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Abstract
Cyanobacteria largely contribute to the biogeochemical carbon cycle fixing ~ 25% of the inorganic carbon on Earth. However, 
the carbon acquisition and assimilation mechanisms in Cyanobacteria are still underexplored regardless of being of great 
importance for shedding light on the origins of autotropism on Earth and providing new bioengineering tools for crop yield 
improvement. Here, we fully characterized these mechanisms from the polyextremophile cyanobacterium Chroococcidiop-
sis thermalis KOMAREK 1964/111 in comparison with the model cyanobacterial strain, Synechococcus sp. PCC6301. In 
particular, we analyzed the Rubisco kinetics along with the in vivo photosynthetic  CO2 assimilation in response to external 
dissolved inorganic carbon, the effect of  CO2 concentrating mechanism (CCM) inhibitors on net photosynthesis and the 
anatomical particularities of their carboxysomes when grown under either ambient air (0.04%  CO2) or 2.5%  CO2-enriched 
air. Our results show that Rubisco from C. thermalis possess the highest specificity factor and carboxylation efficiency ever 
reported for Cyanobacteria, which were accompanied by a highly effective CCM, concentrating  CO2 around Rubisco more 
than 140-times the external  CO2 levels, when grown under ambient  CO2 conditions. Our findings provide new insights into 
the Rubisco kinetics of Cyanobacteria, suggesting that improved Sc/o values can still be compatible with a fast-catalyzing 
enzyme. The combination of Rubisco kinetics and CCM effectiveness in C. thermalis relative to other cyanobacterial spe-
cies might indicate that the co-evolution between Rubisco and CCMs in Cyanobacteria is not as constrained as in other 
phylogenetic groups.
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Introduction

Cyanobacteria is one of the most primitive life forms on 
Earth (Knoll 2008). With the appearance of oxygenic pho-
tosynthesis more than 2500 Mya, cyanobacterial metabolism 
changed the composition of the primitive atmosphere, rising 

oxygen levels with the consequent decrease in  CO2 (Blank 
2013; Schirrmeister et al. 2016; Sánchez-Baracaldo et al. 
2022). Atmospheric oxygen rise permitted the evolution of a 
more complex life, leading to the large biological variability 
found in the present (Dismukes et al. 2001). Nowadays, the 
photosynthetic activity of Cyanobacteria makes an important 
contribution to the biosphere carbon cycle, with recent esti-
mations indicating that it represents more than 25% of the 
total  CO2 fixation on Earth (Rae et al. 2013). Cyanobacteria 
occupy a wide variety of habitats such as terrestrial, marine, 
brackish-water, freshwater, and even extreme environments 
(Tomitani et al. 2006). However, the carbon acquisition 
and assimilation mechanisms of the diverse cyanobacterial 
group have been barely studied, and research has only been 
focused on a few model cyanobacterial species (Espie and 
Kimber 2011; Whitehead et al. 2014; Xia et al. 2020; Basu 
and Mackey 2022).
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The ultimate responsible of the inorganic carbon fixa-
tion in photosynthetic organisms is the enzyme Ribulose-
1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 
4.1.1.39) (Spreitzer and Salvucci 2002). Besides its car-
boxylating activity, Rubisco also catalyzes the oxygenation 
of Ribulose-1,5-bisphosphate (RuBP), leading to the pho-
torespiration pathway, which consumes energy and leads to 
inorganic carbon loss (Hamilton 2019). Other two catalytic 
particularities of Rubisco are its relatively poor affinity for 
 CO2 and low carboxylation turnover rate ( kc

cat
 ) (Galmés et al. 

2014b). These catalytic limitations of Rubisco constrain 
the  CO2 assimilation capacity of photosynthetic organisms 
and, under stressful conditions, it may even compromise 
achieving sufficient rates of inorganic carbon fixation to 
support autotropism (Bauwe et al. 2010, 2012). Three dif-
ferent adaptative mechanisms have been described to occur 
in photosynthetic organisms that allow them to counterbal-
ance Rubisco catalytic limitations: (i) increasing Rubisco 
concentration, (ii) increasing  CO2 concentration at the active 
sites of Rubisco, and (iii) optimizing Rubisco kinetics to the 
intracellular concentrations of the two gaseous substrates, 
 CO2 and  O2 (Flamholz and Shih 2020).

Rubisco constitutes the most abundant enzyme on Earth, 
being up to 50% of the total soluble protein in  C3 plant 
leaves (Ellis 1979; Spreitzer and Salvucci 2002). Neverthe-
less, there is a large variability in Rubisco content among 
photosynthetic organisms, which is linked to nutrient (espe-
cially nitrogen) and  CO2 availability (Andersson and Back-
lund 2008). For example, higher amounts of the enzyme 
have been found in organisms that depend on the diffusive 
 CO2 entry from the atmosphere to the sites of carboxyla-
tion (Raven 2013). On the contrary, other organisms evolved 
mechanisms that increase  CO2 around Rubisco active sites, 
i.e., the so-called  CO2 concentrating mechanisms (CCMs), 
which lead to a lower Rubisco content (Losh et al. 2013). 
One example of the latter is Cyanobacteria, where Rubisco 
only accounts for 2 to 10% of the total soluble protein (Dai 
et al. 2018). The organisms presenting CCMs are  C4 and 
CAM terrestrial vascular plants, seagrasses, algae, Cyano-
bacteria, and some proteobacteria (Iñiguez et  al. 2020; 
Capó-Bauçà et al. 2022b). Two types of CCMs have been 
described, biochemical and biophysical. The former involves 
a  CO2 fixation prior to that catalyzed by Rubisco  (C4 and 
CAM plants), and the latter involves the active transport 
of  HCO3

−/CO2 across membranes and/or an increase in the 
external  CO2 concentration by acidification of the extra-
cellular environment (aquatic organisms, i.e.: seagrasses, 
algae, Cyanobacteria, and Proteobacteria; Giordano et al. 
2005). Cyanobacteria and some proteobacteria have evolved 
a particular CCM component consisting of a proteic polyhe-
dral shell filled with Rubisco and carbonic anhydrase (CA), 
called carboxysome (Whitehead et al. 2014).  HCO3

− is 
actively accumulated in the cytosol, where there is no CA 

activity, and enters the carboxysome, where CA catalyzes 
the dehydration of  HCO3

− to  CO2 and increases the  CO2 
concentration around Rubisco, therefore enhancing car-
boxylation over oxygenation (Mangan and Brenner 2014; 
Mangan et al. 2016). This prokaryotic type of CCM is one 
of the most efficient inorganic carbon acquisition mecha-
nisms, concentrating  CO2 around Rubisco active sites up to 
100 times the extracellular  CO2 levels (Badger and Andrews 
1987).

Regarding the optimization of Rubisco kinetics, a large 
variability in the main kinetic parameters has been observed 
across photosynthetic organisms (Young et  al. 2016; 
Bathellier et al. 2018; Flamholz et al. 2019; Iñiguez et al. 
2020). The highest values of  CO2/O2 specificity (Sc/o; up to 
240 mol  mol−1) and the highest affinities for  CO2 (which 
means the lowest Michaelis–Menten semi-saturation con-
stant for  CO2 measured at 0%  O2, Kc; down to 3.3 µM) are 
found in Rhodophyta (Whitney et al. 2001), whereas the 
highest Rubisco carboxylation turnover rates ( kc

cat
 ) are found 

in Proteobacteria (up to 22.2  s−1, Davidi et al. 2020). How-
ever, the vast majority of the Rubisco kinetic data to date 
belongs to higher plants, implying an important bias towards 
other phylogenetic groups (Flamholz et al. 2019; Iñiguez 
et al. 2020). Large variability in Rubisco kinetics has been 
observed in the few cyanobacterial strains analyzed so far, 
with Sc/o values ranging between 32 and 60 mol  mol−1; Kc 
ranging between 80 and 309 µM, the Michaelis–Menten 
semi-saturation constant for  O2 (Ko) ranging between 529 
and 1400 µM, and kc

cat
 ranging between 2.41 and 14.4  s−1 

(Iñiguez et al. 2020). By contrast, in higher plants, Sc/o val-
ues range from 60 to 120 mol  mol−1, Kc from 6 to 44 µM, Ko 
from 150 to 1500 µM, and kc

cat
 from 1 to 7  s−1.

The three variables described above that determine the 
carbon fixation capacity of an autotrophic organism (Rubisco 
concentration,  CO2 concentration at the sites of Rubisco 
carboxylation, and Rubisco kinetics) are not independent 
of each other, and it is believed that they have co-evolved 
shaped by both phylogeny and environment (Galmés et al. 
2014a; Tcherkez et al. 2018). For example, the presence of 
CCMs in terrestrial vascular plants is correlated with a lower 
Rubisco content and an enhancement of kc

cat
 at the expense of 

a loss in Rubisco affinity for  CO2 (higher Kc) (Galmés et al. 
2014b). However, the co-evolution of Rubisco kinetics and 
CCMs have only been widely investigated in higher plants, 
leaving other phylogenetic groups, such as Cyanobacteria, 
understudied. In addition, extremophile organisms present 
specific adaptations to optimize carbon fixation under unfa-
vorable conditions; therefore, one question that remains to 
be answered is whether the analysis of extremophile cyano-
bacteria could widen the range of variability of Rubisco 
kinetics and CCM operation found in the previously ana-
lyzed model species.



233Photosynthesis Research (2023) 156:231–245 

1 3

To answer if extremophile cyanobacteria could possess 
singular adaptations in the carbon acquisition and assimi-
lation mechanisms, we performed a complete analysis on 
Rubisco kinetics, operation of inorganic carbon acquisition 
mechanisms, CCM effectiveness and anatomical imaging 
of Chroococcidiopsis thermalis KOMAREK 1964/111, 
a polyextremophile cyanobacterium inhabiting desertic 
rock surfaces, supporting temperatures up to 50 °C, high 
UV radiation and desiccation (Billi et al. 2011; Cumbers 
and Rothschild 2014); in comparison with the model spe-
cies Synechococcus sp. PCC6301. We hypothesize that C. 
thermalis has evolved multiple mechanisms that allowed its 
adaptation to a wide range of  CO2 conditions derived from 
the harsh environments where this cyanobacterium inhabits.

Materials and methods

Cyanobacterial cultures

Cyanobacterial strains of Synechococcus sp. (PCC 6301/
UTEX 625; CCALA 188) and Chroococcidiopsis thermalis 
(KOMAREK 1964/111; CCALA 048) were acquired from 
the Culture Collection of Autotrophic Organisms (CCALA, 
Třeboň, Czech Republic). Synechococcus sp. was grown in 
1 L sterilized flasks under orbital agitation, and C. therma-
lis was grown in 140 mm × 20 mm glass Petri dishes with-
out agitation. Both cultures were maintained in Z-medium 
(Staub 1961) at 20 °C in a 16:8 light–dark cycle with a 
light intensity of 50 μmol  m−2  s−1 for Synechococcus sp. 
and 30 μmol  m−2  s−1 for C. thermalis (according to their 
optimum growth irradiances) provided by a cool-white light 
source (4000 K; Osram L 18W/840 Lumilux, Germany), in 
a temperature-controlled chamber (Aralab Fitoclima S600 
PLH, Spain). Growth rate was followed by spectrophotom-
etry at 650 nm  (OD650, Thermo scientific Multiskan Sky 
1530-00433C, USA). When cultures reached an OD650 
value of 0.4, control and enriched  CO2 experiments were 
started, each with three autoclaved flasks of 100 mL culture 
connected to a constant air-flux of 5 mL/min of either ambi-
ent air (0.04%  CO2, LC) or 2.5%  CO2-enriched air (HC), 
respectively. Both species were grown under constant agi-
tation during the experiment and maintained in exponential 
growth phase. After 7–10 days of acclimation to the two 
 CO2 treatments, the physiological measurements described 
below were done.

O2 evolution measurements

Net photosynthesis and the effect of external and internal 
carbonic anhydrases (CAs) and anion-exchange bicarbonate 
transporter inhibitors on net photosynthesis were deter-
mined at the culture temperature (20 °C) by monitoring 

 O2 evolution using Clark-type oxygen electrode chambers 
(Oxygraph, Hansatech, UK). 2 mL of culture were placed 
in the chamber, illuminated with white-light LED lamps at 
a saturating photosynthetic irradiance [300 μmol  m−2  s−1, 
previously determined for both species by chlorophyll a flu-
orescence light curves using a pulse-amplitude-modulated 
fluorometer (Dual-PAM-100, Walz, Germany)].  O2 evolu-
tion rates were taken at 2–3 min intervals after rate stabiliza-
tion, using the O2view software (version 2.10, Hansatech). 
Rates were normalized to the dry weight (DW) of biomass, 
which was obtained weighing the dried 2 mL pellet of each 
measurement.

To assess the role of CAs in photosynthesis, the percent-
age of net photosynthesis inhibition after adding 200 µM 
of acetazolamide (AZ, external CAs inhibitor) and 200 µM 
of ethoxyzolamide (EZ, external and internal CAs inhibi-
tor) was monitored. The same procedure was followed after 
adding 300 µM of the anion-exchange transporter inhibitor 
4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS) to a 
fresh 2 mL culture aliquot.

Photosynthesis-dissolved inorganic carbon (DIC) curves 
were done at saturating photosynthetic irradiance (300 μmol 
 m−2  s−1) at 25 °C to be able to compare the obtained in vivo 
carbon fixation rates with those from in vitro Rubisco meas-
urements (also done at the standard temperature of 25 °C). 
2 mL fresh culture was washed three times with  CO2 free-Z 
medium with 20 mM Tris–HCl (pH 8), by gentle centrifuga-
tion (3000×g for 3 min). Initial  O2 concentration inside the 
chambers was lowered to 70% by bubbling with  N2 to avoid 
 O2 oversaturation during the curve. Oxygen saturation in 
air-equilibrated media was determined using DOTABLES 
(https:// water. usgs. gov/ softw are/ DOTAB LES/) software for 
the specific conductivity of the medium at 25 °C. After zero 
net photosynthesis was detected, increasing concentrations 
of DIC were added every 2–3 min, obtaining rates for 8–12 
different DIC concentrations in the chamber (0–1500 µM 
for LC-grown cells and 0–5000 µM for HC-grown cells). 
Dissolved  CO2 concentration in equilibrium in the medium 
for each DIC concentration assayed was calculated using 
CO2sys software and curves were fitted to the Michae-
lis–Menten equation obtaining the maximum photosynthetic 
rate (Amax) and the in vivo photosynthetic semi-saturation 
constant for  CO2 (Km in vivo).

Carbon isotopic discrimination

The 13C isotopic discrimination in cyanobacterial cells was 
obtained from a 50 mL culture aliquot at  OD650 of 0.8–1, 
which was centrifuged at 10,000×g for 3 min. The pellet was 
freeze-dried overnight and homogenized. 0.2 g of the dried 
powder was transferred into metallic capsules (176980926, 
Lüdiswiss, Switzerland) and combusted in an elemental 
analyzer (Thermo Flash EA 1112 Series, Germany) where 

https://water.usgs.gov/software/DOTABLES/
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 CO2 was injected into a continuous-flow isotope mass spec-
trometer (Thermo-Finnigan Delta XP, Bremen, Germany). 
Peach leaf standards (NIST 1547) were measured every 
six samples. Results are presented as δ vs. PDB (Pee Dee 
Belemnite). The obtained 13C isotopic discrimination of 
the cyanobacterial biomass (δ13C) was corrected with the 
13C isotopic composition of DIC found in the medium from 
either  CO2-enriched or control experiments, as described by 
Iñiguez et al. (2016).

Total soluble proteins and Rubisco quantification

50 mL culture aliquots at  OD650 of 0.8–1 were centrifuged 
at 10,000×g for 3 min. Pellets were inmediately frozen in 
liquid nitrogen and homogenized in a mixer mill (Retsch 
GmbH MM200) with 2 mL cold Extraction Buffer con-
taining 100 mM EPPS (pH 8.1), 1 mM ethylenediamine-
tetraacetic acid (EDTA), 20 mM  MgCl2, 2% CelLytic™ B 
(B7435, Sigma-Aldrich), 1 M dithiothreitol (DTT), 2% plant 
protease inhibitor cocktail (P9599, Merck, USA), 100 mM 
β-mercaptoethanol and 0.1  g polyvinylpolypyrrolidone 
(PVPP). The homogenate was then centrifuged for 5 min 
at 3000×g at 4 °C. The supernatant was kept on ice and the 
pellet was frozen in liquid nitrogen and milled again. This 
process was repeated three times to ensure maximum extrac-
tion efficiency.

A supernatant aliquot was used to quantify the total 
soluble protein (TSP) content following Bradford’s (1976) 
method, and to quantify Rubisco content by Western blot 
immunodetection of the Rubisco large subunit using purified 
Rubisco standard and Rubisco large subunit antibody (AS01 
017S and AS03 037 Agrisera, Sweden) at 1:20,000 dilution 
and Goat anti-Rabbit IgG HRP-conjugated secondary anti-
body (AS09 602 Agrisera, Sweden) at 1:50,000 dilution (see 
Supplementary Fig. 2).

Rubisco catalytic measurements

The previously described crude protein extract was par-
tially purified using a 5  mL Mini-Macroprep High-Q 
strong anion-exchange cartridge (Bio-Scale Mini Macro-
Prep High Q Cartridge 7324124, Bio-Rad, USA) and then 
desalted and concentrated ~ tenfold using Amicon Ultra 4 
(Z740198, Merck, USA) by centrifuging at 1000×g at 4 
°C. Rubisco carboxylation kinetic traits were determined 
at 25 °C as explained in (Capó-Bauçà et al. 2020) 7 mL-
septum capped crystal vials with magnetic stirrer contain-
ing 400 µL of Assay Buffer (100 mM Bicine (pH 8.1), 
20 mM  MgCl2) and ~ 100 W-A units of carbonic anhydrase 
(C3934 Merck, USA) were bubbled with 100%  N2 gas or 
 CO2-free synthetic air (21%  O2, 79%  N2) for 2 h. After 
that, one of eight different concentrations of  NaH14CO3 
from 0 to 60 mM with a specific activity of 3.7 ×  1010 Bq 

 mol−1 and 1.6 mM of RuBP [synthesized and purified as 
explained in Kane et al. (1994)] were added to each vial. 
The semi-purified protein extracts were supplemented 
with 20 mM  NaH14CO3 and pre-activated for 30 min at 
35 °C (optimum incubation time and temperature for full 
Rubisco activation, as previously determined). Assays 
were started by adding 20 µL of preactivated extract and 
led to react for 1 min (final reaction volume of 0.495 mL). 
The reaction was stopped by adding 200 µL of 10 M for-
mic acid and dried at 80 °C. Non-volatile acid-stable 
14C-organic molecules were determined by scintillation 
counting (Beckman Coulter LS6500, USA).

The semi-saturation constant for  CO2 under 0% and 
21%  O2 (Kc and 

K
21% O2

c

 , respectively) and the maximum 

carboxylation velocity ( Vc

max
 ) were determined from fitting 

the data to the Michaelis–Menten equation. The semi-
saturation constant for  O2 (Ko) was calculated in each bio-
logical replicate by a linear fit of Kc measurements 
obtained under 0% and 21%  O2.  CO2 concentration in solu-
tion was calculated assuming a carbonic acid dissociation 
constant  (pKa) of 6.11 at 25 °C (Galmés et al. 2016) using 
accurate measurements of the assay buffer pH at 25 °C. kc

cat
 

was calculated by dividing Vc

max
 by Rubisco active site’s 

concentration, the latter determined by incubating the 
same semi-purified protein extracts for 30 min at room 
temperature with 2ʹ-carboxyarabinitol-1,5-bisphosphate 
(14C-CABP) (Ruuska et al. 1998), assuming eight active 
binding sites per Rubisco (Blayney et al. 2011). The opti-
mal concentration of 14C-CABP for Rubisco quantification 
was determined for each cyanobacterial strain as explained 
in (Capó-Bauçà et al. 2022b).

Rubisco’s specificity factor (Sc/o) was assayed with 
[1-3H]RuBP as explained by Kane et al. (1994), using the 
same semi-purified extracts as for kinetics. 7 mL septum-
capped crystal vials containing 940 µL of Assay buffer 
(30 mM Triethanolamine-acetate (pH 8.3) and 15 mM Mg-
acetate), 400 W-A units of carbonic anhydrase and 20 µL 
of semi-purified protein extract were bubbled with a gas 
mixture of 99.95%  O2 and 0.05%  CO2 for 1 h. The reaction 
was initiated by adding ~ 1 nmol of [1-3H] RuBP and incu-
bated for 1 h at 25 °C with continuous stirring (final reac-
tion volume of 1 mL). The reaction was stopped by adding 
0.35 U of alkaline phosphatase (P7640, Merck, USA). The 
reaction product was purified using anion exchange AG1-
X8 resin (1401441, Bio-Rad, USA), and then, glycolate 
and glycerate picks were separated by high-performance 
liquid chromatography (HPLC; Jasco-UV-4075, Jasco inc., 
USA) and quantified by scintillation counting (Beckman 
Coulter LS6500, USA). Sc/o was calculated using a  CO2/
O2 solubility ratio of 0.038 at 25 °C.

Rubisco kinetic parameters obtained in the present 
study for Synechococcus sp. and C. thermalis were 
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compared to all cyanobacterial Rubisco kinetic data avail-
able to date. These data were extracted from the compi-
lation of Iñiguez et al. (2020), which includes Rubisco 
kinetic data from phylogenetically distant organisms (see 
Supplementary Spreadsheet 1).

Transmission electron microscope imaging

1 mL culture aliquots  (OD650 ~ 0.8) were centrifuged at 
10,000×g. The pellet was then resuspended in 1 mL fixation 
buffer (0.1 M phosphate buffer pH 7.2, 4% glutaraldehyde, 
2% paraformaldehyde) and stored at 4 °C under darkness. 
Post-fixation was performed in 1% osmium tetroxide, pre-
pared in 0.1 M Sorensen’s phosphate buffer, for 1 h. The 
fixed sections were then stained in 2% uranyl acetate, dehy-
drated in a graded ethanol series, and embedded in London 
Resin White (EMS, Hatfield, PA). Semithin (1 µm thick) and 
ultrathin (50 to 70 nm thick) sections were cut using an ultra-
microtome (UC7/FC7; Leica, Germany). The semithin sec-
tions were mounted on glass slides and stained with epoxy 
tissue stain (EMS, Hatfield, PA). The ultrathin sections were 
mounted on copper grids and visualized using the transmis-
sion electron microscope Jeol JEM 1400 operating at 80 kV. 
Image analysis was done using ImageJ software (Wayne 
Rasband National Institutes of Health, version 2.3.0/1.53q).

Rubisco gross assimilation modeling

An adaptation of Farquhar’s biochemical model (Farquhar 
et al. 1980) was applied to the in vitro measured Rubisco 
kinetic traits to calculate the Rubisco gross assimilation rate 
per catalytic site (ARub) at varying  CO2 partial pressure at the 
Rubisco active sites of Synechococcus sp. and C. thermalis 
in comparison with the Rubisco kinetic traits of a model  C3 
crop species, Triticum aestivum, obtained from Iñiguez et al. 
(2020) (Eq. 1).

where kc
cat

 , Kc and Ko are the carboxylation turnover rate 
and the Michaelis–Menten semi-saturation constants for car-
boxylation and oxygenation, respectively, measured in vitro 
at 25 °C. C and O are the  CO2 and  O2 partial pressure at 
the Rubisco active sites which, in the case of  CO2, range 
between 10 and 20,000 ppm, and, in the case of  O2, partial 
pressure is assumed to be constant at 210,000 ppm. Γ* = 0.5 
O/Sc/o, where Sc/o is the  CO2/O2 specificity factor measured 
in vitro at 25 °C. RCS is the number of Rubisco catalytic 
sites which was set to 1 to obtain the Rubisco gross assimila-
tion rate per catalytic site.

(1)ARub =
(C − Γ∗) ⋅ kc

cat
⋅ RCS

C + Kc ⋅

(

1 +
O

Ko

)

Statistical analysis

The significance of differences was tested using two-way 
ANOVA after normality (Anderson–Darling test) and 
homoscedasticity (Levene test) was corroborated. For data 
that do not meet normality and/or homoscedasticity, the 
Kruskal–Wallis test was used to test the significance of dif-
ferences. Post hoc comparisons were done using the Tukey 
test or the Bonferroni correction, respectively. Student’s t 
test, or Mann–Whitney–Wilcoxon test for non-parametric 
data, was used to compare means between two groups of 
data. P values below 0.05 were considered significant. Data 
were analyzed using R (version 3.2.3 and RStudio version 
0.99.879) and plots were done using the ggPlot2 package 
(version 2.2.1).

Results

The singularity of Rubisco kinetics from C. thermalis 
among Cyanobacteria species

In vitro Rubisco kinetic parameters measured at 25 °C show 
significant differences between Synechococcus sp. and C. 
thermalis, except for kc

cat
 (Supplementary Table 1). Chrooo-

coccidiopsis thermalis presented 40% higher Sc/o, 70% 
higher affinity for  CO2 (i.e. lower Kc), 85% lower affinity 
for  O2 (i.e. higher Ko), and 75% higher catalytic carboxyla-
tion efficiency ( kc

cat
∕Kc ) than Synechococcus sp. In addition, 

when compared with previously measured cyanobacterial 
Rubisco, C. thermalis possessed the most extreme values for 
most of the Rubisco kinetic parameters (Fig. 1). The highest 
value ever reported for Sc/o in Cyanobacteria corresponded to 
C. thermalis (69.0 mol  mol−1) from the present study, being 
1.4-fold higher than the cyanobacterial average (46.6 mol 
 mol−1) and twofold higher than the lowest values, observed 
in Anabaena sp. PCC7120 (35.0 mol  mol−1). The lowest 
values for Kc were found in Aphanocapsa virescens (Jordan 
and Ogren 1983) followed by C. thermalis (80.0 µM and 
87.2 µM, respectively), both presenting the highest affinity 
for  CO2 among all measured cyanobacteria. This Rubisco 
affinity for  CO2 from C. thermalis was twofold higher than 
the cyanobacterial average, which means a twofold lower 
Kc than the average value of 167.78 µM for Cyanobacteria. 
When measured at 21%  O2, the Michaelis–Menten semi-
saturation constant for  CO2 ( K21 % O2

c  ) of C. thermalis was 
also the lowest among previously measured cyanobacteria 
(106.9 µM), followed by the hyperthermophile Thermosyn-
echococcus elongatus BP-1 (107 µM; Wilson et al. 2018). 
This means that Rubisco  CO2 affinity under 21%  O2 in C. 
thermalis is more than twofold higher than the cyanobac-
terial average ( K21 % O2

c  of 245.9 µM). Similar values of 
kc
cat

 were obtained for Synechococcus sp. and C. thermalis 
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(9.0  s−1 and 9.1  s−1, respectively) that fit the cyanobacterial 
average ( kc

cat
of of 9.8  s−1). In addition, the highest value of 

kc
cat
∕Kc ever reported for Cyanobacteria was found again in 

C. thermalis (0.10  s−1 µM), being more than twofold higher 
than the cyanobacterial average (0.05  s−1 µM). The lowest 
affinity for  O2 was observed in Prochlorococcus marinus 
MIT9313 (Ko of 1400 µM; Shih et al. 2016), whereas C. 
thermalis presented a relatively low affinity for  O2, with a 
Ko of 1163 µM.

Characterization and effectiveness of  CO2 
concentrating mechanisms in Synechococcus sp. 
and C. thermalis

Net photosynthesis and effect of CCM inhibitors

Net photosynthetic rate (An) from C. thermalis and Synecho-
coccus sp. under LC did not differ, averaging 47.7 µmol  O2 
 h−1  mg−1 DW. On the contrary, An from both species under 
HC (Fig. 2) showed significantly higher values for Synecho-
coccus sp. than for C. thermalis (60.2 and 46.9 µmol  O2  h−1 
 mg−1 DW, respectively). Hence, the An of Synechococcus 
sp. under HC was higher than under LC, whereas no dif-
ferences in An of C. thermalis were observed between  CO2 
treatments.

In Synechococcus sp., An was significantly inhibited by 
the addition of AZ (which only inhibits external CAs) under 

HC but not under LC, while in C. thermalis, An was inhibited 
by AZ in both  CO2 treatments (Table 1). Chroococcidiopsis 
thermalis showed a higher percentage of inhibition by AZ 
under HC than Synechococcus sp. (35.4% and 23.5% of net 
photosynthetic inhibition, respectively). In addition, An was 
strongly inhibited by the addition of EZ (which inhibits both 
internal and external CAs) in both species and  CO2 treat-
ments (ranging from 47 to 87% inhibition), indicating the 
presence of constitutive internal CAs with an important con-
tribution to net photosynthetic rate. The percentage of EZ 
inhibition in C. thermalis under HC was significantly higher 
than under LC (86.9% and 65.6%, respectively). No differ-
ences in the percentage of inhibition by EZ were observed 
between both species under LC, neither in Synechococcus 
sp. between HC and LC.

An of the two species in both  CO2 treatments was sig-
nificantly inhibited by the addition of the anion-exchange 
transporter inhibitor DIDS, except for C. thermalis under 
LC (Table 1). An from Synechococcus sp. under HC was 
inhibited more than twofold by DIDS, in comparison with C. 
thermalis under HC (44.3 vs. 19.3% of inhibition). In addi-
tion, the percentage of DIDS inhibition in Synechococcus sp. 
under HC was significantly higher than under LC.

Fig. 1  In vitro Rubisco kinetic traits at 25 °C: a  CO2/O2 specificity 
factor (Sc/o); b Michaelis–Menten semi-saturation constant for  CO2 at 
0%  O2 (Kc); c Michaelis–Menten semi-saturation constant for  CO2 at 
21%  O2 ( 

K
21% O2

c

 ); d Michaelis–Menten semi-saturation constant for 

 O2 (Ko); e carboxylation turnover rate ( kc
cat

 ), and f Rubisco carboxyla-
tion efficiency ( kc

cat
/Kc) of Chroococcidiopsis thermalis KOMAREK 

1964/111 (yellow triangles) and Synechococcus sp. PCC6301 (blue 
squares), measured from semi-purified protein extracts of both strains 

in the present study, compared to Rubisco kinetics of other previously 
measured cyanobacterial strains (data compilation from Iñiguez et al. 
2020, empty circles). 3–6 replicates of each Rubisco kinetic parame-
ter were used to calculate the mean value shown for Synechococcus 
sp. PCC6301 and C. thermalis KOMAREK 1964/111 in the boxplots 
(mean values and standard deviations are shown in Supplementary 
Table 1). For the other cyanobacterial strains, kinetic parameters are 
the mean of all values reported in the compiled studies for each strain 
(values and references provided in Supplementary Spreadsheet 1)
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Fig. 2  Net photosynthetic rate (An) in Synechococcus sp. PCC6301 
(white) and Chroococcidiopsis thermalis KOMAREK 1964/111 
(grey) at 20 °C under ambient air (0.04%  CO2, LC, empty pattern) or 
2.5%  CO2—enriched air (HC, line pattern) and saturating irradiance 
(300  μmol photons  m−2  s−1). Values are means ± standard deviation 

of 10 replicates. Different letters denote significant differences among 
different strains and  CO2 treatments (P < 0.05, two-way ANOVA fol-
lowed by Tukey’s test or Kruskal–Wallis test followed with Bonfer-
roni correction for non-parametric data)

Fig. 3  Rubisco in vitro  CO2 assimilation under 21%  O2 (green line), 
photosynthetic in  vivo  CO2 assimilation of ambient air grown cells 
(blue dotted line; LC) and photosynthetic in  vivo  CO2 assimilation 
of 2.5%  CO2 grown cells (orange dashed line, HC) from a Synecho-
coccus sp. PCC6301 and b Chroococcidiopsisthermalis KOMAREK 
1964/111. The maximum Rubisco and photosynthetic  CO2 assimi-
lation rates were standardized to 1 in both plots. The ratio between 
the Rubisco in  vitro Michaelis–Menten semi-saturation constant for 
 CO2 under 21%  O2 (K

21 % O2

c ) and the photosynthetic in vivo Michae-
lis–Menten semi-saturation constant for  CO2 from either cells grown 
under ambient air (Km in vivo LC) or cells grown under 2.5%  CO2 

(Km in vivo HC) indicates the CCM effectiveness. Different letters 
denote significant differences among treatments, and the asterisk (*) 
indicates significant differences between the two analyzed species 
(P < 0.05, Kruskal–Wallis test followed by Bonferroni correction for 
K

21 % O2

c  , Kmin vivo LC and Km in vivo HC within species; and Student’s 
t test for parametric data, or Mann–Whitney–Wilcoxon test for non-
parametric data, to compare means between species). 3–6 replicates 
were used to calculate the mean values of the Rubisco in vitro meas-
urements and 10 replicates were used for the photosynthetic in vivo 
measurements
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In vivo photosynthetic affinity for  CO2 and CCM 
effectiveness

When comparing the two species grown under LC, C. ther-
malis presented a fivefold higher in vivo photosynthetic 
affinity for  CO2 than Synechococcus sp. (i.e. fivefold lower 
Km in vivo, with values of 0.7 µM and 3.5 µM, respectively; 
Fig. 3). Synechococcus sp. did not change its Km in vivo 
between LC and HC-grown cells, whereas C. thermalis pre-
sented a more than threefold lower in vivo photosynthetic 
affinity for  CO2 when grown under HC than under LC (Km 
in vivo of 2.4 and 0.7 µM, respectively).

The effectiveness to concentrate  CO2 around Rubisco 
active sites from the CCM machinery was assessed by 
comparing the in vivo photosynthetic response to  CO2 
with the in vitro Rubisco fixation response to  CO2 under 

21%  O2 (Fig. 3 and Supplementary Fig. 1), through the 
ratio between K21 % O2

c  and Km in vivo. CCM effectiveness 
in C. thermalis grown under LC was more than two-
fold higher than that found in Synechococcus sp. grown 
under LC ( K21 % O2

c ∕Km in vivo ratio of 146.5 µM µM−1 and 
62.1 µM µM−1, respectively; Fig. 3). CCM effectiveness 
in Synechococcus sp. remained unvaried between the two 
 CO2 treatments. By contrast, CCM effectiveness in C. 
thermalis grown under HC was more than threefold lower 
than that found under LC (ratio K21 % O2

c ∕Km in vivo ratio of 
44 µM µM−1 and 146.5 µM µM−1, respectively).

Total Rubisco content and carbon isotopic fractionation

The percentage of Rubisco per total soluble protein (TSP) 
was invariable between  CO2 treatments in C. thermalis, 

Table 1  Percentages of inhibition of net photosynthesis after the 
addition of the inhibitors acetazolamide (AZ), ethoxyzolamide (EZ) 
and 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS) in Synecho-
coccus sp. PCC6301 and Chroococcidiopsis thermalis KOMAREK 

1964/111, both grown under ambient air (0.04%  CO2, LC) or 2.5% 
 CO2—enriched air (HC). Values are means ± standard deviations of 
10 replicates

Different letters denote significant differences among strains and  CO2 treatments (P < 0.05, two-way ANOVA followed by Tukey’s test or 
Kruskal–Wallis test followed with Bonferroni correction for non-parametric data). Asterisk (*) indicates a significant inhibition of the net pho-
tosynthetic rate (P < 0.05, Student’s t test or Mann–Whitney–Wilcoxon test for non-parametric data). Hash (#) indicates significant differences 
between the net photosynthetic rate under AZ and that under EZ (P < 0.05, Student’s t test or Mann–Whitney–Wilcoxon test for non-parametric 
data)

Species CO2 treatment % inhibition AZ % inhibition EZ % inhibition DIDS

Synechococcus sp. LC 11.7 ± 5.9 a 51.4 ± 6.7 ab*# 20.2 ± 8.1 a*
Synechococcus sp. HC 23.5 ± 9.3 b* 46.8 ± 12.1 b*# 44.3 ± 7.4 b*
C. thermalis LC 20.3 ± 5.0 ab* 65.6 ± 14.9 a*# 6.1 ± 2.3 c
C. thermalis HC 35.4 ± 10.7 c* 86.9 ± 17.7 c*# 19.3 ± 5.6 a*

Fig. 4  a Percentage of Total Soluble Protein (TSP) that corresponds 
to Rubisco; b Cell 13C isotopic discrimination (δ13C). Values are 
means ± SD. White color corresponds to Chroococcidiopsis therma-
lis KOMAREK 1964/111 and grey color corresponds to Synechococ-
cus sp. PCC6301. The line pattern refers to 2.5%  CO2—enriched air 
grown cells (HC) and the empty pattern to ambient air grown cells 

(0.04%  CO2, LC). Different letters denote significant differences 
among strains and  CO2 treatments (P < 0.05, two-way ANOVA fol-
lowed by Tukey’s test or Kruskal–Wallis test followed with Bonfer-
roni correction for non-parametric data). 3 replicates were used to 
calculate the % of Rubisco to TSP and 4–7 replicates to calculate 
δ13C
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averaging 1.7% of TSP (Fig. 4a, Supplementary Fig. 2). On 
the contrary, the percentage of TSP being Rubisco in Syn-
echococcus sp. grown under LC was significantly higher 
than that under HC (4% and 2.5%, respectively). Overall, 
1.5-fold higher values of Rubisco per TSP were observed in 
Synechococcus sp. in comparison with C. thermalis, when 
both species were grown under LC (Fig. 4a).

Carbon isotopic fractionation of the biomass (δ13C) 
was significantly less negative in C. thermalis (δ13C of 
− 8.8 ‰) than in Synechococcus sp. under LC (− 16.2 
‰, Fig. 4b), suggesting a stronger bicarbonate use in the 
former. δ13C of Synechococcus sp. was invariable between 
the two  CO2 treatments. On the contrary, δ13C of C. ther-
malis becomes 1.7-fold more negative when grown under 
HC relative to the value found under LC, acquiring similar 
values as in Synechococcus sp. (δ13C of − 15.47 ‰).

Rubisco gross assimilation modeling

Modeled Rubisco-limited gross assimilation rate (ARub) 
at 25 °C in C. thermalis was higher than that of Synecho-
coccus sp. at the whole range of  CO2 partial pressure at 
the Rubisco active sites (Cc) tested, and higher than T. 
aestivum at Cc above 700 µbar (Fig. 5a, b). Cyanobacte-
rial ARub saturated at much higher Cc than T. aestivum, but 
 ARub from C. thermalis saturated at lower Cc than Syn-
echococcus sp.

Anatomical differences between C. thermalis 
and Synechococcus sp.

Cell area (Table 2 and Fig. 6) did not differ between the 
two  CO2 treatments in Synechococcus sp. (1.6 µm2 in LC 
and 1.7 µm2 in HC), while in C. thermalis, it was higher in 

Fig. 5  a Modeled Rubisco gross assimilation rate (ARub) at 25 °C at 
varying  CO2 partial pressure at the Rubisco active sites (Cc) of Syn-
echococcus sp. PCC 6301 (blue dotted line), Chroococcidiopsis ther-

malis KOMAREK 1964/111 (orange dashed line) and Triticum aes-
tivum (green line), and b Previous graph zoomed in at a Cc ranging 
from 0 to 900 µbar

Table 2  Transmission electron microscopy image characterization of 
cell area, number of carboxysomes per cell, total carboxysome area 
per cell, average area of each carboxysome and percentage of the cell 

area occupied by carboxysomes, in Synechococcus sp. PCC6301 and 
Chroococcidiopsis thermalis KOMAREK 1964/111 grown either 
under ambient air (0.04%  CO2, LC) or 2.5%  CO2—enriched air (HC)

Values are means ± standard deviations of 30 measured cells per species and treatment. Different letters denote significant differences among 
different strains and  CO2 treatments (P < 0.05, two-way ANOVA followed by Tukey’s test or Kruskal–Wallis test followed with Bonferroni cor-
rection for non-parametric data)

Species CO2 treatment Cell area (µm2) No. carbox-
ysomes per 
cell

Total carboxysome 
area per cell (µm2)

Average area of each 
carboxysome (µm2)

% carboxysome area

Synechococcus sp. LC 1.6 ± 0.4 a 1.3 ± 0.5 a 0.09 ± 0.04 a 0.08 ± 0.04 a 6.1 ± 3.3 a
Synechococcus sp. HC 1.7 ± 0.4 a 1.1 ± 0.4 a 0.08 ± 0.04 a 0.07 ± 0.04 a 4.7 ± 2.8 a
C. thermalis LC 3.8 ± 1.2 b 2.9 ± 1.1 b 0.08 ± 0.03 a 0.03 ± 0.01 b 2.3 ± 1.0 b
C. thermalis HC 5.4 ± 1.6 c 2.5 ± 1.1 b 0.14 ± 0.08 b 0.06 ± 0.02 a 2.7 ± 1.2 b
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HC-grown cells as compared to LC-grown cells (5.4 µm2 
and 3.8 µm2, respectively). The number of carboxysomes 
per cell was more than twofold higher in C. thermalis than 
in Synechococcus sp. but did not differ between the two  CO2 
treatments within each species (Table 2). The total carboxy-
some area per cell was independent of the  CO2 treatment in 
Synechococcus sp., whereas in C. thermalis, it was almost 
double in HC than in LC-grown cells (0.14 and 0.08 µm2, 
respectively). Therefore, the average area for one carboxy-
some in C. thermalis under HC was also twofold higher than 
under LC. Finally, the percentage of the cell area occupied 
by carboxysomes (% carboxysome area, Table 2) was 2 to 
threefold higher in Synechococcus sp. than in C. thermalis, 
not being affected by the  CO2 treatment in any of the species.

Discussion

Remarkable Rubisco kinetic performance in C. 
thermalis within Cyanobacteria

The present results show a large variability in Rubisco 
kinetics within Cyanobacteria, consistent with what has 
been shown in recent reviews focused on Rubisco evolu-
tion in photosynthetic organisms (Bathellier et al. 2018; 
Flamholz et al. 2019; Iñiguez et al. 2020). The following 
message of this finding is that more diverse and efficient 

Rubiscos can be discovered in barely explored groups, such 
as Cyanobacteria.

Chroococcidiopsis thermalis showed the highest values 
for Rubisco Sc/o and carboxylation efficiency ( kc

cat
/Kc) ever 

obtained for a cyanobacterium to date. In general, cyanobacte-
rial Rubisco kinetic traits are characterized by low Sc/o values, 
along with high kc

cat
 , Kc and Ko (Iñiguez et al. 2020), which 

suggest that the Rubisco from Cyanobacteria have evolved in 
an intracellular  CO2-enriched environment driven by effec-
tive CCMs (Flamholz et al. 2019). However, such a high Sc/o 
value of C. thermalis, which resembles those found in pyre-
noid-containing green algae or even those from some vascular 
plants provided with CCMs (Kubien et al. 2008; Sharwood 
et al. 2016; Capó-Bauçà et al. 2022b), is the result of a higher 
affinity for  CO2 and lower affinity for  O2 in comparison to 
other cyanobacterial strains. This suggests that Rubisco evolu-
tion in this phylogenetic group is not strictly constrained, and 
improved Sc/o is still compatible with high kc

cat
 values, as previ-

ously discussed by Cummins et al. (2018) and Bouvier et al. 
(2021). The combination of C. thermalis Rubisco kinetic traits 
could be an adaptative mechanism that allows this species to 
deal with extremely low environmental  CO2 concentrations 
(i.e. at high water temperatures or under desiccation). Moreo-
ver, the concentration of Rubisco in C. thermalis was insen-
sible to the  CO2 treatment, contrary to the response observed 
for Synechococcus sp. in our study and for other cyanobacte-
rial strains in other works (Sengupta et al. 2019; Garcia et al. 

Fig. 6  Transmission electron microscope images of a Synechococ-
cus sp. PCC6301 and b Chroococcidiopsis thermalis KOMAREK 
1964/111. EP exopolysaccharide shell, CW cell wall, C carboxysome, 

T thylakoid membrane. Scale bars are 0.2 µm for Synechococcus sp. 
and 0.5 µm for C. thermalis 
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2021). This indicates that the amount of Rubisco in C. ther-
malis is not involved in the process of acclimation to different 
environmental  CO2 concentrations. Hence, Rubisco from C. 
thermalis has evolved towards an enhancement of  CO2 fixa-
tion rates regardless of the environmental  CO2 concentrations. 
Indeed, potential Rubisco gross assimilation (ARub) from C. 
thermalis exhibited higher values than Synechococcus sp. for 
the whole range of Cc tested (Fig. 5a).

Co‑evolution of Rubisco and CCMs in C. thermalis 
and Synechococcus sp.

There are three main components of the cyanobacterial CCM 
machinery: CAs, carboxysomes, and inorganic carbon  (Ci) 
transporters (Badger et al. 2002). The main  Ci transporters 
are  HCO3

− transporters and  CO2 uptake components includ-
ing NDH-1 dehydrogenase complex (Woodger et al. 2005) 
whereas CAs can possess an extracellular or intracellular 
localization.  HCO3

− transporters are involved in the active 
transport of  HCO3

− through the plasma membrane, while 
the NDH-1 complex  (CO2 uptake components) catalyzes the 
hydration of  CO2 to  HCO3

− inside the cell (Badger et al. 
2002). In this sense, the effects of the inhibitors of CCM 
components (such as AZ, EZ and DIDS) on the net photo-
synthetic rates used in the present study for both cyanobac-
terial strains were similar to those recorded in other studies 
with mat-forming cyanobacterial strains (Carrasco et al. 
2008) and were not reduced by the enriched  CO2 treatment. 
However, some differences in the CCM components between 
the two species were detected, as the anion exchange inhibi-
tor DIDS produced a significantly higher net photosynthetic 
inhibition in Synechococcus sp. than in C. thermalis for both 
 CO2 treatments. The remarkable high EZ inhibition and the 
relatively low AZ inhibition of net photosynthesis from C. 
thermalis indicate an important role of internal CAs in its 
CCM. Therefore, these results suggest that C. thermalis 
might possess an elevated activity of either other type/s of 
bicarbonate transporter/s not inhibited by DIDS and/or  CO2 
uptake components such as the NDH-1 dehydrogenase com-
plex to supply bicarbonate to the carboxysomes.

Highly effective CCMs were detected in both species 
since the ratio K21 % O2

c ∕Km in vivo was greater than 2.5, as 
proposed by Raven et al. (2017) (Fig. 3). However, the 
CCM effectiveness of C. thermalis under LC was among 
the highest ever reported for a cyanobacterium, concentrat-
ing  CO2 around Rubisco active sites more than 140 times 
the external  CO2 levels, 2.3-fold higher than Synechococcus 
sp. PCC6301.

Previous studies with different model cyanobacterial 
strains reported much lower in vivo photosynthetic affin-
ity for  CO2 (i.e. higher Km in vivo than C. thermalis when 
grown under similar enriched  CO2 levels (Whitehead 
et al. 2014). Thus, C. thermalis not only evolved improved 

Rubisco carboxylation kinetics but also stronger CCMs than 
other cyanobacterial strains. This response does not follow 
the inverse relationship between Rubisco carboxylation 
efficiency and CCM effectiveness previously observed in 
other photosynthetic groups (Capó-Bauçà et al. 2022a, b) 
and might indicate that co-evolution between CCMs and 
Rubisco kinetics in some cyanobacteria is not as constrained 
as in other phylogenetic groups.

Inhabiting warm-desertic areas, C. thermalis has to 
face extremely high temperatures up to 68ºC (Hindák et al. 
2013) that led to a strong limitation in  CO2 availability (i.e. 
 CO2 solubility decreases at higher temperatures). In addi-
tion, C. thermalis produces a scytonemin rich exopolysac-
charide shell to resist desiccation (Vítek et al. 2014; Casero 
et al. 2021) that might exacerbate  CO2 limitation through 
a strong reduction in  CO2 diffusion from the extracellular 
medium to Rubisco active sites. Therefore, the development 
of more effective CCMs in combination with more efficient 
Rubisco carboxylation kinetics could have contributed to the 
adaptation of C. thermalis to these extreme environments. 
Since the operation of cyanobacterial CCM depends on the 
velocity of active  HCO3

− transport and the permeability of 
the carboxysome to  CO2 and  HCO3

− (Mangan and Brenner 
2014), these processes should be explored in C. thermalis 
in future studies in comparison with model cyanobacterial 
species to identify the main molecular adaptations that allow 
this cyanobacterium to possess one of the most effective 
CCMs ever reported.

In addition, indirect proxies used to detect CCM activity 
(effect of CCMs inhibitors on net photosynthesis, carbon 
isotope discrimination, the ratio between the semi-saturation 
constant for  CO2 in vitro and in vivo, and the morpho-ana-
tomical carboxysome analysis) confirmed the acclimatory 
capacity of the CCM machinery in C. thermalis to respond 
to changes in environmental  CO2 concentrations. CCM 
effectiveness in C. thermalis was significantly reduced when 
grown under HC (since the in vivo photosynthetic semi-
saturation constant for  CO2 was more than threefold higher 
in HC-grown cells relative to LC-grown cells). This fact, 
together with a more negative δ13C under HC, indicates a 
downregulation of CCM machinery in C. thermalis caused 
by the increase in environmental  CO2 concentration. The 
CCM downregulation could be a mechanism to save energy 
for other vital processes (Beardall and Giordano 2002) while 
maintaining similar net photosynthetic rates, as previously 
observed in other aquatic photosynthetic organisms (Gor-
dillo et al. 2001; Iñiguez et al. 2016; Ma and Wang 2021). 
Such downregulation was not observed in Synechococcus 
sp., where CCM effectiveness and δ13C remained constant 
independently of the  CO2 treatment applied, and, as a result, 
the net photosynthetic rate was almost double under HC 
despite the decrease in Rubisco quantity per TSP. This might 
be due to a faster acclimation of C. thermalis CCMs than 
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Synechococcus sp. CCMs to changes in environmental  CO2 
concentration, which may allow the former to thrive under 
harsh conditions of high temperature and water scarcity.

Potential crop yield improvement 
by the introduction of cyanobacterial carbon 
utilization mechanisms

Increasing crop yield is a must to face the food needs of the 
rising population (Ray et al. 2013) since the decreased arable 
land and climate change impact on crops represent impor-
tant risks for plant production (Long et al. 2015). Bioen-
gineering approaches for photosynthesis optimization have 
largely demonstrated the potential for enhancing crop yield, 
for example by enhancing Rubisco carboxylation capacity 
(reviewed by Iñiguez et al. (2021)). Several attempts have 
tried to enhance photosynthetic rates from crops by intro-
ducing some basic CCM components and Rubisco from 
Cyanobacteria. For example, Lin et al. (2014) successfully 
transformed tobacco plants by expressing Synechococcus 
elongatus PCC 7942 Rubisco with an internal carboxysome 
protein (CcmM35) producing functional macromolecular 
complexes. In addition, Long et al. (2018) reconstituted sim-
plified carboxysomes with a minimum set of genes from the 
genus Cyanobium into tobacco chloroplast that were able to 
encapsulate the cyanobacterial Rubisco. However, none of 
the transformed tobacco lines expressing simplified carbox-
ysome-like structures were still able to grow equally or faster 
than wild-type plants. Directions towards fully functional 
cyanobacterial CCM expression in  C3 plant chloroplasts go 
through targeting functional bicarbonate transporter proteins 
into the chloroplast membranes (Rolland et al. 2016), a hit 
that might be achievable soon. Here, we have discovered the 
most  CO2-specific and efficient cyanobacterial Rubisco ever 
reported, which represents a potential candidate for bioengi-
neering crop species to increase crop yield in combination 
with cyanobacterial CCM expression, as the potential capac-
ity for  CO2 assimilation of C. thermalis Rubisco is signifi-
cantly higher than those from Synechococcus sp. PCC6301 
and other analyzed cyanobacterial species.

Conclusions

The present results represent the first complete characteriza-
tion of inorganic carbon utilization mechanisms in a non-
model cyanobacterium, as in vivo  CO2 assimilation data 
was complemented with in vitro Rubisco measurements, 
Rubisco content, 13C isotopic discrimination, and the use of 
CCM inhibitors. This has allowed us to inquire into the inor-
ganic carbon utilization adaptations of a polyextremophilic 

cyanobacterium. The main highlights of the study are the 
discovery in C. thermalis of the highest values of Rubisco 
specificity for  CO2 over  O2 and catalytic carboxylation effi-
ciency ever obtained for Cyanobacteria, together with the 
most effective  CO2-concentrating mechanisms. This allows 
C. thermalis to thrive under  CO2-limited environments such 
as elevated temperatures and/or desertic areas. Overall, fur-
ther exploration of Rubisco kinetics and CCM operation 
from underrepresented phylogenetic groups is needed to 
discover highly valuable mechanisms for biotechnological 
applications.
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