intuition, we adopted the evaluation index of structural similarity
(SSIM), which takes into account the three factors of brightness, contrast, and structure.
Given images x and y with the same dimensions, the structural similarity is calculated
as follows.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)
(

µ2
x + µ2

y + c1

)(
σ2

x + σ2
y + c2

) (24)

Among them, µx, µy are the mean values of image x, y; σ2
x , σ2

y are the variance of
image x, y; σxy is the covariance, and c1 and c2 are used to maintain stability. SSIM takes
values in the range of [−1, 1], and the closer the value is to 1, the higher the structural
similarity between the adversarial example and the original image. To a certain extent, it
can indicate the more imperceptible the perturbation applied to the adversarial example is
to humans.

5.4. Adversarial Attack within Human Eye Area
5.4.1. Non-Targeted Attacks based on Eye Area

A schematic diagram of the non-targeted attack is shown in Figure 10. The first
column shows the face pair before the attack. To the human eye, there is no difference
between the second image in Figure 10a,b, and the second image in Figure 10b is the
adversarial example.
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Figure 10. Before and after eye-based non-targeted attack. (a) Visualization of facial features of the
same person from different angles. (b) Visualization of face features after being attacked.

weightattetion in the fourth column indicates the attention of the model, where the
darker color indicates that the model paid more attention to the area. It can be seen that
there was no significant change in the attention hotspots before and after the attack. In the
third column, the xCos [35] module visualizes the face pairs before and after the attack and
visualizes the changes in the images from the perspective of the neural network parameters.
The bluer color in the similarity plot cospatch indicates that they are more similar, and the
redder color indicates that they are less similar. It can be seen that the face pairs changed
dramatically after the attack.

5.4.2. Targeted Attacks Based on Eye Area

The purpose of the targeted attack is to deceive the deep detection model into misiden-
tifying another specific face from the original image. As shown in Figure 11a, the similarity
graph of the face pair before the attack had a large number of red grids, indicating that
this pair was very dissimilar and was a mismatched face pair, while the model’s attention
focused on the eye area in the middle of the face. The first image in Figure 11b is the gener-
ated adversarial example; the second image is the target image. Intuitively, the first images
in Figure 11a,b are exactly the same. This is also reflected in the attention map. However,
for the face recognition model, the grid of the eye region in cospatch mostly changed to blue,
and 43% of the regions changed from yellow to blue. This indicates that the image change
affected the classification of deep model.

5.4.3. Quantitative Comparison of Different Attack Models

To verify the effectiveness of the algorithm, we selected 500 faces for targeted and
non-targeted attacks. Furthermore, each model has a different threshold for the best
performance. The attack success rates of different attack models are shown in Table 2.

Table 2. The accuracy and success rates of different models under the specified thresholds.

Models ACC (%) Targeted-ASR (%) Non-Targeted-ASR (%) Threshold

IR50 98.2 90.4 99.2 0.43326
IR101 94.7 96.2 98.6 0.41311

IR-SE50 92.6 92.2 98.8 0.42920
ResNet50 94.5 93.8 99.4 0.45207

MobileFaceNet 96.6 91.4 99.2 0.43763
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Our method was compared with the traditional adversarial algorithms. With a high
success rate, we compared the differences between the adversarial examples and the
original images, and the evaluated metrics included the image quality of the adversarial
examples, the calculated average PSNR and SSIM. The perturbations of the adversarial
examples generated by our algorithm for different deep detection models were counted. A
PSNR greater than 40 indicates that the image distortion was small; the closer the SSIM
takes the value of 1, the closer the adversarial example is to the original image. The
comparison results are shown in Table 3.

Table 3. Average PSNR, SSIN, and the perturbed parameters for different models.

Models Targeted-PSNR Targeted-SSIM Targeted-L2 Non-Targeted-PSNR Non-Targeted-SSIM Non-Targeted-L2

IR50 43.69864 0.99358 0.71112 39.19224 0.98557 1.29420
IR101 43.68891 0.99379 0.71556 42.37390 0.99232 0.84162

IR-SE50 43.46344 0.99345 0.76280 39.95576 0.98470 1.22338
ResNet50 45.51955 0.99531 0.58352 40.89765 0.98938 1.09996

MobileFaceNet 43.82034 0.99395 0.72392 41.36429 0.98954 1.04512

As shown in Table 3, for different attacks, the PSNR of all models was above 40 dB
and the SSIM was above 0.98, indicating that the image distortion was very small and
the perturbations were imperceptible to humans; on the other hand, the perturbations
generated by the targeted attack was much lower than that of the non-targeted attack. The
momentum in this algorithm was updated toward the target image due to the directed
output of the image. Therefore, the adversarial example generation algorithm was also
guided to optimize in the direction of the specific objects.

5.4.4. Comparison of Adversarial Example Algorithms

In this paper, the validation dataset covered 40 different categories. These categories
can be correctly classified by the MobileFaceNet model (Top-1 correct); we also selected
ArcFace [3] and SphereFace [21] face recognition models for testing. ArcFace uses IR101 as
the network structure and has 99.8% accuracy in the LFW test set; SphereFace’s network
structure removes the BN module, which differs significantly from the ResNet50 residual
network, with 99.5% accuracy in the LFW test set. We selected a variety of typical adver-
sarial example algorithms FGSM [10], I-FGSM [11] algorithms, and the face-specific attack
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method AdvGlasses [18], AdvHat [19], and our algorithm (AdvLocFace) for cross-testing.
The comparison results are shown in Table 4.

Table 4. Accuracy and success rates of different algorithms.

Models Attack Method ResNet50 MobileFaceNet SphereFace ArcFace

ResNet50

FGSM 77.00% 34.81% 31.88% 30.26%
I-FGSM 100.00% 24.41% 21.76% 18.82%

AdvGlasses 100.00% 51.05% 48.02% 40.58%
AdvHat 97.80% 52.92% 44.87% 44.24%

AdvLocFace 99.10% 57.15% 51.35% 59.00%

MobileFaceNet

FGSM 39.99% 67.67% 27.83% 29.04%
I-FGSM 38.86% 100.00% 24.59% 20.75%

AdvGlasses 69.39% 100.00% 46.06% 45.64%
AdvHat 77.61% 97.90% 46.29% 37.38%

AdvLocFace 61.62% 99.20% 52.76% 40.92%

SphereFace

FGSM 38.55% 32.34% 59.20% 28.74%
I-FGSM 41.94% 33.37% 99.88% 25.91%

AdvGlasses 76.59% 65.61% 99.58% 53.53%
AdvHat 68.03% 54.06% 93.91% 64.16%

AdvLocFace 62.96% 58.90% 96.65% 67.91%

ArcFace

FGSM 37.01% 33.58% 30.76% 75.19%
I-FGSM 31.56% 25.65% 21.96% 98.67%

AdvGlasses 57.88% 52.43% 50.20% 97.35%
AdvHat 68.61% 65.90% 63.19% 100.00%

AdvLocFace 73.24% 70.64% 70.57% 100.00%

In Table 4, the diagonal lines are white-box attack settings. I-FGSM improved the
success rate of white-box attacks by increasing the iterative process, but reduced the
mobility of the attack method due to the overfitting of the perturbation. The AdvHat
algorithm is an advanced physical attack method that attacks realistic attacks by pasting
stickers on the hat, and it is easy to replicate this attack. The optimization process, based
on the consideration of pixel smoothing and color printability, limits the effect of mobility
in digital attacks. AdvLocFace, with the best threshold for similar models based on the
base model of training, obtained a more stable success rate of black-box attacks. For
network models with different structures and different training data, the attack success rate
decreased significantly.

6. Conclusions

This paper proposed a face adversarial example generation algorithm based on local
regions. The algorithm uses the principle of a face recognition system to build a local
area containing key features and generates momentum-based adversarial examples. This
algorithm is a typical white-box attack method but still achieves good results in the black-
box attack scenario.

Compared with the traditional adversarial attack method, the adversarial perturbance
generated by our method only needs to cover a small part of the original image. Because the
region contains the key features of the face, it can successfully mislead the face recognition
system. In addition, the generated adversarial example is patch-like, which is highly similar
to the original image and therefore more inconspicuous. Our algorithm can selectively
attack any target in the image, so it can be extended to attack other types of images. the
experiments show that the proposed algorithm can effectively balance the modified pixel
area and attack successfully, achieving good transferability.
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Abstract: Passwords are ubiquitous in today’s world, as are forgetting and stealing them. Biometric
signs are harder to steal and impossible to forget. This paper presents a complete system of methods
that takes a secret key and the iris image of the owner as input and generates a public key, suitable
for storing insecurely. It is impossible to obtain source data (i.e., secret key or biometric traits) from
the public key without the iris image of the owner, the irises of other persons will not help. At the
same time, when the iris image of the same person is presented the secret key is restored. The system
has been tested on several iris image databases from public sources. It allows storing 65 bits of the
secret key, with zero possibility to unlock it with the impostor’s iris and 10.4% probability to reject
the owner in one attempt.

Keywords: biometric cryptosystem; iris identification; error-correcting codes

1. Introduction

Nowadays, cryptographic algorithms are widely used for information protection.
A large number of them, as well as their applications, have been invented and introduced [1].
These algorithms and systems are mathematically grounded and reliable. The weak link
in their implementation and usage, as usual, is human. Cryptography requires keys,
i.e., sequences of digits, which should be reproduced precisely. While a human is able to
remember and reproduce a personally invented password (though there are difficulties here
already), it is practically impossible to memorize a long sequence of pseudorandom sym-
bols, which is created automatically [2]. Meanwhile, humans possess biometric features that
are simple to retrieve, difficult to alienate, and contain a significant amount of information.
The disadvantage of biometric traits is their variability: it is impossible to exactly replicate
the measurement results, we can only say that two sets of traits taken from one person are
in some sense closer than the sets obtained from different people. It is of great interest to
combine these two approaches, i.e., to develop methods for obtaining unique cryptographic
keys from variable biometry data of a given person.

The eye iris is the most suitable biometric modality among all non-invasive ones due to
its highest information capacity. The number of degrees of freedom of the iris template was
evaluated as 249 [3]. It promises to be almost as good as a strong symmetric cryptography
key length of 256 bit, while the net coming fingerprint is reported to have 80 bits [4]. In
order to design a practically usable system it is advisable to base it on the iris. Up to
now a major focus in developing automated biometric is building an identification system,
i.e., the system, which executes a scenario: sample biometric features once, record, take
them sometime later and decide whether these samples belong to the same person.

The workflow of the biometric identification system can be combined of the blocks:
capture, segmentation, template generation, and template matching, see Figure 1.
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Figure 1. Biometric system workflow.

Note that in this scenario the biometric template should be securely stored and exclude
the intruder from obtaining it. Here, a different problem is solved, thus only capture,
segmentation and partly template generation blocks are inherited, and matching is replaced
by embedding/extracting the cryptographic key into/from the biometric features.

The explanation here goes alongside the data processing: from the source iris image
to the embedding of the secret key. The capture process, i.e., obtaining eye images with a
camera device, is beyond the scope of this paper. We start from the image segmentation
task and present a framework for locating the iris in an eye image. In the next section clue
methods of the framework are described. Then feature extraction and matching methods
are given. Following is the discussion of the application scenario of embedding the secret
key to biometric features. The successful extraction of the embedded key depends on the
difference between registered and presented biometric features, the value of this difference
is determined based on several databases. In the next section the methods of encoding and
decoding the key are presented, and the selection of their optimal parameters is discussed.

The contribution of this work is comprised of the following.

• The system of iris segmentation methods is presented which combines preliminary
detection with refinement steps. The first steps use the most common geometric prop-
erties of the eye and accept the widest range of image conditions, while the final steps
take care of details. The core of the system is a special base radii detection method.

• The cascade of error correction codecs adopted to iris code nature. A novel step of pseu-
dorandom bit shuffling is introduced, accompanied by bit dubbing.
This contradicts known methods, which do not use bit dubbing and deliberately
avoid bit shuffling.

• The combination of the iris segmentation system and error correction cascade results in
a practically applicable method, proven for several databases of variable image quality.

2. Eye Segmentation Framework

Methods, algorithms and applications of iris biometrics have attracted much attention
during the last three decades [5–7] and continue developing rapidly in recent years [8].
The main trend of the latest development is switching from heuristic approaches and
hand-crafted methods to employing neural networks in various tasks. A wide variety
of artificial neural networks has emerged and is applied to iris segmentation, starting
from earlier research with fully connected nets [9] to latest applications of attention-driven
CNNs [10], U-Nets [11], hybrid deep learning [12]. Another trend comes from the in-born
ability of neural networks to classify objects (say, pixels, textures, images) rather than
calculate their positions and other numerical properties. Due to this, most of the works in
iris segmentation rely on detecting masks, i.e., pixels belonging to regions of the iris (or
pupil, or else) in the image. Positions and sizes of pupil and iris are then derived from
these masks. Surely, detecting masks is what one calls segmentation; however, such an
approach ignores the clear and simple geometry of the iris and is prone to detecting irises of
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unnatural shape as is shown in [12]. Some works [13,14] apply a neural network to detect
the position of the iris as a number; however, it seems a strained decision.

Here we adopt a “classical” method. The obvious approach to iris region extraction in
eye imaging is a chain of operations that starts with the detection of the pupil (the most
distinctive area that is dark and has an expressed circular shape). Then outer iris border is
presumably located. Finally, the visible iris part is refined by cutting off the areas distorted
by reflections, eyelids and eyelashes. Most researchers and developers follow this method.
Detection of each iris feature is usually carried out only one time and it is not recalculated
any more even after obtaining other features, which can serve for refinement. For instance,
in [15–18] full set of iris features is detected; however, pupil parameters are obtained at the
first step and are not revised any more.

Only a few papers develop something different from this sequence “first pupil, then
iris, once determined, and never reviewed”. In [19,20], the position of the iris center is
estimated first which makes pupil detection more robust. In [21], pupil parameters are
refined using iris size after the iris is located. In [21,22], detection methods run iteratively
several times for refinement. In [20,23], a multi-scale approach is used, and methods run in
several scales. However, none of these works use various types of methods for detecting
any iris feature.

Here we develop a system of methods for segmentation of the iris in an eye image.
Evaluating of each of parameters is performed at several steps. The main idea of this
system is that at first the most general characteristics of objects are defined, which are then
sequentially supplemented by more specific and refined ones. Beginning steps do not need
to output precise final parameters, used as final. Instead, they should be robust and general
and tolerate a wide range of conditions, i.e., detect the object of any quality. Later steps
should have the highest possible precision and may reject poor quality data.

Iris region in frontal images is delimited by two nearly concentric nearly circular
contours, called inner and outer borders. Hereinafter the contour separating iris and pupil
is referred to as inner border, pupil border or simply pupil, and the contour delimiting iris and
sclera is called outer border or iris. In most cases pupil border is wholly visible in the image,
but some part of the iris border is frequently overlapped by eyelids and eyelashes.

Since the pupil and iris are almost concentric, one eye center point may serve as an
approximate center for both contours. It can be considered the most general geometric prop-
erty of the iris, and the first step of eye detection should be locating this eye center. Note that
only the position of the center is to be found, rather than the size of any contour. Excluding
size and allowing approximate detection involves both concentric borders in the process.
This is especially significant for eyes with poorly visible inner boundaries, where pupil
location alone fails frequently. A modification of Hough method [24] is used.

It is very likely that after center detection pupil size should be estimated. To the best
of our knowledge, this is carried out in all works where iris segmentation starts from eye
center location, as in [19]. However, this method is not stable and universal for a wide
range of imaging conditions. Detecting the radius may easily mistake the outer border
for the inner, especially for images with poor inner border contrast [25]. Here we decide
to employ both correlated contours around the detected center, and detect sizes of them
simultaneously. Hereinafter this detection is referred to as base radii detection, meaning
that it finds approximate (base) radii of inner and outer circles around a given center.
The method relies on circular projections of gradient [26]. Base radii detection produces
approximate center coordinates and radii of pupil and iris circles, which satisfy some
reasonable limitations. Furthermore, the quality of detection is calculated. The quality
should be high enough to pass the image to further processing.

Then both boundaries are re-estimated with better precision (refined). Pupil refinement
is carried out by a specially developed version of the shortest path method [27]. Iris is
refined by the same method as that of base radius. The difference is that the position of the
pupil is now fixed and only the iris center and radius are being searched. Iris segmentation
here results in detecting two nearly concentric circles, which are approximating the inner
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and outer borders of the iris ring. Occlusion detection [28] is carried out to ensure the
quality of iris data, i.e., to reject strongly occluded irises from further processing, but apart
from this the occlusion mask is not used.

Summing up, the segmentation stage of the system employs five steps: center detection,
base radii detection, pupil refinement, iris refinement and occlusion detection, see Figure 2.

Figure 2. Workflow of iris segmentation methods.

At each stage of segmentation, quality value is estimated and the process is terminated
if the quality is below acceptable.

3. Eye Segmentation Methods

Methods of iris segmentation are briefly presented in this section.

3.1. Center Detection

The algorithm finds the coordinates (xC, yC) = ~c of eye center in the image b(~x),
and does not need to estimate pupil or iris size. There is also no need to find the center
position precisely, it is sufficient to locate it somewhere inside the pupil. Thus, pixels of both
pupil and iris borders are used in Hough’s procedure. Furthermore, the algorithm has low
computational complexity since only two parameters are estimated and a two-dimensional
Hough accumulator is used.

The algorithm runs the following five steps.

Step 1. Gradient calculation.

Consider rectilinear coordinate system Oxy in the image with the center in the left
bottom corner and axes Ox and Oy directed along its borders. Denote brightness b(~x) in
image point~x. Brightness gradient ~∇b(~x) = ~g(~x) is estimated by standard Sobel masks [29].

Step 2. Outlining voting pixels.

We need edge pixels to vote. These are selected with the help of a gradient value
threshold. Cumulative distribution of brightness gradient values in pixels over the image is
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calculated, and set Ω1 of pixels with brightness gradient in the upper 5% of this distribution
are selected:

H(G) = |{~z : ‖~g(~z)‖ 6 G}| ,

Ω1 = {~x : H(‖~g(~x)‖) > (1− τs)N} ,
(1)

where |S| is power (count of elements) of set S, N is total number of image pixels, τs = 0.05
is the share of points being selected.

Step 3. Voting to accumulator.

Hough methods use accumulator function, which is defined over a parameter space.
We detect the eye center, which is some point in the image, and its parameters are its
coordinates in the image. Thus, the parameter space is 2D vector ~x and the accumulator is
A(~x) with the same size as the source image.

Ray from some given point ~x ∈ Ω1 in anti-gradient direction−~∇b(~x) is the locus of all
possible dark circles with border passing through this point. A set of such rays, drawn in
the accumulator, traced from each pixel coordinated selected at step 2 will produce clotting
at the center of any roundish dark object. The more circle-like this object is, the more
expressed will be its central clotting.

Step 4. Accumulator blurring.

The accumulator A(~x) is subject to a low-pass filter, to suppressed noise such as
singular sporadic rays produced by non-circular edges in the image. Denote the result as
AB(~x).

Step 5. Maximum location.

Maximum position
~c = arg max

~x
AB(~x) (2)

in blurred accumulator corresponds to the center of the best round-shaped object in the
image. It is the most probable eye center. However, local maxima exist in any image due to
noise. In order to decide whether there is a noticeable circular object, one can compare the
value of local maxima against the values produced by noise. Since τs pixels of the image
are voting and for each point voting procedure draws a segment of approximately 0.5W
pixels, where W is a linear size of the image, the average brightness level is near 0.5τsW.
Selecting desirable signal to noise ratio PSNR, one can write the condition of accepting the
located maximum (2) for eye center:

QC = max
~x

AB(~x) >
1
2

PSNRτsW . (3)

If condition (3) does not hold, the decision is made that there is no eye in the im-
age b(~x).

3.2. Base Radii Detection

The algorithm simultaneously locates two iris boundaries as circle approximations:
inner (pupil) (xP, yP, rP) and outer (iris) (xI , yI , rI) starting from the center ~c (2). In this
section, we set (xC, yC) = ~c as coordinate origin. Anti-gradient vector at the boundary of
the dark circle and the direction to the circle center coincide or form a small angle. As the
pupil and iris are both dark circles on the brighter background, one can state the following
condition for pixels ~x of their boundaries:

φ(~x) = arccos
~g(~x) ·~x
‖~g(~x)‖ ‖~x‖ < τφ . (4)
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We use a threshold value τφ = 450.
Furthermore, the condition for gradient value (1) is applicable. Pixel ~x satisfying the

conditions (1), (4) probably belongs to the inner or outer boundary. Call it candidate. Define
the set of candidate pixels as Ω2:

Ω2 =
{
~x : φ(~x) < τφ, H(‖~g(~x)‖) > (1− τs)N

}
. (5)

For each radius r a ratio of candidate count at this radius to the count of all pixels at
this radius is estimated:

Π(r) =
|{~x : ‖~x‖ ∈ [r− 0.5, r + 0.5),~x ∈ Ω2}|
|{~x : ‖~x‖ ∈ [r− 0.5, r + 0.5)}| . (6)

If there is a dark circle of some radius ρ with the center near the coordinate origin
its border pixels are likely to belong to the set Ω2, and are likely to have distance ρ to the
coordinate origin. Thus, Π(ρ) will be big, i.e., have local maximum. Other contours will
not vote to the same radius of circular projection and will not form local maxima therein.

The image plane is divided into four quadrants, left, right, top and bottom by the lines
y = x and y = −x. In each quadrant, a sub-projection is calculated separately according
to (6). Positions of local maxima on the right, left, top, and bottom sub-projections are:

µα(n) = arg loc
n

max
r

Πα(r) , α = {R, L, T, B} . (7)

The quality of maxima is simply the value of histogram at the point

qα(n) = Πα(µα(n)) . (8)

If not occluded, each of the two circular contours (inner and outer borders) gives a
local maximum in each sub-projection. Other maxima may arise due to occlusions such as
eyelashes and eyelids or due to other details in eye images, including patterns of the iris
itself. Combining local maxima positions (7) gives set of hypothetical pupils:

xi,j
P =

1
2
(µR(i)− µL(j)) , i = 1, nR , j = 1, nL ,

yk,l
P =

1
2
(µT(k)− µB(l)) , k = 1, nT , l = 1, nB ,

ri,j,k,l
P =

1
4
(µR(i) + µL(j) + µT(k) + µB(l)) .

(9)

Qualities of combinations are also defined from values (8):

qi,j,k,l
P =

1
4
(qR(i) + qL(j) + qT(k) + qB(l)) . (10)

Irises are estimated by just the same formulas:

xi,j
I =

1
2
(µR(i)− µL(j)) , i = 1, nR , j = 1, nL ,

yk,l
I =

1
2
(µT(k)− µB(l)) , k = 1, nT , l = 1, nB ,

ri,j,k,l
I =

1
4
(µR(i) + µL(j) + µT(k) + µB(l)) ,

qi,j,k,l
I =

1
4
(qR(i) + qL(j) + qT(k) + qB(l)) .

(11)

The nature of the pupil and iris imposes certain limitations on their locations and sizes.
We use the following four inequalities: pupil size is not less than 15% of iris size and not
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more than 75% of iris size; center of the iris is inside pupil; pupil cannot be displaced too
much from iris center. This can be written as:

rP > 0.15rI , rP < 0.75rI , d < rP , 2(rI − rP − d) > rI − rP + d , (12)

where~cP = (xP, yP),~cI = (xI , yI) are centres of pupil and iris, d = ‖~cP −~cI‖ is a distance
between these centres.

From all possible variants of pupil-iris pair given by (9)–(11) we select those satisfying
conditions (12). The quality of combination is a sum of pupil and iris qualities (10) and a
weighted quality of fitting to conditions (12):

Q = qP + qI + γq f it ,

q f it = min
{

rP − 0.15rI
rP

,
0.75rI − rP

rP
,

rP − d
rP

,
rI − rP − 3d

rI − rP

}
.

(13)

The combination with the best quality is selected. If Q is below the given threshold,
it is supposed that the eye in the image is squinted and upper and lower eyelids cover a
big share of the iris border. In this case, the variant with absent top and bottom iris local
maxima is tested. The formulas (9) and (10) are modified accordingly, iris center vertical
position is taken equal to that of the pupil: yI ≡ yP. If Q is below the threshold again, it is
decided that there is no feasible iris ring and in the image. Other types of occlusion are
not treated, the iris images are considered too bad for processing in this case. Thresholds
for Q and value of γ in (13) are estimated experimentally so as to reject the biggest share
of erroneously detected irises while preserving good outcomes. So, the method runs in
six steps:

Step 1. Gradient calculation.

This step is common with center detection.

Step 2. Candidates selection.

This step is similar to Step 2 of center detection. In addition to gradient value condi-
tion (1) angular condition (4) is imposed.

Step 3. Circular projecting.

Calculating circular projections (6) in four quadrants.

Step 4. Enumeration of maxima.

Finding local maxima (7) in projections. Prior to this the projections are smoothed
with a Gaussian filter to suppress redundant local maxima originating from noise.

Step 5. Enumerations of hypothetical irises.

Finding coordinates and radii of inner and outer circles from combinations of max-
ima (9), which hold conditions (12).

Step 6. Selecting the best iris.

Pair of circles is selected according to the qualities (8), (10), (13).
If no feasible iris is detected in step 5, the result is “no eye detected”.
A sample of the projection combination is presented in Figure 3. Real positions of

pupil and iris borders, taken from expert marking are depicted by arrows. There is no local
maxima corresponding to the iris border in the top projection ΠT(r) since the iris border is
occluded. Such minor obstacles do not prevent choosing correct combination.
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Figure 3. Four circular projections, their maxima positions and correct position of borders.

3.3. Pupil Refinement

Circular shortest path method constructs a closed contour in a circular ring [30].
The ring is centered at a given point and has inner and outer radii. CSP method is a
kind of optimal path method, i.e., it optimized the functional, which is the cost of the path.
We take the ring concentric to the approximate pupil circle and spread 30% of its radius
inside and outside.

In order to ease calculations polar transformation is carried out. The ring shape in
the source image is unwrapped to a rectilinear raster. Radial and angular coordinates of
the ring are mapped to abscissa and ordinate. Thus, the problem of locating the circular
shortest path is reduced to a problem of detecting the optimal path from the left to the
right side of the rectangle such that terminal points of the path have the same ordinate.
Contour is represented as a function ρ(φ), φ ∈ [0; 2π], ρ(0) = ρ(2π) with limited derivative
dρ/dφ < 1. In a discrete rectilinear raster of size W×H the contour is turns to a sequence of
points: {(n, ρn)}, n ∈ [0; W− 1]. Limitations to the derivative transforms to |ρn+1− ρn| 6 1,
edge condition is set as |ρW−1 − ρ0| 6 1.

Consider points (n, ρ′) and (n + 1, ρ′′) from adjacent columns of the raster. Denote the
cost of passing between them as

C((n, ρ′), (n + 1, ρ′′)) ≡ Cn(ρ
′, ρ′′) = C(I)

n (ρ′, ρ′′) + C(O)
n (ρ′, ρ′′) . (14)

This cost is a sum of inner and outer parts.
Inner cost is a function of contour shape, designed in a way to promote its smoothness:

C(I)
n (ρ′, ρ′′) =





0 , ρ′ = ρ′′ ,
τi , |ρ′ − ρ′′| = 1 ,
∞ , |ρ′ − ρ′′| > 1 .

(15)

Value of τi > 0 is a parameter defining the magnitude of a “force”, which pulls the
contour towards a straight line. Optimizing the inner part alone would give horizontal
lines in polar raster, i.e., ideal circles with the given center in source image.
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Outer cost is designed to make the contour pass through border pixels. So it is low in
boundary points (the gradient vector is big and perpendicular to the local direction of the
contour) and is high otherwise. The outer part is the cost of passing the point (n, ρ′):

C(O)(n, ρ) =

{
0 , (x, y) ∈ Ω3 ,
τo; , (x, y) /∈ Ω3 ,

(16)

where Ω3 is the set of points defined by (5), x and y are the coordinates of the source image
point, which was mapped to (n, ρ).

Optimal contour S = {ρn}W
n=1 is the one minimizing the total cost:

S∗ = arg min
S

W

∑
n=1

Cn(ρn, ρn+1) . (17)

This discrete optimization problem can be solved by various methods. Here the method
works in quite a narrow ring and the exhaustive search is faster due to small overhead.

Denote sum in (17) as Σ. In the best case Σ = 0, in the worst case Σ = W(τi + τo).
Mapping this into the range [0; 1] where value 1 stands for best we obtain the quality

Qre f = 1− Σ
W(τi + τo)

. (18)

The contour is considered acceptable if Qre f > 0.5, otherwise the decision is made that
the pupil border cannot be detected with the required precision and the segmentation is
terminated.

The algorithm runs in five steps.

Step 1. Candidates selection.

The same gradient calculation as in the first step of previous methods is used.
Then the conditions (1), (4) are imposed as in Step 2 of base radii detection. However,
a smaller angular threshold τφ = 300 is set since the center position is known with bet-
ter precision.

Step 2. Polar transform.

The transform creates an image (rectangular raster) P(φ, ρ), φ ∈ [0, W − 1], ρ ∈
[0; H − 1] by calculating a brightness value in each of its pixels (φ, ρ). This brightness is
taken from source image b(x, y) where its coordinates are estimated as

x(φ, ρ) =

(
r1 +

r2 − r1

H
ρ

)
cos
(

2πφ

W

)
,

y(φ, ρ) =

(
r1 +

r2 − r1

H
ρ

)
sin
(

2πφ

W

)
,

(19)

where r1 and r2 are the inner and outer radii of the ring in the source image, and the
coordinate origin of the source image is placed at the center of the ring. The brightness of
the point of the polar image is obtained by bilinear interpolation:

N(ρ, φ) =

(1− {x})(1− {y})b(bxc, byc)+
{x}(1− {y})b(bxc+ 1, byc)+
(1− {x}){y}b(bxc, byc+ 1)+

{x}{y}b(bxc+ 1, byc+ 1) ,

(20)

where bac and {a} define integer and fractional parts of a.
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Step 3. Optimal path tracking.

Finding S∗ according to (14)–(17).

Step 4. Transforming to original coordinates.

Restore the coordinates of the optimal path from Oρφ polar system back to the source
image Oxy system.

Step 5. Estimating equivalent circle.

Pupil border contour is not a circle precisely; however, we can define an equivalent
circle, with area and center of mass same as those of the figure enclosed into the pupil
border contour. The center and radius of the equivalent circle are:

xeq =
Mx

M
, yeq =

My

M
, req =

√
M
π

,

M = |Ω4| , Mx = ∑
(x,y)∈Ω4

x , My = ∑
(x,y)∈Ω4

y ,
(21)

where Ω4 is the area inside contour S∗ in source image. This equivalent circle is further
used as the pupil border, and it happens to be a better model due to its stability [31].

4. Experiments with Iris Segmentation

Iris segmentation here results in detecting two nearly concentric circles, which are
approximating inner and outer borders of iris ring.

Assessment of the iris segmentation quality can be carried out in the following ways:

• Matching against manual segmentation by a human.
• Matching against rivals disclosed in the literature.
• Applying obtained segmentation further to iris recognition. Under the assumption that

more precise detection reduces the number of classification errors this will indirectly
estimate segmentation quality.

In order to compare the results of the proposed system with the known analogs,
the following publicly available iris image databases were used: CASA-3-Lamp and
CASIA-4-Thousand [32] (totally 54,434 images), BATH [33] (31,988 images), NDIRIS [34]
(64,980 images), UBIRIS-1 [35] (1207 images).

4.1. Matching against Manual Segmentation

All images were processed by a human expert, who marked two circles approximating
iris borders in each of them or rejected if the iris was not visible or of poor quality. (In fact,
there were very few, less than a hundred altogether, images rejected at this stage.) We as-
sume that the expert did it accurately; therefore this segmentation is taking for ground truth.
Denote the manually marked circles as (x, y, r)∗P for pupil and (x, y, r)∗I for the iris. Values
of absolute and relative errors of eye center detection averaged in databases

εC,abs = 〈∆〉 , εC,rel =

〈
∆
r∗P

〉
, ∆ =

(
(xC − x∗P)

2 + (yC − y∗P)
2
)1/2

(22)

are given in Table 1.
It can be seen that for all databases except for the small bases MMU and UBIRIS,

which contain low-resolution images, and UBIRIS, which contain images with small pupil
size, the mean absolute deviation of the detected eye center from the true center of the
pupil does not exceed four pixels and the relative deviation does not exceed one-tenth of
the radius.
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Table 1. Errors of eye center detection.

Database εC,abs, Pixels εC,rel , %

BATH 2.85 5.27

CASIA 2.94 7.47

MMU 3.22 15.5

NDIRIS 3.12 6.30

UBIRIS 8.29 22.3

The next method of the system is base radius detection. Table 2 presents the average
deviations of the detected centers and radii of the pupil and the iris from those marked by
human experts.

εP,abs =

〈(
(xP − x∗P)

2 + (yP − y∗P)
2
)1/2

〉
, εrP,abs = 〈rP − r∗P〉 ,

ε I,abs =

〈(
(xI − x∗I )

2 + (yI − y∗I )
2
)1/2

〉
, εrI,abs = 〈rI − r∗I 〉 ,

(23)

Table 2. Errors of base radii detection, pixels.

Database εP,abs εrP,abs εI,abs εrI,abs

BATH 2.15 1.66 6.23 2.05

CASIA 2.58 1.60 17.41 4.21

MMU 3.31 2.05 13.01 5.11

NDIRIS 2.33 2.73 5.34 2.34

UBIRIS 6.03 5.78 7.68 11.35

It is seen that the mean error in detecting the pupil center is reduced compared with
the first column of Table 1.

Table 3 shows the errors for the final circles of the pupil and the iris obtained by the
system, calculated according to (23).

Table 3. Errors of final iris parameters detection, pixels.

Database εP,abs εrP,abs εI,abs εrI,abs

BATH 0.52 1.42 2.48 1.71

CASIA 1.05 1.13 2.44 1.62

MMU 0.97 1.77 1.92 4.35

NDIRIS 0.84 1.14 1.97 2.26

UBIRIS 2.27 5.37 3.25 5.82

4.2. Matching against Other Methods

Table 4 compares the computation time and errors in determining the pupil parameters
for the presented system and its analogs. The comparison was carried out with the methods
described in [3,36–39].

The third method to assess the algorithm of iris segmentation, i.e., applying its results
to iris recognition is disclosed further.
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Table 4. Matching against other methods.

Database Error, Method

Pixels Wildes Daugman Masek Ma et al. Daugman-2 Presented

BATH εP,abs 3.44 3.73 5.32 4.29 3.27 0.52
εrP,abs 4.38 4.54 6.72 4.65 3.19 1.42

CASIA εP,abs 5.37 2.15 3.67 4.79 1.19 2.44
εrP,abs 6.12 4.39 5.15 5.39 3.02 1.62

MMU εP,abs 3.15 2.61 4.98 3.92 1.14 0.97
εrP,abs 3.96 4.18 5.78 4.67 3.76 1.77

NDIRIS εP,abs 6.37 2.13 5.59 5.92 1.79 0.83
εrP,abs 7.51 3.53 7.23 7.38 3.11 1.14

5. Feature Extraction and Matching

We use the standard approach [3] here, which first transforms the iris ring to a so-called
normalized image. This image is a rectangular raster, it is obtained from the iris ring by the
polar transformation, analogous to (19), (20), where r1 and r2 are set to the radius of pupil
and iris, respectively. In fact, more elaborate version of (19) is used:

x(φ, ρ) =
(

1− ρ

H

)
x1

(
2πφ

W

)
+

ρ

H
x2

(
2πφ

W

)
,

y(φ, ρ) =
(

1− ρ

H

)
y1

(
2πφ

W

)
+

ρ

H
y2

(
2πφ

W

)
,

x1(φ) = xP + rP cos(φ) , y1(φ) = yP + rP sin(φ) ,

x2(φ) = xI + rI cos(φ) , y2(φ) = yI + rI sin(φ) ,

(24)

where xP, yP, rP are the position and radius of pupil and xI , yI , rI are the position and
radius of iris. In comparison to (19) this variant accounts for the difference of pupil and
iris centres.

The key idea of standard iris feature extraction is to convolve the normalized iris
image with a filter, calculating the most informative features of the texture. Earlier Gabor
wavelet was used for feature extraction. In one-dimensional space, it is represented as

gσλ(x) = exp
(
− x2

2σ2

)
exp

(
−i

x
λ

)
, Gσλ(u) = exp

(
− (u− λ−1)2σ2

2

)
, (25)

where σ defines the width of the wavelet in the spatial domain, λ is the wavelength of
modulation of the Gaussian by a harmonic function. By introducing inverse values S = 1/σ
and W = 1/λ, a simplified representation in the frequency domain can be obtained:

GSW(u) = exp
(
− (u−W)2

2S2

)
. (26)

It turned out that the modification of the Gabor wavelet called Log-Gabor function is better
for feature extraction. Log-Gabor is given in the frequency domain as:

GSW(u) = exp

(
− log2(u/W)

2 log2(S/W)

)
= exp

(
− (log u− log W)2

2 log2 L

)
. (27)

This is equivalent to (26), in which each variable is replaced by its logarithmic coun-
terpart. L = S/W = λ/σ represents the ratio of the modulation wavelength to the width
of the Gaussian. Research has shown that Log-Gabor wavelets are most likely optimal for
the template generation problem. Therefore, we use this type of filter. The parameter λ is
essentially the characteristic size of the objects in the image extracted by this filter, and L
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is the number of periods of the harmonic function in Equation (25) which have sufficient
amplitude and influence to the result. Optimal values of λ and L are selected according
to [40].

Iris features V(φ, ρ) are calculated by convolution of the normalized image (20) with a
Gabor or Log-Gabor filter, the transformation is performed in the spectral domain:

V(φ, ρ) =N(φ, ρ) ∗ gσλ(φ) =

=F−1{F{N(φ, ρ)}F{gσλ(φ)}} =
=F−1{F{N(φ, ρ)}GλL(u)} .

(28)

where σ and λ define the width of the wavelet along the angular axis and the modulation
frequency, s is the width along the radial axis, F is the Fourier transform. The features used
to form the patterns are computed as binary values of real and imaginary parts of the array
V(φ, ρ):

TRe(φ, ρ) = H[<(V(φ, ρ))] ,

TIm(φ, ρ) = H[=(V(φ, ρ))] ,
(29)

where H[·] is the Heavyside function. So, eye image b(x, y) produces a template T(φ, ρ),
and each element of the template contains two bits.

We use features raster of 13 pixels in radial direction r and 256 pixels in tangential
direction φ. Since each pixel produces two bits in (29) the total size of the template is
6656 bit [40].

Although here we do not build a classification system, which calculates a distance
between templates and compares it against a classification threshold, template matching
is implicitly present, as it will be shown below. Thus, we need to describe the match-
ing method.

In a standard iris recognition approach templates T1 and T2 are matched by normalized
Hamming distance:

ρ0(T1, T2) =
1
|Ω| |{T1(φ, ρ) 6= T2(φ, ρ), (φ, ρ) ∈ Ω}| , (30)

where Ω = M1 ∩M2 is the intersection of the visible areas (presenting true data) of the
two irises. Because of the uncertainty of the iris rotation angle, a more complex distance
formula is used. The rotation of the original image of the eye is equivalent to a cyclic shift
of the normalized image along the Oφ axis. Therefore, one of the templates (together with
the mask) is subjected to several shift and compare operations:

ρ(T1, T2) = min
ψ

ρψ(T1, T2) ,

ρψ(T1, T2) =
1

Ω(ψ)
|{T1(φ + ψ, ρ) 6= T2(φ, ρ), (φ, ρ) ∈ Ω(ψ)}|

Ω(ψ) = M1(φ + ψ) ∩M2(φ) ,

(31)

where ψ ∈ [−S; S] is the image rotation angle.
Here things may be simplified. For the embedding method, only irises with low

occlusion levels are acceptable. Thus, it is supposed that masks M1 and M2 cover all of the
iris area, and Ω set spans all templates. Omitting mask, rewriting |{T1 6= T2}| as ∑ T1 ⊕ T2
and using single order index i instead of coordinates (φ, ρ) put (30) as:

ρ0(T1, T2) =
1
N

N

∑
i=1

T1(i)⊕ T2(i) , (32)
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where T(i) is the i-th bit of the template, operation ⊕ is the sum modulo 2, N is the size of
the template. Furthermore, (31) transforms to

ρ(T1, T2) = min
ψ

ρψ(T1, T2) ,

ρψ(T1, T2) =
1
N

N

∑
i=1

T1(i(ψ))⊕ T2(i) ,
(33)

where i(ψ) index is recalculated accordingly.
The recognition system is designed to supply the following conditions with the lowest

possible errors:

T1, T2 taken from same person =⇒ ρ(T1, T2) 6 θ ,

T1, T2 taken from different persons =⇒ ρ(T1, T2) > θ .
(34)

Violation of the first condition in (34) is called false reject and its probability is referred
to as false reject rate (FRR). FRR of the system is estimated in tests as the ratio of the
number of false rejects to the number of all matches of biometric traits of the same persons.
Analogously, violation of the second condition in (34) is called false accept and its probability
is named false accept rate (FAR). The threshold θ is chosen from a trade-off between FRR
and FAR.

6. Selecting the Embedding Method

There are many works, where biometry is used in combination in combination with
other security measures such as usual secured passwords, for instance [41,42]. Here, we
intend to develop a system that uses only data transmitted insecurely—the only protection
is the iris of the owner.

We also limit ourselves to the case of symmetric encryption. During encoding the
message M and the secret key K are combined into the code by the encoder function Φ:
C = Φ(M, K), and during decoding the message is reconstructed from code and key by
decoder functions Ψ: M = Ψ(C, K). If key K is not present, it is impossible to obtain M from
C, thus the code C can be made public. Symmetric encryption requires that K is repeated
exactly. Not a single bit of it can be changed.

The central problem in automatic biometry systems can be put as developing the
optimal classifier. The classifier consists of a distance function between two biometric data
samples ρ(D1, D2) and a threshold θ (34). The function ρ can be treated as a superposition
of two sub-functions. The first one is the calculation of the biometric template T from
source data T = T(D), Second sub-function is the calculation of the distance itself ρ(T1, T2).
Features should be selected, which are stably close for the same person and stably far for
different persons with respect to function ρ. As a rule, the elements of biometric templates
are highly correlated. On the contrary, cryptographic keys are deliberately developed so as
to have uncorrelated bits. However, the entropy (information amount) of an iris template
is comparable to that of currently used cryptographic keys [43]. This suggests that it is
possible to implement a cryptographic key in biometrics without reducing its robustness.

It should be noted that most of the works presenting the application of cryptographic
methods to biometrics, develop the scenario of cancelable biometrics [44]. Its essence is
producing such biometric templates that source biometric data cannot be extracted or
guessed anyhow from any number of templates. Cancelable biometrics is nothing but a
kind of fuzzy hashing [45]. Formally, an additional step is introduced in the calculation
of the distance function ρ. Distance ρ(S1, S2) is calculated, S = S(T) is the hash function.
Obviously, the recognition problem is still being solved here. Thus, cancelable biometrics is
just a remake of identification and cannot be used for our purposes.

There are two approaches to how to process volatile biometrics, leading them to an
unchanging cryptographic key. The first approach employs already computed biometric
features constituting the template T, which are supplemented with error correction using
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different variants of redundant coding. This approach is used here. In the second ap-
proach [46] biometric features are not obtained in explicit form. Instead, a neural network
is trained, which directly produces a target key from raw biometric data D. The advantage
of this approach is said to be less coding redundancy by using continuous data at all stages
and quantization only at the end. Disadvantages are the unpredictability of neural network
training, lack of guaranteed quality of performance, including uncertainty in retaining
quality in a wider set of data than that used in training.

The task of reproducing a cryptographic key is accomplished by biometric cryptosystems
(BC) [45,47], also called biometric encryption [48]. There are two classes of BCs, which
implement different approaches: key generation and key binding.

Methods of key generation, i.e., direct production of the key from raw biometry or
template without using supplementary code are studied in [49–51]. Biometric template T
is mapped into the space of cryptographic keys (usually bit strings) by a special function:
K(T) : T → {0, 1}n, where n is the length of the key. One function is used for registration
and recognition. The conditions must hold

T1, T2 taken from one person =⇒ K1 = K2 ,

T1, T2 taken from different persons =⇒ K1 6= K2 .
(35)

These conditions are closely related to (34); however, in (35) the task is to reproduce
the sequence of bits. The results of the methods without supplementary data are not
very hopeful for practical applications. Error level is generally very high in this approach.
In [50] the authors report FRR = 24% at FAR = 0.07% even for homogeneous high-quality
images [32]. In [51], the idea is based on assumption that two iris codes can be mapped
to some “closest” prime number and this number will be the same for the codes from one
person. Considering the variability of iris codes even for ideal conditions this is unlikely to
happen. The authors do not report the study of recognition errors.

Scenario with helper code demonstrates much better performance. During registration
the encoder takes the template T1, computes the key K1 = K(T1), encrypts the message
M with K1 and additionally outputs some helper code h = Φ(T1). Immediately after
this the original T1, M, and K1 are destroyed, leaving only encoded message M′ and
helper code h. The original template T1 or key T1 cannot be recovered from M′ and h.
During presentation another set of biometric traits T2 is obtained and the key K2 = Ψ(T2, h)
is calculated. Functions Φ and Ψ are designed so as to satisfy (35). Thus, by providing
biometrics and helper code, the registered user can obtain the original key K2 = K1,
and hence the message M. At the same time, the intruder, even knowing h, will not be able
to obtain K1 [52], so the helper code h can be made non-secret.

The biometric data itself may be used as a key: K ≡ T. In this case, at the stage
of presentation, original biometrics T1 is restored from presented T2. This scenario is
called secure sketch [53]. However, the works based on secure sketches and available in the
literature show rather modest results. For example, the system [54] is workable under the
assumption that intraclass variability of features is below 10%. In practice, the variability is
more than 20%. This conditions the inoperability of the proposed method.

The key binding scheme in the above terms looks like a pair of encoder function
C = Φ(K1, T1) and decoder function K2 = Ψ(C, T2), which holds the (35) condition.
The advantage is that K1 is set externally, rather than created by the developed algorithm.
From this point of view, K1 can be perceived as a message M, which is external to the
encryption system. This immediately simplifies the biometric cryptosystem to a symmetric
encryption scenario. The difference is that the secret key K must be the same in encoding
and decoding in symmetric encryption, whereas the biometric features (also secret) differ:
T1 6= T2. This scenario is called fuzzy extractor [53].

If Ψ is an inverse of Φ and biometric data are composed of real numbers the scenario
is referred to as shielding functions [55]. So-called fuzzy vault [43] is another popular method
of key embedding. It is founded on Shamir’s secret separation scheme [56]. Here rather
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low, practically meaningful error values are obtained: [57] reports FRR = 0.78% and [58]
reports FRR = 4.8% at zero FAR. However, both results are shown using a single small
image database (less than 1000 samples).

The most promising for use in iris biometry is fuzzy commitment scenario [59]. In [60],
a simple algorithm is proposed. The basic idea is to use employ the error correcting coding
(ECC) [61]. ECC is widely used in data transmission over noisy channels. Generally, data
transmission involves a pair of functions also called encoder and decoder. The encoder
R = Φp(K) maps the transmitted message K into a larger redundant code R. Then R is
passed through the transmission channel, which alters each of its symbols independently
with the probability q, and the altered code R′ is received at the other side. The decoder
K = Ψp(R′) is able to restore K back from R′ under the condition that no more than a p
share of values were altered. Call p as tolerated error probability. Thus, if q < p then the
message is restored with a probability close to 1. Otherwise, the probability to restore K
is close to 0. One can design Φ and Ψ for a wide range of transition error probabilities
p ∈ [0; 0.5). Redundancy grows as p approaches to 0.5, for p = 0.5 it becomes infinite.

Here ECC is used as follows. The encoder and decoder are constructed so as to have a
tolerated error probability equal to the classification threshold of the biometric recognition
system: p = θ. Upon registration, a password K1 is constructed and the user’s template T1 is
obtained. The code R1 = Φp(K1) (it generally looks like pseudorandom numbers) is bitwise
summed modulo 2 (exclusive or) to the iris template yielding the public code C = R1 ⊕ T1.
After C is calculated, template T1, message K1, and redundant code R1 are destroyed. None
of them can be extracted from C alone. Thus, it is possible to expose C publicly and transmit
it through unprotected channels. Upon presentation iris of a person is registered once
more and a new template T2 is formed. Of course, it is not equal to the original one. Since
R2 = C ⊕ T2 = (R1 ⊕ T1)⊕ T2, then R1 ⊕ R2 = T1 ⊕ T2. If the templates T1 and T2 are
taken from one person, the distance is very likely to be less than the classification threshold:
ρ(T1, T2) 6 θ, so ρ(R1, R2) 6 θ. By the nature of (32) it means that less than p share of bits
differ in R1 and R2 and the original secret key K1 = K2 = Ψp(R2) will be recovered. On the
other hand, if the templates are classified as belonging to different persons ρ(T1, T2) > θ,
the probability of restoring the original K1 is close to zero. The scenario of operation is
shown in Figure 4.

Figure 4. Scenario of the method [60].
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Work [60] proposes a cascade of two ECC algorithms: Reed–Solomon [62] and
Hadamard [61]. Reed–Solomon coding handles an entire block of data of length L, process-
ing it as a set of L/s s-bit symbols. Any arbitrary symbols (not bits!) can be different as
long as their number is not greater than pL. In [60], this coding is aimed to combat group
errors appearing from various occlusions (eyelashes, eyelids), which cover significant areas
of the iris. Hadamard coding processes small chunks of data (few bits), and corrects no
more than 25% of the errors in each chunk. For Hadamard code to be most successful in
error correction, the errors (deviations of T′ from T) should be evenly scattered across the
template with a density of no more than 25%. This coding is designed to deal with single
pixel deviations arising from camera noise. The key K is encoded by Reed–Solomon code,
the result is processed by Hadamard code.

This cascade performs well if the share of altered bits in one person’s templates does
not exceed 25%. However, in practical databases and applications this share is bigger which
leads to an unacceptably high (more than 50%) false reject probability. To overcome this
difficulty, it is proposed [42] to introduce additional template masking: every fourth bit of
the iris templates is set to zero. Due to this, the proportion of altering bits in the templates
of one person is reduced below 20%. This easy solution ruins the very idea of security:
if some bits of the template are fixed, then appropriate bits of redundant code are made
known to code crackers and can be used to attack the code. A critique of this method
in terms of resistance to cracking is given in [46]. The attack is carried out by gradually
restoring the original template.

Here we attempt to refine the fuzzy extractor [60] in a more feasible method and build
a practically applicable key embedding method. Based on the iris feature extraction system,
experiments against several publicly available iris databases are carried out. Two steps
are added to the encoder tail (and hence, decoder head): majority coding of single bits
and pseudorandom bit mixing. Three of these four steps have parameters, which affect
their properties, including error tolerance and size. Optimal values of these parameters are
selected to fit the redundant code size into the iris template size, keep the error tolerance
near the target level, and maximize the size of encoded key.

7. Determining the Threshold

So, if the registration template T and the presentation template T′ are at Hamming
distance (32) below the threshold θ, then the encrypted message M is recovered with high
confidence; otherwise, the probability to recover it is extremely low (order of random
guess). Thus, the threshold θ separates “genuine” and “intruder” templates T′ with respect
to T.

It is necessary to determine the value of the threshold p, which will be used for
separating “genuines” and “impostors”. With this value redundant coder Φp and decoder
Ψp will be devised, capable to restore message for “genuine” template and making it
impossible for “impostor” template.

The following publicly available databases were used for the experiments: CASIA-4-
Thousand [32], BATH [33], ICE subset of NDIRIS [34], UBIRIS-1 [35].

Table 5 gives a list of databases used with the obtained thresholds.

Table 5. Database characteristics and thresholds.

Number of θ at FAR at FRR at
Database Eyes Images FAR= 10−4 θ = 0.35, θ = 0.35,

×10−4 ×10−2

BATH 1600 31988 0.402 0.03 4.46
CASIA 2000 20000 0.351 0.97 6.71
ICE 242 2953 0.395 0.011 7.13
UBIRIS 240 1207 0.401 0.001 5.18

For each database the following numbers are given:
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• The number of individual eyes. It does not match the number of participating persons
as some persons in the database supplied images from both eyes.

• The number of eye images. Each eye produced from one to several hundred images,
depending on the database collection scenario.

• Value of the threshold θ, at which the false accept rate (FAR) is 10−4. This value is
the probability of a random guess of a four-digit pin code. It is used for reference in
developing biometric recognition systems so that they would have the same or less
probability of being defeated as pin-code-based systems.

• False accept rate at θ = 0.35.
• False reject rate at θ = 0.35.

Since FAR(θ) is a monotonous growing function, we select a minimal θ(FAR = 10−4)
from the fourth column of the table. It is θ = 0.351 for the CASIA database. Other databases
have even smaller FAR with this value of θ.

So, the value of θ = 0.35 is the tolerated error probability p for constructing the
ECC. Table 5 shows the values of false accept and false reject rates for this threshold.
The maximum false reject rate does not exceed 8%.

8. Error Correction Cascade

We describe the applied methods in the sequence of their execution by the decoder,
which is also the method “from simple to complex”. In the beginning data unit is a
single bit, at the end it is the whole message. The problem is to devise an error correction
method, which encodes a message into a block of data with redundancy, and then is able
to reconstruct the message if no more than p 6 0.35 share of these bits is altered. Popular
Walsh-Hadamard and Reed-Muller [63] methods can be used only for p < 0.25, thus they
are not directly applicable. Furthermore, the errors of neighboring elements of the template
are strongly correlated, whereas almost all ECC methods show the best performance against
uncorrelated errors.

8.1. Decorrelation by Shuffling

It is more difficult to design methods usable against correlated errors, and their
performance is worse compared to the case of uncorrelated errors. Much of the effort in
this case is directed precisely at decorrelation. Luckily, the whole block of data is available
in our task (rather than sequentially feeding with symbols as in many transmission channel
systems) and a simple method of decorrelation can be applied which is the quasi-random
shuffling of iris template bits. A bit of the template array T is placed from position i into
position ij mod N:

T̃(ij mod N) = T(i) , i = 0, N − 1 , (36)

where j is a number, relatively prime to total number N of bits in array. Relatively prime
condition guarantees ij mod N number being unique for i = 0, N − 1 and the shuffling
T → T̃ being reversible. After shuffling the neighboring bits of T̃ are taken from bits,
which were far away from each other in T and their errors are uncorrelated. If one rule
of shuffling is always applied then bits in all templates change their position in the same
method, and calculation (32) affects the same pairs of bits. Thus, Hamming distance is
unchanged and all developments from it are preserved.

This method does not change the size of the code.

8.2. Bit-Majority Coding

The error rate p = 0.35 is too big for most error correction codes. Practically, the only
possibility here is the majority coding of single bits. It is applicable for p < 0.5. At the
coding stage, the bit is repeated n times. At the decoding stage, the sum of n successive
bits is counted. If it is below n/2, zero bit value is decoded, otherwise a unit. It is easy to

154



Algorithms 2023, 16, 87

see that odd values of n are preferable. If p is the error probability of a single bit and bits
are altered independently the error probability of decoded bit is

pD(p) = 1−
(n−1)/2

∑
l=0

(
n
l

)
pn−l(1− p)l = 1− (1− p)n

(n−1)/2

∑
l=0

(
n
l

)(
p

1− p

)l
. (37)

If the error probability of one bit of the code is p = 0.35, then bit majority coding with
n = 7 will transmit bits with error probability pD = 0.2. This value is below 0.25 and allows
the use of Hadamard codes. Majority coding with n = 15 will give pD = 0.12 for p = 0.35.
A larger duplication is possible, but results in a larger code size.

The parameter of this method, affecting its size and error probabilities is the bit
repetition rate n.

8.3. Block Coding

Denote the set of all bit strings of length n as Bn. This set can be viewed as a set of
vertices of n-dimensional binary cube. Consider the string of length k called message here:
M ∈ Bk. There can be 2k different messages. Consider the set of 2k strings of length n > k
called codes. There is a one-to-one correspondence of messages and codes. Since the code
length is greater than the message length, the coding is redundant and it is possible to alter
some bits of the code but still be able to restore the corresponding message. The idea of
block coding is to select such 2k codes out of their total amount of 2n, that the probability
of restoration error is minimal. The set of selected codes is called code table C. In terms of
the n-dimensional binary cube, this means selecting 2k vertices so as to maximize minimal
Hamming distance between selected vertices:

C∗ = arg max
C

min
u,vs.∈C

u 6=v

ρ(u, v) , ρ∗ = min
u,vs.∈C∗

u 6=v

ρ(u, v) , (38)

where ρ is the distance (32).
Hadamard coding is based on a Hadamard matrix, which is constructed iteratively:

H0 = (0) , Hn+1 =

(
Hn Hn
Hn Hn

)
, (39)

where H is a bit inversion of all elements of H. Hadamard matrix Hk is a square matrix
with 2k rows. It gives the coding table naturally: each row number is the message and
the row contents is the code. It can be proven that for Hadamard codes ρ∗ = 2k−1. We
use so-called augmented Hadamard codes, where another 2k strings are added to the code
table. These strings are bitwise inverted versions of the strings obtained from (39). For this
code table ρ∗ = 2k−2.

There is a simple and well-known estimation (called Hamming boundary) of the proba-
bility of block coding error, which for augmented Hadamard codes is:

pH 6 1− Pcorr = 1− (1− p)n
(n−1)/4

∑
l=0

(
n
l

)(
p

1− p

)l
, (40)

where p is the probability of bit inversion. Since this stage inputs the output of bit majority
decoding, the value of p here is the value of pD from (37). Let us redefine pD → p in this
section for simplicity. Furthermore, one can note that (40) is the same as (37) except for the
upper summation limit.

However, this is a rather rough estimate, which grows worse with the increase in n.
For small n exact calculations performed by simple exhaustive search, the results are given
below. The message is decoded assuming that the original code is distorted minimally,
i.e., for the code C we will look for the closest code C∗ ∈ C. Let us call it attractor. There can
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be several attractors (several codes can have the same minimal distance to C). If there are
several attractors, a random one is chosen. Let us denote the set of attractors for C as A(C).

The probability of decoding the correct message is that of choosing the correct attractor

Pcorr = ∑
M

P(M)∑
C

p(C∗|C)p(C|C∗) , (41)

where P(M) is the probability to obtain message M as input. Message M is encoded by
code C∗ ∈ C. Then p(C|C∗) is the probability to obtain distorted code C while transmit-
ting C∗, p(C∗|C) is probability to recover C∗ (hence, correct M) from distorted code C.
Suppose the probability of all messages is the same. Then the sum by M is reduced and

Pcorr = ∑
C

p(C∗|C)p(C|C∗) . (42)

Without loss of generality, due to the symmetry of Hadamard codes [61], we can
assume C∗ to be a zero code, i.e., a string of zero bits (as is in standard code). Then
the probability of obtaining a certain code C from zero code is pb(C)(1− p)n−β(C), where
β(C) ≡ ρ(0, C) is number of unit bits in C, and

Pcorr = ∑
C

p(0|C)pβ(C)(1− p)n−β(C) , (43)

where p(0|C) is the likelihood to obtain zero code from C. Define the set of attractors for
string C as code table entries with minimal distance to the code:

A(C) =
{

C′ ∈ C : ρ(C′, C) = ρmin(C)
}

,

ρmin(C) = min
C′∈C

ρ(C, C′) . (44)

Define the cardinality of this set as α = |A(C)| and state that α = 0 if there is another
code table entry more close to C then the correct code: ∃C′ ∈ C, C′ 6= C∗ : ρ(C′, C) <
ρ(C∗, C). Then we can write

p(0|C) =
{

0 , α = 0 ,
1/α , α 6= 0 .

(45)

For small values of n all points of code space Bn can be enumerated and their distribu-
tion by distance to zero β and attractor number α can be estimated:

H(β̃, α̃) =
∣∣{C : 0 ∈ A(C), |α(C)| = α̃ , β(C) = β̃

}∣∣ ,

β̃ ∈ [0; n] , α̃ ∈ [1; 2k] .
(46)

Substituting to (43) we get:

Pcorr = ∑
α 6=0

∑
β

H(β, α)

α
pβ(1− p)n−β = ∑

β

pβ(1− p)n−β ∑
α 6=0

H(β, α)

α
(47)

and decoding error

pH = 1− Pcorr = 1− (1− p)n ∑
β

h(β)

(
p

1− p

)β

, h(β) = ∑
α 6=0

H(β, α)

α
. (48)

The formula is the same as (40) except for the coefficients and summation limits.
The values of h(β) for the augmented Hadamard code of order 5 (n = 25 − 1 = 31,
k = 5 + 1 = 6) are given in Table 6. All meaningful values are given, and values for other
α and β are zero. For instance, if the code is distorted in 12 bits or more, it will be never
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recovered to the correct value, since there will be another valid code from the code table,
closer to distorted value.

Table 6. Values h(β) and pH(β) for Hadamard code k = 6, n = 31.

β h(β) pH(β)

0 1 0.
1 31 0.
2 465 0.
3 4495 0.
4 31,465 0.
5 169,911 0.
6 736,281 0.
7 2,629,575 0.
8 7,490,220 0.026
9 13,798,100 0.164
10 8,265,964 0.508
11 427,924 0.810

Up to values β = 7 only one attractor is chosen, i.e., at this or less divergence the
message is definitely recovered. This corresponds to Hamming boundary (40). However,
even with larger divergences, up to β = 11 there is a significant probability of correct
recovery. This plays a big role since the majority of distorted codes fall outside of Hamming
boundary but still have the significant probability to restore the message correctly. Thus,
the probability (40) is overestimated. For example, for the considered code and error
p = 0.250, the formula (40) gives pH = 0.527, which would seem to prevent using such a
code. However, the calculation using the formula (48) gives pH = 0.261, which is fairly
suitable for use in the next step of coder.

The Hadamard coding parameter is only the word length k. The size of the codeword
n is dependent: n = 2k−1 for the augmented variant.

8.4. Reed–Solomon Message Coding

The unit of encoding for Reed–Solomon’s algorithm is the entire message, which is
divided into codewords of fixed size, s bits each. A stream of L bits is cut into k = dL/se
words. Then additional words can be added up to the total count of n by the coding
algorithms. It turns out that if no more than t = b(n− k)/2c codewords are altered then
it is possible to recover the message. So, Reed–Solomon code corrects no more than t of
errors, where t is half the number of redundant words. Denoting p = t/n, we get

p 6 n− k
2n

. (49)

This number is an estimate of the tolerated error probability of a codeword.
The Reed–Solomon method also imposes a limitation to a codeword count in the whole
message:

n 6 2s − 1 . (50)

The error probability in (49) is determined by the previous step: p = pH .
Hence, possible Reed–Solomon codes here are determined by codeword length s and
message length L.

9. Selection of Code Parameters

Four ECC methods are organized in a chain. Encoder runs Reed–Solomon, Hadamard,
bit majority and shuffling to obtain the redundant code. The decoder executes this chain
in reverse order. The encoder should obtain the code of size no more than the size of the
iris template, i.e., N = 6656 bits for the presented system. The code size cannot be larger,
duplication and masking are unacceptable, as they make it trivial to break such a code.
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Furthermore, of course, it is desired to embed the message of reasonable size. This is a
discrete constrained optimization problem.

ECC methods used here have the following parameters affecting their characteristics:
(1) decorrelation has no parameters; (2) majority coding is governed by the bit duplication
count n; (3) Hadamard coding depends on word size k, Reed–Solomon coding is parameter-
ized by word size s and message length L. Combinations of (n, k, s, L) values yield different
encoding with specific code length C(n, k, s, L) and error probabilities. The errors are the
aforementioned FRR and FAR. False rejection is a failure to recover the embedded key after
presenting the same person’s biometrics. False acceptance is recovering the person’s key
with another person’s biometric. The errors depend on ECC parameters: FRR(n, k, s, L)
and FAR(n, k, s, L). Furthermore, the formal statement of the problem is

FRR(n, k, s, L)→ min ,

s.t. FAR(n, k, s, L) 6 10−4 , C(n, k, s, L) 6 N.
(51)

10. Results and Comparison with Literature

The solution of (51) was found: L = 65, n = 13, k = 5, s = 5, FRR = 10.4%. Message
size L = 65 bits is considered satisfactory for “common” user keys. For bigger message
sizes there reasonable solution was not discovered. It should be noted that without bit
shuffling (not explicitly involved in (51)) the problem is not solved even for L = 65.

Table 7 contains the results reported in the literature in contrast with those presented
in this work.

Table 7. The results of iris biometric cryptosystems

Authors FRR/FAR DataSet Keybits

Wu et al. [64] 5.45/0.73 CASIA v1 1024
Rathgeb & Uhl [50] 4.92/0.0 CASIA v3 128

Hao et al. [60] 0.42/0.0 70 persons 140
Bringer et al. [65] 5.62/0.0 ICE 2005 40

Kanade08 et al. [42] 2.48/0.0008 ICE 2005 234
Presented 10.4/0.0 mixed 65

The presented system may seem not very successful against its rivals with respect
to error level and key length. However, one should note that each of these systems was
tested with a single database. Both CASIA databases have images of one eye taken from
adjacent video frames that results in the extremely high similarity of iris codes, inaccessible
in practice. The same issue concerns [60], they use a small laboratory database and their
results cannot be extended to real applications. ICE 2005 database is much closer to the real
world, it contains images of varying quality, time and conditions of registration. However,
both works [42,65] based on it use interleaving bits. If the bit sequence is fixed and known,
this ruins the cryptographic strength. If it is made secret, then it turns to just another
secret key, which should be passed securely: the very thing we try to avoid. Although the
presented system has the highest FRR, it is practically applicable and has no obvious holes
in security.

11. Conclusions

The set of methods allowing to build biometric cryptosystem based on iris images
is presented. It contains three main parts: iris segmentation, biometric template gen-
eration, and the method of embedding/extracting the cryptographic key to/from bio-
metric features. The original system of iris segmentation methods is described. Its dis-
tinction is estimating iris parameters at several steps (initial rough calculation, then re-
finement), by algorithms of a different kind. The sequence of detection of iris param-
eters is different from commonly employed as well. The template creation method is
a de facto standard Daugman-style convolution. The method for introducing a cryp-
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tographic key into iris biometrics is constructed using a fuzzy extractor paradigm. A
key of size up to 65 bits can be embedded, for larger sizes no solution has been ob-
tained. The challenge of high variance of biometric features has been overcome by
introducing bit majority coding. A high local correlation of errors was removed by
quasi-random shuffling. The system was tested on several databases of iris images.
A study of cryptography stability is still required.
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Abstract: Since cyber-attacks are ever-increasing in number, intensity, and variety, a strong need for a
global, standardized cyber-security knowledge database has emerged as a means to prevent and fight
cybercrime. Attempts already exist in this regard. The Common Vulnerabilities and Exposures (CVE)
list documents numerous reported software and hardware vulnerabilities, thus building a community-
based dictionary of existing threats. The MITRE ATT&CK Framework describes adversary behavior
and offers mitigation strategies for each reported attack pattern. While extremely powerful on their
own, the tremendous extra benefit gained when linking these tools cannot be overlooked. This paper
introduces a dataset of 1813 CVEs annotated with all corresponding MITRE ATT&CK techniques and
proposes models to automatically link a CVE to one or more techniques based on the text description
from the CVE metadata. We establish a strong baseline that considers classical machine learning
models and state-of-the-art pre-trained BERT-based language models while counteracting the highly
imbalanced training set with data augmentation strategies based on the TextAttack framework. We
obtain promising results, as the best model achieved an F1-score of 47.84%. In addition, we perform a
qualitative analysis that uses Lime explanations to point out limitations and potential inconsistencies
in CVE descriptions. Our model plays a critical role in finding kill chain scenarios inside complex
infrastructures and enables the prioritization of CVE patching by the threat level. We publicly release
our code together with the dataset of annotated CVEs.

Keywords: MITRE ATT&CK Matrix; techniques classification; BERT-based multi-labeling

1. Introduction

Cyberspace has become a fundamental component of everyday activities, being the
core of most economic, commercial, cultural, social, and governmental interactions [1]. As a
result, the ever-growing threat of cyber-attacks not only implies a financial loss, but also
jeopardizes the performance and survival of companies, organizations, and governmental
entities [2]. It is vital to recognize the increasing pace of cybercrime as the estimated
monetary cost of cybercrime skyrocketed from approximately $600 billion in 2018 to over $1
trillion in 2020 [3]. This effect has increased even further due to the COVID-19 pandemic [4].

In this context, the necessity for better cyber information sources and a standardized
cybersecurity knowledge database is of paramount importance, as a means to identify and
combat the emerging cyber-threats [5]. Efforts to build such globally accessible knowledge
bases already exist. MITRE Corporation set up two powerful public sources of cyber threat
and vulnerability information, namely the Common Vulnerabilities and Exposures list and
the MITRE ATT&CK Enterprise Matrix.

The Common Vulnerabilities and Exposures list is a community-based dictionary of
standardized names for publicly known cybersecurity vulnerabilities. Its effort converges
toward making the process of identifying, finding, and fixing software vulnerabilities more
efficient, by providing a unified naming system [6]. Despite their benefits and widespread
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usage, CVE entries offer little to no information regarding mitigation techniques or existing
defense strategies that could be employed to address a specific vulnerability. Moreover,
the meta-information of a CVE does not include sufficient classification qualities, resulting
in sub-optimal usage of this database. Better classification would translate to mitigating a
larger set of vulnerabilities since they can be grouped and addressed together [7].

The MITRE ATT&CK Enterprise Matrix links techniques to tangible configurations,
tools, and processes that can be used to prevent a technique from having a malicious
outcome [8]. By associating an ATT&CK technique to a given CVE, more context and
valuable information for the CVE can be extracted, since CVEs and MITRE ATT&CK
techniques have complementary value. Furthermore, security analysts could discover and
deploy the necessary measures and controls to monitor and avert the intrusions pointed
out by the CVE and cluster the CVEs by technique [9].

Even though linking CVEs to the MITRE ATT&CK Enterprise Matrix would add
massive value to the cybersecurity community, these two powerful tools are currently
separated. However, manually mapping all 189,171 [10] CVEs currently recorded to one
or more of the 192 different techniques in the MITRE ATT&CK Enterprise Matrix is a
non-trivial task and the need for automated models emerges to map all existing entries
to corresponding techniques. In addition, even if new CVEs would be manually labeled,
an initial pre-labeling using a machine learning model before expert validation would be
time effective and beneficial. Moreover, the model would provide technique labeling for
zero-day vulnerabilities, which would be extremely helpful for security teams.

The ATT&CK matrix supports a better understanding of vulnerabilities and what an
attacker could achieve by exploiting a certain vulnerability. ATT&CK technique details,
such as detection and mitigation, are useful for system administrators, SecOps, or DevSec-
Ops teams to obtain an assessment risk report in a short period of time while generating a
remediation plan for discovered vulnerabilities. The Center for Threat-Informed Defense
team has created a very useful methodology [11] that helps the community build a more
powerful threat intelligence database. The organization’s defender team has to understand
how important it is to bridge vulnerability and threat management with the adoption of this
methodology as more reliable and consistent risk assessment reports will be obtained [12].

Baker [12] highlights the importance of combining CVEs with the ATT&CK framework
to achieve threat intelligence. Years ago, it was considerably harder for security teams
to understand the attack surface, thus reducing their capacity to protect the organization
against cyber attacks. With the emergence of the ATT&CK project, the security teams have
a better overview of the CVEs based on known attack techniques, tactics, and procedures.

Vulnerability management can be divided into three categories, namely: the “Find
and fix” game, the “Vulnerability risk” game, and the “Threat vector” game. The first one
is a traditional approach where the vulnerabilities are prioritized by CVSS Score; this is
applicable for small organizations with less dynamic assets. The second category consists of
risk-based vulnerability management where organizational context and threat intelligence
(such as CVE exploited in the wild properties) are considered; this applies to organizations
that have security teams, but the number of CVEs is too large. The “Threat Vector” game
includes the understanding of how the hackers might exploit the vulnerabilities while
accounting for the MITRE ATT&CK framework mappings between CVEs and techniques,
tactics, and procedures. The third category is the most efficient model of threat intelligence,
with inputs delivered to the vulnerability risk management process from cyber attacks
that have occurred and are trending. As such, security teams should take into account
risks for building the vulnerability management program, but also threat intelligence to
have a better understanding of vulnerabilities and to discover the attack chains within the
network [13].

The aim of this paper is to develop a model that leverages the textual description found
in CVE metadata to create strong correlations with the MITRE ATT&CK Enterprise Matrix
techniques. To achieve this goal, a data collection methodology is developed to build our
manually labeled CVE corpus containing more than 18,100 entries. Moreover, state-of-the-

163



Algorithms 2022, 15, 314

art Natural Language Processing (NLP) techniques that consider BERT-based architectures
are employed to create robust models. We also target addressing the problem of a severely
imbalanced dataset by developing an oversampling method based on adversarial attacks.

Efforts have been already undertaken to interconnect CVEs to the MITRE ATT&CK
Framework. However, we identified limitations of existing solutions based on the research
gap in the literature regarding the identification of correspondences between CVEs to the
corresponding techniques from the MITRE ATT&CK Enterprise Matrix. The following
subsections details existing state-of-the-art techniques relevant for our task.

1.1. BRON

BRON [9] is a bi-directional aggregated data graph which allows relational path tracing
between MITRE ATT&CK Enterprise Matrix tactics and techniques, Common Weakness
Enumerations (CWE), Common Vulnerabilities and Exposures (CVE), and Common Attack
Pattern Enumeration and Classification list (CAPEC). BRON creates a graph framework that
unifies all scattered data through inquiries performed of the resulted graph representation
by data-mining the relational links between all these cyber-security knowledge sources.
In this manner, it connects the CVE list to MITRE ATT&CK by traversing the relational
links in the resulted graph.

Each information source has a specific node type, interconnected by external linkages
as edges. MITRE ATT&CK techniques are linked to Attack Patterns. Attack Patterns are
connected to CWE Weaknesses, which have relational links to a CVE entry. Thus, BRON
can respond to several different queries, including linking the CVE list to the MITRE
ATT&CK Framework.

However, the model falls short as it does not connect new CVEs to MITRE ATT&CK
Enterprise Matrix techniques, but it uses already existing information and links to create a
more holistic overview of the already available knowledge. It does not solve our problem,
since the main aim is to correctly label new emergent samples.

1.2. CVE Transformer (CVET)

The CVE Transformer (CVET) [14] is a model that combines the benefits of using
the pre-trained language model RoBERTa with a self-knowledge distillation design used
for fine-tuning. Its main aim is to correctly associate a CVE with one of 10 tactics from
the MITRE ATT&CK Enterprise Matrix. Although the CVET approach obtains increased
performance in F1-score, it is unable to identify all 14 tactics from the MITRE ATT&CK
Matrix on the training knowledge base.

Moreover, the problem of technique labeling is much more complex than tactic map-
ping, since the number of available techniques is ten times higher (i.e., there are 14 tactics
and 192 different techniques in the MITRE ATT&CK Enterprise Matrix). Additionally,
tactic labeling can be viewed as a subproblem of our main goal given the correlation
between tactics and techniques. Overall, technique labeling is out of scope for the CVE
Transformer project.

1.3. Unsupervised Labeling Technique of CVEs

The unsupervised labeling technique introduced by Kuppa et al. [15] considers a multi-
head deep embedding neural network model that learns the association between CVEs
and MITRE ATT&CK techniques. The proposed representation identifies specific regular
expressions from the existing threat reports and then uses the cosine distance to measure
the similarity between ATT&CK technique vectors and the text description provided in the
CVE metadata. This technique manages to map only 17 techniques out of the existing 192.
As such, multiple techniques are not covered by the proposed model. Thus, a supervised
approach for technique labeling might improve the recognition rate among techniques.
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1.4. Automated Mapping to ATT&CK: The Threat Report ATT&CK Mapper (TRAM) Tool

Threat Report ATT&CK Mapping (TRAM) [16] is an open-source tool developed by The
Center for Threat-Informed Defense that automates the process of mapping MITRE ATT&CK
techniques on cyber-threat reports. TRAM utilizes classical pre-processing techniques (i.e.,
tokenization, stop-words removal, lemmatization) [17] and applies Logistic Regression
on the bag-of-words representations. Since the tool maps any textual input on MITRE
ATT&CK techniques, it could, in theory, be adapted to link the CVE list to the MITRE
ATT&CK Framework by simply using it on the CVE textual description. However, due
to its simplicity, the tool has serious limitations when it comes to its capacity to learn the
right association between text descriptions and techniques. In addition, TRAM labels each
sentence individually, failing to capture dependencies in textual passages. In this way,
the overall meaning of the text is lost.

The main contributions of this paper are as follows:

• Introducing a new publicly available dataset of 1813 CVEs annotated with all corre-
sponding MITRE ATT&CK techniques;

• Experiments with classical machine learning and Transformer-based models, coupled
with data augmentation techniques, to establish a strong baseline for the multi-label
classification task;

• A qualitative analysis of the best performing model, coupled with error analysis that
considers Lime explanations [18] to point out limitations and future research directions.

We open-source our dataset on TagTog [19] and the code on GitHub [20].

2. Method

This section provides an overview of our proposed methodology, focusing on: (1) data
collection and building the corpus needed for training the models; and (2) exploring various
neural architecture for mapping CVEs to ATT&CK techniques.

2.1. Our Labeled CVE Corpus
2.1.1. Data Collection

Since no public datasets exist that map a CVE to all corresponding ATT&CK techniques,
the first step consisted of building our own labeled corpus of 1813 CVEs, which was
obtained using two different methods.

First, we manually created a knowledge base of 993 labeled CVEs by individually
mapping each CVE to tactics and techniques from MITRE ATT&CK Enterprise Matrix.
We extracted CVEs that were published between 2020 to 2022 for relevance. The labeling
process was performed by 4 experts to ensure consistency, following the standardized
approach proposed by the Mapping MITRE ATT&CK to CVEs for Impact methodology [11]
and a set of common general guidelines.

The Mapping MITRE ATT&CK to CVEs for Impact methodology consists of three steps.
The first one is to identify the type of vulnerability (e.g., cross-site scripting, buffer overflow,
SQL injection) based on the vulnerability type mappings. The next step is to find the
functionality to which the attacker gains access by exploiting the CVE. The final step refers
to determining the exploitation technique using the provided tips that offer details about
the necessary steps to exploit a vulnerability. Our methodology started from these steps and
added other common general guidelines before labeling the tactics and techniques, such as
searching for more details about a CVE on security blogs to obtain more relevant insights,
or analyzing databases (e.g., the Vulnerability Database [21] and the Exploit Database—
Exploits for Penetration Testers, Researchers, and Ethical Hackers [22]) for useful inputs
about CVEs.

The labeling was performed by three 4th year undergraduate students in Computer
Science with background courses in security, networking, and operating systems, and one
Ph.D. student in Computer Science with 5+ years of experience in information security in
the industry who provided guidance and helped reach consensus. The entire annotation
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process was overseen by a professor in cyber security. The dataset can be found on
TagTog [19] and is split into the following collections:

1. Inter-rater—A collection of 24 CVEs evaluated by all experts to ensure high agreement
and consistent annotations; this collection was used for training the raters until perfect
consensus was achieved;

2. Double-rater—A collection of 295 CVE evaluated by pairs of two raters; this collection
was created after some experience was accumulated and consensus among raters was
achieved using direct discussions;

3. Individual—A collection of 674 CVE evaluated by only one rater; this collection was
annotated after the initial training phase was complete and raters gained experience.

Second, besides the manual labeling process, we automatically extracted 820 already
labeled CVEs provided by Mapping MITRE ATT&CK to CVEs for Impact [11] and imported
them in our TagTog project. The provided CVEs date from 2014 to 2019; thus, there is no
overlap with the manually annotated CVEs.

Each CVE entry has associated the corresponding ID, the rich text description, and 14 la-
bels denoting the possible tactics found in the MITRE ATT&CK Enterprise Matrix where the
corresponding techniques are annotated. Extracting the data from TagTog can be performed
automatically, using the TagTog API [23].

2.1.2. Data Analysis

The size of our corpus can be argued by the increased difficulty when annotating a
CVE and the impossibility to find other previously build repositories consisting of CVEs
mapped on MITRE ATT&CK Enterprise Matrix both tactics and techniques. As discussed
previously, more than 189,171 CVEs currently exist and our dataset only captures a fraction
of them. Moreover, the distribution of CVEs based on technique is highly imbalanced
(see Figure 1) because the CVEs were collected based on their release date, without any
other further considerations. About 77% of the collected CVEs cover 5 techniques (Exploit
Public-Facing Application, Exploitation for Client Execution, Command and Scripting Interpreter,
Endpoint Denial of Service and Exploitation for Privilege Escalation).

Figure 1 also shows that a large number of techniques contain a far too small number
of examples for effective learning. As such, a threshold of a minimum of 15 examples per
technique was imposed. In this manner, out of the 192 different techniques from the MITRE
ATT&CK Enterprise Matrix, only 31 were considered in follow-up experiments. The CVEs
that are not mapped to any of the 31 considered techniques were also discarded, leaving a
total of 1665 annotated examples in the dataset. Figure 2 depicts the new distribution of
CVEs based on technique after applying the threshold.

2.1.3. Data Augmentation

The severe data imbalance which characterizes our CVE dataset can potentially de-
grade the performance of many machine learning models since few techniques have high
prevalence, while the others have low or very low frequencies [24].

One scheme for dealing with class imbalance is oversampling [24]. This data-level
approach consists of randomly oversampling duplicate examples from low-frequency
classes to rebalance the class distribution. However, this can result in overfitting and
we opted to use the TextAttack Framework [25] for generating adversarial examples.
TextAttack is a Python framework designed for adversarial attacks, data augmentation,
and adversarial training in NLP. The adversarial attack finds a sequence of transformations
to perform on an input text such that the perturbations adhere to a set of grammar and
semantic constraints and the attack is successful [26]. These transformations performed can
be reused to expand the training dataset by producing perturbed versions of the existing
samples. As such, TextAttack Framework offers various pre-packaged recipes for data
augmentation [27].

166



Algorithms 2022, 15, 314

Figure 1. The distribution of CVEs among techniques.
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Figure 2. The distribution of CVEs among the 31 considered techniques after applying the threshold.

We chose the EasyDataAugmenter (EDA) for augmenting the CVE dataset, which
performs four simple but powerful operations on the input texts: synonym replacement,
random insertion, random swap, and random deletion. EDA significantly boosts perfor-
mance and shows particularly strong results for smaller datasets [28], which makes it the
perfect candidate for oversampling our labeled CVE corpus. Moreover, EDA does not
perform major alterations of the content and is not as computationally expensive as other
recipes, such as CLAREAugmenter, while providing satisfactory results on our CVE corpus.

Since one CVE can be mapped to multiple techniques at the same time, rare techniques
among the dataset are usually found in combination with highly prevalent techniques.
Using all CVEs that are mapped to a specific technique for augmentation would only
preserve the class imbalance, generating new samples for both low-frequency and high-
frequency techniques. To counter this undesired effect, EasyDataAugumenter was fed only
with CVEs that were particular to only one technique and were mapped to that technique
only, thus producing new samples only for the desired class.

Figure 3 displays the distribution of CVEs per technique after performing the data
augmentation. The initial severe imbalance among techniques was scaled down, but still
exists, due to the reduced number of particular CVEs for low-frequency techniques.

2.2. Machine Learning and Neural Architectures

Our main goal is to create a model that can accurately predict all the techniques that
can be mapped to a specific CVE while using its text description. We tacked this task as a
multi-label learning problem as each CVE may be assigned to a subset of techniques. Given
the challenging nature of the multi-label paradigm [29], we experimented with multiple
state-of-the-art machine learning models to find the most predictive architecture.
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Figure 3. The distribution of CVEs among the 31 considered techniques after data augmentation.

2.2.1. Classical Machine Learning

In order to establish a strong baseline we also considered classical machine learning
algorithms applied on bag-of-words representations. All CVE descriptions were pre-
processed to remove noise and retain only the relevant words. The pipeline from the
spaCy [30] NLP open-source library was employed which included the following steps: text
tokenization, removal of stopwords, punctuation, and numbers, followed by lemmatization
of remaining tokens. The tokens are afterward converted to bag-of-words representations
using Term Frequency-Inverse Document Frequency (TF-IDF).

Multi-Label Learning

The aim of problem transformation methods is to reduce the complexity of the multi-
label learning by converting the multi-label problem into one or more single-label classifi-
cation tasks [31].

Given that the interconnection between techniques is worth taking into account when
labelling a CVE since it can provide further insights on general adversarial patterns, we
experimented with different problem transformation methods to find the one that captures
best the relations between labels:

• One versus Rest. This method splits the multi-label problem into multiple binary
classification tasks, one for each label, treated independently. The N different binary
classifiers are separately trained to distinguish the examples of a single class from all
the examples from the other labels [32];

• Label Powerset. This method considers every unique combination of labels as a single
class, reducing the multi-label problem to a multi-class classification problem [29].
The real advantage of this strategy is that correlations between labels are exploited for
a more accurate labelling process;

• Binary Relevance. This linear strategy groups all positive and negative examples
within a label into a set, later training a classifier for each resulted set. The final
prediction is then computed by merging all the intermediary predictions of the trained
classifiers [29]. An advantage of this strategy consists of the possibility to perform
parallel executions;

• RaKEL(Random k-Labelsets). This state-of-the-art approach builds an ensemble of Label
Powerset classifiers trained on a different subset of the labels [33].
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Naive Bayes Classifiers

The Naive Bayes classifier makes the simplifying assumption that features are con-
ditionally independent, given a class. Even though the assumption of independence is
generally unrealistic, Naive Bayes performs well in practice, competing with more sophisti-
cated classifiers models especially for text classification [34]. We chose to experiment with
a Naive Bayes variant for multinomial distributed data because of the model’s simplicity
and relatively good results.

Support Vector Machines

A Support Vector Machine (SVM) searches for the maximum margin hyperplane that
separates two classes of examples. Because SVMs have shown efficiency to capture high
dimensional spaces and performed successfully on a number of distinctive classification
tasks [35], we decided to use it in our experiments for CVE technique labelling. We
performed an exhaustive search over specified parameters values using GridSearchCV [36]
to determine the optimum configuration of parameters.

2.2.2. Convolutional Neural Network (CNN) with Word2Vec

Convolutional Neural Networks (CNNs) consist of multiple layers designed to extract
local features in the form of a feature map. Since CNN uses back-propagation to update its
weights in the convolutional layers, the CNN feature extractors are self-determined through
continuous tuning of the model [37]. In the field of NLP, CNNs have proved to be extremely
effective in several tasks, such as semantic parsing [38] and sentence modeling [39]. This
intuition pointed in the direction to experiment with CNN for our model since CNNs
with Word2Vec embeddings are robust even on small datasets. In addition, we considered
SecVuln_WE [40] that includes word representation especially designed for the cyber-
security vulnerability domain. SecVuln_WE was trained on security-related sources such
as Vulners, English Wikipedia (Security category), Information Security Stack Exchange
Q&As, Common Weakness Enumeration (CWE) and Stack Overflow.

Figure 4 presents the architecture in which the pre-trained SecVuln_WE embeddings
are passed through the convolutional layer containing 100 filters with a kernel size of 4.
In this way, each convolution will consider a window of 4 word embeddings. Afterward,
we perform batch normalization of the activations of the previous layer at each batch.
Next comes the MaxPool and the Dropout layers, followed by a dense layer with sigmoid
activation. Since we are dealing with a multi-label classification problem, the output layer
has a designated node for each technique and each output indicates the binary probability
to have a specific technique mapped to the considered CVE.

Figure 4. Architecture of the CNN with Word2Vec embeddings.

2.2.3. BERT-Based Architecture with Multiple Output Layers

Reducing the considerable complexity of the multi-label problem was first among our
considerations when designing this architecture. Converting our multi-labeling problem
into multiple binary classification tasks following the One versus Rest method has the
advantage of conceptual simplicity; yet, having a distinct BERT layer for contextualized
embeddings for each one of the 31 techniques was redundant.
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The proposed architecture from Figure 5 considers a pre-trained BERT encoder,
a Dropout layer, and an individual dense layer for each technique, which outputs the
probability that a particular CVE points to that particular technique. The model is consis-
tent with the considerations of the One VS Rest method, while also taking advantage of the
shared embeddings layer.

Figure 5. BERT-based architecture with multiple output layers.

2.2.4. BERT-Based Architecture Adapted for Multi-Labeling

Analyzing each label separately might overlook the strong correlation between tech-
niques. This correspondence has multiple roots, as techniques in a given tactic are connected
through their attack behavior pattern, whereas techniques across multiple tactics are con-
nected through the attack vector of the vulnerability. Thus, we explored creating a model
capable of exploiting the link between multiple techniques.

The specific architectural decision taken for this last design was to have only one
output layer, with one individual node for each technique. In this manner, we aim to
capture the specifics for each technique, while also considering how subsets of techniques
are interconnected.

Figure 6 details the proposed model which considers 768-dimensional contextual em-
beddings from various BERT-based models (i.e., BERT [41], SciBERT [42], and SecBERT [43])
passed through a Dropout layer. The Dropout layer output goes through a Linear layer with
768 input features and 31 output nodes, one for each technique. We considered BCEWith-
LogitsLoss [44] (the combination of a Sigmoid layer and the BCELoss) as a loss function,
the most commonly used for multi-label classification tasks, because each output node
reveals the probability of a technique to be tagged for a specific CVE (i.e., the probabilities
need to be treated independently).

Figure 6. The design of the multi-labeling BERT-based architecture.
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2.3. Performance Assessment

For a predicted technique, we wanted to make sure that our mapping was correct (i.e.,
high precision—P) and we wanted to correctly classify as many examples as possible for a
given class (i.e., high recall—R). Thus, we considered the F1-score as a performance metric
for all models, defined as the harmonic mean of the P and R per class. Moreover, we used
the weighted version of the F1-score given the imbalance between classes, which calculated
a general F1-score per model by proportionally combining the F1-scores obtained for each
label separately. We also computed the weighted precision and recall for the tested models.

3. Results

This section analyses the results of the empirical experiments performed using the
previously detailed models. First, it compares the performance of various models. Second,
it assesses the impact of data augmentation on performance and investigates the metrics
obtained by the best model.

Multiple observations can be made based on the results of our experiments shown in
Table 1. From the classical machine learning models, LabelPowerset is the best multi-label
strategy and SVC with a linear kernel and C = 32 has the higher F1-score, competing even
with our deep-learning models. The SecBERT model has the highest F1-score (42.34%)
among all considered models, proving to be the most powerful solution to labeling a
CVE. An important observation is that the CNN + Word2Vec architecture obtained better
results than those using simple BERT. Thus, domain-related pre-training on large secu-
rity databases leads to increased performance by providing better contextualization and
partially compensating for the scarce training set.

Table 1. Results for the proposed models (italics marks the best multi-label strategy for classical ML,
while bold marks the best model).

Model Type Model Multi-Label Strategy Weighed P Weighed R Weighed F1-Score

Classical ML

Naive Bayes

OneVsRestClassifier 57.35% 9.18% 14.47%
LabelPowerset 31.40% 24.59% 24.76%
BinaryRelevance 57.35% 9.18% 14.47%
RakelD 53.71% 9.83% 15.31%

SVC

OneVsRestClassifier 31.97% 35.57% 33.32%
LabelPowerset 46.73% 34.75% 37.98%
BinaryRelevance 33.45% 34.91% 33.75%
RakelD 36.20% 33.77% 34.50%

Deep Learning

CNN + Word2Vec - 48.32% 35.40% 39.39%
Multi-Output BERT - 46.85% 31.47% 35.92%
Multi-label BERT - 55.25% 30.98% 37.43%
Multi-label SciBERT - 59.26% 34.42% 41.87%
Multi-label SecBERT - 57.66% 35.40% 42.34%

Table 2 points out the appropriateness of employing data augmentation techniques
on our dataset for deep learning models (approximately 6% performance gain). Only
the best multi-label strategy for classical machine learning algorithms was considered.
The F1-score falls considerably by 10% for Naive Bayes, in particular, since Naive Bayes
places great importance on the number of appearances of a word in a document; however,
swapping a relevant word with synonyms and performing random insertions or deletions
(i.e., the strategies employed by the EasyDataAugmenter [28]) only confuse the model.
The SVC model had a similar performance, whereas the BERT-based models take advantage
of the increased sample size/the decreased class imbalance, and generalize better. Not only
is performance increased, but the models also tend to learn faster (see faster convergence in
Figure 7 in terms of training loss for each output layer associated with a technique in the
multi-output BERT model). Moreover, Figure 7 denotes which techniques are more easily
learned by the model.
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Table 2. Side-by-side comparison of performance with and without data augmentation (bold denotes
the best model).

Model Data Aug-
mentation Weighted P Weighted R Weighted

F1-Score

Naive Bayes (LabelPowerset) No 31.40% 24.59% 24.76%
Yes 29.40% 14.42% 14.42%

SVC (LabelPowerset) No 46.73% 34.75% 37.98%
Yes 45.90% 34.09% 36.79%

CNN + Word2Vec No 48.32% 35.40% 39.39%
Yes 50.48% 35.59% 41.59%

Multi-Output BERT No 46.85% 31.47% 35.92%
Yes 49.81% 35.57% 39.66%

Multi-label SciBERT No 59.26% 34.42% 41.87%
Yes 52.52% 45.90% 47.84%

Multi-label SecBERT No 57.66% 35.40% 42.34%
Yes 54.70% 42.45% 46.54%

(a) (b)
Figure 7. Comparison of training loss for the multi-output BERT architecture. (a) Without data aug-
mentation; (b) With data augmentation.

Since Table 2 only provides a global overview of the average performance of the
SciBERT model trained on the augmented data, exploring the particular difference between
how the model handles different techniques provides additional insights into our model’s
behavior. Figure 8 plots the F1-score obtained for each individual technique, for both the
original model and the one trained on the augmented dataset. Apart from four exceptions
(Data from Local System, Hijack Execution Flow, User Execution and File and Directory Discovery),
the model obtains considerably higher or at least equal scores for all the other 27 techniques.
Moreover, the difference between models is minimal (close to 0) for the techniques where
the initial model obtains a better F1-score.
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Figure 8. Comparing F1-score per technique between SciBERT model trained on initial and aug-
mented dataset.

The added gain of the multi-label SciBERT model trained on the augmented dataset
resides in its ability to maximize the F1-score for techniques where the initial model
performed poorly. One such example is Forge Web Credentials. The initial model obtained
an F1-score of 0% since both recall and precision were 0%. However, the improved version
of the model obtained an F1-score of 66.66%, with a recall of 50% and precision of 100%
after data augmentation; similarly, data augmentation tuned the model to predict the Forge
Web Credentials technique with 100% precision. Overall, the number of techniques with
which the model had difficulty in learning has decreased substantially.

Figure 9 shows the correlation between the CVE distribution and the F1-score ob-
tained for the SciBERT models, both using the initial dataset and the one trained after
augmentation. The techniques are displayed on both graphs in the same order to indicate
how the CVE distribution changed after performing the process of data augmentation
and how the adjustments in CVE distribution impacted the F1-score. We observe that
not only the techniques initially associated with a small number of CVEs benefited from
the augmentation method, but also the techniques associated with a high distribution of
samples—for example, the F1-score for the Command and Scripting Interpreter technique
increased from the initial 58.92% to 64.12%.

174



Algorithms 2022, 15, 314

(a) (b)
Figure 9. Comparing the F1-score over the CVE distribution for the SciBERT model. (a) Without aug-
mentation; (b) With augmentation.

Table 3. Precision, Recall and F1-Scores for the best model.

Technique Weighted P Weighted R Weighted
F1-Score

Endpoint Denial of Service 77.58% 83.33% 80.35%
Forge Web Credentials 100.00% 50.00% 66.66%
Unsecured Credentials 60.00% 75.00% 66.66%
Command and Scripting Interpreter 60.00% 68.85% 64.12%
Exploitation for Privilege Escalation 56.45% 70.00% 62.50%
Adversary-in-the-Middle 80.00% 50.00% 61.53%
Brute Force 100.00% 42.85% 60.00%
Exploitation for Client Execution 50.87% 50.81% 58.49%
User Execution 58.33% 46.67% 51.85%
Drive-by Compromise 64.70% 40.74% 50.00%
Data Manipulation 44.44% 47.05% 45.71%
Exploit Public-Facing Application 48.27% 43.07% 45.52%
Hijack Execution Flow 50.00% 37.03% 42.55%
Valid Accounts 41.37% 36.36% 38.70%
Data from Local System 41.66% 34.48% 37.73%
Browser Session Hijacking 42.85% 27.27% 33.33%
Phishing 42.85% 27.27% 33.33%
Archive Collected Data 50.00% 20.00% 28.57%
File and Directory Discovery 40.00% 22.22% 28.57%
Server Software Component 50.00% 16.66% 25.00%
External Remote Services 50.00% 8.33% 14.28%
Process Injection 25.00% 8.33% 12.50%
Exploitation for Defense Evasion (26) 0.00% 0.00% 0.00%
Create Account (19) 0.00% 0.00% 0.00%
Access Token Manipulation(18) 0.00% 0.00% 0.00%
Exploitation of Remote Services (22) 0.00% 0.00% 0.00%
Stage Capabilities (22) 0.00% 0.00% 0.00%
Abuse Elevation Control Mechanism (44) 0.00% 0.00% 0.00%
Exploitation for Credential Access (17) 0.00% 0.00% 0.00%
Data Destruction (34) 0.00% 0.00% 0.00%
Network Sniffing (18) 0.00% 0.00% 0.00%
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4. Discussion
4.1. In-Depth Analysis of the Best Model

Table 3 introduces a complete overview of the results recorded for the best model,
the multi-label SciBERT trained on the augmented dataset. The F1-score per technique from
the MITRE ATT&CK Enterprise Matrix ranges from 80.35% for Endpoint Denial of Service
to 0.00%; the last techniques at the end of Table 3 marked with italics and including the
corresponding number of training samples in parenthesis. Even though the model scores
on a global scale an F1-score of 47.84%, the model fails to capture any knowledge about
nine out of the thirty-one techniques, though fewer instances than the other evaluated
models. We can associate this inability of the model to recognise the distinct features
of these techniques with the extremely reduced number of samples for each technique,
even after performing data augmentation. The existing samples in the dataset do not
contain enough relevant characteristics for these techniques; as such, the model cannot
differentiate them.

Nevertheless, the model successfully captures the essence of other techniques, obtain-
ing a precision of 100.00% for Forge Web Credentials and Brute Force. For almost all techniques,
precision exceeds recall, thus indicating that the general tendency of the model is to omit a
label, rather than misplace a technique that cannot be mapped to a particular CVE.

Overall, given the complexity of the multi-label problem and the severe imbalance of
the training set, the model obtains promising performance for a subset of techniques, while
managing to maximize its overall F1-score.

4.2. Error Analysis

This subsection revolves around understanding the roots of the multi-label SciBERT
model limitation. After a methodological investigation that aims to identify the cause of
the model’s errors, the observed performance deficiencies are further discussed.

Table 4 presents different CVEs whose predicted techniques differ partially or com-
pletely from the labeled ones. For most errors in the dataset with multiple techniques
tagged, the model succeeds in labeling a subset of correct techniques. This observation
stands true for errors 1, 2, and 3 from Table 4. While analyzing error #1, the model ex-
tracts the most obvious technique, pointed out by language markers such as password
unencrypted, global file, but fails to make the deduction that, in order for a user to access the
file system, a valid account must be used. In contrast, the model successfully identifies the
Valid Accounts technique for error #2. In general, techniques that are not clearly textually
encapsulated and whose understanding requires prerequisite knowledge are overlooked
by the model.

Figure 10 studies the model’s choice of labels for CVE #2 from Table 4 using Lime [18],
the model successfully recognizes the predominant label (i.e., Valid Accounts). Moreover,
the model correctly identifies the most important concept, the word authenticated, which
points in the direction of Valid Accounts. We can observe that there are techniques that are
not ambiguous for the model and for which the labeling process is straightforward; such
an example is Valid Accounts. The model extracts only the relevant features for the label
and the technique is correctly identified. For the Exploitation for Client Execution, the model
identifies patterns that suggest that the CVE should be mapped to the given technique,
as well as patterns that suggest the contrary. Being capable to identify features that are
correlated to both situations confuses the model. This problem results from the fact that the
meaning behind multiple techniques is overlapping and, as a result, relevant features for a
given technique cannot be differentiated.
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Table 4. Comparing predictions with the true values for the best model.

# CVE Text True Techniques Predicted Techniques

1 Jenkins Publish stores password unen-
crypted in its global configuration file
on the Jenkins controller where it can
be viewed by users with access to the
Jenkins controller file system.

Unsecured Creden-
tials, Valid Accounts

Unsecured Credentials

2 Due to improper input validation in In-
fraBox, logs can be modified by an au-
thenticated user.

Valid Accounts, Ex-
ploitation for Client
Execution

Valid Accounts

3 In Django 2.2 MultiPartParser, Upload-
edFile, and FieldFile allowed directory
traversal via uploaded files with suit-
ably crafted file name

File and Directory
Discovery, Com-
mand and Scripting
Interpreter

File and Directory Dis-
covery, Exploit Public-
Facing Application

4 Whale browser for iOS before 1.14.0 has
an inconsistent user interface issue that
allows an attacker to obfuscate the ad-
dress bar which may lead to address bar
spoofing.

Browser Session Hi-
jacking

User Execution

5 isula-build before 0.9.5-6 can cause a pro-
gram crash, when building container im-
ages, part of the functions for process-
ing external data do not remove spaces
when processing data.

Exploitation for
Client Execution

Endpoint Denial of Ser-
vice

(a)

(b)
Figure 10. Comparison of word mappings for each technique corresponding to CVE #2 from Table 4.
(a) Mapping Valid Accounts; (b) Mapping Exploitation for Client Execution.

An interesting aspect is revealed in error #3, namely that the model correctly tags File
and Directory Discovery, but also associates the CVE with Exploit Public Facing Application,
instead of Command and Scripting Interpreter. Both techniques in the MITRE ATT&CK
Enterprise Matrix could be equally correctly mapped on the given text description. This
is an important observation and points out the established CVE labeling methodology;
this highlights a fault in the data collection procedure, rather than the model’s capacity to
learn the multi-labeling problem. Example #4 presents a similar case, since the predicted
technique Endpoint Denial of Service is a correct label for the CVE, although it does not
appear among the true labels.
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(a)

(b)
Figure 11. Comparison of word mappings for each technique corresponding to CVE #4 from Table 4.
(a) Mapping User Execution technique; (b) Mapping Browser Session hijacking.

Error #4 is analyzed in detail in Figure 11 to observe insights on how the model
associates the features. The word browser is highlighted for both the predicted and the
correct label. However, the difference resides in the relevance percentage associated with
the word for each label, namely 0.45 for User Execution and 0.03 for Browser Session Hijacking.
While the word browser is recognized as being relevant for both labels, the label with the
higher percentage is selected. This finding can be associated with the discrepancy between
training examples—240 for User Execution, while Browser Session Hijacking has only 102.
Thus, the class imbalance affects the model’s capability to recognize the real correlation
between features and techniques, and leads the model to a biased decision.

The model extracts a correct technique for error #5 in Table 4, although it was not
among the true labels. As Figure 12 shows, the CVE text description indicates the Endpoint
Denial of Service technique, since the word crash is present and the relevance of the word
for the Endpoint Denial of Service technique is 0.93. Figure 12 also suggests that the word
crash is the only word that has a high impact on the model’s decision to label the CVE as
Endpoint Denial of Service.

Two observations can be made based on Figure 12. One is that the model successfully
captures a technique overlooked by the reviewer. The technique labeling process is error-
prone due to the ambiguity of the CVE text description and also the complexity of the
labeling processing given the wide range of available techniques. Second, the model
assigns a higher relevance to features that suggest Endpoint Denial of Service even though
key features for the Exploitation for Client Execution are identified (i.e., program and functions).

Table 5 presents the most relevant words when performing feature extraction for each
technique. More than 50% of the techniques have the same most relevant feature in common
with other techniques in the MITRE ATT&CK Enterprise Matrix. For example, Exploitation
for Privilege Escalation, Data from Local System, Data Destruction, Browser Session Hijacking,
Archive Collected Data, and Create Account are all mapped to the same feature. Having the
same most relevant extracted feature implies a strong intersection between techniques. This
further emphasizes that the separation between labels is fuzzy. The opinion and consensus
among reviewers were used to separate ambiguous examples, making use of previous
experience and context obtained from other resources. This is inherited by the model since
the labels from the training set reflect the reviewers’ perspective. In this context, more
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information would be valuable to counter the bias encapsulated in the training set by
offering more background information to the model.

(a)

(b)
Figure 12. Comparison of word mappings for each technique corresponding to CVE #5 from Table 4.
(a) Mapping Exploitation for Client Execution; (b) Mapping Endpoint Denial of Service.

Table 5. The most important words extracted per technique.

Technique CVEs

Exploitation for Privilege Escalation arbitrary
Data from Local System arbitrary
Data Destruction arbitrary
Browser Session Hijacking arbitrary
Archive Collected Data arbitrary
Create Account arbitrary
Forge Web Credentials bypass
Unsecured Credentials bypass
External Remote Services bypass
Adversary-in-the-Middle trigger
Phishing trigger
Stage Capabilities trigger
Exploitation for Credential Access wordpress
Brute Force wordpress
Abuse Elevation Control Mechanism xml
Endpoint Denial of Service parameter
Network Sniffing parameter
User Execution remote
Drive-by Compromise remote
Server Software Component service
Data Manipulation service
Exploit Public-Facing Application version
Command and Scripting Interpreter pointer
Exploitation for Client Execution attack
Valid Accounts system
Hijack Execution Flow cause
Process Injection privilege
File and Directory Discovery execute
Exploitation for Defense Evasion use
Exploitation of Remote Services possibly
Access Token Manipulation header
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4.3. Limitations

We have identified a number of limitations for our model, which have a toll on the
model’s performance; these limitations are detailed further. First, the process of manually
labeling a CVE is inevitably affected by the subjective perspective of the reviewer. Even
though multiple attempts to limit this undesired outcome were taken (i.e., following a clear
methodology and establishing general guidelines for the reviewers), the annotators were
unable to fully eliminate the inconsistency in the dataset labels.

Second, the quality of the information in the CVE text descriptions must also be
taken into consideration when discussing the general limitations of the proposed model.
Inconsistencies among the CVE descriptions (incomplete, outdated, or even erroneous
details) are highly prevalent [45], thus narrowing the attainable performance of the model.

Third, there is no clear delimitation between certain techniques. Multiple techniques
have overlapping meanings and follow the same attack pattern (e.g., Exploitation for Defence
Evasion and Abuse Elevation Control Mechanism). Due to this, a CVE might have multi-
ple possible correct labels, depending on the methodology used to mark the CVE since
techniques are closely interconnected and the difference between relating techniques is
generally subtle.

Lastly, the rather small dataset and the severe imbalance between the number of CVEs
associated with a technique has a toll on the capacity of the model to accumulate enough
knowledge to correctly label future samples. Having a larger knowledge base for training
the model would help provide samples so that the model perceives also sensitive nuances
in CVE text descriptions.

5. Conclusions

In this paper, we emphasized the need for an automatic linkage between the CVE
list and MITRE ATT&CK Enterprise Matrix techniques. The problem was transposed
into a multi-label task for Natural Language Processing for which we introduce a novel
labeled CVE corpus that was augmented using adversarial attacks to limit the severe
impact of imbalance between labels. Our baseline includes several classic machine learning
models and BERT-based architectures, and the best performing model (i.e., Multi-label
SciBERT) was evaluated within a series of experiments from multiple perspectives to extract
a complete overview of the data augmentation impact. Comparing the obtained metrics
against classical machine learning models accentuates the significant benefits brought by
our solution to labeling CVEs with corresponding techniques.

Despite our model obtaining promising results in terms of well-represented techniques,
the inherent limitations imposed by the training set tops up the maximum achievable per-
formance. Future work will focus on improving the robustness of the labeled CVE corpus.
On one hand, we will focus on enforcing homogeneity among labeling methodology; on
the other, we will address the severe imbalance between labels and also its reduced size.
Possible new strategies might consider Few-Shot Learning methods [46] for task general-
ization considering few samples. Semi-supervised learning [47] could also be a possible
research direction, given the reduced number of labeled CVEs and the significant number
of unlabeled samples that exist in the CVE list. Another aspect that is worth exploring is
whether or not gathering extra information from additional sources (e.g., Common Weakness
Enumeration CWE [48]) can address the incompleteness and inconsistency of the textual
CVE description.
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The following abbreviations are used in this manuscript:

ATT&CK Adversarial Tactics, Techniques, and Common Knowledge
BERT Bidirectional Encoder Representations from Transformers
CAPEC Common Attack Pattern Enumeration and Classification
CNN Convolutional Neural Network
CVE Common Vulnerabilities and Exposures
CVET Common Vulnerabilities and Exposures Transformer
CWE Common Weakness Enumeration
EDA Easy Data Augmentation
ML Machine Learning
NLP Natural Language Processing
SciBERT Scientific Bidirectional Encoder Representations from Transformers
SecBERT Security Bidirectional Encoder Representations from Transformers
SVM Support Vector Machine
TF-IDF Term Frequency-Inverse Document Frequency
TRAM Threat Report ATT&CK Mapping
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Abstract: The cyber threat landscape is highly dynamic, posing a significant risk to the operations of
systems and organisations. An organisation should, therefore, continuously monitor for new threats
and properly contextualise them to identify and manage the resulting risks. Risk identification is
typically performed manually, relying on the integration of information from various systems as
well as subject matter expert knowledge. This manual risk identification hinders the systematic
consideration of new, emerging threats. This paper describes a novel method to promote automated
cyber risk identification: OnToRisk. This artificial intelligence method integrates information from
various sources using formal ontology definitions, and then relies on these definitions to robustly
frame cybersecurity threats and provide risk-related insights. We describe a successful case study
implementation of the method to frame the threat from a newly disclosed vulnerability and identify
its induced organisational risk. The case study is representative of common and widespread real-life
challenges, and, therefore, showcases the feasibility of using OnToRisk to sustainably identify new
risks. Further applications may contribute to establishing OnToRisk as a comprehensive, disciplined
mechanism for risk identification.

Keywords: formal ontology; risk identification; cybersecurity; vulnerability

1. Introduction

Risk identification is the process which lays the foundations for establishing the cyber-
security posture of systems, organisations and services. Risk management is a collection of
“coordinated activities to direct and control an organisation with regard to risk” [1]. Risk
identification provides the infrastructure for all other risk management activities [2].

A risk is a potential for something to go wrong, eventually causing harm or loss [3]. Ac-
cordingly, cyber risk is an operational risk which is associated with activities in cyberspace
that may cause damage to organisational assets [4].

The goal of risk identification is to “find, recognize and describe risks that may prevent
an organization achieving its objectives” [5]. Refsdal et al. identify that risk comprises
three elements: asset, vulnerability and threat [3]. In agreement, Strupczewski’s meta
model of cyber-risk concept includes the same three elements [4]. A vulnerability merely
indicates an exploitable system property; a risk is distinguished from a vulnerability by
having the potential to harm or reduce the value of an asset. The identification of pertinent
assets—such as sensitive information and services—and their business value is therefore an
essential risk identification element [6]. Risk identification requires knowing the business
environment and the organisational assets in addition to the vulnerabilities [7].

Provided risks are properly identified, they can be then analysed, evaluated for impact
and, if necessary, mitigated using appropriate security controls. Otherwise, unidentified
risks may go untreated, and misidentified risks may be improperly treated; potentially
resulting in considerable damage once they materialise [8].
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Continuous organisational changes introduce a major threat to performing risk identi-
fication [7]. The dynamics of business environments include changes to processes, products
and services, as well as introduction of new information systems and related features. Irre-
spective of organisational changes, the cyber threat landscape is autonomously evolving.
As an example, new software vulnerabilities are published on a daily basis, providing am-
ple opportunities for attackers to exploit them [9]. Moreover, attacker capabilities—tactics,
technologies and procedures (TTPs)—continue to improve [10]; sometimes to a military
grade level [11]. To address the dynamics of cybersecurity, it is essential to have dynamic
and adaptable cyber risk management, with risk identification outputs being revisited
often to re-evaluate and establish an up-to-date organisational cybersecurity posture [6,7].
For this purpose, risk register mechanisms, such as those recommended by The European
Union Agency for Cybersecurity (ENISA), contain the date of latest assessment as part of
the risk register record and are expected to be properly maintained [12].

Relevant, up-to-date and timely information is crucial to robust risk identification [5].
Prevalent risk identification approaches rely on manual analysis by human experts [2]. These
include brainstorming, interviews, checklists, statistics and techniques for historical data collec-
tion [3]. Risk identification also relies on integration of information from various sources [3,13].
Previous automation attempts with respect to cyber risk activities focused mostly on auto-
mated identification of threats and vulnerabilities (for example, [14,15]). Specifically, attribut-
ing the actual risk to organisational assets remains a manual analysis effort. The manual
nature of risk identification approaches hinders their dynamic application in a sustainable
form to meet the challenges of the evolving cybersecurity threat landscape [6].

This paper, which extends [16], proposes the use of a formal ontology to promote
rigorous and continuous risk identification. A formal ontology is a well-defined, computer-
based representation of concepts and their relations [17]. Formal ontology should not be
confused directly with the philosophical term, which is concerned with the understanding
of reality. However, formal ontology relates to the philosophical term, by capturing the
ontology of a particular domain using a formal, well-structured model. We use the term
“ontology” henceforth to relate to formal ontology.

Ontologies are a form of semantic technology. They provide the infrastructure for
intelligent applications [18]. Ontologies belong to the content theory branch of Artificial
Intelligence (AI) [19], and they are central for building intelligent computational agents [20].
Ontologies can minimise ambiguity and misunderstanding between stakeholders as well as
lay the foundations for high-level reasoning and decision making [18,21]. An organisation-
specific ontology can be used to facilitate interoperability between domains [22], and, even
more specifically, between business and information technology concerns, with which
organisational cybersecurity is typically associated [23].

Ontologies can be used to support risk management. Examples of such applications
include management of human and ecological health risks [24] and safety risk management
in construction [25]. Previous uses of ontologies for cybersecurity risk management did
not consider the critical business impact of such risks [26–28]. An ontology-based system
was demonstrated for the calculation of cybersecurity risk metrics, but it does not include
inferred identification of risks and does not provide actionable risk-related information [29].
An automated security risk identification method to address engineering design issues
exists, but it involves only identification of high-level consequence categories [30]. As
far as we know, there is no ontology-based method to identify emerging cybersecurity
risks which can be employed continuously by organisations, let alone one which allows an
organisation to contextualise the risks with respect to the organisational operations.

This paper details and exemplifies a new method—OnToRisk—which uses formal
ontology mechanisms to automate cybersecurity risks identification, based on integration
of formal definitions and situational information from pertinent sources. OnToRisk is
an AI method which employs aspects of knowledge representation to introduce robust
information models; and of reasoning to provide actionable insights about situations
represented by the models. The information models can include security intelligence related
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concepts—namely threat, vulnerability, asset and risk—as well as any other technical and
organisational concepts that are relevant to provide situational awareness.

We describe a case study of using OnToRisk to identify risks emerging from a newly
published software vulnerability, in an undisclosed, international enterprise in the finance
sector (henceforth, “the enterprise”). While specific, the case study is representative of
a general, desirable practice in every organisation which uses software components. A
software vulnerability is “an instance of a flaw, caused by a mistake in the design, de-
velopment, or configuration of software, such that it can be exploited to violate some
explicit or implicit security policy” [31]. While previous work by Wang and Guo used a
formal ontology to analyse vulnerabilities from the technical perspective of vulnerability
management [21]; our case study uses a formal ontology to capture concepts and relations
to analyse cybersecurity vulnerabilities from the organisational operations risk perspective.

The paper continues as follows. Section 2 presents the new, ontology-based risk iden-
tification method OnToRisk and overviews the vulnerability-induced risks identification
case study. Section 3 details the case study results of using OnToRisk for vulnerability-
induced risks identification. Section 4 reflects on the new risk identification method and
the case study, as well as discusses further uses, benefits and research potential of the
ontology-based method.

2. Materials and Methods

OnToRisk uses formal ontology mechanisms for rigorous, information-based and definitions-
based risks identification. The OnToRisk method includes the following activities:

1. formally define concepts associated with a specific risk type, as well as their relations,
by authoring an ontology;

2. formally define the risk type in the ontology, using the predefined concepts and
relations. This definition of a risk type aims to promote the automatic identification of
its instantiations;

3. capture the organisational situation by instantiating the existing ontology definitions.
This is achieved by incorporating “individual” definitions into the ontology;

4. apply automated, ontology-based reasoners to the ontology to derive new, inferred
insights about the situation.

Activity #3 is meant to be automated as much as possible, e.g., by importing—while
translating—existing organisational information from information systems into the formal
ontology. Activity #4 is the activity in which new risk-related insights should emerge,
automatically, based on the integration of explicit definitions and explicit situations. Ideally,
these activities should be performed continuously, reflecting an up-to-date organisational
security posture.

We validate OnToRisk using a case study methodology. The selection in a single-case study
approach is aligned with the rationale identified by Yin; that the case study is a representative,
typical case [32]. The OnToRisk method is applied in a case study of an enterprise seeking to
identify risks emerging from the disclosure of a new vulnerability, which is found in a prevalent
software component. The widely representative and applicable case study was inspired by real
events, following the late 2021 disclosure of a vulnerability in Log4j [33,34].

Risk management is considered a business-related activity in an enterprise. Accord-
ingly, the enterprise established and maintains a system of policies, as well as a hierarchical
framework for communicating and assessing operational risks, with cybersecurity risks be-
ing included as part of the overall risk management organisational system. The risk-related
concepts were identified based on careful reading of official documents and directives,
analysis of some of the enterprise’s information systems, and on conversations with domain
experts. The latter included risk managers and an incident response leader.

First, as the OnToRisk method outlines, relevant concepts and their relations were
defined as a formal ontology. Protégé was the tool used for authoring the ontology [35].
The ontology itself is in the standard Web Ontology Language (OWL) format. Relevant
concepts are depicted in OWL using “classes”; and relations between concepts are formally
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expressed in OWL using “object properties”. In defining object properties, the source node
class is referred to as “Domain,” and the target node class is referred to as “Range”.

A relevant risk definition was then added to the ontology, using some of the predefined
classes and object properties. Next, a situation was captured. The situation was designed
using natural language, and then translated into the ontology, as an instantiation of the
formalised classes and object properties. Finally, a reasoner (HermiT within Protégé) is
used to reason about the situation, i.e., process the explicit situation definitions and present
inferred information based on these. The inference was verified to yield the results that are
expected based on manual analysis of the situation.

The work, including the ontology and the resulting insight with respect to the enterprise’s
operations and infrastructure, was presented to domain experts as well as high-level management
for both obtaining feedback and promoting the organisational risk management practices.

3. Results

We now describe the results of applying OnToRisk to the case study (of identifying risks
to the enterprise as they emerge from the disclosure of a new vulnerability in a software
component). Appendix A provides the full definitions, described in Sections 3.1–3.3, in the form
of a formal ontology. Appendix B provides the inferred assertions, described in Section 3.4,
in the form of a formal ontology.

3.1. Concepts and Relations (Meta Levels Definitions)

Figure 1 shows the concepts and relations, representing the result of performing
activity #1 of OnToRisk in the case study. Concepts (classes) appear as graph nodes and
relations (object properties) appear as edges between nodes. The concepts are:

1. Application, representing a software application by the enterprise;
2. Component, representing any software component;
3. Business Function, representing any function that relates to the enterprise’s business operation;
4. Sensitive Information, representing any sensitive information item owned by the enterprise;
5. Vulnerability, representing any vulnerability of software components;
6. Risk, representing the enterprise’s risk definitions;
7. Cybersecurity Risk, representing a specific subclass of risk definitions relating to

cybersecurity issues;
8. Vulnerability-Induced Risk, representing any risk to the business emerging from the

existence of a vulnerability. Being a risk definition relating to a cybersecurity issue, it
is a specific subclass of Cybersecurity Risk.

Figure 1. The vulnerability-induced risk case represented as a formal graph of meta-level concepts
and relations. This graph is generated by applying the CoModIDE plugin for Protégé [36] to the
formal ontology. The graph shows: the classes as nodes; the object properties between classes (from
domain to range) as solid, annotated arrows; and subtype (subclass) relations as dashed arrows.
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The hierarchical structure of the risk concepts (concepts #6, #7 and #8 above) reflects
the hierarchical risk definition architecture which is practiced within the enterprise; with
Risk being a layer-1 risk definition, Cybersecurity risk being a layer-2 risk definition, and
Vulnerability-induced Risk being introduced as a layer-3 risk definition. This conforms
with the prominent business risk typology used in the financial sector with which the
enterprise is associated [4].

Figure 1 also shows the object properties—expressing relations between concepts—as
graph edges in solid line between the class nodes. The object properties are:

1. accessInfo—represents an ability of an application (Domain) to access a sensitive
information item (Range);

2. supportsFunction—represents that an application (Domain) supports a business func-
tion (Range);

3. includesComponent—represents a software application composition, linking the
application (Domain) with its components (Range);

4. foundIn—represents a vulnerability (Domain) found in a software component (Range);
5. susceptible2Vulnerability—marks an application (Domain) as being susceptible to a

vulnerability (Range) due to one of its software components. This object property is
formally defined as a composite property using other object properties:

susceptible2Vulnerability ≡ inverse(foundIn) ◦ includesComponent (1)

6. risksInfo—indicates that a vulnerability (Domain) may risk sensitive information
(Range). This object property is formally defined as a composite property using other
object properties:

risksInfo ≡ accessInfo ◦ inverse(includesComponent) ◦ foundIn (2)

7. risksFunction—indicates that a vulnerability (Domain) may risk a business function
(Range). This object property is formally defined as a composite property using other
object properties:

risksFunction ≡ supportsFunction ◦ inverse(includesComponent) ◦ foundIn (3)

8. risksVia—identifies the application (Range) through which a specific Vulnerability-
Induced Risk (Domain) can be realised. This object property is formally defined as a
composite property using other object properties:

risksVia ≡ inverse(accessInfo) ◦ risksInfo|
inverse(supportsFunction) ◦ risksFunction

(4)

Reflecting on the derived ontology, we note that it is realistic and practical to acquire
relevant information, which can be used for instantiating a situation using the ontology
meta-level definitions. The enterprise operates an information system which records all
the enterprise applications, along with attributes. Some of these attributes are the category
of information that can be accessed by the application; and the application’s business
criticality score, which is established based on supported business functions. Extracting
software components used by an application—a Software Bill Of Material (SBOM)—is
a feature provided by various software composition analysis tools (by analysing either
the source code or the final software artifacts). Information about software components
vulnerabilities is found online in vulnerability repositories, such as [37].
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3.2. Risk Definition

Following the activity #2 guideline of the OnToRisk method, a Vulnerability-Induced
Risk concept is formally defined using the established concepts and relations:

vulnerabilityInducedRisk ≡ vulnerability and
((risksFunction some BusinessFunction) or

(risksInfo some SensitiveInformation))
(5)

This formally defines the specific risk as a vulnerability which risks either a business
function and/or sensitive information. Ideally, this definition could instantiate new infor-
mation elements (of the VulnerabilityInducedRisk type). However, due to limitation in both
the OWL ontology standard and the Protégé ontology authoring tool, instantiation of new
elements is not possible by inference, and instead this tags a Vulnerability typed individual
element as a VulnerabilityInducedRisk. Accordingly, VulnerabilityInducedRisk is also
considered as a subclass of Vulnerability (in addition to being a subclass of Cybersecurity
Risk); this is shown in Figure 1. This is merely a technical adaptation, which has no effect
on the results as it can be easily interpretated to the ideal case, and we discuss this shortly.
The formal definition of the set of risks (R) in this implementation is:

R ≡ {v ∈ V | (∃x ∈ BF & (v, x) ∈ RF) or (∃y ∈ SI & (v, y) ∈ RI)} (6)

with:
V—the set of Vulnerability class (i.e., concept) instantiations
BF—the set of Business Function class instantiations
RF—the set of risksFunction object properties instantiations
SI—the set of Sensitive Information class instantiations
RI—the set of risksInfo object properties instantiations
i.e., the set of risks is a subset of all vulnerabilities that have either a risksFunction

object property (stating the vulnerability risks an existing business function) or a riskInfo
object property (stating the vulnerability risks existing sensitive information).

The formal definition itself is more than a technical definition. This is the first concrete
layer-3 risk definition, which extends the existing conceptual and abstract layer-2 enterprise
risk definition (Cybersecurity risk). This fairly simple, formal ontology-based definition of
a “vulnerability-induced risk” rigorously expresses a concrete type of risk. This specific risk
type is of high importance to enterprise stakeholders, including its high-level management,
and had not been declared until our OnToRisk implementation named it explicitly.

3.3. Situation

The case study situation details a risk assessment scenario which considers a newly
disclosed vulnerability. It is based on real-life situations—specifically, the discovery and
public disclosure of the vulnerability known as “Log4shell” [33,34]. The case study is de-
signed as an alternative, what-if scenario of detecting risks associated with the vulnerability
using OnToRisk.

According to OnToRisk activity #3, the situation is captured as a collection of instantiations
of the ontological concepts and relations (derived in activity #1 and reported in Section 3.1).

The baseline situation captures the organisational situation with respect to its opera-
tional applications and their business context. Four applications exist:

1. App1, which does not include Log4j as one of its software components;
2. App2, which includes Log4j as one of its software components;
3. App3, which includes Log4j as one of its software components and has access to the

sensitive information item named ClientIDsList;
4. App4, which includes Log4j as one of its software components and supports the

business function named OpenAccount.
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Now, consider the publication of a new Common Vulnerabilities and Exposures
(CVE) record, related to the Log4j component. This results in a new situation, captured in
formal ontology form by adding the newly disclosed vulnerability into our ontology, as an
instantiation of the “Vulnerability” concept. We name this entity “Log4shell.” Additionally,
the vulnerability is associated with the affected software component—Log4j—by adding a
“foundIn” object property from the Log4shell individual to the Log4j individual.

3.4. Ontology-Based Inferrence

According to OnToRisk activity #4, we use the ontology-based reasoner to make inferences
about the developing situation, and, ultimately, identify the emerging risks. The resulting
inferred assertions that extend the explicitly declared assertions appear in Appendix B.

The reasoner provides the following new inferences:

1. The “susceptible2Vulnerability” object property is attributed to App2, App3 and
App4. This suggests that each of these applications is susceptible to the vulnerability.

2. The Log4shell vulnerability is categorized—automatically—as a VulnerabilityIn-
ducedRisk. This indicates that this specific vulnerability introduces new risk/s to the
enterprise, as Figure 2 shows. This is the automatic identification of new risks.

3. The object property “risksInfo ClientIDsList” emerges with respect to the Log4shell
vulnerability (Figure 2). This suggests that ClientIDsList, which is one of the enter-
prise’s sensitive information items, is at risk.

4. The object property “risksFunction OpenAccount” emerges with respect to the Log4shell
vulnerability (Figure 2). This suggests that OpenAccount—one of the enterprise’s
business functions—is at risk.

5. Two new risksVia object property assertions emerge, with respect to the Log4shell
vulnerability (Figure 2). Each of these suggests a possible attack surface through
which the risk can realise. In the specific case, App3 is the attack surface for the risk on
ClientIDsList and App4 is the attack surface for the risk on the OpenAccount. While
this is not captured explicitly in the inferred assertions, the reasoner explanation
mechanism provides this traceability, as Figure 3 shows.

Figure 2. The Log4shell ontology-based assertions in Protege. Manually stated (explicit) assertions
appear in bold font, while automatically inferred assertions appear in regular font.

Figure 3. The reasoner explanation for asserting the risksVia properties. (a) for App3, as a result of
the risksInfo with respect to ClientIDsList; (b) for App4, as a result of the risksFunction with respect
to OpenAccount.
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The automatically derived inferences are aligned with a manual analysis of the situa-
tion. While the manual analysis can be considered straightforward, performing such an
analysis is time consuming, and this is exactly the effort that OnToRisk is designed to make
redundant. The vulnerability in App2 does not present a new risk to the enterprise, from
an operational perspective. Still, using the “susceptible2Vulnerability” property which now
characterises the application, the potential of App2 being affected by the vulnerability can
be communicated with the App2 application owner. The application owner can then choose
whether to further analyse the vulnerability impact on the application and/or solve any
vulnerability-related issues in a future version. The vulnerabilities in App3 and in App4,
however, should be of interest to the enterprise management, as they introduce business
risks. Continuously applying the reasoner to the enterprise situation allows pertinent
managers to be notified immediately of such risks as they emerge; and the enterprise
management can then promptly act to solve them, by identifying and empowering the
appropriate personnel—such as application owners, risk managers, security officers and
information officers—to do so.

4. Discussion

The dynamic cybersecurity threat landscape requires risk identification to be per-
formed continuously to achieve up-to-date situational awareness. This paper proposes
a new, formal ontology-based method—OnToRisk—for promoting automated risk iden-
tification. The method relies on the use of AI—through its formal ontology branch—for
information-based, systematic and continuous risk identification. The method employs
formal ontology definitions of domain concepts and relations, as well of the associated risk,
to analyse organisational situations and automatically provide actionable insights.

The OnToRisk method was successfully applied to identify risks emerging from a
vulnerability disclosure, which is a widely applicable challenge in enterprises. As a given
enterprise situation has changed to reflect existence of a new vulnerability, a reasoning
mechanism—applied to the situation—automatically yielded a list of potentially affected
applications as well as of the potential business impact. In practice, typical software
applications may include hundreds of re-used lower-level components, which may lead to a
significant effort in their manual analysis. The automated approach of OnToRisk decouples
the risk identification effort from the quantity of software components. Moreover, new risks
are identified, along with their potential business impact and the respective attack surface.
A reasoning mechanism can act continuously on the information. These provide a strong
basis for sustainable risk management, which is essential to creating a valid cybersecurity
situational awareness.

Our method provides a step forward with respect to a previously identified need for
a conceptual framework to drive the rapid and automated integration of Cyber Threats
Intelligence (CTI) [10]. Specifically, our method conforms with the requirement that both
internal and external information be factored into the automated integration process; and it
provides a rigorous infrastructure for such integration. The case study demonstrates the
integration of internal, enterprise-owned information—about applications composition as
well as about their business context—with external vulnerability information. Currently, some
of the data was integrated manually, by importing data—exported from various information
systems—into the ontology. In the case study, information about enterprise applications was
adopted from the enterprise’s information system which is used to catalogue applications
and their metadata. A likely technical future effort is to develop mechanisms to automate the
integration of data into the ontology, using both internal data sources (such as application
inventory information systems) and external data sources (such as CVE repositories).

Furthermore, with OnToRisk being a technology-agnostic and vendor-neutral method,
the formal representation of a domain of interest may lead to identification of gaps in
information, which in turn may justify the introduction of new technology and/or tools
into the enterprise. Specifically, the case study’s formal ontology relies on associating
each application with its SBOM. However, at the time of performing the case study, the
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enterprise has only employed SBOM tools to ingest open-source software packages and
did not apply the relevant technology to produce the SBOM of its own applications. Our
case study highlights the need to incorporate the technology and tools to extract SBOM
from the enterprise applications that are in production in order to support risk assessment
with respect to vulnerability-induced risks.

In the technical implementation of the case study, vulnerability-induced risks are
represented by “tagging” vulnerabilities as vulnerability-induced risk, i.e., the risks are a
subset of the vulnerabilities (as captured formally in Equation (6)). This is due to limitations
in the OWL standard and the standard Protégé implementation that prevents inferring the
existence of new individuals. We chose to adhere to the standard implementation to demon-
strate the feasibility and practicality of OnToRisk. Ideally, however, the risk identification
implementation can be easily improved when developing an ontology-based application
or information system by using a proprietary mechanism to yield new individuals. Such
individuals can be derived formally as the tuple (vulnerability, impacted element, attack
surface), i.e.:

(v, i, a) ≡ {(v, i, a)|
(3 v ∈ V & 3 i ∈ BF & 3 a ∈ A & (a, i) ∈ SF & (v, i) ∈ RF & (v, a) ∈ RV) or
(3 v ∈ V & 3 i ∈ SI & 3 a ∈ A & (a, i) ∈ AI & (v, i) ∈ RI & (v, a) ∈ RV)}

(7)

with:
V—the set of Vulnerability class (i.e., concept) instantiations
BF—the set of Business Function class instantiations
A—the set of Application class instantiations
SF—the set of supportsFunction object properties instantiations
RF—the set of risksFunction object properties instantiations
SI—the set of Sensitive Information class instantiations
AI—the set of accessInfo object properties instantiations
RI—the set of risksInfo object properties instantiations
RV—the set of risksVia object properties instantiations
OnToRisk currently provides the identification of potential risks. Identified risks

should be further analysed. In the case study implementation, for example, an application
marked as susceptible to a vulnerability due to the identity of one of its components may
not present an actual risk, e.g., in a case where an application uses the component in a
version which is not susceptible to the vulnerability or if the context of use or security
controls prevent the exploitation of the disclosed vulnerability. Future research can establish
the use of other ontology elements, such as data properties—in addition to classes and
object properties—for improving the risk identification and its automation. Expanding the
ontology with additional elements may also contribute to the prioritisation of risks (e.g., by
introducing impact levels) and to the inclusion of additional CTI information.

With OnToRisk currently validated for the specific case study of a vulnerability-
induced risk, additional research can utilise the method to identify other types of cyberse-
curity risks, such as those emerging from a compromised supply chain or from existence of
Common Weaknesses Enumeration (CWE) in applications and application development.

Whereas a previous method by Eckhart et al. employs automated risk identification
for improving engineering artifacts [30], OnToRisk provides automated risk identification
for better organisational situational awareness. OnToRisk provides a more concrete view
of business consequences, compared with the high-level consequence categories of the
engineering-focused method proposed by Eckhart et al. OnToRisk relies on continuous
integration of information within operational context, as opposed to initiated engineering
design verification, which is the domain of the method by Eckhart et al. Both methods
share a formal ontology approach as well as the goal of relieving personnel from tedious
risk identification so that it can concentrate on other aspects of risk management. Therefore,
future research may seek to integrate the two methods and deliver an ontology-based risk
identification method for the full system lifecycle.
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5. Conclusions

In this paper we describe a new method—OnToRisk—which promotes the automatic
identification of risks. The method is validated using a widely applicable, realistic and
representative case study implementation of identifying risks emerging from software vulner-
abilities.

Future research may demonstrate the use of the proposed method to support the
automated identification of risks of additional types. Furthermore, elaborating the ontology
definitions and the ontology-based reasoning can improve the output of the method,
providing a more accurate and prioritised risk identification.
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Appendix A. The Case Study Formal Ontology (OWL Format)

This appendix provides the full ontology of the reported case study. The results are
fully reproducible by copying the ontology into a text file and opening it with the Protégé
ontology authoring tool.

<?xml version="1.0"?>
<Ontology xmlns="http://www.w3.org/2002/07/owl#">

<Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
<Declaration>

<Class IRI="owlapi:ontology578765402008551#Risk"/>
</Declaration>
<Declaration>

<Class IRI="owlapi:ontology578765402008553#CybersecurityRisk"/>
</Declaration>
<Declaration>

<Class IRI="owlapi:ontology578765402008555#VulnerabilityInducedRisk"/>
</Declaration>
<Declaration>

<Class IRI="owlapi:ontology578765402008557#Application"/>
</Declaration>
<Declaration>

<Class IRI="owlapi:ontology578765402008559#Component"/>
</Declaration>
<Declaration>

<Class IRI="owlapi:ontology578765402008561#BusinessFunction"/>
</Declaration>
<Declaration>

<Class IRI="owlapi:ontology578765402008563#SensitiveInformation"/>
</Declaration>
<Declaration>

<Class IRI="owlapi:ontology578765402008565#Vulnerability"/>
</Declaration>
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<Declaration>
<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>

</Declaration>
<Declaration>

<ObjectProperty IRI="owlapi:ontology578765402008569#foundIn"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="owlapi:ontology578765402008571#risksFunction"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="owlapi:ontology578765402008573#risksInfo"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="owlapi:ontology578765402008577#supportsFunction"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="owlapi:ontology578765402008581#accessInfo"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="owlapi:ontology578765402008588#risksVia"/>
</Declaration>
<Declaration>

<ObjectProperty IRI="owlapi:ontology578765402008590#susceptible2Vulnerability"/>
</Declaration>
<Declaration>

<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App1"/>
</Declaration>
<Declaration>

<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App2"/>
</Declaration>
<Declaration>

<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App3"/>
</Declaration>
<Declaration>

<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App4"/>
</Declaration>
<Declaration>

<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#ClientIDsList"/>
</Declaration>
<Declaration>

<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4j"/>
</Declaration>
<Declaration>

<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>
</Declaration>
<Declaration>

<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#OpenAccount"/>
</Declaration>
<EquivalentClasses>

<Class IRI="owlapi:ontology578765402008555#VulnerabilityInducedRisk"/>
<ObjectIntersectionOf>

<Class IRI="owlapi:ontology578765402008565#Vulnerability"/>
<ObjectUnionOf>

<ObjectSomeValuesFrom>
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<ObjectProperty IRI="owlapi:ontology578765402008571#risksFunction"/>
<Class IRI="owlapi:ontology578765402008561#BusinessFunction"/>

</ObjectSomeValuesFrom>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="owlapi:ontology578765402008573#risksInfo"/>
<Class IRI="owlapi:ontology578765402008563#SensitiveInformation"/>

</ObjectSomeValuesFrom>
</ObjectUnionOf>

</ObjectIntersectionOf>
</EquivalentClasses>
<SubClassOf>

<Class IRI="owlapi:ontology578765402008553#CybersecurityRisk"/>
<Class IRI="owlapi:ontology578765402008551#Risk"/>

</SubClassOf>
<SubClassOf>

<Class IRI="owlapi:ontology578765402008555#VulnerabilityInducedRisk"/>
<Class IRI="owlapi:ontology578765402008553#CybersecurityRisk"/>

</SubClassOf>
<SubClassOf>

<Class IRI="owlapi:ontology578765402008555#VulnerabilityInducedRisk"/>
<Class IRI="owlapi:ontology578765402008565#Vulnerability"/>

</SubClassOf>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008557#Application"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App1"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008557#Application"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App2"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008557#Application"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App3"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008557#Application"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App4"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008563#SensitiveInformation"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#ClientIDsList"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008559#Component"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4j"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008565#Vulnerability"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008561#BusinessFunction"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#OpenAccount"/>

</ClassAssertion>
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<ObjectPropertyAssertion>
<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App2"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4j"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App3"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4j"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008581#accessInfo"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App3"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#ClientIDsList"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App4"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4j"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008577#supportsFunction"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App4"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#OpenAccount"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008569#foundIn"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4j"/>

</ObjectPropertyAssertion>
<ObjectPropertyDomain>

<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>
<Class IRI="owlapi:ontology578765402008557#Application"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="owlapi:ontology578765402008569#foundIn"/>
<Class IRI="owlapi:ontology578765402008565#Vulnerability"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="owlapi:ontology578765402008571#risksFunction"/>
<Class IRI="owlapi:ontology578765402008565#Vulnerability"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="owlapi:ontology578765402008573#risksInfo"/>
<Class IRI="owlapi:ontology578765402008565#Vulnerability"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="owlapi:ontology578765402008577#supportsFunction"/>
<Class IRI="owlapi:ontology578765402008557#Application"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="owlapi:ontology578765402008581#accessInfo"/>
<Class IRI="owlapi:ontology578765402008557#Application"/>

</ObjectPropertyDomain>

196



Algorithms 2022, 15, 316

<ObjectPropertyDomain>
<ObjectProperty IRI="owlapi:ontology578765402008588#risksVia"/>
<Class IRI="owlapi:ontology578765402008555#VulnerabilityInducedRisk"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="owlapi:ontology578765402008590#susceptible2Vulnerability"/>
<Class IRI="owlapi:ontology578765402008557#Application"/>

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>
<Class IRI="owlapi:ontology578765402008559#Component"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="owlapi:ontology578765402008569#foundIn"/>
<Class IRI="owlapi:ontology578765402008559#Component"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="owlapi:ontology578765402008571#risksFunction"/>
<Class IRI="owlapi:ontology578765402008561#BusinessFunction"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="owlapi:ontology578765402008573#risksInfo"/>
<Class IRI="owlapi:ontology578765402008563#SensitiveInformation"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="owlapi:ontology578765402008577#supportsFunction"/>
<Class IRI="owlapi:ontology578765402008561#BusinessFunction"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="owlapi:ontology578765402008581#accessInfo"/>
<Class IRI="owlapi:ontology578765402008563#SensitiveInformation"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="owlapi:ontology578765402008588#risksVia"/>
<Class IRI="owlapi:ontology578765402008557#Application"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="owlapi:ontology578765402008590#susceptible2Vulnerability"/>
<Class IRI="owlapi:ontology578765402008565#Vulnerability"/>

</ObjectPropertyRange>
<SubObjectPropertyOf>

<ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>
<ObjectInverseOf>

<ObjectProperty IRI="owlapi:ontology578765402008569#foundIn"/>
</ObjectInverseOf>

</ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008590#susceptible2Vulnerability"/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008569#foundIn"/>
<ObjectInverseOf>

<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>
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</ObjectInverseOf>
<ObjectProperty IRI="owlapi:ontology578765402008577#supportsFunction"/>

</ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008571#risksFunction"/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008569#foundIn"/>
<ObjectInverseOf>

<ObjectProperty IRI="owlapi:ontology578765402008567#includesComponent"/>
</ObjectInverseOf>
<ObjectProperty IRI="owlapi:ontology578765402008581#accessInfo"/>

</ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008573#risksInfo"/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008571#risksFunction"/>
<ObjectInverseOf>

<ObjectProperty IRI="owlapi:ontology578765402008577#supportsFunction"/>
</ObjectInverseOf>

</ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008588#risksVia"/>

</SubObjectPropertyOf>
<SubObjectPropertyOf>

<ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008573#risksInfo"/>
<ObjectInverseOf>

<ObjectProperty IRI="owlapi:ontology578765402008581#accessInfo"/>
</ObjectInverseOf>

</ObjectPropertyChain>
<ObjectProperty IRI="owlapi:ontology578765402008588#risksVia"/>

</SubObjectPropertyOf>
</Ontology>

Appendix B. Inferred Assertions by the Reasoner (OWL Format)

<ClassAssertion>
<Class IRI="owlapi:ontology578765402008551#Risk"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008553#CybersecurityRisk"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="owlapi:ontology578765402008555#VulnerabilityInducedRisk"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>

</ClassAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008590#susceptible2Vulnerability"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App2"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>
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<ObjectProperty IRI="owlapi:ontology578765402008590#susceptible2Vulnerability"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App3"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008590#susceptible2Vulnerability"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App4"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008571#risksFunction"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#OpenAccount"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008573#risksInfo"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#ClientIDsList"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008588#risksVia"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App3"/>

</ObjectPropertyAssertion>
<ObjectPropertyAssertion>

<ObjectProperty IRI="owlapi:ontology578765402008588#risksVia"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#Log4shell"/>
<NamedIndividual IRI="http://www.co-ode.org/ontologies/ont.owl#App4"/>

</ObjectPropertyAssertion>
</Ontology>
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