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Abstract

Likelihood-based estimation methods involve the normalising con-
stant of the model distributions, expressed as a function of the param-
eter. However in many problems this function is not easily available,
and then less efficient but more easily computed estimators may be
attractive. In this work we study stationary time-series models, and
construct and analyse “score-matching” estimators, that do not in-
volve the normalising constant. We consider two scenarios: a single
series of increasing length, and an increasing number of independent
series of fixed length. In the latter case there are two variants, one
based on the full data, and another based on a sufficient statistic.

We study the empirical performance of these estimators in three
special cases, autoregressive (AR), moving average (MA) and frac-
tionally differenced white noise (ARFIMA) models, and make com-
parisons with full and pairwise likelihood estimators. The results are
somewhat model-dependent, with the new estimators doing well for
MA and ARFIMA models, but less so for AR models.

Keywords : Scoring rule estimators, Hyvärinen scoring rule, Gaussian Linear
time series.

1 Introduction

The evaluation of the exact full likelihood may be difficult or even impossible
in situations where complex problems deal with large correlated datasets.
These problems are likely to occur for instance in spatial statistics and time
series frameworks in which direct computation of the normalising constant
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can be a very challenging task, entailing multidimensional integration of the
full joint density for each value of the parameter. Many approaches have
been proposed to tackle this issue. in this paper, we investigate an appealing
approach based on the score matching estimator proposed by Hyvärinen in
2005 [23].

The score matching estimator can be regarded as a specific case of esti-
mators derived from proper scoring rules (see Dawid and Musio (2014) [13]),
which are loss functions for measuring the quality of probabilistic forecasts.
In particular, this estimator derives from the Hyvärinen scoring rule, which
is a homogeneous proper scoring rule (see Ehm and Gneiting (2012) [17] and
Parry et al. (2012) [33]), namely a proper scoring rule which does not require
knowledge of the normalising constant. Homogeneous scoring rules have been
characterised for continuous real variables (Parry et al. (2012) [33]) and for
discrete variables (Dawid et al. (2012) [12]). In a Bayesian framework, Dawid
and Musio (2015) [15] have shown, for the case of continuous variables, how
to handle Bayesian model selection with improper within-model prior dis-
tributions, by exploiting the use of homogeneous proper scoring rules. The
discrete counterpart has been empirically studied by Dawid et al. (2017)
[16]. In a recent contribution, Shao et al. (2018) [35] consider the use of
the Hyvärinen score for model comparison. Although the majority of con-
tributions involving the use of Hyvärinen scoring rules focus on Euclidean
spaces, scholars have also investigated extensions to non-Euclidean spaces:
for an early study see Dawid (2007) [11]. Recently, Mardia et al. (2016) [29]
proposed an extension of the Hyvärinen scoring rule to compact oriented
Riemannian manifolds, and Takasu et al. (2018) [36] constructed a novel
class of homogeneous strictly proper scoring rules for statistical models on
spheres.

Given the growing interest in the use of this scoring rule for very com-
plex statistical models, in this paper we aim to derive an estimation method
based on the Hyvärinen scoring rule for estimating linear Gaussian time series
models.

We distinguish two separate cases: a first in which the length of a single
time series increases to infinity, and a second in which the length of the time
series is fixed and the number of series increases to infinity.

The consistency and asymptotic distribution of the Hyvärinen estimator
are derived for the case of a single time series of increasing length. In par-
ticular, under some mild regularity conditions we derive consistency of the
proposed estimator for linear Gaussian time series models, while the asymp-
totic distribution is proved in the specific case of autoregressive moving av-
erage (ARMA) causal invertible models. For time series with fixed length
and the number of time series increasing to infinity the performances of two
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estimators based on the Hyvärinen scoring rule, namely the total Hyvärinen
estimator and the matrix Hyvärinen estimator are compared through simu-
lation studies with the full maximum likelihood and the pairwise maximum
likelihood estimators. Three simple time series models have been considered
in the design of simulations: autoregressive (AR), moving average (MA) and
fractionally differenced white noise (ARFIMA).

Different behaviours can be detected for the total Hyvärinen estimator
among the settings examined. In particular, it outperforms the pairwise
likelihood estimator in terms of efficiency with respect to the full maximum
likelihood estimator for the MA and ARFIMA processes.

The paper unfolds as follows. Section 2 introduces basic notions on scor-
ing rules. In Section 3 we introduce the Hyvärinen scoring rule for Gaus-
sian linear time series. Some asymptotic results for the Hyvärinen estimator
are given. In the specific case of n independent series we describe the to-
tal Hyvärinen estimator and the matrix Hyvärinen estimator. Section 4
summarises the results of the simulation studies. Section 5 presents some
concluding remarks. Technical details are postponed to the Appendices.

2 Scoring rules

A scoring rule is a loss function designed to measure the quality of a proposed
probability distribution Q, for a random variable X , in light of the outcome
x of X . Specifically, if a forecaster quotes a predictive distribution Q for X
and the event X = x realises, then the forecaster’s loss will be S(x,Q). The
expected value of S(X,Q) when X has distribution P is denoted by S(P,Q).

The scoring rule S is proper (relative to the class of distributions P) if

S(P,Q) ≥ S(P, P ), for allP, Q ∈ P. (1)

It is strictly proper if equality obtains only when Q = P .
Any proper scoring rule gives rise to a general method for parameter

estimation, based on an unbiased estimating equation: see § 2.2 below.

2.1 Examples of proper scoring rules

Some important proper scoring rules are the log-score, S(x,Q) = − log q(x)
(Good (1952) [20]), where q(·) is the density function of Q, which recovers
the full (negative log) likelihood; and the Brier score (Brier (1950) [3]). A
particularly interesting case, which avoids the need to compute the normal-
ising constant, produces the score matching estimation method of Hyvärinen
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(2005) [23], based on the following proper scoring rule:

S(x, Q) = ∆
x
ln q(x) +

1

2
‖∇

x
ln q(x)‖2 , (2)

where X ranges over the whole of IRp supplied with the Euclidean norm ‖ · ‖,
q(·) is assumed twice continuously differentiable, and x is the realised value of
X. In (2), ∇

x
denotes the gradient operator, and ∆

x
the Laplacian operator,

with respect to x. For p = 1 we can express

S(x,Q) =
q′′(x)

q(x)
− 1

2

(
q′(x)

q(x)

)2

. (3)

The scoring rule (2) is a 2-local homogeneous proper scoring rule (see
Parry et al. (2012) [33]). It is homogeneous in the density function q(·), i.e.
its value is unaffected by applying a positive scale factor to the density q,
and so can be computed even if we only know the density function up to a
scale factor. Inference performed using any homogeneous scoring rule does
not require knowledge of the normalising constant of the distribution.

2.2 Estimation based on proper scoring rules

Let (x1, . . . , xn) be independent realisations of a random variable X , having
distribution Pθ depending on an unknown parameter θ ∈ Θ, where Θ is an
open subset of IRm. Given a proper scoring rule S, let S(x, θ) denote S(x, Pθ).

Inference for the parameter θ may be performed by minimising the total
empirical score,

S(θ) =

n∑

p=1

S(xp, θ), (4)

resulting in the minimum score estimator , θ̂S = argminθ S(θ).
Under broad regularity conditions on the model (see e.g. Barndorff-

Nielsen & Cox (1994) [2]), θ̂S satistfies the score equation:

s(θ) :=
n∑

p=1

s(xp, θ) = 0, (5)

where s(x, θ) := ∇θS(x, θ), the gradient vector of S(x, θ) with respect to θ.
The score equation is an unbiased estimating equation (Dawid & Lauritzen
(2005) [10]). When S is the log-score, the minimum score estimator becomes
the maximum likelihood estimator.

4



From the general theory of unbiased estimating functions, under broad
regularity conditions on the model the minimum score estimate θ̂S is asymp-
totically consistent and normally distributed: θ̂S ∼ N(θ, {nG(θ)}−1), where
G(θ) denotes the Godambe information matrix G(θ) := K(θ)J(θ)−1K(θ),
where J(θ) = E

{
s(X, θ)s(X, θ)T

}
is the variability matrix , and K(θ) =

E
{
∇s(X, θ)T

}
is the sensitivity matrix . In contrast to the case for the full

likelihood, J and K are different in general: see Dawid & Musio (2014) [13],
Dawid et al (2016)[14]. We point out that estimation of the matrix J(θ), and
(to a somewhat lesser extent) of the matrix K(θ), is not an easy task: see
Varin (2008) [37], Varin et al. (2011) [38] and Cattelan and Sartori (2016)
[5].

3 Gaussian linear time series models

In this section we introduce some results based on the use of the Hyvärinen
scoring rule in the setting of Gaussian linear time series models.

Consider the Gaussian linear time series model

yt = µ+
∞∑

j=0

ψjzt−j , t = 1, 2, . . . , (6)

parametrised by µ, σ2 and λ ∈ IRm−2, where for j ≥ 0, ψj = ψj(λ) satisfies
ψ0 = 1 and

∑∞
t=0

ψ2
t < ∞. The (zt) are iid Gaussian variables with mean 0

and variance σ2. Let θ = (µ, σ2, λ) be the vector of model parameters. The
autocovariance function is E{(yt+j−µ)(yt−µ)} = σ2

∑∞
t=0

ψtψt+j = σ2γλ(j),
say. Using basic differentiation rules, it is easy to find the Hyvärinen score
based on the single time series YT = (y1, y2, . . . , yT ):

H(θ, YT ) = − 1

σ2

T∑

i=1

Γii +
1

2

T∑

i=1

{
T∑

t=1

1

σ2
Γit(yt − µ)

}2

, (7)

where the matrix Γ has (i, j) entry Γij = γλ(|i− j|) and Γij is the (i, j) entry
of Γ−1. We will denote denote the Hyvärinen estimator based on a single
series by θ̂H.

3.1 Asymptotic results for a single time series

In this section we analyse the asymptotic statistical properties of the
Hyvärinen scoring rule estimator, based on (7), for a single time series.

The following theorem shows the consistency of the estimator θ̂H in the
Gaussian linear time series setting. The proof of the Theorem is deferred
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to Appendix and follows arguments similar to those used by Davis and Yau
(2011) [8] to prove the consistency of the pairwise likelihood estimator.

Theorem 1. Suppose (yt) is the linear process in (6) with µ = 0 and param-
eter θ0 = (σ2

0 , λ0). Let

θ̂H = argmin
θ

H(θ, YT )

be the minimum score estimator, where θ = (σ2, λ) and λ ∈ Λ, where Λ is a
compact set. If the identifiability condition

σ2

1γλ1
(j) = σ2

2γλ2
(j) for j = 0, 1, . . . , k iff (σ2

1 , λ1) = (σ2

2, λ2) (8)

is satisfied, then θ̂H
a.s.−−→ θ0 as T → ∞.

Once consistency has been proved, we focus on the asymptotic distribu-
tion of θ̂H. Its analytic form involves the elements Γij of the inverse of the
autocovariance matrix. In order to guarantee its absolute summability, we
restrict our attention to the case of ARMA causal invertible processes.

Defining bij = Γij/σ2, the gradient and the Hessian with respect to θ̂H
are given, respectively, by the following two expressions:

J(θ) =
∂

∂θ
H(θ, YT ) = −

T∑

i=1

∂bii
∂θ

+
2

2

T∑

i,j,t=1

∂bij
∂θ

bityjyt (9)

K(θ) =
∂2

∂θ2
H(θ, YT ) = −

T∑

i=1

∂2bii
∂θ2

+

T∑

i,j,t=1

∂bij
∂θ

∂bit
∂θ

yjyt

+
T∑

i,j,t=1

∂2bij
∂θ2

bityjyt (10)

where ∂/∂θ denotes differentiation with respect to the components of the
vector θ.

Theorem 2. Suppose that (yt) is an ARMA(p, q) causal and invertible pro-
cess. Furthermore, assume that the Hessian matrix K(θ) is invertible in a
neighbourhood of θ0. If the identifiability condition (8) holds, then

√
T (θ̂T − θ0)

D−→ Nm−1

(
0, K(θ0)

−1V KT (θ0)
−1
)
,

where V =
∑∞

r=−∞

∑∞
k=−∞ V (r, k, θ0) with

V (r, k, θ0) =

(
∂

∂θ0

γ−1(0)

σ2
0

)2

+
∂

∂θ0

γ−1(k)

σ2
0

γ−1(0)
∂γ−1(k + r)

∂θ0
γ(r).
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Theorem 2 shows that the Hyvärinen scoring rule estimator θ̂H, in the case
that (yt) is an ARMA causal invertible process, is asymptotically normally
distributed with rate of decay

√
T . As is well known, the autocovariance

function of an ARMA process decays exponentially, which means that an
ARMA process is a short memory process, and its autocovariance function is
absolutely summable Brockwell & Davis (1991) [4]. This property, together
with the duality of ARMA models under causality and invertibility, allows us
to prove asymptotic normality. For the complete proof refer to the appendix.

3.2 Estimation approaches for n independent time se-

ries

In the remainder of this section we discuss the case of n independent series
of length T . We assume that T is fixed while n increases to infinity. We
also specialise to the case that the common mean µ and innovation variance
σ2 = σ2

0 are known; without loss of generality we take µ = 0.
Consider now n independent and identically distributed processes

Y1, . . . , Yn, where Yp = (yp1, . . . , ypT ), each having the T -variate normal dis-
tribution with mean-vector 0 and variance covariance matrix σ2Γ, with un-
known parameter λ. Let the (n×T ) random matrix Y have the vector Yp as
its pth row. We define the total Hyvärinen score (HT) as the sum of n single
Hyvärinen scores in (7):

HT(λ) =

n∑

p=1

Hp(λ, Yp), (11)

where

Hp(λ, Yp) = − 1

σ2

T∑

i=1

Γii +
1

2

T∑

i=1

{
T∑

t=1

1

σ2
Γitypt

}2

. (12)

The estimate of λ minimising the total Hyvärinen score will be denoted by
λ̂HT.

An alternative approach is to consider as basic observable the sum-of-
squares-and-products matrix SSP = Y TY , which is a sufficient statistic for
the multivariate normal model, having the Wishart distribution with n de-
grees of freedom and scale matrix σ2Γ. Then inference for the parameter λ
can be performed by resorting to the Hyvärinen score based directly on the
Wishart model. We will call this scoring rule the matrix Hyvärinen score.

Assuming n ≥ T , so that the joint distribution of the upper triangle
(sij : 1 ≤ i ≤ j ≤ T ) of the sum-of-squares-and-products random matrix SSP
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(which has a Wishart distribution with parameters n and σ2Γ) has a density,
and taking into consideration all of the properties of the derivatives of traces
and determinants, it can be shown that the Hyvärinen score based on this
joint density is

HW(SSP,Γ) = −(n− T − 1)

2

T∑

i=1

(sii)2+
1

2

T∑

i,j=1

{
(n− T − 1)

2
sij − 1

2σ2
Γij

}2

,

(13)
where sij and Γij are the elements of the inverse matrices SSP−1 and of Γ−1,
respectively. The matrix Hyvärinen estimator for λ, minimising HW(SSP,Γ)

with respect to λ, will be denoted by λ̂HW.
The derivative of HW(SSP,Γ) with respect to λ is

HWλ(SSP,Γ) = − 1

2σ2

T∑

i,j=1

{
(n− T − 1)

2
sij − 1

2σ2
Γij

}
∂Γij

∂λ
, (14)

and E {HWλ(SSP,Γ)} = 0 since E (sij) = Γij/(σ2(n − T − 1)) (see
Kollo & von Rosen, p. 257). Moreover, K(λ) = E {HWλλ(SSP,Γ)} =∑T

i,j=1
(∂Γij/∂λ)

2
/4σ4. The derivation of the function J(λ), which after

taking account of the square of (14) reduces to

J(λ) =
(n− T − 1)2

16σ4

T∑

i,j,k,l=1

(
∂Γij

∂λ

)2

cov
(
sij, skl

)
, (15)

involves calculations requiring the covariance matrix of the random matrix
SSP−1, which has an Inverse Wishart distribution with scale matrix 1

σ2Γ
−1:

see Von Rosen (1998) [39] for details on the components of the covariance
matrix.

In general, the Godambe information needed to estimate the standard
error of λ̂HW is not easy to derive analytically due to the form of the matrix
Γ. It should be pointed out that this approach can not be used if we have a
single time series of length T with T increasing to∞, since for non-singularity
of the Wishart distribution we need to assume n ≥ T .

4 Numerical assessment

In this section we report simulation studies designed to assess and compare
the behaviours of the estimators obtained by using the total and the matrix
Hyvärinen estimators. We refer to the case described in paragraph 3.2 in
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which T is fixed and n increases to ∞. For comparison, we will consider also
the full and pairwise maximum likelihood estimators (Davis & Yau (2011)
[8] ). We discuss three examples: the first order autoregressive AR(1), the
first order moving average MA(1) and the fractionally differenced white noise
ARFIMA(0, d, 0). Various parameter settings are considered in all simula-
tion studies. All calculations have been done in the statistical computing
environment R ([34]). The summary statistics shown are: average estimates
of the parameters, asymptotic standard deviations (sd) and the asymptotic
relative efficiency (ARE) with respect to the maximum likelihood estimator.

4.1 First order autoregressive models

The stationary univariate autoregressive process of order 1, denoted by
AR(1), is defined by

y1 = µ+
1√

1− φ2
z1

yt = µ+ φ(yt−1 − µ) + zt, (t = 2, . . . , T ),

where (zt) is a Gaussian white noise process with mean 0 and variance σ2.
Here φ, with |φ| < 1, is the autoregressive parameter . Then y1, . . . , yT
are jointly normal with mean vector µ1T (where 1T is the T -dimensional
unit vector), and covariance matrix σ2Γ, with Γ having components Γlm =
φ|l−m|/(1− φ2) (l, m = 1, . . . , T ).

For comparison purposes we consider also the numerical performance of
a class of pairwise likelihood estimators. Since, in the time series considered,
dependence decreases in time, as in Davis & Yau (2011) [8] we shall restrict
to the first order consecutive pairwise likelihood , rather than the complete
pairwise likelihood, so that adjacent observations are more closely related
than the others. This choice is motivated also by the loss in efficiency incurred
in using the k-th order consecutive pairwise likelihood as k increases (see
Davis and Yau (2011) [8]; Joe and Lee (2009) [27]). Note that, when it is
known that µ = 0 but σ2 is unknown, the pairwise likelihood estimator of
φ is φ̂PL = 2

∑T

t=2
ytyt−1/

∑T

t=2
(y2t + y2t−1), which is also the Yule-Walker

estimator (Davis & Yau (2011) [8]).

Simulation 1 The values of the model parameters are µ = 0 and σ = 1,
with the autoregressive parameter φ ∈ {−0.9,−0.8, . . . , 0.8, 0.9}. In the
simulation study, 1000 replicates are generated of n = 200 processes of length
T = 50. Results are summarised in Table 1. The numerical results in Table 1
and in the left-hand panel of Figure 1 suggest that φ̂HT and φ̂HW do not have
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high efficiency as φ approaches 1: in particular, the asymptotic efficiency of
φ̂HW tends to 0 for large values of |φ|. In contrast, under the same model
setting, there is only a modest loss of efficiency for the pairwise likelihood-
based estimator φ̂PL.

4.2 First order moving average models

The univariate moving average process of order 1, denoted by MA(1), is
defined by

yt = µ+ αzt−1 + zt, (t = 1, . . . , T ), (16)

where |α| < 1 and z0, . . . , zT are independent Gaussian random variables
with 0 mean and variance σ2. Then the random variables y1, . . . , yT are
jointly normal, each having mean µ and variance σ2(1 + α2). The variables
yt and yt+k are independent for |k| > 1, while yt and yt+1 have covariance σ

2α
(t = 1, . . . , T − 1). Hence, the covariance matrix σ2Γ of Y = (y1, y2, . . . , yT )
has components σ2Γss = σ2(1 + α2), σ2Γst = σ2α if |s − t| = 1, σ2Γst = 0
otherwise.

As before we consider the first order consecutive pairwise likelihood since
the use of a higher order consecutive pairwise likelihood is unrealistic due
to the independence of yt and yt+k for k ≥ 2. For t = 1, . . . , T − 1, the pair
(yt, yt+1) has a bivariate Gaussian distribution, in which the two components
both have mean µ and variance σ2(1 + α2), and have covariance σ2α.

Simulation 2 The values of the model parameters are µ = 0 and σ = 1,
with the moving average parameter α ∈ {−0.9,−0.8, . . . , 0.8, 0.9}. In the
simulation study, 1000 replicates are generated of n = 200 processes of length
T = 50. Results are summarised in Table 2. The simulation shows that the
total Hyvärinen estimator α̂HT achieves the same efficiency as the MLE in the
MA(1) model for values of the moving average parameter near 0; see Table 2
and the right-hand panel of Figure 1. However, the loss in efficiency of the
total Hyvärinen estimator α̂HT is modest even when the absolute value of
the moving average parameter reaches 1. In contrast, the pairwise likelihood
estimator α̂PL shows very poor performances in terms of asymptotic relative
efficiency: the ARE ranges from 1 to 0.1 as |α| increases.

4.3 Fractionally differenced white noise

The fractionally differenced white noise, ARFIMA(0, d, 0), model is defined
by

(1− Π)dyt = zt, with t = 1, . . . , T,
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where Π is the lag operator and d ∈ (0, 0.5), and z1, . . . , zT are independent
Gaussian random variables with 0 mean and variance σ2. Then the random
variables y1, . . . , yT are jointly normal, with covariance matrix σ2Γ whose
components (see Hosking (1981) [22]) are

σ2Γij =
(−1)|k|σ2Γ(1− 2d)

Γ(|k| − d+ 1)Γ(−|k| − d+ 1)
(k = i− j) (17)

(where in the right-hand side of (17), Γ denotes the gamma function.)
As before we consider the first order consecutive pairwise likelihood

since no great improvement can be detected by using a higher order con-
secutive pairwise likelihood: see the results of Davis and Yau (2011) [8].
For t = 1, . . . , T − 1, the pair (yt, yt+1) has a bivariate Gaussian distri-
bution, in which the two components both have mean µ and variance
σ2Γ(1− 2d)/Γ(1− d)2, and have covariance −σ2Γ(1− 2d)/Γ(2− d)Γ(−d).

Simulation 3 The values of the model parameters are µ = 0 and σ = 1,
with the fractional parameter d ∈ {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. In the
simulation study, 1000 replicates are generated of n = 100 processes of length
T = 50. Results are sumarised in Table 3. Simulation 3 shows that the total
Hyvärinen estimator d̂HT achieves the same efficiency as the MLE in the
ARFIMA(0, d, 0) model near 0 and near 0.3; see Table 3 and the right-hand
panel of Figure 1. The loss in efficiency of the total Hyvärinen estimator
d̂HT is very slight when d ∈ (0, 0.3). The efficiency of d̂HW is poor with ARE
values ranging from 0 to 0.45. For all the estimators considered the ARE is
0 when d ∈ (0.3, 0.5). The pairwise estimator d̂PL performs better than d̂HW,
however the values of ARE range from 0.6 to 0.96, reaching a maximum when
d = 0.1, with a major loss of efficiency with respect to the total Hyvärinen
estimator.

4.4 Discussion

It should be noted that for the MA(1) and the ARFIMA(0, d, 0) models no
analytic expressions for the derivatives of (7) are available. The standard

deviations of φ̂HT, α̂HT and d̂HT are empirical estimates of the square root of
the Godambe information function, which is obtained by compounding the
empirical estimates of J and K. The standard deviations of the pairwise
maximum likelihood estimator and the maximum likelihood estimator are
obtained using the analytic expressions (see Pace et al. (2011) [31]) for the
AR(1) model and the empirical counterparts for the MA(1) model. Numer-
ical evaluation of scoring rule derivatives has been carried out using the R

package numDeriv; see Gilbert & Varadhan (2012) [19].
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Results from simulations reveal that the estimators considered produce
estimates very close to the true values of the parameters. However, results
not shown here suggest that when the length T of the series is small the
pairwise likelihood estimator performs worse in terms of bias than the other
estimators in all the models considered.

The left, the middle and right-hand panels of Figure 1 depict the asymp-
totic relative efficiency as a function of φ for the AR(1) model, as a function
of α for the MA(1) model, and as a function of d for the ARFIMA(0, d, 0)
model, respectively.

All the results of the simulation studies are in agreement with the findings
of Davis & Yau (2011) [8] who focus on pairwise likelihood-based methods
for linear time series.

5 Conclusions

In this paper we have considered the use of Hyvärinen scoring rules in linear
time series estimation under different conditions. We have established the
consistency of the Hyvärinen scoring rule estimator for a single times series
under some general conditions and its asymptotic normality in an ARMA
time series context.

We have investigated, for n independent time series, the performances of
two estimators based on the Hyvärinen scoring rule, which can be regarded
as a surrogate for a complex full likelihood. The properties of the estimators
found using this scoring rule are compared with the full and pairwise max-
imum likelihood estimators. Three simple models are discussed: the first a
stationary first order autoregressive model, the second a first order moving
average model and the third a fractionally differenced white noise. In the
first case the total Hyvärinen method leads to poor estimators; in contrast,
in the second and third this method produces good estimators. The opposite
behaviour is observed for the pairwise estimators. For the moving average
process and the fractionally differenced white noise, there can be a large gain
in efficiency, as compared to the pairwise likelihood method, by using the
total or the matrix Hyvärinen scoring rule estimators. For the autoregres-
sive model, in contrast, the total Hyvärinen score methods suffer a loss of
efficiency as |φ| approaches 1.

In all examples, results not reported here show that there is a great im-
provement in the performances of the matrix Hyvärinen estimator based on
the Wishart model as the ratio T/n becomes negligible. It is clear that the
loss of efficiency incurred in using the Hyvärinen scoring rules or pairwise
likelihood can be substantial, but this depends on the underlying model, and

12



no overall general principle has emerged that might offer guidance for cases
not yet considered. The matrix Hyvärinen estimator has the apparent ad-
vantage over the other estimators (apart from full maximum likelihood) of
being based on the sufficient statistic of the model; nevertheless the total
Hyvärinen estimator shows good performance in terms of efficiency.

We conclude that minimising the total Hyvärinen score may offer a vi-
able and useful approach to estimation in models where computation of the
normalising constant in the likelihood function is not feasible, and pairwise
likelihood methods lead to poor estimators.
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Appendix: Proof of Theorem 1

Let θ = (σ2, λ) and let Eθ denote the expectation with respect to the proba-
bility distribution for (yt) defined in Equation (6). Let θ0 = (σ2

0, λ0) denote
the true parameter value. From the ergodicity of (yt), it follows thatH(θ, YT )
is ergodic and stationary and therefore

1

T
H(θ, YT )

a.s.−−→ H(θ0, θ) := Eθ0H(θ, y1). (18)

Since the Hyvärinen score is strictly proper we have

H(θ0, θ) ≥ H(θ0, θ0) (19)

with equality if and only if θ = θ0, by the identifiability condition (8). The
approach used to derive the consistency of the total Hyvärinen estimator
now follows the same general argument used to derive the consistency of the
pairwise likelihood estimator in Davis & Yau (2011) [8].

In particular, the compactness of Λ and the inequality (19) are used as
devices for proving the claim.

Appendix: Proof of Theorem 2

Define the sample gradient and Hessian as

JT (θ) := − 1

T

T∑

i=1

∂bii
∂θ

+
2

2T

T∑

i,j,t=1

∂bij
∂θ

bityjyt
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and

KT (θ) := − 1

T

T∑

i=1

∂2bii
∂θ2

+
1

T

T∑

i,j,t=1

∂bij
∂θ

∂bit
∂θ

yjyt +
1

T

T∑

i,j,t=1

∂2bij
∂θ2

bityjyt.

Using a Taylor expansion of JT (θ) around θ0 and the consistency of
Hyvärinen scoring rule estimator, it can be proved that, for some θ+T be-

tween θ0 and θ̂T ,
JT (θ0) = KT (θ

+

T )
√
T (θ0 − θ̂T ). (20)

The asymptotic distribution of θ̂T can be derived by exploiting the asymp-
totic properties of KT (θ

+

T ) and JT (θ0), together with the ergodic theorem and

the fact that θ+T
a.s.−−→ θ0.

Writing

∂

∂θ0
=

∂

∂θ

∣∣∣∣
θ=θ0

Γ = Γ(λ0)

it can be shown that

KT (θ
+

T )
a.s.−−→

T∑

i,j,t=1

∂bij
∂θ0

∂bit
∂θ0

σ2

0Γtj = K(θ0).

In order to calculate the asymptotic distribution of θ̂T we need to calculate
the expectation and the variance of JT (θ0). The calculation of the expecta-
tion of JT (θ0) follows easily from the unbiasdness of the scoring rule estimat-
ing equation (Dawid & Lauritzen (2005) [10]). However, calculation of the
variance of JT (θ0) is challenging due to the presence of the non deterministic
term

Bi =
T∑

j,t=1

∂bij
∂θ0

bityjyt.

It relies on the following calculation:

var(JT (θ0)) =
1

T

T∑

i=1

var(Bi) =

=
1

T

T∑

i,j,t,ℓ,h=1

∂bij
∂θ0

bit
∂biℓ
∂θ0

bihcov(yjyt, yℓyh)
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=
T∑

i,j,t,ℓ,h=1

∂bij
∂θ0

Γit

σ2
0

∂biℓ
∂θ0

Γih

σ2
0

{cov(yj, yℓ)cov(yt, yh)

+ cov(yj, yh)cov(yt, yℓ) + cum4(yj, yt, yℓ, yh)}

=
T∑

i,j,t,ℓ,h=1

Ajℓth + Cjhtℓ +Ditℓh, (21)

where

Ajℓth =
∂bij
∂θ0

Γit

σ2
0

∂biℓ
∂θ0

Γih

σ2
0

cov(yj, yℓ)cov(yt, yh)

Cjhtℓ =
∂bij
∂θ0

Γit

σ2
0

∂biℓ
∂θ0

Γih

σ2
0

cov(yj, yh)cov(yt, yℓ)

Ditℓh =
∂bij
∂θ0

Γit

σ2
0

∂biℓ
∂θ0

Γih

σ2
0

cum4(yj , yt, yℓ, yh).

The first term in (21) simplifies as

T∑

i,j,t,ℓ,h=1

Ajℓth =

T∑

i,j,t,ℓ,h=1

∂bij
∂θ0

Γii∂biℓ
∂θ0

Γjℓ. (22)

The second term simplifies as

T∑

i,j,t,ℓ,h=1

Cjhtℓ = T

(
∂

∂θ0

γ−1(0)

σ2
0

)2

. (23)

The third term in (21), which involves the fourth cumulant, vanishes as for
Gaussian linear processes all the cumulant functions cumk for k > 3 are iden-
tically null Brockwell & Davis (1991) [4]. Hence convergence of var(JT (θ0))
is evaluated by considering only the first non-constant term (22).

Equation (22) can be rewritten as

T∑

i,j,t,ℓ,h=1

Ajℓth =
T∑

i,j,ℓ=1

∂

∂θ0

γ−1(i− j)

σ2
0

γ−1(0)
∂

∂θ0

γ−1(i− ℓ)

σ2
0

γ(j − ℓ),

where γ(j − ℓ) = Γjℓ and γ−1(i − j) = Γij . Let k = i − j and r = j − ℓ.
Without lose of generality, we assume that γ(h) = 0 if |h| > T . Then the
previous expression and consequently the first term in (21) simplifies to

T∑

k,r=−T

(T −max{|k|, |k + r|, |r|}) ∂

∂θ0

γ−1(k)

σ2
0

γ−1(0)
∂

∂θ0

γ−1(k + r)

σ2
0

γ(r).
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The absolute summability of the autocovariance and the duality proper-
ties of autocorrelation and of its inverse for causal invertible autoregressive-
moving average processes (see Cleveland (1972) [7], Chatfield (1979) [6] and
Hosking (1980) [21]) guarantee the following holds:

lim
T→∞

T∑

r,k=−T

(T −max{|k|, |k + r|, |r|})
T

× ∂

∂θ0

γ−1(k)

σ2
0

γ−1(0)
∂

∂θ0

γ−1(k + r)

σ2
0

γ(r)

=

∞∑

r,k=−∞

∂

∂θ0

γ−1(k)

σ2
0

γ−1(0)
∂

∂θ0

γ−1(k + r)

σ2
0

γ(r)

=
∞∑

r,k=−∞

V (r, k, θ0), (24)

where

V (r, k, θ0) =

(
∂

∂θ0

γ−1(0)

σ2
0

)2

+
∂

∂θ0

γ−1(k)

σ2
0

γ−1(0)
∂γ−1(k + r)

∂θ0
γ(r).

Combining equations (24) and (23) we obtain

var(JT (θ0)) −→ V, (25)

where V =
∑∞

r,k=−∞ V (r, k, θ0).
Since J(θ0) depends on the Bi’s, which involve the sample autocovariance,

it follows from the asymptotic normality of the sample autocovariance of
ARMA processes that JT (θ0) is also asymptotically normal with zero mean
and variance V . From (20) and (25) we obtain the asymptotic normality of

θ̂T : √
T (θ̂T − θ0)

D−→ Nm−1

(
0, K(θ0)

−1V KT (θ0)
−1
)
.
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Figure 1: Asymptotic relative efficiency of estimators for the AR(1) model
(left top panel), for the MA(1) model (right top panel) and for the
ARFIMA(0, d, 0) model (left bottom panel).
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Table 1: Simulation 1. Estimated mean (Est.), asymptotic standard de-
viation (sd), and asymptotic relative efficiency (ARE) of estimators of the
parameter φ in the AR(1) model, for n = 200, T = 50, and varying values

of φ. We denote by φ̂ the maximum likelihood estimate, by φ̂PL the pairwise
likelihood estimate, and by φ̂HT and φ̂HW the total and the matrix Hyvärinen
estimates, respectively.

φ̂ φ̂PL φ̂HT φ̂HW

φ Est. sd Est. sd ARE Est. sd ARE Est. sd ARE

−0.9 −0.8997 0.0041 −0.8997 0.0045 0.8625 −0.9008 0.0150 0.0738 −0.9004 0.0244 0.0278

−0.8 −0.8000 0.0059 −0.7999 0.0064 0.8340 −0.8007 0.0146 0.1602 −0.8007 0.0236 0.0613

−0.7 −0.7002 0.0071 −0.7001 0.0079 0.8087 −0.7007 0.0139 0.2599 −0.7005 0.0226 0.0979

−0.6 −0.6002 0.0080 −0.6002 0.0089 0.7986 −0.6008 0.0130 0.3794 −0.6008 0.0216 0.1367

−0.5 −0.5001 0.0087 −0.4999 0.0097 0.8069 −0.5009 0.0122 0.5060 −0.5011 0.0202 0.1853

−0.4 −0.4002 0.0092 −0.4000 0.0101 0.8351 −0.4006 0.0115 0.6466 −0.4001 0.0184 0.2505

−0.3 −0.2997 0.0096 −0.2997 0.0102 0.8808 −0.2998 0.0109 0.7773 −0.2995 0.0164 0.3438

−0.2 −0.2003 0.0099 −0.2002 0.0102 0.9347 −0.2005 0.0104 0.8991 −0.2007 0.0143 0.4780

−0.1 −0.0997 0.0100 −0.0997 0.0101 0.9813 −0.0997 0.0102 0.9776 −0.0999 0.0125 0.6493

0 0.0002 0.0101 0.0002 0.0101 0.9998 0.0002 0.0101 1.0077 0.0003 0.0117 0.7401

0.1 0.1005 0.0100 0.1005 0.0101 0.9810 0.1005 0.0101 0.9810 0.1007 0.0125 0.6506

0.2 0.1997 0.0099 0.1997 0.0102 0.9350 0.1998 0.0104 0.8980 0.1995 0.0143 0.4802

0.3 0.2997 0.0096 0.2997 0.0102 0.8808 0.2998 0.0109 0.7774 0.2995 0.0164 0.3433

0.4 0.3993 0.0092 0.3993 0.0101 0.8355 0.3997 0.0115 0.6451 0.3995 0.0184 0.2506

0.5 0.5002 0.0087 0.5003 0.0097 0.8071 0.5006 0.0122 0.5077 0.5004 0.0201 0.1867

0.6 0.5997 0.0080 0.5997 0.0089 0.7985 0.5998 0.0130 0.3757 0.5990 0.0215 0.1376

0.7 0.6992 0.0071 0.6992 0.0079 0.8087 0.6997 0.0138 0.2630 0.6993 0.0227 0.0977

0.8 0.8001 0.0058 0.8001 0.0064 0.8343 0.8006 0.0146 0.1605 0.8002 0.0235 0.0618

0.9 0.8998 0.0041 0.8998 0.0044 0.8622 0.8999 0.0150 0.0734 0.8987 0.0244 0.0278
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Table 2: Simulation 2. Estimated mean (Est.), asymptotic standard de-
viation (sd), and asymptotic relative efficiency (ARE) of estimators of the
parameter α in the MA(1) model, for n = 200, T = 50, and varying values
of α. We denote by α̂ the maximum likelihood estimate, by α̂PL the pairwise
likelihood estimate, and by α̂HT and α̂HW the total and the matrix Hyvärinen
estimates, respectively.

α̂ α̂PL α̂HT α̂HW

α Est. sd Est. sd ARE Est. sd ARE Est. sd ARE

−0.9 −0.8998 0.0055 −0.8996 0.0167 0.1064 −0.8999 0.0064 0.7208 −0.8993 0.0074 0.5471

−0.8 −0.7997 0.0066 −0.7996 0.0176 0.1390 −0.7998 0.0075 0.7566 −0.7992 0.0091 0.5177

−0.7 −0.6997 0.0075 −0.6996 0.0183 0.1692 −0.6997 0.0086 0.7583 −0.6993 0.0106 0.5020

−0.6 −0.6004 0.0083 −0.6005 0.0182 0.2080 −0.6007 0.0095 0.7553 −0.6003 0.0119 0.4878

−0.5 −0.5004 0.0089 −0.4999 0.0169 0.2757 −0.5007 0.0101 0.7646 −0.5002 0.0129 0.4743

−0.4 −0.4000 0.0093 −0.3997 0.0148 0.3984 −0.4003 0.0104 0.8038 −0.4001 0.0136 0.4713

−0.3 −0.3003 0.0097 −0.3000 0.0126 0.5905 −0.3006 0.0105 0.8527 −0.3006 0.0139 0.4838

−0.2 −0.2000 0.0099 −0.2002 0.0111 0.7926 −0.2001 0.0104 0.9119 −0.1999 0.0135 0.5408

−0.1 −0.1003 0.0101 −0.1004 0.0103 0.9456 −0.1004 0.0101 0.9882 −0.1006 0.0124 0.6557

0 0.0001 0.0101 0.0001 0.0101 1.0082 0.0001 0.0101 1.0101 0.0005 0.0117 0.7429

0.1 0.1000 0.0101 0.1000 0.0103 0.9526 0.1001 0.0101 0.9933 0.0997 0.0124 0.6554

0.2 0.2000 0.0099 0.2000 0.0111 0.7932 0.2000 0.0104 0.9171 0.1994 0.0135 0.5402

0.3 0.2994 0.0097 0.2996 0.0126 0.5853 0.2994 0.0105 0.8475 0.2992 0.0139 0.4835

0.4 0.4000 0.0093 0.4006 0.0148 0.3979 0.4000 0.0105 0.7938 0.3994 0.0137 0.4639

0.5 0.5002 0.0089 0.5000 0.0169 0.2760 0.5004 0.0101 0.7672 0.5000 0.0129 0.4721

0.6 0.6001 0.0083 0.6000 0.0182 0.2075 0.6001 0.0095 0.7643 0.5993 0.0119 0.4850

0.7 0.6999 0.0075 0.6997 0.0182 0.1707 0.6999 0.0086 0.7682 0.6996 0.0106 0.5047

0.8 0.7999 0.0066 0.7997 0.0175 0.1402 0.8000 0.0075 0.7639 0.7995 0.0091 0.5209

0.9 0.8999 0.0055 0.8997 0.0167 0.1072 0.9000 0.0064 0.7300 0.8995 0.0074 0.5504
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Table 3: Simulation 3. Estimated mean (Est.), asymptotic standard de-
viation (sd), and asymptotic relative efficiency (ARE) of estimators of the
parameter d in the ARFIMA model, for n = 200, T = 50, and varying values
of d. We denote by d̂ the maximum likelihood estimate, by d̂PL the pairwise
likelihood estimate, and by d̂HT and d̂HW the total and the matrix Hyvärinen
estimates, respectively.

d̂ d̂PL d̂HT d̂HW

d Est. sd Est. sd ARE Est. sd ARE Est. sd ARE

0.01 0.0121 0.0059 0.0101 0.007 0.7015 0.0101 0.0059 0.9866 0.0105 0.0087 0.4537

0.05 0.0526 0.0062 0.0499 0.0067 0.8585 0.0499 0.0065 0.9257 0.0504 0.0117 0.2827

0.1 0.1034 0.006 0.0997 0.0062 0.9593 0.1 0.0067 0.8241 0.1001 0.0128 0.223

0.15 0.1545 0.0052 0.15 0.0054 0.9258 0.1503 0.0058 0.8226 0.1497 0.0108 0.2349

0.20 0.2041 0.0038 0.1999 0.0043 0.8061 0.2 0.0041 0.8809 0.1997 0.0077 0.2475

0.25 0.2587 0.0021 0.2499 0.0026 0.6173 0.2499 0.0021 0.9339 0.2495 0.0038 0.3005

0.3 0.3032 0 0.3 0.0009 0 0.3 0.0001 0 0.3 0.0043 0
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