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Abstract—Key operational and protection functions of power
systems (e.g., optimal power flow scheduling and control, state
estimation, protection, and fault location) rely on the availability
of models to represent the system’s behavior under different
operating conditions. Power systems models require knowledge
of the components’ electrical parameters and the system topology.
However, these data may be inaccurate for several reasons (e.g.,
inaccurate information of components datasheets and/or outdated
topological information). The deployment of time synchronization
in phasor measurement units (PMUs) and remote terminal units
(RTUs) enables the collection of large datasets of synchronised
measurements to infer power systems models and learn associated
power flow constraints. Within this context, this paper presents a
comprehensive review of measurement-based estimation methods
for power flow models using time-synchronised measurements.
It begins by exploring advancements in time dissemination
technologies and the characterization of uncertainties in PMUs
and instrument transformers, along with their implications for
parameters estimation. The paper then examines the power
system parameter estimation problem, highlighting key tech-
niques and methodologies. In the following, the paper focuses
on measurement models for state-independent power flow model
estimation, including line parameters, admittance matrices, topol-
ogy, and joint state-parameter estimation. Finally, the review
discusses recent approaches for estimating state-dependent power
flow models, with particular reference to linearized power flow
approximations in view of their large use in control applications.

Index Terms—Power system parameter estimation, Admittance
estimation, Line-parameters, Synchrophasor measurements

I. INTRODUCTION

Fundamental operational and protection functions of the
power system rely on the availability of reliable models en-
abling the characterization of the grid behavior under different
operating conditions [1], [2]. These models are used in a
number of applications such as: state estimation [3], [4],
optimal power flow (OPF)-based scheduling and control (e.g.
[5], [6]), fault location (e.g. [7]), protection (e.g. [8]) but often
require the accurate knowledge of the system’s topology and
parameters of the connected devices. Usually, these parameters
are derived from manufacturers’ datasheets [9]. However, the
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actual parameters can be quite different from the nominal
values due to various reasons, such as: inaccurate information
on the datasheet, miscalibration, or outdated parameters due
to aging (e.g. shunt capacitance of coaxial power cables),
influence of weather and environmental conditions, etc. The in-
accurate information on the grid parameters leads to erroneous
modelling of the grid causing inaccuracy in the estimates of
grid analysis tools such as power-flow, state-estimation [10]–
[12], etc. Specifically, incorrect parameters could lead to sub-
optimal or incorrect control actions, which might destabilize
the grid under certain conditions. This is particularly critical
in applications such as state estimation, dynamic stability
control, and real-time operation, where accurate parameters are
essential for reliable operational decisions. Ensuring parameter
accuracy is thus a key aspect of maintaining grid stability and
operational reliability. A survey of different issues caused by
power system’s parameters inaccuracies is given in [13].

In this context, measurement-based estimation of the grid
parameters is widely proposed and discussed in the literature
with the objective to infer reliable power grid models. In-
deed, various functions relying on power flow analysis and/or
state estimation, are generally carried out by transmission
and distribution systems operators on specialized SCADA
(Supervisory Control and Data Acquisition) platforms. These
platforms depend on the availability of an accurate and up-
to-date grid model to perform these analyses effectively. The
methods reviewed in this paper are designed to enhance these
computational processes by enabling their implementation in
SCADAs as parallel routines. These routines can run alongside
other SCADA processes, optimizing resource utilization and
reducing computational delays. They can be initiated either
manually, in response to a specific request from an operator,
or automatically by the system itself when certain conditions,
or triggers, are detected. Once a computational routine is
completed, the results, including updated grid parameters, are
automatically relayed to the operator. This step allows the
operator to review and validate the output before applying
any changes or taking further action, ensuring that the grid’s
operational integrity is maintained.

In general, measurement-based schemes for estimating the
power-flow models can be broadly categorized into two types.
The first type focuses on the estimation of the true physical
branch/line parameters of the network to be used to for-
mulate power-flow equations; these are referred to as state-
independent models as they can be used for describing any
power system operating state e.g., [14]–[19]. In the second
type, the estimation schemes focus on estimating approximated
linearized models, which are, by construction, state dependent
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models, e.g., [20]–[22].
Depending on the characterized uncertainty of the mea-

surement, the choice of a suitable estimation technique also
influences the estimation performance. Measurement-based
parameter estimation schemes in power systems can rely on
either Phasor Measurement Units (PMUs) or Remote Terminal
Units (RTUs) providing, respectively, measurements of voltage
and current synchrophasors or moduli of voltages, currents,
and powers. Due to the accelerated deployment of RTUs and
PMUs time synchronisation technologies, (synchronised) mea-
surements are increasingly available from these devices which
offer the possibility to derive advanced data-driven estimation
schemes. At present, PMUs and RTUs are largely deployed in
the transmission grid, however, multiple applications related to
the monitoring and control of “active” distribution grids are
emerging [23]. The power system parameters’ estimation prob-
lem using time-synchronised measurements has several aspects
that directly influence the estimation performance, mainly
associated with the uncertainty models of the PMUs/RTUs
measurements as well as their placement. The uncertainty
may arise from different processes involved in the measure-
ment, such as the adopted time dissemination technology or
the uncertainty characteristic of the sensing infrastructure.
Regarding the placement of PMUs and RTUs for state es-
timation problems under low-observability conditions, they
have been extensively analyzed in the literature to guarantee a
sufficient number of synchronised measurements ensuring full
observability (e.g. [24]–[31]). Furthermore, optimal placement
strategies may also aim to improve the system’s resilience
against leverage measurements1 (e.g. [35], [36]) and potential
cyberattacks (e.g. [37]), as well as to optimize the investments
associated with deploying the measurement infrastructure (e.g.
[38], [39]). In this respect, this review paper assumes that the
system under study is equipped with a sufficient number of
synchronised measurements to ensure full observability.

In this context, the paper reviews the state-of-the-art of
measurement-based estimation methods of power flow models
using time-synchronised measurements. The paper is orga-
nized as follows:

• Section II reviews the recent developments in the area
of time-synchronised measurements in power systems
starting from time dissemination technologies. Then, it
discusses the uncertainty characterization of PMUs and
instrument transformers (IT) and the associated models
used in parameters estimation algorithms.

• Section III introduces the power system parameter esti-
mation problem and reviews the most relevant estimation
techniques.

1In state estimation, it is standard practice to distinguish between outliers
and leverage points. Outliers are measurements that deviate from the statistical
distribution of the other data, often caused by significant errors during
acquisition, resulting in values inconsistent with the known properties of
measurement noise (commonly referred to as “bad data”). Leverage points, on
the other hand, are measurements that strongly influence the state estimator,
causing the residuals to align closely with those values [32]. While leverage
points may not inherently represent erroneous data, their impact on estimation
becomes pronounced if they coincide with bad data, leading to significant
deviations in the results [4], [33], [34].

• Section IV reviews the measurement models and their use
in relation to the estimation of state-independent power-
flow models, i.e., the estimation of the line parameters,
admittance matrix, topology estimation, joint estimation
of state and parameters, etc.

• Section V reviews the most recent approaches related to
the estimation of the state-dependent power-flow models
with particular reference to the linearized power flow
approximation.

Finally, Section VI concludes the paper by summarizing the
review, stating the open questions and directions for future
works.

II. TIME-SYNCHRONISED MEASUREMENTS IN POWER
SYSTEMS

Time synchronization is a key feature in modern power sys-
tems enabling the time alignment of measurements generated
by geographically distant devices. These devices can be either
RTUs providing measurements of moduli of voltages, currents,
and powers, or PMUs providing measurements of voltage and
current synchrophasors. For PMUs, time synchronization is
also used to generate a unique reference for the measurement
of the synchrophasors phase angle.

Without loss of generality, we recall the architecture of a
synchrophasor network since similar characteristics also apply
to time-synchronised RTUs-based measurement systems. The
two main international standards for synchrophasor networks
in power systems are IEC/IEEE 60255-118-1:2018 [40] and
IEEE C37.118.2 [41]. On the basis of the content of these
two standards, the architecture of a synchrophasor network is
composed of four main layers whose specific function(s) are
given as follows:

• Time dissemination layer: it provides to the PMU/RTU
a reference time (clock) synchronised to the Coordinated
Universal Time (UTC).

• Sensing layer: it includes the current/voltage sensors
providing signals to PMUs and/or RTUs to estimate
complex phasors of voltages/currents and/or other real
quantities. The absolute time provided by the time dis-
semination layer is used to condition the internal clock
of the PMU/RTU to time/phase align the measurements
of electrical quantities.

• Data communication layer: it is responsible for en-
capsulating and streaming the PMU/RTU measurements
according to a given standard data format (e.g., IEEE
C37.118.2 [41]).

• Data processing layer: it collects and time-aligns the
PMUs/RTUs data streams according to their time stamps
and forwards them to the various applications.

In the following, we describe the first two layers as they are
the main sources of errors in the measurements and affect the
measurement-based estimation process the most.

A. Time dissemination technologies in power systems

RTUs and PMUs usually rely on the UTC made available
by various time dissemination infrastructures. A Global Nav-
igation Satellite System (GNSS), like the Global Positioning
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System (GPS), is among the most adopted systems as it is
characterized by a good cost vs. performance tradeoff [42].
However, the inherent vulnerability of the GNSS-GPS (e.g.,
[43]), the use of underground stations, time propagation from
a master UTC-synchronised clock to multiple instruments, etc.
may require redundant systems to be deployed over the legacy
power systems telecommunication infrastructure [44] such as
the Precision Time Protocol (PTP) [45] or the Synchronous-
Ethernet based systems like the White Rabbit (WR) Time
Protocol [46]. We briefly recall the general principles and
performance of these two-time dissemination technologies.

GNSS-based systems rely on the availability of primary time
sources available in satellites with known position in space.
Each satellite streams to receivers specific messages containing
the satellite’s position (with respect to an arbitrary reference
system) and the absolute time of the primary time source
installed in the satellite. The receiver is capable of reading and
parsing these messages to determine: (i) the receiver’s position
on the Earth’s surface and (ii) the UTC time. Algorithms
that receivers use to determine these quantities are generally
based on the method first proposed by Bancroft in 1985 [47].
The typical time accuracy (3σ) of commercial GNSS-GPS
receivers is in the order of ±100 ns or higher.

PTP-based systems rely on a two-way communication layer
where a “follower” clock is aligned to a “leader” clock.
The leader clock periodically streams time-synch messages
to the followers that reply with a delay request message.
Subsequently, the leader’s clock replies with a delay response
message that, along with the time-synchronization and delay
request messages, allows each follower’s clock to compute its
time offset and message propagation delay. The process relies
on the fundamental hypothesis of symmetrical time delays
of the above-listed messages. The main PTP standard is the
IEEE Std. 1588 [45] and the so-called PTP version 2 (PTPv2)
is characterised by a typical time accuracy (3σ) better than
±1µs. The evolution of the PTPv2 is the so-called WR that,
thanks to time-deterministic Ethernet-based systems (i.e., the
Synchronous Ethernet SyncE), can reach accuracy levels of
±1 ns.

B. Measurements, sensing and uncertainty models

Every model and parameter estimation algorithm relies on
input data represented by measurements provided by instru-
ments installed in the field. All measurements are unavoidably
affected by uncertainty that can be described by studying
possible error sources associated with each measured value.

1) Measurement Chain: When dealing with a value that is
the result of a measurement process, it is important to analyze
the whole measurement chain leading to such value in order
to quantify the associated uncertainty. A general scheme for a
single synchronised phasor measurement is represented in Fig.

xp(t)
IT Conditioning DAQ Processing

x(t) xq(nTs) x̄p(mTRR)

Fig. 1. Measurement chain for synchrophasors.

1 (a similar scheme is also valid for any synchronised measure-
ment), where the analog signal xp from the field (voltage or
current of system phase p) is transduced through an instrument
transformer (IT) and then, after analog conditioning, it is
sampled and converted to digital values so that processing can
take place to compute the measured synchrophasor x̄p (which
is produced at every reporting rate interval TRR by the PMU2).
Synchronisation is also the pervasive task that can be used to
define the acquisition rate, the measurement instant definition
and thus the timestamp associated with each measured value.

The different stages of the acquisition, conversion and mea-
surement computation can be performed by different devices.
For instance, there could be a stand-alone PMU with different
channels, each connected to the output of a Voltage Trans-
former (VT) or Current Transformer (CT), but there could also
be a Stand-Alone Merging Unit (SAMU) that acquires and
digitises in a synchronised way the IT output to send “time-
located” samples (sampled values) to a separate processing
unit (distributed PMU architecture). Synchronisation can rely
on internal modules only or on external connected devices
(e.g., GPS receivers, PTP servers, etc.) as described in the
previous section.

Independent of the specific design of the instrument, each of
the functional modules are always present and every element in
the chain contributes to the overall measurement uncertainty.
Understanding the origin of the possible different error sources
in each of these elements is useful to understand their impact
on the overall synchrophasor uncertainty.

From another viewpoint, since ITs and PMUs must comply
with their relevant product standards, it is important to un-
derstand how the accuracy specifications that characterize the
different performance classes defined in such standards can be
correctly translated into suitable uncertainty models to be used
in the estimation procedures.

The most frequently adopted PMU standard for measure-
ment specification is [40]. It is the result of significant changes
over the years, starting from the IEEE 1344 standard [48] in
1995 and passing through the standards IEEE C37.118 [49],
IEEE C37-118-1 [50] and the amendment IEEE C37.118.1a
[51] in 2005, 2011 and 2014, respectively. These standards
define the prescribed limits under different test conditions
considering two classes: P, for protection applications, and M,
conceived for operation in presence of wider variability ranges
of relevant signal parameters and stronger disturbances. In par-
ticular, the limits for synchrophasor measurement are provided
in terms of total vector error (TVE), i.e., of relative vector
error magnitude for all the considered test cases. For instance,
1% is the reference TVE limit for almost all the stationary

2The use of multi-channel PMUs is a common practice among grid
operators to optimize the costs associated with deploying this technology.
Regarding the identification problems discussed in this review, the single- or
multi-channel nature of a PMU does not affect significantly the formulation
and characterization of the various estimation problems. Indeed, the number of
measured synchrophasors and the noise model of each individual measurement
remains unchanged, as they are mainly determined by the current transformers
(CTs) and voltage transformers (VTs) available in the substation and the
measurement chain as shown in Fig. 1 remains unchanged in case of using
a single- or multiple- channel PMU. Therefore, the considerations made
regarding the measurement noise models made in this section are not affected
by this aspect.
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test conditions. This index mixes magnitude and phase angle
errors, but further information on the individual contribution to
measurement uncertainty can be typically found in PMU data-
sheets. In IEEE C37.242 [52], useful details are also provided
on PMU installation, testing, calibration and possible error
sources.

IT specifications are on the other hand covered by the IEC
61869 standards family [53]. In particular, the standards [54]
and [55] give the limits of ratio and phase-angle errors for VTs
and CTs, respectively, considering different accuracy classes
and different ranges of the primary voltage or current. For ex-
ample, Class 0.5 considers 0.5% as the maximum magnitude
error at rated voltage and current, while the maximum VT
and CT phase-angle error in the same conditions are 0.6 crad
(1 crad = 10−2 rad) and 0.9 crad, respectively.

When dealing with synchronised measurements performed
by RTUs or meters, the complexity of the uncertainty de-
scription increases. Indeed, while synchronised instruments,
such as Power Quality Meters (PQMs) at critical points of
the networks, can provide timestamped measurements, their
synchronisation accuracy is not as high as in PMUs. For in-
stance, in the standard IEC 61000-4-30 [56] the most accurate
class is Class A and requires a time-clock uncertainty that
shall not exceed one nominal cycle, consequently phase-angle
measurements cannot be provided. Commercial meters and
RTUs based on Intelligent Electronic Devices may feature
more accurate synchronisation systems, but there is another
important aspect related to the measurement instant. RTUs and
PQMs usually provide averaged quantities, such as root mean
square (rms) measurements, and are not designed to measure
dynamic signals. For this reason, the adopted observation
window and the position of the measurement time instant
within it are not always known or defined according to a
standard, thus leading to higher uncertainty. In literature, this
is tackled by increasing the nominal uncertainty [57] or by
trying to mitigate the time skew [58], [59].

In [60], the impact of the entire measurement chain in-
cluding ITs on the direct estimation (from voltage drop and
current balance equations) of line parameters from PMU
measurements is investigated. In the next section, the different
types of errors and their influences are discussed.

2) Error models: relying on the aforementioned measure-
ment chain, it is possible to give an error model for syn-
chrophasor measurements that includes all the main sources.
Focusing on voltage PMU output and separately considering
the error contributions of IT and PMU, we have, for a generic
measurement ṽh 3:

ṽh = Ṽhe
jθ̃h = Ṽ r

h + jṼ x
h =

= (1 + aIT
h )(1 + aPMU

h )V R
h ej(θ

R
h +∆θIT

h+∆θPMU
h ) (1)

where Ṽh and θ̃h are the magnitude and phase-angle mea-
surements of the synchrophasor, while V R

h and θRh are the
reference values (the sought “true” values). Parameters aIT

h

and aPMU
h represent the ratio error, i.e., the magnitude rela-

tive errors introduced by IT and PMU, respectively. Phase-
angle errors are better represented by the corresponding phase

3 ˜ indicates a measured value from here on.

displacements ∆θIT
h and ∆θPMU

h . A similar model can be
adopted also for a generic current measurement. Considering,
for instance, a branch current ihk = Ihke

jϕhk , with the same
modelling approach, ratio and phase-angle errors for both CT
and PMU current channel (bIT

hk, ∆ϕIT
hk, bPMU

hk , and ∆ϕPMU
hk ,

respectively) can be introduced.
When dealing with a realistic measurement chain under

normal conditions, all the errors should be small and thus the
ratio errors can be considered to sum up without second order
effects. While this model does not provide any insights into the
actual origin of each contribution (e.g., PMU synchronization
errors are absorbed by ∆θPMU

h and ∆ϕPMU
hk ), it has the merit to

distinguish between the errors induced by the instrument and
the transducer that are typically from different manufacturers
and have different specifications.

In the context of parameter estimation, these errors play a
fundamental role. However, another distinction needs to be
made between the nature of these errors, namely between
random and systematic errors. Random errors are those that
vary across repeated measurements of the same quantity under
the same conditions, whereas systematic errors are constant
(representing the average of the error). It is interesting to
highlight that randomness is an abstraction of unpredictability
and variability of errors with time and thus is just a model
of uncertainty depending on the available knowledge. In the
remainder of this paper, and in line with relevant power
systems literature, the random contributions are also referred
to as measurement noise.

Both ITs and PMUs can introduce both random and system-
atic errors. As a consequence, the errors can be decomposed
as:

aIT
h = aIT,sys

h + aIT,rnd
h (2a)

θIT
h = θIT,sys

h + θIT,rnd
h (2b)

aPMU
h = aPMU,sys

h + aPMU,rnd
h (2c)

θPMU
h = θPMU,sys

h + θPMU,rnd
h (2d)

Hence, four error contributions are distinguished for magni-
tude and phase-angle measurements (superscripts sys and rnd
refer to systematic and random contributions, respectively).

Some assumptions can be made to simplify the above
expressions [61], [62]. For example, in ITs, systematic effects
are typically prevailing. On the other hand, in the high quality
PMUs currently available on the market, systematic contri-
butions are often significantly smaller than the corresponding
contributions in ITs, whereas their random contributions can
be more significant.

The different nature of the errors leads to a different impact
on the parameter estimation. Random errors are zero mean and
are characterized by their probability distribution. Their influ-
ence on the estimates is reduced when multiple measurements
corresponding to the same or similar conditions are used and
random errors can be thus “averaged” or “filtered” to a given
extent. Systematic errors are instead persistent and typically
represent unknown quantities that affect the constraints used
in the estimation algorithm. Indeed, Kirchhoff’s current and
voltage laws are the basis of the network model. They hold
true only if reference phasors are considered and thus, when
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dealing with measured values, a mismatch is introduced that
can be significant.

The model in (1), even if including all the main contribu-
tions, does not account for second order effects, like those
depending on the actual measurand and on the operating con-
ditions. For instance, inductive ITs undergo nonlinear effects
that can become significant, particularly for CTs that are
designed to deal with higher input variations. Since the current
magnitude can vary significantly, bIT,sys

hk and ϕIT,sys
hk should be

considered as a function of Ihk/I0hk, i.e., of the percentage of
current on the rated value that is flowing at the measurement
instant [63].

When dealing with measurements from synchronised RTUs
or meters, for the aforementioned reasons, the model in (1) is
still valid if the analysis is limited to the magnitude or rms
measurement. Furthermore, while the IT impact is the same,
the PMU ratio error is replaced with aRTU

h , which is typically
significantly larger.

Focusing on error distributions, PMU errors were usually
assumed as having a Gaussian distribution, which is very
common in instrument characterisation and is realistic in the
presence of several error sources. For instance, in [64], errors
of PMUs installed in the field were found to be Gaussian for
both magnitudes and phase angles. Recently, this hypothesis
has been questioned and new models were proposed. In [65],
based on field measurements, voltage magnitude and phase-
angle errors are shown to follow non-Gaussian distributions
by analysing error differences between two similar PMUs
installed at adjacent buses. Following a similar approach,
analogous results were obtained for voltage magnitude and
phase-angle errors of PMUs installed in distribution systems
[66]. As a consequence, Gaussian Mixture Models (GMMs)
are proposed for error modelling. In [67], both voltage and
current field measurements are also analysed and statistically
manipulated to extract PMU random errors and find their
distribution, which is fitted through GMM. It is important
to highlight that such results rely on a statistical assessment
of errors corresponding to different operating conditions and
non-stationary signals. In [68], voltage synchrophasor error
analysis is performed based on a calibrator. The generated
signals are dynamic and correspond to amplitude and phase
modulation or frequency ramp tests as described in [40]. The
results prove that errors are non-Gaussian, as expected for time
varying and off-nominal conditions.

The works in [62] and [69] try to reconcile the most recent
results with classic instrument error modelling, for voltage and
current synchrophasor measurements, respectively. Through
experimental results conducted on commercial PMUs in a
controlled laboratory environment and under steady-state con-
ditions, it is proven that magnitude errors can be considered as
Gaussian as long as the same operating conditions hold. Non-
Gaussianity arises from non-stationarity and/or anomalous
(“bad”) data. As for phase-angle measurements, the statistical
behaviour and thus the validity of errors normality depend
on the PMU model, the configured full-scale range and the
accuracy, since synchronisation mechanisms, when prevailing,
can introduce complex error patterns.

Another element to consider when representing uncertain-

ties of synchrophasors measured by PMUs is related to the
system of coordinates adopted for their representation. Indeed,
(synchro)phasors can be expressed in both polar or rectangular
coordinates. However, as shown in (1), the preferential system
of coordinates to represent uncertainties is the polar system
since it allows to decouple the uncertainties of the magnitude
from those of the phase. As illustrated in the next sections,
many identification problems in power systems, such as those
related to state estimation, rely on the use of rectangular
coordinates for measurement integration as it allows to write
simplified measurement functions (e.g. linear ones, depending
on the problem at hand). Regardless the exact optimization
problem definition, this approach may help both formulation
and computation. Indeed, in several cases, like those discussed
in Sections IV-B–IV-D, a system of real-valued equations
is obtained from the measurement constraints expressed in
rectangular coordinates. Therefore, there is the need to project
the uncertainties distributions of magnitude and phase from
polar to rectangular coordinates. This projection, in general,
does not preserve Gaussian normality unless the standard
deviations of the original magnitude and phase errors are small
[70]. Therefore, in order to properly build the measurements
error covariance matrix of any estimation model, the modeler
should, in principle, perform such a projection (e.g. using
the process in [70]) in order to: (i) correctly estimate the
measurements error covariance matrix in rectangular coor-
dinates and (ii) verify the hypotheses on the normality of
the measurements uncertainties distributions in rectangular
coordinates.

As a final remark on the measurement errors, we can high-
light that the error model is crucial for designing, validating
and characterizing the estimation techniques discussed in this
paper, but there is no universally applicable or accepted model
and this is one of the open problems in model estimation
research.

III. OVERVIEW OF POWER-FLOW MODELS AND
ESTIMATION TECHNIQUES

Power-flow models play a pivotal role in the operational
and protection functions of power systems (e.g., optimal power
flow, scheduling and control, state estimation, protection, fault
location, stability, and contingency analysis, planning and
expansion, electricity markets, real-time operation), as they
are used to represent the system’s behavior under different
operating conditions [1], [71]. Hence, in this section, we
provide a general description of the considered power flow
model before then discussing different estimation techniques
and a performance metric.

A. Power-flow Model
The power-flow analysis aims at determining the voltage

and current phasors at different nodes/lines in the power
system for fixed boundary conditions (such as power injections
and module of voltages imposed on the system’s nodes).
These power flow models can be represented by a generic
mathematical formulation given by

x = Φ(β,p) (3)
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where, x refers to the system state (such as phase-to-ground
voltage phasors or other quantities such as branch current
phasors, etc.), β refers to the fixed boundary conditions
(such as power injections and voltage phasors imposed on
the boundary nodes of the power system), Φ represents the
non-linear power flow model. The symbol p denotes the
parameters of the power system electrical circuit (for example,
line/transformer impedances, shunt admittances, etc.).

In reality, parameters p may not be accurately known
or are completely unavailable due to several reasons (e.g.,
inaccurate information of components in the available data
sheets and/or outdated topological information). Therefore,
measurement-based algorithms are developed for learning the
parameter p, referred to as the parameter estimation problem.
The techniques proposed to solve this problem can be broadly
categorized in two groups:

1) State-independent power-flow models: refer to the iden-
tification of the non-approximated non-linear model of
the power system (that is not dependent on the operating
state). In this case, the typical parameters to estimate
are the line/transformer impedance, shunt admittance, and
topology of the network. These estimation models are
reviewed in Sec. IV.

2) State-dependent power-flow models: refer to the identi-
fication of an approximated power system model that is
valid in the proximity of a given operating state. They
represent approximate models of the power system and
their formulation depends on the specific application. One
such example is the linearized power flow model modeled
by the power-flow sensitivity coefficients (PFSCs) given
by the first-order Taylor’s approximation of the original
non-linear power flow equations. These estimation mod-
els are reviewed in Sec. V.

B. Estimation Techniques

In the following, we review different solution techniques
that are widely used for solving the power system parameter
estimation problem.

With respect to the parameter estimation problem, the model
in (3) is often transformed to

z = h(x,p) (4)

where z ∈ Rm refer to measurable quantities, x ∈ Rs to
the system states, and h refers to a non-linear measurement
function that relates z and x. The symbol p ∈ Rn is the vector
of parameters to be estimated.

Often the estimation model in (4) is transformed into a
linearized measurement model, leveraging algebraic manipu-
lations chosen by the modeler. Consequently, the estimation
model is expressed as

z = H(x)p = Hp (5a)

where H(x) or H ∈ Rm×n refers to the so-called measure-
ment matrix which is a function of x.

In a parameter estimation problem where the objective is
to estimate p, the vectors z and x in (5a) are obtained
from measurements that are characterized by measurement

errors. Denoting the measured quantities for x and z as x̃
and z̃, respectively, and by modeling the error distributions
as independent white Gaussian distributions, x̃ and z̃ can be
expressed as

z̃ = z+ δz, δz ∼ N (0,Qz) (5b)
x̃ = x+ δx, δx ∼ N (0,Qx) (5c)

where, δz, δx denote the measurement errors on z,x, respec-
tively, and Qz,Qx denote the error covariance matrices of
δz, δx, respectively.

In the following, we review different estimation approaches
that are used to estimate p based on the linear equations in
(5) and different assumptions on the measurements errors.

1) Maximum Likelihood Estimator (MLE) – Weighted Total
Least Squares (WTLS): here, it is assumed that matrices
Qz,Qx are heteroscedastic, i.e., their diagonal elements are
not equal. The unknown parameter p can be estimated by
formulating it as an MLE problem by maximizing the log-
likelihood function i.e.,

[p̂] := arg max
p

log
(
Γ(x, z,p|x̃, z̃)

)
(6a)

subject to

z = H(x)p (6b)
z̃ = z+ δz, δz ∼ N (0,Qz) (6c)
x̃ = x+ δx, δx ∼ N (0,Qx). (6d)

where, Γ(x, z,p|x̃, z̃) =
1

(2π)s/2
√

det(Qx)
exp

(
− 1

2
(x− x̃)⊤Qx(x− x̃)

)
×

1

(2π)m/2
√

det(Qz)
exp

(
− 1

2
(z− z̃)⊤Qz(z− z̃)

) (6e)

The above problem can be simplified as follows:

min
p

min
x

(x̃− x)⊤Q−1
x (x̃− x)

+ (z̃−H(x)p)⊤Q−1
z (z̃−H(x)p)

(6f)

It should be noted that the optimization problem in (6f)
is non-convex, and only local solutions can be obtained. The
work in [72] proposed an iterative scheme to obtain a solution
to the Weighted Total Least Squares (WTLS) problem, where
the least square solution is used to initialize the estimation
process.

2) Ordinary Total Least Squares: by assuming the error
covariance matrix in (5b) to be diagonal and homoscedastic,
the estimation problem can be approximated by using the
ordinary total least squares (OTLS or TLS) (i.e., Qz = σ2

zI
and Qx = σ2

xI) where σ2
z and σ2

x are the noise variances
on z̃ and x̃ respectively, and I is the identity matrix. The
parameter estimation problem can be formulated as error-in-
variables (EIV) regression [73] given by

[Ĥ, p̂, ẑ] := arg min
H,p,z

∥[H(x) z]− [H(x̃) z̃]∥F (7a)

subject to z = H(x)p (7b)

where ∥.∥F refers to the Frobenius norm. In OTLS, it is
assumed that the error distributions in [H(x) z] are zero
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mean and normally distributed with a covariance matrix that
is a multiple of the identity matrix. This problem is often
reformulated as a matrix low-rank approximation problem
given by

[Ĥ, p̂, ẑ] := arg min
H,p,z

∥[H(x) z]− [H(x̃) z̃]∥F (8)

subject to rank([H(x) z]) ≤ n (9)

This problem is solved using the singular value decomposition
(SVD). Let the SVD of [H(x̃) z̃] be

[H(x̃) z̃] = UΣV⊤ (10)

where, V =

[
VH,H VH,z

Vz,H Vz,z

]
, and Σ = diag(σ, . . . , σ).

(11)

The TLS solution [74], [75] is then given as:

p̂TLS = −VH,zV−1
z,z . (12)

3) Ordinary Least Squares (LS) and Weighted Least
Squares (WLS) Estimators: if the noise on x can be neglected
(i.e, x̃ = x), the estimation problem in (6f) is simplified to
the estimation of the parameter p as

min
p

(z̃−H(x)p)⊤Q−1
z (z̃−H(x)p) (13)

It can be expressed as the following closed-form solution

p̂WLS = (H(x̃)⊤Q−1
z H(x̃))−1H(x̃)⊤Q−1

z z̃ (14)

In the case of ordinary least squares, the Qz is replaced by
the identity matrix, i.e,

p̂LS = (H(x̃)⊤H(x̃))−1H(x̃)⊤z̃ (15)

4) Ridge and Lasso Regression: two regularized variants
of least squares are commonly used in power system identi-
fication problems, known as ridge and lasso regressions. The
ridge regression (RR), also known as Tikhonov regularization
[76], helps addressing the issue of multicollinearity in data,
whereas the lasso regression [77] promotes sparse estimates.
These regression problems can generically be represented by

p̂REG = min
p

∥z̃−H(x̃)p∥22 + λ∥p∥ℓ, (16)

where ℓ = 2 for the RR, ℓ = 1 for the lasso one and λ is a
suitable positive regularization parameter. RR admits a closed-
form solution given by

p̂REG = (H(x̃)⊤H(x̃) + λI)−1H(x̃)
⊤
z̃, (17)

whereas lasso does not have, in general, a closed-form solution
and is typically solved iteratively. It is important to note that
introducing a regularization term unavoidably introduces bias
in the estimate. Therefore, it is crucial to carefully select λ
to find a balance between the ridge and lasso goals and the
introduced bias.

5) Support Vector Regression (SVR): is capable to handle
outliers and multicollinearity in the input data. The regression
scheme can be expressed as ϵ− SVR [78] as

min
p

1

2
∥p∥22 (18a)

subject to z̃−H(x̃)p ≤ ϵ1m (18b)
−z̃+H(x̃)p ≤ ϵ1m, (18c)

where ϵ is a parameter. The regression in problem (18) means
that the estimated p allows all the estimation errors below ϵ
but not larger than this. In order to handle infeasible cases, this
problem is modified by the introduction of a “soft margin” loss
function [79], i.e. slack variables ξ1,ξ2 ∈ Rm are introduced
and the problem is expressed as

min
p,ξ1,ξ2

1

2
∥p∥22 + α1⊤

m(ξ1 + ξ2) (19a)

subject to z̃−H(x̃)p ≤ ϵ1m + ξ1, (19b)
−z̃+H(x̃)p ≤ ϵ1m + ξ2, (19c)
ξ1,ξ2 ≤ 0, (19d)

where 1m ∈ Rm is a vector of ones. The parameter α is
decided based on a trade-off between the two objectives.
The optimization problem in (19) is often solved by its dual
reformulation as detailed in [80].

Another variant of SVR is Kernel-based SVR which is
capable of tackling non-linearity in the model by projecting
the input data z and x through a Kernel function as proposed
in [81].

6) Linear Minimum Mean Square Estimation: we here
review the stochastic least squares method, also known as
Linear Minimum Mean Square Estimation (LMMSE) [82],
where the aim is to estimate z from x using a (Wiener) filter
p̂WF such that the estimate p̂WF minimizes the mean square
error E[∥H(x̃)pWF−z̃∥22]. The solution admits a simple closed-
form solution (the Wiener-Hopf equation) given by

p̂WF := Σz,HΣH
−1, (20)

where ΣH and Σz,H are the covariance of the system state
and the cross-covariance of z and H(x).

7) Well-Conditioned LMMSE: Often, large condition num-
bers of ΣH are encountered in network identification prob-
lems, thus hindering the numerical computation of Σ−1

H .
The work in [83] proposed a well-conditioned approximate
solution to (20), presented in the following. Let us define
ỹ := (z̃,H(x̃)), with the corresponding joint covariance
matrix given by

Σy =

[
Σz Σz,H

ΣzH
⊤ ΣH

]
=

[
Xz

XH

]
Sy

[
Xz

XH

]⊤
, (21)

with the second equality defining the eigendecomposition of
Σy. Now let us partition the eigenvector matrices into an n×L
and an n×M matrix such that

Xz =
[
Xz,L Xz,M

]
, XH =

[
XH,L XH,M

]
,

with L + M = 2n, and L being a design parameter. An
approximate filter can now be given as

p̂WCWF = Xz,L(X
⊤
H,LXH,L)

−1X⊤
H,L, (22)
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where all the matrix inverses are L × L and can be selected
to be well-conditioned by choosing an appropriate L.

8) Recursive Estimation Schemes: in cases when the pa-
rameters are observed to be varying over time, recursive
estimation algorithms can be utilized and the estimations
are updated whenever there are new measurements available.
These schemes also propagate information from the previous
estimations using some forgetting factors.

a) Recursive least squares (RLS): is an approach that
solves LS in a recursive way. Usually, to give less importance
to previous estimates, an exponential forgetting factor is ap-
plied to the observations [84]. The forgetting factor 0 < µ ≤ 1
is reflected in the covariance matrix update. The varying nature
of the measuring quantities and parameters are represented by
subscript index k. The estimates are updated according to the
following recursive updates:

p̂k,RLS = p̂k−1,RLS +Kkek (23a)

where p̂k−1,RLS refers to the previous estimate and Kk and
ek are defined as

ek = z̃k −Hkp̂k−1 (23b)

Kk =
Pcov
t−1H

⊤
k

µ+HkPcov
k−1H

T
k

(23c)

Pcov
k = (I−KkHk)Pcov

k−1/µ (23d)

where Kk is the estimated gain, Pcov
k is the covariance matrix

and ek the residual.
As reported in [84], the RLS algorithm with exponential

forgetting may suffer from the so-called windup problem of
the covariance matrix and may lead to very large covariances
resulting in large variances in estimates. Several heuristics
approaches are proposed in the literature to solve this issue.
For example, a selective forgetting strategy was proposed in
[84] where forgetting factors are decided as a function of the
eigenvalues of the covariance matrix. In another approach, a
constant-trace algorithm [85] was proposed where an upper
bound is imposed on the maximum eigenvalue of Pcov

k . In
[86]–[88], a directional forgetting algorithm was proposed
where Pcov

k is split into two matrices: the first containing
information orthogonal to Hk and the second part must be
forgotten. It allows to only forget the part of the covariance
matrix that changes by the newer information.

b) Kalman-filter: the Kalman filter is also a recursive
estimation scheme. In power systems, this method has been
primarily used for state estimation [4]. In some cases, it has
also been used for parameter estimation, for example, [89]–
[94]. The Kalman filter (KF) aims at obtaining the system
state, or a set of parameters, at a given time by taking into
account information available from both measurements and a
process model. There are different versions of the KF method
presented in the literature. The Discrete Kalman Filter (DKF)
is used for linear systems, whereas the Extended Kalman Filter
(EKF) and the Iterated Kalman Filter (IKF) are used when the
process and/or the measurement models are non-linear. The
KF consists of a “predictor-measurement update” process that
minimizes the estimates error covariance, provided that some
specific conditions are met. The objective is to estimate the

state of a discrete-time controlled process, governed by the
linear stochastic process model given by:

pk = Akpk−1 +Bkuk−1 + δp,k−1 (24)

where pk and pk−1 represent the unknown parameters in
correspondence of discrete time steps k and k−1, respectively;
uk−1 represents a set of control variables (independent from
the system state) of the system at time step k − 1; δp,k−1

represents the system process noise assumed white and with
a normal probability distribution (δp ∼ N (0,Qp)); Ak is a
matrix that links that state of the system at time step k − 1
with the one of the current time step k for the case of null
control variables and process noise; Bk is a matrix that links
the time evolution of the state of the system with the controls
at time step k − 1 for the case of null process noise.

The measurement model is assumed to be the one in (5a)
with the same hypotheses (5b) regarding the error models.
Now, it is reasonable to assume that the parameters do not
change over time and the prediction model can be simplified
as follows:

pk = pk−1 + δp,k−1 (25)

In the case of unbiased estimation, the Kalman filter esti-
mation equation is obtained as

p̂k,KF = p̆k +Kk(z̃k −Hkp̆k) (26)

where Kk is the so-called Kalman gain. In [95], the op-
timal Kalman gain is derived by minimizing the expected
value of the square of the magnitude of the estimation error
E[∥p̂k,KF − pk∥2]. This is equivalent to minimizing the trace
of error covariance matrix P̂k as P̂k given by

P̂k = cov(p̂k − pk) (27)

As derived in [95], the optimal Kalman gain is given by

Kk = P̆kH
⊤
k (HkP̆kH

⊤
k +Qz)

−1 (28)

where

P̆k = P̂k−1 +Qp (29)

where Qp is the process covariance matrix.
To summarize, KF is composed of two steps. The prediction

step is given by

p̆k = p̂k−1 (30a)

P̆k = P̂k−1 +Qp (30b)

and the estimation update is given by

p̂k,KF = p̆k +Kk(z̃k −Hkp̆k) (30c)

Kk = P̆kH
⊤
k (HkP̆kH

⊤
k +Qz)

−1 (30d)

P̂k = (I−KkHk)P̆k (30e)
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9) Iterative Estimation Methods: the estimation problem
in (6f) is inherently bi-linear as it estimates the measurement
matrix H as well as p. This non-convexity has been tackled
by iterative estimation methods with particular reference to
joint estimation problems such as state and parameter esti-
mation (Sec. IV-A1b), topology and line parameter estima-
tion (Sec. IV-D6), systematic error and parameter estimation
(Sec. IV-C2) that can be cast into iterative optimization
schemes as discussed later in detail.

C. Performance Metric: Cramér-Rao Lower Bound

The majority of the estimation models in power systems fall
into the category of so-called Minimum Variance Unbiased
Estimator (MVU) unless there is a presence of a systematic
error in the measurement model. A MVU estimator must
satisfy the condition

E(p̂) = ptrue (31)

i.e., the average of all the estimates converges to its “true”
value (ptrue) [96]. A biased estimator does not satisfy (31)
and the biasedness can be defined as how far the average is
from the true value.

For an MVU estimator, a lower bound on the variance of
the estimator can be defined by the Cramér-Rao Lower Bound
(CRLB) that can be used to benchmark the performance against
any estimator. The performance of such MVU can be evaluated
by evaluating the Fisher Information Matrix (FIM) [96] which
quantifies the information that the measurements carry about
an unknown parameters vector.

According to the Cramér-Rao theorem (Chapter. 3 in [96]),
the trace of the inverse of the FIM gives a lower bound on the
variance of any unbiased estimator, referred to as the CRLB.
It is given by

var(p̂) ≥ 1

I(p) (32)

where I(p) denotes FIM. Using the log-likelihood function
in (6e), FIM is expressed as

I(p) = −E
[∂2log Γ(x, z,p)

∂p2

]
(33)

The CRLB can be used to benchmark different estimation
models; the one achieving the closest variance to the CRLB
is the best estimator.

For linear estimation models (e.g., Sec. III-B3), the MVU
estimator is given by

p̂ = (H⊤H)−1Hz. (34)

Using the expressions defined in (6e), (33), FIM is given by

I(p̂) = H⊤H (35)

Therefore, in this case, the CRLB is

var(p̂) ≥ (H⊤H)−1 (36)

As a final remark, power flow identification problems often
exhibit nonlinearity and nonconvexity depending on the nature
of the problem, meaning that the objective function, over

the feasible solution region, contains multiple local optima.
This arises due to the nonlinear relationships between inputs
and outputs, measurement noise, and the coupling of system
states/parameters to be identified. This requires the modeler to
use convexification techniques, such as linearization and con-
vex relaxations. The choice of estimation schemes and their es-
timation accuracy often depend on the inputs to the parameter
estimation problem and on the exactness of the assumptions. A
key challenge in parameter estimation is to verify the accuracy
of the estimated parameters as the true parameters may not be
known. In this respect, statistical methods such as CRLB in
Sec. III-C are useful for benchmarking the estimation methods,
and future research may enhance such bounds with domain-
specific knowledge of power system physics. Future research
will also benefit from the use of machine learning enhanced
techniques (e.g. [97]–[101]) in combination with conventional
mathematical solvers to enhance estimation performance.

With the comprehensive overview over parameters estima-
tion methods given in this section, we now review the ap-
proaches which use these methods to estimate state-dependent
and state-independent power flow models.

IV. ESTIMATING STATE-INDEPENDENT GRID MODELS

As described before, state-independent models are models
that are used for the exact representation of the power system
and can be applied to describe any steady-state operating
point. These models are typically composed of circuit rep-
resentations of the power network such as lines, transformers,
shunt admittances, grid topology, compound admittance ma-
trices, etc. This section aims to review different schemes for
estimating these state-independent parameters and discusses
the key challenges, and potential ways to tackle them. It is
organized as follows: in Section IV-A, we review methods for
identifying erroneous parameters among the already-known
grid parameters and topologies. Then, in Section IV-B, we
present models and methods for the estimation of line/shunt
parameters. In Section IV-C, we review methods in which line
parameters are estimated jointly with grid states or systematic
errors, and then in Section IV-D, we review methods for the
estimation of the compound admittance matrix.

A. Identification of Erroneous Parameters and Topology

1) Identification of Erroneous Parameters: the function
of a power system state estimator is to provide the real-
time operating state of the system while detecting and iden-
tifying sources of errors. Errors may originate from wrong
measurements, wrong network model topology, or inaccurate
network parameters. Under normal operating conditions when
generation matches the slowly changing bus loads, static state
estimators perform this function quite well based on SCADA
measurements. Measurements are received from substations
every few seconds and the state estimator is executed every
few minutes and the system is said to be operating in a
pseudo steady-state. Based on these assumed conditions, error
processing is commonly carried out post-estimation based on
the measurement residuals, i.e. the differences between the
estimated and measured values. In order to account for the
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differences in measurement accuracy, network topology, and
measurement configuration, residuals are normalized to yield
a set of values that are supposed to have a standard normal
distribution. Significant deviations from this distribution are
flagged as bad data. Historically, network models and pa-
rameters are considered to be perfectly known, and bad data
are blamed on gross errors in analog measurements. This
assumption is unfortunately not valid for large power grids
where parameters of lines, transformers, capacitors, and reac-
tors may vary under ambient conditions, may be incorrectly
entered into the database, or may not be properly updated after
scheduled or required maintenance. Detecting, identifying, and
correcting network parameter errors improves the accuracy
and reliability of not only the state estimator but also all the
network applications relying on state estimator results.

In the following, we review two different approaches to
detect parameter errors. The first one is an offline approach,
whereas the second is an online approach.

a) Non-robust offline approach for detecting parameter
errors: Initial attempts to process parameter errors used sen-
sitivity analysis to identify the parameter responsible for large
residuals, implicitly assuming that measurement errors are in-
significant [102]–[105]. Alternative approaches were proposed
by augmenting the state vector with suspect parameters and
simultaneously estimating the states and suspect parameters
[89], [106]–[108]. While quite effective for cases where the
suspect set was reasonably small and contained all incorrect
parameters, the problem would rapidly become prohibitively
large when the suspect set contained large sets of parameters.
A major shortcoming of both types of methods is that they
do not differentiate between gross errors in measurements and
parameter errors.

The problem of parameter error detection can be addressed
by incorporating the parameter errors pe = p − ptrue as
unknown variables in the measurement equations (4) as in
[109]:

z = h (x,pe) + e (37)

where p is the assumed parameter vector, ptrue is the true
but unknown parameter vector and e the measurement error.
Using (37) as the measurement equation, the state estimation
problem takes the following form:

min
pe

J (x,pe) =
1
2r

⊤Rr

subject to pe = 0
(38)

where R = Q−1
z is the inverse of the measurement error

covariance matrix, and r = z̃ − h(x̃,pe) is the measurement
residual vector.

The optimization problem (38) can be solved by forming
the Lagrangian:

L (x,pe,λ) =
1

2
r⊤R−1r− λ⊤pe (39)

Applying the first-order optimality conditions yields:

∂L
∂p

= H⊤
pR

−1r+ λ = 0 (40)

where Hp = ∂h(x,pe)
∂p is the measurement jacobian with

respect to the parameter errors p. At the solution, the Lagrange
multipliers λ can be recovered using (40) as in [109]:

λ = −H⊤
pR

−1r (41)

As shown in [110] using the linear approximation, where
Hx = ∂h(x,pe)

∂x is the measurement jacobian with respect to
states x, measurement residuals can be expressed as a linear
combination of measurement and parameter errors:

r = (I−HxG
−1H⊤

xR
−1)e− (I−HxG

−1H⊤
xR

−1)Hppe
(42)

Substituting (42) into (41) yields:

λ = Λpe +Ae (43)

where:

A = −H⊤
pR

−1(I−HxG
−1H⊤

xR
−1) (44)

ΛΛ = H⊤
p R

−1(I−HxG
−1H⊤

xR
−1)Hp (45)

G = H⊤
xR

−1Hx (46)

In order to evaluate the significance of the entries in λ,
its statistical properties are used to normalize their values.
Assuming that E(e) = 0, the expected value and covariance
of λ can be derived as:

E (λ) = E (Λpe) (47)

Λ = cov (λ) = H⊤
pR

−1(I−HxG
−1H⊤

xR
−1)Hp (48)

Note that Λ not only represents the sensitivity of λ to
parameter errors pe, but it is also the covariance matrix of
λ. The entries of λ can thus be normalized to yield:

λN
i =

λi√
Λii

(49)

where λi is the i−th element of λ and Λii is i−th diagonal
element of Λ.

In the absence of measurement errors, i.e. e ≈ 0, λN
i has

a standard normal distribution:

λN
i ∼ N (0, 1)

whereas in the presence of parameter errors, its distribution
changes to:

λN
i ∼ N

(√
Λiipe, i, 1

)
A cyclic identification test similar to the well-documented
“largest normalized residual test” for bad data [111] can be
designed to identify and remove parameter errors. The test
is used simultaneously on normalized residuals rNi and λN

i

since both are expected to have the same standard normal
distribution in the absence of gross errors. Once the state
estimator converges, |rNi | and |λN

i | are calculated and ranked in
descending order. Starting from the largest, the corresponding
measurement or parameter is flagged if the value exceeds
the detection threshold which is commonly set equal to 3.0.
Flagged parameters or measurements are corrected using the
linearized model as follows [112]:

pcorr,i = pbad,i − λi/Λii (50)
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zcorr,i = zbad,i − ri/Sii (51)

where Sii is i−the diagonal element of matrix S = (I −
HxG

−1H⊤
xR

−1) and subscripts “corr” and “bad” refer to
“corrected” and “erred” parameters.

The corresponding computational burden is proportional to
the number of detected measurements and parameter errors
due to the iterative nature of the process. However, parameter
errors do not have to be identified online at every state
estimation run, they can be tested periodically once every
day, week, or season based on the system operator’s judgment.
More details on the computational shortcuts in calculating Λ,
detectability and identifiability of parameters, parameters with
low sensitivities, and ways of handling such parameters via the
use of successive scans can be found in [110], [112], [113].

b) Robust online approach for detecting parameter er-
rors: As discussed in section IV-A1, the parameter error
detection and estimation are typically addressed as a post-
estimation function either as an off-line procedure [13], [109],
[110], [114], [115] or an on-line augmented state approach
[116]–[120] with a limited predetermined set of suspect pa-
rameters. Those approaches that formulate the problem as an
extension of state estimation by augmenting the state vector
with unknown parameters are unreliable due to the difficulty
in differentiating between measurement and parameter errors
which impact the residuals simultaneously.

The use of an inherently robust estimation method such as
least absolute value (LAV) may be a possible solution provided
that errors in measurements and parameters are simultaneously
processed and differentiated. In attempting to formulate this
problem, the following observation can be exploited: while
measurement errors are widespread, i.e. they are present in
all measured quantities with an expected normal distribution,
parameter errors are quite sparse affecting only a small subset
of the system parameters. This observation can be used to
modify the ℓ1-norm minimization of the absolute values of
measurement residuals and add a penalty term that penalizes
the ℓ1-norm of the parameter errors.

Consider the first-order linear approximation of the mea-
surement equation (37):

∆z = Hx∆x+Hp∆p+ e (52)

where ∆p is the correction on the parameter vector. At this
point, let us exploit the above stated observation that parameter
errors typically occur in a small percentage of the network
elements and therefore ∆p can be considered a sparse vector.
Furthermore, parameter errors that remain Gaussian with vari-
ances commensurate with measurement error variances can
be ignored given the uncertainties in measurements. Hence,
the objective of the formulation is to identify and correct
gross errors in the “unknown sparse set” of parameters which
will appear as significantly large entries in ∆p. Hence, the
penalty term in form of ℓ1-norm of ∆p can be added to the
LAV objective function yielding the following modified LAV
optimization problem [121]:

min ∥r∥1 + ∥∆p∥1 (53)

subject to ∆z = Hx∆x+Hp∆p+ r (54)

Note that the solution of the above optimization problem
yields nonzero entries in ∆p only for those parameters which
have gross errors. Otherwise, the parameters are not changed
and values taken from the existing database are used without
change. Consequently, this formulation has the advantage that
gross measurement errors are automatically rejected without
having any influences of parameter errors, since parameter
errors are corrected by the sparse ∆p estimate. The incor-
rect parameters can be identified and their corrected values
recovered by inspecting ∆p once the optimization solution is
obtained.

An important detail which should be addressed is the fact
that in the augmented objective function (53) measurement
residuals and parameter error corrections are assigned equal
weights. Even though both are expressed in per unit, depend-
ing on the type of parameters residuals and parameter errors
may not be compatible leading to implicit bias in the optimiza-
tion. To address this issue, proper weights can be assigned to
∆p terms using normalization among measurement residuals
and parameter errors. Note that in case of an error in parameter
i, ∆pi’s impact is magnified by Hp(·, i) (ith column) on
the measurement residuals. Hp being a sparse matrix, the
expected magnification of ∆pi is given by the expected value
of the absolute nonzero entries of the corresponding column
in Hp:

di = E{|Hp(·, i)| for Hp(·, i) ̸= 0} (55)

where E represents the mean (expected) value.
Defining the diagonal matrix D whose elements are given

by di, (53) can be replaced by the following formulation
removing the implicit bias from the objective function:

min
∆p

∥r∥1 + ∥D∆p∥1 (56)

subject to ∆z = Hx∆x+Hp∆p+ r (57)

The solution of this optimization problem can be obtained
by first converting it into an equivalent linear programming
(LP) problem and then using any of the existing efficient LP
solvers. Note that ∆p is expected to be sparse since only a
small percentage of the network parameters’ errors will be
significantly large. In this respect, the second term in the
objective function facilitates the removal of only such gross
parameters errors while the first term enables bad measurement
rejection simultaneously. This optimization problem can be
readily formulated as an equivalent LP problem and solved
efficiently by commonly available sparse LP solvers. More
details can be found in [121].

2) Identification of Erroneous Topology: Network connec-
tivity is commonly established by the topology processor (TP)
which receives the status of switches and circuit breakers rep-
resented by detailed node-breaker (NB) models of substations
and builds the bus-branch (BB) model of the power system.
While electrically equivalent, NB and BB models do not carry
the same information since the flow measurements through
closed breakers are not usable. If a closed breaker is opened
during a fault or planned substation reconfiguration, a topology
error is created until its new status is reported to the TP.
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Such errors are difficult to identify by the state estimator’s
traditional bad data processing function since it is designed to
suspect only measurement errors assuming perfect knowledge
of network topology.

Early works in detecting topology errors have been limited
to incorrect branch status cases using the BB models [122],
[123]. This limitation is later removed by using the NB models
and augmenting the state vector by flows through breakers as
introduced and described in [124]–[126]. While quite effective,
this approach results in a heavy computational burden due to
the significantly increased size of the augmented state vector.
The computational complexity could be addressed by first
localizing the suspect area and then applying the NB model to
a small subsystem enclosing the suspect area as discussed in
[127]–[131]. Formulation of the state and topology estimation
based on the NB model of the network is described below.

a) Augmented SE Using Node-Breaker (NB) Model:
Use of power flows through breakers as additional system
states [124], [125] modifies the measurement equations by
introducing a (m × l) measurement to breaker incidence4

matrix (Hm), m and l being the number of measurements
and breakers, respectively:

Hm,i,j =


1 if measurement i is incident to

from-bus of breaker j
−1 if measurement i is incident to

to-bus of breaker j
0 otherwise

(58)

Let the vector of newly added breaker flow variables be
denoted by f . Then, the measurement equations of (4) can be
re-written as:

z = h(x, f) + e (59)

where, z ∈ Rm, x ∈ Rs, f ∈ Rl and e ∈ Rm are the
measurements, bus voltages, breaker flows and measurement
errors, respectively. The following first order approximation of
the measurement equations (59) around (x0, f0) can be used
to iteratively solve for the augmented states:

∆z =
[
Hx Hm

] [∆x
∆f

]
+ e (60)

where, ∆z = z − h(x0, f0),
∂h

∂x
=

[
Hx Hm

]
at x0, ∆x =

x− x0, and ∆f = f − f0.
Using a typical substation example modeled by NB models

as shown in Fig. 2, a number of virtual measurements can be
created from equality constraints. The voltage magnitude and
phase angle across a closed breaker between nodes s and t
denoted by |vs|, |vt| and θs, θt, respectively satisfies:

|vs| − |vt| = 0 and θs − θt = 0 (61)

Similarly, for an open breaker zero flows for the active (P )
and reactive (Q) power can be included as:

Pst = 0 and Qst = 0 (62)

4The incidence matrix is very useful in formulating multiple functions
(including fault locations as in [132], [133]) due to its capability to compactly
defining buses-to-branches connectivity.
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Fig. 2. Node breaker model of a typical substation

For example, applying (61) and (62) to the substation shown
in Fig. 2, results in 22 constraints for the closed breakers and 2
null (active and reactive) power flow constraints for one open
breaker that can be added to the existing measurement set.
Similarly, 9 zero injections5 are available at the newly created
nodes within the substation.

All of these additional equality constraints can be compactly
written in terms of the augmented set of states:

c(x, f) = 0 (63)

The final estimation problem is composed of (60), (61),
(62) and (63) can be cast into a constrainted WLS regression
problem where the objective is to estimate f . This can be
accomplished via several different computationally efficient
implementations, a detailed description of one possible alter-
native can be found in [134].

B. Line Parameter Estimation

1) Transmission and Distribution Systems Models: For
distribution networks, the three-phase π and T -circuit repre-
sentations are the most adopted models in order to capture
the common lack of conductors transposition. In some cases,
a single-phase model may be considered in the presence of
conductors transposition or as an approximated model when
the conductors electromagnetic coupling is neglected [61],
[135]–[141].

5Substation node-branch diagram will contain several nodes which are
incident to breakers and lines without any external source or loads connected
to them. Such nodes will constitute the so called “zero injection nodes” since
the net injections are known to be zero without requiring explicit injection
measurements to be taken at those nodes. Such zero injections are referred
in the literature as “virtual” measurements and they boost measurement
redundancy as well as accuracy since they do not carry any measurement
errors. They are error-free measurements to be used by the state estimator in
the form of true equalities.
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The classical π-model representation of a power system line
is shown in Fig. 3. It provides an exact circuit representation
of the solution of the telegraphers equations for a fixed
frequency. In a three-phase system, the line impedances and
shunt admittances are represented by 3× 3 matrices.

Fig. 3. Generic multi-phase π− line model.

Moreover, the T− model simplification of a power-line is
shown in Fig. 4 which relates the voltages to the currents
through impedance.

Fig. 4. Generic multi-phase T− line model.

The longitudinal impedance matrix Zmn,Z
′
mn ∈ C3×3 and

the shunt elements matrix Ys,mn,Y
′
s,mn ∈ C3×3 can be

represented as

Zmn = Rmn + jωLmn (64)
Ys,mn = Gs,mn + jωCs,mn (65)

where Rmn ∈ R3×3 and Lmn ∈ R3×3 are longitudinal
resistance and inductance matrices, respectively, and Gs,mn ∈
R3×3 (often assumed negligible as in the positive-sequence
model) and Cs,mn ∈ R3×3 are shunt conductance and capac-
itance matrices, respectively. The impedance and admittance
matrices in π and T− model representation are equal for the
case of short-line approximation i.e., when ZmnYs,mn ≈ 0
holds true.

Here, ω = 2πf , f being the system frequency. Figure 3
also reports the quantities of interest to be measured, which
are the voltage phasors at the nodes and the branch current
phasors as seen from the sending and receiving line terminals
(or nodes). The three-phase node voltage phasors (indicated
by vectors vm ∈ C3 and vn ∈ C3 at two ends) relate to the
three-phase current phasors (imn ∈ C3 and inm ∈ C3) by
using these admittances as in [142]–[148] and in [149].

Typically, the shunt admittance can be neglected in low-
voltage distribution systems as well as for short overhead lines
in medium voltage systems [150]–[152]. However, in the case
of long medium voltage overhead and/or coaxial cable lines,
the shunt elements should be taken into account.

For transmission lines, the π-model can be reduced to its
equivalent single-phase model as they are typically trans-
posed. The single-phase model corresponds to the positive
sequence component [60], [153]–[169] and the elements
Rmn,Lmn,Gs,mn,Cs,mn reduce to scalar quantities. In this
case, the positive sequence measurements from the measure-
ment units (which can be computed in the post-processing
from phase measurements) can be used for the estimation.
Shunt conductance can be typically neglected in transmission
systems.

In a case where more than three conductors are present,
for instance, due to the presence of a neutral conduc-
tor, Kron reduction can be applied to reduce the generic
impedance/admittance matrices to 3 × 3 matrices. A fre-
quently adopted circuital model is represented in Fig. 5, where,
in the case of a three-phase system with neutral conductor,
the mutual resistances, Rmn,pq , and reactances, Xmn,pq , with
p, q ∈ {a, b, c}, allow to consider also the effects of current
circulation in the neutral conductor on the other phases of the
system.

In some research works, the π-model with concentrated
parameters for longer lines is rewritten in terms of distributed
parameters and in particular of the characteristic impedance
and propagation constant of the line [19], [170]–[173].
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𝑣𝑛,𝑐

Fig. 5. A circuital model in the case of a three-phase system with neutral
conductor.

2) Admittance, Impedance and Transmittance Matrices for
a Line: based on the aforementioned matrices defining the
general line model, i.e. Zmn and Ys,mn, different specific
estimation models have been used, depending also on the
available measurements. These are reviewed below.

a) Admittance-line model: relies on the π−model repre-
sentation of the power line as shown in Fig. 3; the line current
synchrophasors at the two ends can be expressed as[

imn
inm

]
=

Z−1
mn +

Ys,mn

2
−Z−1

mn

−Z−1
mn Z−1

mn +
Ys,mn

2

[
vm
vn

]
(66)

In [14]–[19], [143], [144], [174], the line currents and
nodal voltage measurements from the PMUs are used for the
estimation of the line and shunt parameters, i.e., Zmn and
Ys,mn. In this case, (66) can be expressed as follows[

i⊤mn

i⊤nm

]
=

v⊤
m − v⊤

n

v⊤
m

2

v⊤
n − v⊤

m

v⊤
n

2


[
(Z−1

mn)
⊤

Y⊤
s,mn

]
(67)
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The proposed approaches in [135], [136], [158], [175]–
[178] utilize power injections and voltage measurements from
RTUs [179], [180] instead of voltages and current phasor
measurements whereas [181], [182] uses smart meter data
on nodal power injections and voltages for the estimation. In
some cases, both the power and current measurements are used
for parameter estimation [183] along with the nodal voltage
phasor measurements.

b) Impedance-line model: relies on T− model of a
power-line as illustrated in Fig. 4. The relation between voltage
and currents can be also expressed in terms of the impedances
given by

[
vm
vn

]
=

Z′
mn

2
+Y′−1

s,mn Y′−1
s,mn

Y′−1
s,mn

Z′
mn

2
+Y′−1

s,mn

[
imn
inm

]
.

(68)

This line model can be used for estimating the line and shunt
admittances by rewriting (68) as

[
v⊤
m

v⊤
n

]
=


i⊤mn
2

i⊤mn + i⊤nm

i⊤nm
2

i⊤mn + i⊤nm

[
Z′⊤
mn

(Y′−1
s,mn)

⊤

]
. (69)

Such a scheme is used in [144] and compared against the
admittance estimation model.

c) Transmittance model: Sending-end currents and volt-
ages can be linked to the corresponding values at the receiving
end as follows [184]

[
vm

imn

]
=

 I+
ZmnYs,mn

2
−Zmn

Ys,mn

(
I+

ZmnYs,mn

4

)
−
(
I+

ZmnYs,mn

2

)
[

vn
inm

]
(70)

where I ∈ R3×3 is identity matrix. This model is also referred
to as the two-port network model and transmittance model
[144].

In (70), the term ZmnYs,mn can be approximated as null
matrix 0 ∈ C3×3 for electrically short lines [185], i.e.,
ZmnYs,mn ≈ 0. Then, (70) results in[

vm
imn

]
≈

[
I −Zmn

Ys,mn −I

] [
vn
inm

]
(71)

This approximation is often referred to as the “short-line ap-
proximation” and it has been observed that this approximation
holds accurate even for electrically medium length lines [185],
operating at very high rated voltages (e.g., 380 kV).

For this, the estimation model can be expressed as[
v⊤
m

i⊤mn

]
=

[
−i⊤nm 0

0 v⊤
nm

][
Z⊤
mn

Y⊤
s,mn

]
+

[
v⊤
n

−i⊤nm

]
(72)

This model is widely used for transmission line parameter
estimation, e.g. in [14], [18], [171], [186]–[190].

When dealing with network model identification, in ad-
dition to line parameter models, network branches equipped
with tap-changing transformers also need to be modeled. Tap
changer ratios cannot be perfectly known and uncertainty is
inevitable [191] although the knowledge of the transformer’s
tap changers ratio is essential for different monitoring tools,
including state estimation [192]. Several papers tackle the
problem of the estimation of the transformer tap changer
ratio by considering an equivalent single-phase model like
the one reported in Fig. 6 (i.e., an impedance in series yoff

sc,sr
with off-nominal turn ratio) in contexts like state estimation
[193]–[196] and line parameters estimation [170], [171]. The
model in Fig. 6 is included in the estimators through its
equivalent π-model. It is interesting to note that in such
model the off-nominal short circuit admittance yoff

scsr should
be defined more generally considering also the ratio between
the impedance of the winding without the tap changer and
one of the tapped winding through an additional parameter
k [197], which impacts parameters and tap ratio estimation
[198].

Fig. 6. Tap-changing transformer model with short circuit impedance at the
off-nominal turns side.

A single-phase equivalent model of the transformer is
used in [172] which estimates only the positive-sequence
component. However, other papers (e.g., [146], [199]) have
considered the three-phase transformer’s model.

These network models from Sec. IV-B can be integrated into
the measurement functions in the estimation model given in
(6f), where the quantities on voltages, currents and powers
are obtained from PMUs or RTUs and the parameters to
estimate are the line admittances and impedances. This is often
achieved by separating the complex equations into their real
and imaginary components and stacking them (for example
[144]). In the following, we discuss different estimation meth-
ods, differing by how the estimation is carried out, i.e. offline
or online, and if measurement noise is taken into account.

3) Offline Estimation Methods: it is assumed that the pa-
rameters remain constant over time, therefore, in such a case
the estimations can be conducted offline. Offline estimation
approaches leverage historical measurements that are stacked
together to obtain an over-determined system to improve the
accuracy of the estimates. In the following, we review different
works in the literature grouped based on the assumptions made
on the measurement noise.

a) Negligible Measurement Noise: the basic regression-
based schemes such as OLS and WLS [135], [143], [179]
are the most adopted estimation methods for line parameter
estimation. In these estimation methods, the measurement
noise is ignored [17], [175], [181], [200]–[202], although, this
assumption is not representative of a real-life scenario. The
OLS and WLS estimation methods are described briefly in
Sec.III-B3. As stated before, these methods suffer from several
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issues such as unrealistic noise hypothesis, multi-collinearity,
etc.

b) Realistic Measurement Noise Models, Homoscedastic
Covariance Matrix: as shown in [144], OLS and WLS-
based estimation methods fail when the measurement noise
is significant leading to non-negligible noise on the matrix
H violating the assumption made in the OLS and WLS
methods. In such a case, error-in-variables (EIV) schemes such
as TLS [136] (briefly discussed in Sec. III-B2) are proposed.
These schemes consider the noise on both z and H but it is
assumed that the noise covariance matrix is homoscedastic. It
should be noted that when TLS is fed with a large number
of measurements (with non-negligible noise), it attempts to
estimate a large number of variables, namely the measurement
errors along with the line parameters. This results in poor
estimates as reported in [203]. One way to overcome this
problem is by pre-filtering the measurement data in order to
reduce the noise as proposed in [183], [204].

c) Realistic Measurement Noise Models, Heteroscedas-
tic Covariance Matrix: in real life, the covariance matrices
Qz,Qx may be heteroscedastic, i.e., their diagonal elements
are not equal. Consequently, the ordinary TLS scheme cannot
be applied as it violates the homoscedastic noise assumption.
Alternatively, the estimation scheme can be formulated as a
Maximum Likelihood Estimation (MLE) problem, i.e. it is
expressed as an optimization problem to maximize the log-
likelihood function as given in (6). The optimization problem
is inherently non-convex, and only local solutions can be
obtained. In [72], methods to obtain solutions for this problem
are presented. In [136], [182], an MLE-based approach is
proposed by deriving a WTLS problem that is solved using
the stochastic gradient descent (SGD) algorithm. As expected,
however, a global optimum solution cannot be guaranteed.

4) Online Estimation Methods: traditionally it is assumed
that the line parameters are constant as they are determined
based on conductor size, type and tower geometry [205],
[206]. Calculated values are stored in databases and usually
remain unchanged for long periods despite the fact that pa-
rameters change due to ambient conditions, line maintenance,
or changes in tower configurations. Thus, it is preferable to
monitor and track line parameters using online SCADA or
PMU measurements.

Most of the work done in online estimation involves positive
sequence model parameters [207]–[218]. Methods to track
untransposed line parameters have also been investigated
[14], [219]–[222]. The main issue of rank deficiency of the
measurement-parameter coefficient matrix is commonly ad-
dressed by multi-scan measurements [14], [209]–[211], [220]–
[223] assuming that parameters remain unchanged for the
multi-scan duration. This raises numerical issues since volt-
ages also remain nearly unchanged during this period. A better
alternative is to implement a dynamic estimator as done in
[212], [213], [224] with state augmentation. However, this
approach is vulnerable to convergence issues when applied
to non-transposed lines. In [18], [19], [183], the OLS and
WLS are solved repeatedly with new measurements, however
without using the previous estimates of the line parameters. In
such schemes, estimations are performed with measurements

in a moving window fashion. In many cases, the recursive
estimation algorithms are utilized where the previous estimates
and new measurements are used per estimation iteration. These
schemes propagate information from the previous estimations
using some forgetting factor. For example in [19], a recursive
least squares (RLS) algorithm (Sec. III-B8a) is used for the
estimation of transmission line parameters. In [89]–[94], [188],
Kalman filtering (Sec. III-B8b) is used for the estimation of
the line parameters.

C. Joint Estimation Methods

The problem of joint state and parameter estimation appears
when both the states and unknown parameters of a system
must be estimated simultaneously from available measure-
ments. This task is particularly challenging due to two major
factors: observability and correlation between states and pa-
rameters. Regarding the former challenge, in many cases, the
combined estimation of the system of states and parameters
lacks sufficient measurement redundancy, making the estima-
tion difficult or even infeasible. Regarding the latter, states
and parameters are often interdependent, creating correlated
estimation errors where inaccuracies in one can propagate
into the other, leading to poor overall estimation performance.
Effective strategies, such as staged or sequential estimation
techniques, are therefore essential to manage these challenges
by decoupling the estimation processes and improving the
adverse effects of correlations on estimation accuracy.

In the following, we discuss two different joint estimation
techniques. In the first, state and parameter estimation prob-
lems are tackled jointly, whereas in the second, systematic
errors and parameter estimation problems are tackled jointly.

1) Joint State Estimation and Parameter Tracking: Joint
estimation of state and line parameters allows accounting for
the varying nature of the line parameter in the state estimation
problem [212]–[218] and is numerically robust and computa-
tionally viable as shown in [225] for a fully coupled three-
phase transmission line. This algorithm alternates between
state estimation, which relies on the most recent parameter
estimates and filters the voltage and current measurement
noise, and parameter tracking, which relies on the most recent
state estimates and filters the current measurement noise. Thus,
the mismatch between the actual and estimated parameters is
minimized.

Considering the varying nature of the parameters, the mea-
surement model of (4) can be written with subscript k as

zk = h(xk,pk) + ek (73)

The estimation of state xk and pk in (73) is carried out
iteratively by iterating between a static estimation to determine
xk assuming pk is known and parameter estimation using the
previously determined values for xk. Iterations are terminated
upon convergence to the desired state and parameter estimates.
In the following, we describe in more detail these steps.

a) State estimation: The process starts with the formu-
lation of the measurement equations

zk = Hp,k xk + δx,k (74)
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where δx,k is measurement noise with zero mean and co-
variance Rx and Hp,k is the measurement jacobian at time

k defined as Hp,k =

[
I4np×4np

H̆p,k

]
∈ R8np×4np where

I4np×4np indicates an identity matrix and H̆p,k ∈ R4np×4np

is constructed by the most recent parameter estimates p̂k. The
WLS estimator for xk as described in section III-B3 can be
used to estimate the state. If there is a wide-area linear state
estimator, raw PMU measurements at line terminals can be
replaced by their estimated values improving the estimator.

b) Parameter estimation: Current flows measured at line
terminals are used to track the parameters leveraging

ik = Hx,k pk + δp,k (75)

where δp,k is the measurement noise with zero mean and
covariance Rp.

We further assume that parameters have a prediction model
that leaves the values unchanged except for the zero-mean
disturbance:

pk = pk−1 +wp,k (76)

where wp,k is the noise due to ambient conditions distributed
with zero mean and covariance Qp. The well documented
recursive steps of the Kalman filter described also in section
III-B8b using the state dynamics (76) and measurement model
(75) are carried out iteratively at each measurement scan
yielding an online parameter tracking tool for all line elements
(i.e., real and imaginary parts of Zmn).

2) Joint Parameter and Systematic Errors Estimation:
Considering the error model in (1) and (2), systematic error
contributions can strongly affect parameters estimation and
therefore need to be compensated. The methods illustrated in
Section IV typically rely on multiple measurement sets corre-
sponding to different snapshot of the monitored quantities, i.e.,
to different timestamps, which however consistently include
the systematic errors. Hence, methods have been proposed to
reduce their impact on the estimation of the network model
or to estimate them together with the model. The systematic
errors estimation leads also to the favourable side-effect of
computing compensation factors or offsets to improve the
measurement chain and, in particular, the IT effects.

In [142], voltage and current synchrophasor calibration
factors are introduced and the availability of pre-calibrated ITs
and PMU at a bus of the network is assumed as a starting point
for the estimation procedure which is based on ordinary LS
and Newton-Raphson iterations. Similarly, in [156] complex
calibration factors for positive-sequence synchrophasors at the
end node of a transmission line are estimated together with
the line parameters through LS, starting from a calibrated
measurement chain at the start node. A bias error detection test
to identify major systematic errors in ITs is also introduced. In
[226], the errors are attributed to the positive sequence voltage
and current synchrophasor measurements at the beginning of a
line. The systematic phase error of the voltage and systematic
magnitude error of the current are neglected, thus addressing
the simultaneous line parameters estimation and the compen-
sation of the other systematic measurement errors. The method
relies on the minimisation of the sum of the squared correlation

coefficients between the line parameters obtained directly from
measurements and the sum of the squared current magnitudes
measured at the ends of the line. Using one calibrated end as
reference, [150] introduces lump compensation factors with
equivalent effects on the three-phase PMU measurements at
the other end before estimating them through LS together with
the line parameters. In [157], positive-sequence equivalent line
parameters including IT errors are estimated with multiple
applications of LS using different sets of PMU measurements
and then, starting from a node with calibrated measurements,
the calibration is propagated to a portion of the network. In
[161], a detection method for significant systematic errors
in VTs is proposed and, assuming VTs and CTs at the
sending node as calibrated, positive sequence transmission line
parameters are estimated through LS together with correction
factors for the end node.

A different approach is proposed in [61] and [152] for
distribution networks (single-phase and three-phase model,
respectively) and in [163] for transmission networks. Includ-
ing all the systematic errors as additional unknowns in the
estimation process, an improved estimation of line parameters
on multiple network branches is accompanied by the esti-
mation of magnitude and phase-angle systematic errors. The
method leverages prior knowledge on ITs and PMUs accuracy
(within a WLS framework in [61] and [152] and a Tikhonov
regularisation of the WLS in [163]) and allows computing
compensation factors for all the measured quantities. It is
robust with respect to measurement error model mismatch and
can exploit correlations in PMU measurement channels [227].
In [146], this approach is extended also to tap changer ratio
estimation. In [63], the complex behaviour of CTs systematic
errors under varying current levels in distribution lines is
considered through an extension of the estimation framework.

D. Compound Admittance Matrix Estimation Models

1) Compound Admittance Matrix: the admittance matrix
plays a pivotal role in power systems research due to its
use in numerous applications and strong relation to the un-
derlying network parameters and topology. Here, we review
the problem and the proposed solutions for estimating the
parameters of the admittance matrix of single- and three-phase
power networks using phasor measurements of bus voltages
and nodal current injections.

We consider the generic case of an unbalanced, polyphase
power network composed of Nb polyphase nodes Nb =
{1, . . . , Nb}, a node {0} which represents the common elec-
trical ground, and Ne undirected edges E ⊆ Nb × Nb. A
polyphase node consists of Np different terminals (phases)
collected in the set F = {1, 2, . . . , Np}. The network can thus
be represented by a connected undirected graph G := (Nb, E)
with edges weighted by complex Np×Np matrices yij . Reci-
procity of the electromagnetic effects renders yij symmetric
for all (i, j) ∈ E . Admittances connected to the ground node
yi0 may also exist at nodes i ∈ Nb and possess the same
properties as the series admittances. Three matrices associated
with the weighted graph model can now be introduced, namely
the primitive compound admittance matrix YL, the primitive
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compound shunt admittance matrix YT , and the polyphase
incidence matrix AP , defined by [228]:

YL = blkdiag({ye}Ne
e=1),

YT = blkdiag({yi0}Nb
i=1),

AP = A⊗ INp
,

where e ∈ {1, . . . , Ne} is a unique identifier assigned to each
edge, and A ∈ {−1, 0, 1}Nb×Ne is an incidence matrix of G.

Each node i ∈ Nb in the network is associ-
ated with a polyphase nodal current injection ii :=
(i1i , i

2
i , . . . , i

Np

i ) ∈ CNp , and a polyphase nodal bus voltage
vi := (v1i , v

2
i , . . . , v

Np

i ) ∈ CNp , collecting current injections
and bus voltages of different phases defined with respect to the
common electrical ground. Applying Kirchhoff’s and Ohm’s
laws leads to the following model of polyphase networks:

i = APYLA
⊤
Pv +YT v = Yv, (77)

where i := (i1, . . . , iNb
) and v := (v1, . . . ,vNb

) collect the
current injections and bus voltages of all polyphase nodes. As
can be seen from above, the compound admittance matrix Y
is a complex block symmetric matrix with a graph Laplacian
structure, whose diagonal Np×Np blocks are given by Yii =∑n
j=1,j ̸=i yij + yi0,∀i ∈ Nb, and the off-diagonal blocks by

Yij = −yij ,∀{i, j} ∈ E and Yij = 0Np×Np
otherwise. We

refer the reader to [228], [229] for a detailed analysis of the
admittance matrix properties.

2) Formulating the Regression Problem: to apply the re-
gression methods introduced in previous sections, the model
in (77) needs to be transformed such that the parameters of
the admittance matrix are the independent variables, as in (5a).
First, as admittance matrices yij modeling lines (i, j) ∈ E
and shunts i ∈ Nb, j = 0 are symmetric, the lower-triangular
entries entirely determine the parameters of each Np × Np

block Yij of the admittance matrix, and therefore

vec(Yij) = DNppij , i = {1, . . . , Nb}, j = {1, . . . , Nb},
(78)

with DNp
being the Np

2 × Np(Np + 1)/2 duplication ma-
trix, and pij := vech(Yij). Considering that Y is block-
symmetric, we can apply block-vectorization6 on (77) to
obtain

i = (v⊤⊗INb×Np
)(DNb

⊗IN2
p
)(INb(Nb+1)/2⊗DNp

)p, (79)

where p stacks the half-vectorized blocks pij , collecting the
admittance matrix parameters. The above equation brings the
admittance matrix estimation problem into the desired form
(5a).

3) Estimation Challenges: given measurements of nodal
voltages and currents, estimation of the admittance matrix
reduces to solving a (deceptively simple) linear regression
problem (79). However, obtaining an estimate of Y is faced
with several challenges. These challenges are either data-
related or related to the admittance matrix structure and
properties. As discussed previously, the admittance matrix
is symmetric and, additionally, if the shunt admittances are

6Transforms np×m matrix into npm×1 vector by stacking p×1 blocks
row by row through all m columns and for all n rows.

neglected, or nonexistent, Y has zero row-sums. Furthermore,
the admittance matrices are commonly sparse since most
power systems are characterized by a large number of buses
and low incidence. These properties are not guaranteed to
hold for generic linear regression estimates and therefore need
to be imposed or promoted in the regression problem. On
the other hand, the data-related challenges are caused by the
attributes of electrical measurements and their placement, i.e.,
measurement errors, multicollinearity, and incomplete network
observability. Since the current injections/flows and bus volt-
ages are obtained via synchrophasor measurements, both the
dependent and the independent variables in (77) are corrupted
by measurement noise. Moreover, measurements collected on
different buses are observed to be highly correlated with each
other due to the structure of the network and the low phase
differences between nodes. Finally, not all the nodes in the
network may be observed, and recovery of the unobserved
nodes and line connections to or between them.

4) Solution methods: the OLS regression (15) is the most
common and the most straightforward method considered in
the literature [230]–[234]. In [230], a technique for estimat-
ing the admittance matrix by applying matrix least squares
estimation to phasor measurements is presented. To enforce
the Laplacian matrix structure in the least squares estimate,
a constrained least squares approach is developed in [232].
A recursive least squares method (23) is introduced in [233]
to enable frequent online updates instead of using batch
processing. To enhance the least squares estimation when the
admittance matrix is known to be sparse, [234] introduces a
sparsity promoting ℓ1-norm regularizer (16). However, these
approaches assume noise-free measurements of the indepen-
dent variables, which can lead to biased estimates when using
realistic data with errors in all measurements.

To overcome this limitation, error-in-variables methods have
been proposed [83], [204], [235], [236]. The work in [204]
employs TLS (7) and demonstrates the performance improve-
ment compared to OLS. A WTLS method (6) is introduced
in [235], and then extended in [236] to a Bayesian framework
that allows for exploiting different forms of prior knowledge
of the admittance matrix. Finally, a well-conditioned Wiener
filter method (22) was introduced in [83] to address the
measurement multicollinearity.

The work in [232] shows that the Kron-reduced admittance
matrix can be determined even if some nodes in the system are
unobserved. An algorithm based on graph theory is proposed
to uncover the actual admittance matrix of systems with
unobserved nodes. Furthermore, it is shown that the recovery
of unobserved nodes is unique only in the case of radial
networks and not for general meshed systems. The work in
[237] proposed a scheme to estimate topology using limited set
of measurements. It uses a graph-theoretical approach where
the network is partitioned into observable islands. It then
presents a scheme for strategic sensor placement for recovery
of the network topology.

5) Pre- and post-processing techniques: as discussed in
[204], the estimation quality deteriorates with high measure-
ment uncertainty, especially with the IT class above 0.5 and
1.0. In such a case, pre-processing of the measurements is
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proposed which is designed to reduce the noise, therefore
enhancing the estimation performance. The pre-processing
schemes also help to remove repeated measurements, hence
improving the conditionality of the measurement matrix. In
[14], a moving window averaging on the raw data is pro-
posed for improving TLS-based line parameter estimation by
reducing the noise level. The method was proposed for the
estimation of a transposed and balanced line and used mea-
surements of nodal powers along with currents and voltages. In
[204], another averaging approach using a k-means clustering
method was proposed. In this case, the measurements are first
clustered into different groups based on the features defined
beforehand, then, in each of the clusters, the measurements
are averaged (i.e., taking the centroid of each cluster as
measurements). Such pre-processing scheme enhances the
estimation performance by two to three orders of magnitude.
It should be noted that such averaging schemes preserve the
mathematical structure of the original formulation, provided
that the parameter estimation model is linear (for example the
line parameter models in Sec. IV-B.).

Post-filtering of the obtained admittance matrix estimate
is also considered in the literature to refine the estimate. In
[83], it is demonstrated that Laplacianity properties can be
enforced a posteriori by applying a post-filter. The postfilter
is constructed from the pseudoinverse of a duplication matrix
and the pseudoinverse of a matrix enforcing zero row-sums.
A post-filtering heuristic to yield sparse estimates of Y is
considered in [238]. After estimating the admittance matrix,
the lines whose estimated conductances are relatively small are
progressively removed, therefore promoting network sparsity.

6) Joint Estimation of Topology and Parameters: the ad-
mittance estimation problem corresponds to the estimation of
the network topology and the line parameters. This approach
has been followed in [17], [136], [175], [176], [181], [200],
[238], [239]. The problem is usually solved in an iterative way
(see also Sec. III-B9) where the line parameter is estimated
first based on initial topology information, then the topology
is estimated using the estimated line parameters and finally
parameters are estimated again.

In [136], [238], first the line parameters are estimated
assuming an initial topology (such as all the lines are assumed
to be connected), then lines with the least conductance are
removed, iteratively with some thresholds. It is based on a
heuristic rule such that the likelihood of the re-estimated
EIV model should not go lower than the likelihood of the
model with all lines assumed to be connected. The work in
[176] proposed a two-stage numerical approach. First, a data-
driven regression method is used to estimate a preliminary
model whose objective is to estimate proxy conductance and
susceptance matrices. In the preliminary state, it assumes the
voltage angle to be near zero, therefore approximating the
sines and cosines of the angle correspondingly. It simplifies
the power flow relations where the active and reactive powers
are expressed proportionally to the voltage multiplication of
two nodes. This first estimation is then used to identify
the topology which is then used in the second stage for
better estimation of the line parameters with a much more
rigorous power-flow model. This problem is solved by a

numerical approach, the Newton-Raphson method. In [175],
[200], topology is estimated first using statistical analysis
(correlation) of the nodal voltage and power injection mea-
surements. Then, the branch parameters are estimated in the
second stage. In [181], the network topology is estimated
by reconstructing a weighted Laplacian matrix of distribution
networks. In the second stage, a least absolute deviations
(LAD) regression model is developed for estimating the line
impedance of a single branch based on the nonlinear (inverse)
power flow model, wherein a conductor library is leveraged
to narrow down the solution space. The LAD regression
model is originally a mixed-integer nonlinear program whose
continuous relaxation is still non-convex. In [17], effective
impedances are estimated via the reduced Laplacian form of
the Kron reduced admittance matrix, termed the “subKron”
form. It uses the complex recursive grouping algorithm to
reconstruct radial networks from effective impedances. The
work in [239] formulates the associated constrained maximum
likelihood (CML) estimator as the solution of a constrained
optimization problem with Laplacian and sparsity constraints.
It develops an efficient solution using the associated alternating
direction method of multipliers (ADMM) algorithm with an
l1− relaxation.

E. Future Directions

The key challenges that need to be addressed in the param-
eter estimation literature are summarized here below.
• Estimation under limited observability: the majority of ex-

isting literature assumes full observability for the admittance
and topology estimation problem. However, in practical
situations, achieving full observability is unrealistic due to
various factors such as communication issues, missing data
or lack of sensors, etc. Limited observability renders the
estimation problem challenging. Advanced signal processing
techniques, machine learning approaches, compressed sens-
ing or optimization methods to infer missing information
may be useful in improving the estimation accuracy.

• Non-normal noise distributions: realistic measurements are
often characterized by noise distributions that are not nor-
mal. Processing raw time-domain samples to extract pha-
sor quantities requires the application of signal process-
ing algorithms that, to ensure compliance with existing
international standards (e.g., [40], [41]), may produce non-
normal noise distributions with a potentially discrete nature.
This characteristic necessitates the adoption of alternative
estimation approaches, such as particle filters, which are
inherently capable of handling nonlinear measurement mod-
els and non-Gaussian noise distributions although they are
characterized by a very high computational cost. Addition-
ally, the measurement error characterization requires further
investigation, particularly under real operating conditions,
since distinguishing truly non-normal distributions from the
effects of non-stationarity is crucial for an accurate model.

• Systematic errors: as mentioned before, systematic errors in
the measurement chain can jeopardize estimation results.
Particular attention is needed in IT compensation and/or
PMU calibration. A significant research effort is required in
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designing compensation instruments and tools that can help
reducing the systematic errors directly on the field, reducing
as much as possible downtimes and increasing the usability
of the measurements. It is also worth highlighting that ITs
evolution is ongoing and new generation ITs will provide
lower uncertainty intervals, but the impact of influencial
quantities (like frequency or temperature [240], [241]) is
still to be assessed. A more punctual characterization of the
instrumentation under various and non-standard conditions
would be of great help in improving the uncertainty descrip-
tion and in ruling out unreliable measurement data from the
estimation.

• Providing estimation error guarantees: To enable deploy-
ment of the newly developed estimation algorithms, it is
necessary to provide error bounds on the estimated param-
eters as function of the measured quantities and associated
noise. Such error bounds can be integrated in optimization
schemes and can help quantifying the uncertainty associated
with estimated values.

• Model parameters at non-fundamental frequencies: PMU
design is under constant evolution and harmonic PMUs
are emerging as a powerful tool to measure harmonic
phasors. An evolution of model estimation relying on non-
fundamental frequency synchronised measurements emerges
as an interesting and challenging research direction. It
is important to notice that accurate absolute phase-angle
measurements are even more crucial in this regard, with
new challenges in time-synchronization accuracy.

• Integration with conventional measurements: Synchronised
measurements are the key tool for parameter estimation in
advanced monitoring infrastructures, but a full integration
with information available from already existing measuring
infrastructure is still missing. Conventional measurements
are not time-synchronised and their accuracy is usually far
from that needed for the discussed estimation algorithms,
but they are often already available and could be used as
prior information to limit the exploration space in the esti-
mation process. However, associating them with meaningful
uncertainty models, which can support an estimation based
on synchronised measurements in an effective and efficient
way, is still a research direction to be further investigated.

V. ESTIMATING STATE-DEPENDENT GRID MODELS

In contrast to the estimation of the state-independent models
such as admittance parameters (line, shunt, and topology) of
the power networks that can be used for their exact repre-
sentation, several methods in the literature propose estimating
an approximated representation of the power-flow equations.
One such example is the derivation of approximated power
flow models using the first (or multiple) order of Taylor’s
series expansion of the power flow equations (e.g., [242],
[243]). These models are widely used for formulating different
control schemes such as voltage control, and lines congestions
management [244], [245] etc. These models are valid in the
proximity of the considered operating point, hence, they are
referred to as state-dependent models.

In the following, first we recap a scheme for power-flow
approximation around an operating point, then we review

different methods proposed in the literature for measurement-
based estimation of such approximated power-flow models.

A. Power-flow Approximation around an Operating Point

Let the nodal apparent power injections be denoted as S =
[S1, · · · ,SNb

], with Si ∈ CNp = Pi + jQi where Pi ∈ RNp

and Qi ∈ RNp are the active and reactive power injections
at node i ∈ Nb. Using the previous notations of multi-phase
voltage and admittance matrix, it can be re-written compactly
as

Si = Pi + jQi = vi ◦
∑
j∈Nb

Yijvj (80)

where ◦ refers to Hadamard product.
The aim of power flow analysis is to express the nodal

voltage phasors vi = |vi|∠θi = ℜ{vi}+jℑ{vi} as a function
of the injections i.e., Pi, Qi, i ∈ Nb and the slack-bus voltage
phasor v0, which can be expressed by the following non-linear
function

vi = vi(v0,P1, . . . ,PNb
,Q1, . . . ,QNb

) (81)

In practical applications, such as for voltage control, the
non-linear expression in (81) is often approximated by a
linear or quadratic expression. One such approach is using
the Taylor’s series expansion around a pre-defined operating
point. These expansions can be performed considering several
higher-order terms, as demonstrated in [242], [246], however,
in the majority of the cases, the higher order terms are
neglected to obtain a linear approximation. Such Taylor’s
expansion can be written for polar and rectangular coordinates,
as described below.

1) Polar coordinates: Using the polar coordinates, the
First-order Taylor’s approximation of the power-flow equations
in (81) around an operating point, v•

i = |v•
i |∠θ•

i yields linear
expressions for the voltage magnitudes and angles as

|vi| = |v•
i |+

∑
j∈Nb

Km
P,ij(Pj −P•

j ) +
∑
j∈Nb

Km
Q,ij(Qj −Q•

j )

(82a)

θi = θ•
i +

∑
j∈Nb

Kθ
P,ij(Pj −P•

j ) +
∑
j∈Nb

Kθ
Q,ij(Qj −Q•

j )

(82b)

where, P•
j and Q•

j are operating points for the
active and reactive powers, respectively. The symbols
Km
P,ij ,K

m
Q,ij ,K

θ
P,ij ,K

θ
Q,ij ∈ RNp×Np are the Taylor’s

coefficients, also referred to as sensitivity coefficients, their
elements are defined as,

Km
P,ij,ψψ′ =

∂|vψi |
∂Pψ

′

j

and Km
Q,ij,ψψ′ =

∂|vψi |
∂Qψ′

j

(83a)

Kθ
P,ij,ψψ′ =

∂θψi

∂Pψ
′

j

and Kθ
Q,ij,ψψ′ =

∂θψi

∂Qψ′

j

(83b)
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2) Rectangular coordinates: the first-order Taylor’s expan-
sion around an operating point in rectangular coordinates
v•
i = ℜ(v•

i ) + jℑ(v•
i ) is expressed as

ℜ{vi} = ℜ{v•
i }+

∑
j∈Nb

Kre
P,ij(Pj −P•

j ) +
∑
j∈Nb

Kre
Q,ij(Qj −Q•

j )

(84a)

ℑ{vi} = ℑ{v•
i }+

∑
j∈Nb

Kim
P,ij(Pj −P•

j ) +
∑
j∈Nb

Kim
Q,ij(Qj −Q•

j )

(84b)

where, the symbols Kre
P,ij ,K

re
Q,ij ,K

im
P,ij ,K

im
Q,ij are the corre-

sponding coefficients defined as

Kre
P,ij,ψψ′ =

∂(ℜ{vψi })
∂Pψ

′

j

and Kim
P,ij,ψψ′ =

∂(ℑ{vψi })
∂Pψ

′

j

(85a)

Kre
Q,ij,ψψ′ =

∂(ℜ{vψi })
∂Qψ′

j

and Kim
Q,ij,ψψ′ =

∂(ℑ{vψi })
∂Qψ′

j

(85b)

It should be remarked that the sensitivity coefficients,
Km
P,ij ,K

m
Q,ij ,K

θ
P,ij ,K

θ
Q,ij and Kre

P,ij ,K
re
Q,ij ,K

im
P,ij ,K

im
Q,ij

are state-dependent as they are defined for a specific operating
point.

In a measurement-based setting, the objective is to estimate
the sensitivity coefficients in (83) and (85) by using the
measurements of the nodal voltages and active/reactive power
injections.

In the following, we review the estimation problem, the key
challenges, and different approaches to tackling them.

B. Measurement-based Estimation Models

Given the availability of measurements of nodal voltages
and power injections, the coefficients in (82) and 84 can
be estimated by formulating a regression-based estimation
problem. Assuming that (i) the measurements are available
from PMUs or RTUs over a time window of [t1, . . . , tm], and
(ii) the sensitivity coefficients do not change over this window,
the linearized expression in (82) and (84) can be written as
(∼ with a symbol is used to indicate measured quantity)

∆z̃i(t1)
...

∆z̃i(tk)
...

∆z̃i(tm)

 =



∆P̃(t1) ∆Q̃(t1)
...

...
∆P̃(tk) ∆Q̃(tk)

...
...

∆P̃(tm) ∆Q̃(tm)


[
K⋄
P,i

K⋄
Q,i

]
(86)

where zi refers to any of the dependent variables cor-
responding to node i in (82) and (84), i.e., zi =
{|v⊤

i |,θ⊤
i ,ℜ(v⊤

i ),ℑ(v⊤
i )} and ∆zi = zi − z•i refer to

the deviations with respect to the operating point; the same
applies to ∆P and ∆Q. The vectors K⋄

P,i,K
⋄
Q,i are the

sensitivity coefficients for node i with respect to the power
injections at all nodes, i.e, K⋄

P,i = [K⋄
P,i1, . . . ,K

⋄
P,iNb

] and
K⋄
Q,i = [K⋄

Q,i1, . . . ,K
⋄
Q,iNb

] and the ⋄ = {m, θ, re, im}
defines the corresponding sensitivity coefficient of interest in
(82) and (84).

With respect to the choice of operating point, two distinct
approaches have been reported in the existing literature. The

first corresponds to the case, when z•i is chosen as the
measurement observed at the previous time step. In this case,
∆z̃i(tk) = z̃i(tk) − z̃i(tk−1). Similarly, ∆P̃(tk) = P̃(tk) −
P̃(tk−1) and ∆Q̃(tk) = Q̃(tk)− Q̃(tk−1). Such approach is
followed in [20], [245], [247], [248].

In another case, the operating point is chosen as the no-
load conditions (e.g., [22], [243], [249]), i.e. z•i = z0,P

• =
0,Q• = 0. This simplification leads to

z̃i(t1)− z0
...

z̃i(tk)− z0
...

z̃i(tm)− z0

 =



P̃(t1) Q̃(t1)
...

...
P̃(tk) Q̃(tk)

...
...

P̃(tm) Q̃(tm)


[
K⋄
P,i

K⋄
Q,i

]
(87)

In reality, the voltage at no load might not be available, then
v0 can be replaced by some pseudo measurements such as the
mean of vi. Such a scheme was proposed in [22].

In (86), (87), the values zi,∆P,∆Q are known from the
measurements, and the parameters to estimate are K⋄

P and
K⋄
Q. As long as the number of measurement m is greater

than the number of variables to be estimated 2 × (Nb − 1),
(86) can be formulated as a standard regression problem and
can employ any of the estimation techniques described earlier
in Sec. III-B. For simplifaction, the models in (86), (87) can
be represented similar to the ones in (5a), as

z̃ = H̃p+ ϵ, (88)

where z̃ ∈ Rm×Np and H̃ ∈ Rm×2NpNb are constructed from
the nodal voltage and power measurements, respectively; the
symbol p = [K⋄

P K⋄
Q]

⊤ ∈ R2NpNb×Np is collecting all the
sensitivity parameters to be estimated, ϵ denotes the error
vector arising from measurements and model approximation.

Other than the regression-based methods, other approaches,
as proposed in [250], [251], involve estimating the sensitivity
coefficient through a perturb and observe scheme. However,
this method requires regular and significant perturbations in
nodal injections, making it impractical in real-life scenarios.
Therefore, in the following, we mainly review the estima-
tion challenges and potential solutions with respect to the
regression-based methods.

C. Estimation Challenges and Solutions

The key challenges in estimating the sensitivity coefficients
parameters in state-dependent models are described below.

1) Multicollinearity: this problem is prevalent in estimation
schemes where multiple predictors in the regression model
are similar or collinear, i.e., the several columns of the H
matrix in (88) are correlated to each other. This phenomenon
might occur when the power network has similarly varying
power injections (such as in Photovoltaic plants), etc. In such
a case, the matrix H becomes ill-conditioned and the inverse
H⊤H might be ill-defined. It results in estimates which are
very sensitive to small changes in the measurement data as the
condition number of the ill-conditioned matrix is very high. It
results in high variance of the estimates of some coefficients
which are highly affected by the multi-collinearity problem.
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The problem of multi-collinearity has been recently tackled
by several works. For example, [22], [252] proposed using
principle component regression (PCR) [253] where the matrix
H is transformed into a reduced dimensional space with
independent predictors. This allows the correlated predictors
to be removed and only independent predictors are considered
in the regression algorithm. This is achieved by carrying out
singular value decomposition (SVD) on H and taking the
columns with dominant eigenvalues.

A similar approach has also been followed in [254]–[257]
which uses different versions of partial least squares (PLS)
method. PLS addresses the collinearity problem as well as the
lack of enough observations by combining the features from
principal component analysis (PCA) and canonical correlation
analysis (CCA) [258]. Different approaches has been deployed
to implement PLS schemes, for example in [254], [255] utilize
a nonlinear iterative partial least squares (NIPALS) method
[259], whereas in [256], [257], a statistically inspired modi-
fication of the partial least squares (SIMPLS) has been used,
and have computational advantage compared to NIPALS.

The works in [254] proposes to use a Bayesian Learning
Regression (BLR) which is also effective in mitigating the
collinearity problem. An advantage of using the BLR is to
be able to express the posterior distributions on the estimated
parameters as a function of the likelihood of the input data
and prior known distribution of parameters [260]. However,
a key challenge in using BLR is the characterisation of the
likelihood and prior distribution.

Multicollinearity has been also tackled using the ridge-
regression (RR) based methods [21], [261]–[263]. As de-
scribed in (Sec. III-B4), it includes adding a norm term
also referred to as Tikhonov–Phillips regularization into the
weighted LS (WLS) algorithm allowing sensitivity coefficient
estimates to be stable. As shown in [264], the regularization
term renders the overall gain matrix (H⊤H + λI) well-
conditioned, therefore the estimates are stable. In [21], it was
proposed to use locally weighted RR (LWRR) to achieve stable
estimation in the presence of collinearity. In another variation,
[261] proposed a noise-assisted ensemble regression (NAER)
scheme which inserts a noise ensemble into the LWLS scheme
and uses the mean of LWLS estimates. In [261], it is claimed
that NAER gives equivalent estimates as RR, i.e., adding a
norm-2 regularization term into the WLS. The work in [262]
utilized RR to address the collinearity problem in estimating
linearized models for three-phase systems.

2) Low excitation: when the power injections are extremely
low (much lower than the nominal values), the change in
the grid states may be negligible, which makes it difficult to
estimate the sensitivity coefficients. The issue of low excitation
has been tackled by pre-filtering approaches. For example,
in [20], only the voltage measurement deviations above a
certain threshold are used for the estimation, resulting in
estimation performance improvement. In [265], this issue is
tackled by limiting the measurements to relevant data around
the operating point referred to as “sufficient effective data
condition” which is defined as a measurement within 5%
around the operating point. The work proposed a “resampling”
and “compression” procedure to achieve ‘sufficient effective

data condition”. Then, this data is used to formulate a LWLS
scheme where the weights are computed as an exponential
distance function. Due to low excitation, the inverse of the
gain matrix may be too large, therefore the problem of high
variance in the estimates may occur; in this context, the RR-
based methods are also found to be effective to solve this
issue.

3) Adaptability to the Changing Grid Data and Measure-
ment Noise: for adapting to changes in the measurement
noise, WLS with appropriate weighting could be effective.
The work in [20] derived a correlation matrix by accounting
for the correlation between the two consecutive deviations of
the measurements. Such a covariance matrix showed better
performance compared to ordinary LS.

To adapt to the change in load variation, the work in [266]
proposed a piece-wise model where the load is clustered into
three different zones: low load, high load, and reverse power
flow. For each of these zones, a separate sensitivity coefficient
is defined. However, this is carried out offline using historical
data and discretizing the load into three different zones may
not produce accurate results.

In [267], TLS and WTLS methods are proposed that account
for measurement noise in both H̃ and z̃. It showed robust
estimation performance with different levels of measurement
noises.

The works in [268], [269] propose using recursive online
estimation methods which update the sensitivity coefficients
using recent measurements. RLS schemes are found to be
suitable, as they are capable of tracking the changing nature
of the sensitivity coefficients recursively with newer grid
measurements. These schemes employ exponential forgetting
on the past measurements, giving more weight to the most
recent measurements. Similarly, in [255], a recursive version of
PLS is proposed which is effective in tackling the collinearity
problem. In [270], the authors propose using RLS schemes
with a directional forgetting strategy [88] to avoid the covari-
ance matrix windup problem. Different forgetting algorithms
are compared against OLS methods in [271], [272], and those
with selective forgetting [84] and directional forgetting were
found to be the most dominant.

4) Tackling Outliers: the standard regression-based
schemes are quite sensitive to the outliers, especially
for measurement-based schemes. Therefore, the works in
[273], [274] proposed using SVR (Sec. III-B5) to achieve
good estimation performance in the case of outliers in the
measurements. SVR models have been shown to perform
better than the LS and PLS schemes against different
percentage of outliers in the input data. In addition, due to
the regularization term in SVR, it also helps in tackling the
multicollinearity issue, as demonstrated in [273], [274].

D. Future Directions
The key challenges that need to be addressed in the param-

eter estimation literature in addition to challenges mentioned
already in the previous section for state-independent grid
models are listed here below.
• Multi-collinearity: It is a common occurrence in power

system parameter estimation as the relevant measurements



22

are usually correlated. This leads to numerical instability,
ambiguity in model interpretation, and increased sensitivity
of estimated values to small changes in measurements.
Techniques such as variable selection, regularization, and
pre-processing have been proposed in the existing literature.
Mitigating multicollinearity is crucial for obtaining accurate
and reliable parameter estimates in power system modeling.

• Accuracy of Model Approximations: The power flow equa-
tions are inherently non-linear and approximations of linear
or quadratic nature induce errors into the estimation process.
The accuracy that can be achieved with approximations is
dependent on the specific formulation but also the specific
system and operating point. Hence, understanding and quan-
tifying under which conditions a chosen model is sufficiently
close to an accurate representation provides insights into the
achievable accuracy of the estimation process.

• Adapting to faster changing grid state: With the increas-
ing level of resources with fast-regulating power outputs,
the time interval during which the system is sufficiently
“steady”, reduces. Consequently, the question of efficient
adaptation of the models to varying system states is becom-
ing increasingly important.

VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this paper, we reviewed the state-of-the-art measurement-
based techniques and solution approaches for estimating the
power flow models using time-synchronised measurements,
with the goal of providing a summary and suggestions for
researchers in this field. First, the paper reviewed recent de-
velopments in the area of time-synchronised measurements in
power systems, starting from time dissemination technologies
to the uncertainty characterization of the measurements from
PMUs and instrument transformers. These uncertainty models
can serve as a guide for researchers working on parameter
estimation. The paper then reviewed different estimation tech-
niques which are widely employed to solve the parameter
estimation problem but differ by the noise characterization.
The estimation techniques are grouped into state-independent
and state-dependent power flow estimation models. The state-
independent models include schemes for estimating power
line parameters, admittance, and topology, as well as joint
estimation models such as the joint estimation of state and line
parameter errors, and systematic errors. The state-dependent
models included estimation of approximated power-flow mod-
els such as First-order Taylor’s approximation. The paper
highlights several open problems and suggests potential areas
for future research.

The future research on parameter estimation must address
the evolving needs of power grids, which are increasingly in-
corporating inverter-based resources. These systems introduce
distinct dynamics and transients that are becoming increas-
ingly pronounced. Consequently, monitoring technologies are
shifting from static, time-synchronised measurements (e.g.,
RMS or phasor-based) to the so-called synchro-waveforms (or
point-on-wave). This transition is driving the development of
network applications into a fundamentally different domain,
where PMU or SCADA measurements will be integrated with

higher-resolution data. This integration will enable the for-
mulation of estimation problems spanning both the frequency
and time domains. The methods reviewed in this paper may
be complemented by alternative approaches capable of oper-
ating at higher resolutions and handling greater computational
demands.

Finally, the current literature lacks experimental and numer-
ical validations of the parameter estimation algorithms and
related assumptions on real-life distribution and transmission
systems. Therefore, future works should also validate the
framework on real-life systems.
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