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Abstract: Homeostasis of the host immune system is regulated by white blood cells with a variety
of cell surface receptors for cytokines. Chemotactic cytokines (chemokines) activate their receptors
to evoke the chemotaxis of immune cells in homeostatic migrations or inflammatory conditions
towards inflamed tissue or pathogens. Dysregulation of the immune system leading to disorders
such as allergies, autoimmune diseases, or cancer requires efficient, fast-acting drugs to minimize
the long-term effects of chronic inflammation. Here, we performed structure-based virtual screening
(SBVS) assisted by the Keras/TensorFlow neural network (NN) to find novel compound scaffolds
acting on three chemokine receptors: CCR2, CCR3, and one CXC receptor, CXCR3. Keras/TensorFlow
NN was used here not as a typically used binary classifier but as an efficient multi-class classifier
that can discard not only inactive compounds but also low- or medium-activity compounds. Several
compounds proposed by SBVS and NN were tested in 100 ns all-atom molecular dynamics simu-
lations to confirm their binding affinity. To improve the basic binding affinity of the compounds,
new chemical modifications were proposed. The modified compounds were compared with known
antagonists of these three chemokine receptors. Known CXCR3 compounds were among the top
predicted compounds; thus, the benefits of using Keras/TensorFlow in drug discovery have been
shown in addition to structure-based approaches. Furthermore, we showed that Keras/TensorFlow
NN can accurately predict the receptor subtype selectivity of compounds, for which SBVS often
fails. We cross-tested chemokine receptor datasets retrieved from ChEMBL and curated datasets
for cannabinoid receptors. The NN model trained on the cannabinoid receptor datasets retrieved
from ChEMBL was the most accurate in the receptor subtype selectivity prediction. Among NN
models trained on the chemokine receptor datasets, the CXCR3 model showed the highest accuracy
in differentiating the receptor subtype for a given compound dataset.

Keywords: Keras; TensorFlow; neural network; G protein-coupled receptors; chemokine receptors;
CCR2; CCR3; CXCR3; structure-based virtual screening; molecular dynamics; immunity disorders;
inflammation; cancer

1. Introduction

Chemokines, or chemotactic cytokines, are a group of highly conserved small proteins
that participate in the immune response via the chemotaxis of cells, either in response to
tissue damage or infection (inflammatory chemokines) or to ensure homeostasis (homeo-
static chemokines) [1,2]. Inflammatory chemokines (including CCL1-13, CCL23, CCL24,
CCL26, CXCL1-3, and CXCL5-11) are expressed under inflammatory conditions and cause
an increase in leukocyte trafficking towards the inflamed tissue. Homeostatic chemokines
(including CCL14, CCL15, CCL16, CCL19, CCL21, CCL25, CCL27, CCL28, CXCL4, CXCL12,
and CXCL13) are expressed constitutively and induce constant homeostatic migrations
to lymph nodes throughout the body and as well as the homing of immune cells, such
as lymphocytes [3]. However, dual-function chemokines, e.g., CCL11, CCL17, CCL22, or
XCL1 (lymphotactin) and CXC3CL1 (fractalkine), also exist.
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Due to the chemokine system being central to physiological processes such as home-
ostasis and immune responses by leukocyte transferring [4,5], the expression of these
proteins is a promising prognostic method for various malignancies [6]. Furthermore, a
dysregulation of the chemokine system is implicated not only in cancer pathogenesis [7–9]
but also in the progression of inflammatory and immune diseases, making chemokine
receptors an emerging target in the development of new drugs.

The pro-inflammatory or homeostatic effects of chemokines are exerted through the ac-
tivation of their receptors—a family of rhodopsin-like G protein-coupled receptors (GPCRs)
that, based on the arrangement of cysteine residues in the N-terminal of the chemokines
they bind, can be divided into four subfamilies: XCR, CCR, CXCR, and CX3CR [10]. To
date, roughly 19 standard chemokine receptors and four atypical chemokine receptors
(ACKRs) have been characterized in humans [11,12]. The latter group is less known
and lacks a full-length structural characterization in the PDB but represents a promising
group of drug targets. For example, ACKR3 modulates the CXCR4 signaling by act-
ing as a decoy receptor and scavenging of CXCL12 [13]. The CXCL12 chemokine that
binds both ACKR3 and CXCR4 is classified as a homeostatic chemokine and is over-
expressed in autoimmune and inflammatory diseases [13]. Among homeostatic recep-
tors, CXCR4, CCR7, and CCR9 are the most well-known [14], but many others are still
being investigated.

CCR2 is a conventional chemokine receptor responding to chemokines with the
cysteine CC motif in their N-termini. CCR2 is expressed largely in T cells and mono-
cytes [15] and is specifically involved in monocyte mobilization [16]. Similarly to other
chemokine receptors, CCR2 can be activated non-selectively by many different chemokines,
including CCL2, CCL7, CCL8, CCL12, CCL13, and CCL16 [16]. A recently discovered
chemokine PSMP—PC3-secreted microprotein (microseminoprotein, prostate-associated
MSMP), which is over-expressed in cancer and promotes hepatic fibrosis, has an affinity
for CCR2 on a level similar to the most potent CCL2 [17]. This has implications for the
importance of CCR2 in drug discovery for a variety of pathologies, e.g., inflammatory
and autoimmune diseases, such as rheumatoid arthritis [15], multiple sclerosis [16], and
autoimmunity-driven type-1 diabetes [18], but also ischemic stroke [16], liver disease [19],
asthma, atherosclerosis, transplant rejection [20], diabetic nephropathy, neuropathic pain,
and the promotion of cancer cell metastasis [18]. CCR2 is the target of multiple clinical
candidates—according to ChEMBL (accessed on 3 July 2023) [21,22], nine are already in the
2nd phase of clinical trials, and one more is in the 3rd phase, but none has been approved
for clinical use so far [23].

CCR3 belongs to the same subfamily of chemokine receptors as CCR2 and is ex-
pressed predominately on the surface of eosinophils [24] and basophils [25]. Although
it is also over-expressed in certain types of cancer, it is connected with a rather poor
prognosis (except in prostate and ovarian cancers) in contrast to a generally better prog-
nosis associated with a high expression of CCR2 (except in glioma, testicular, and renal
cancers) due to the CCR3-mediated migration of cancer cells [26]. CCR3 is known to
bind chemokines CCL5, CCL7, CCL13, CCL15, eotaxin-1 (CCL11), eotaxin-2 (CCL24),
and eotaxin-3 (CCL26) [25]. The activation of CCR3 by eotaxins (eosinophil chemotactic
proteins) induces inflammation and thus is involved in asthma and allergies [24], includ-
ing allergic skin diseases [27]. According to ChEMBL, there are currently no drugs or
clinical candidates targeting this receptor. Only recently the active-state structures of
CCR2 (bound to CCL2) and CCR3 (CCL11 not visible in electron density maps, but an
active-like receptor structure) have been solved using cryo-EM [23] to provide a basis for
the rational design of novel immunomodulators acting on these two receptors.
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CXCR3 is a chemokine receptor that is expressed mainly on immune cells, such as
natural killer cells and activated T lymphocytes. In humans, it can exist in three different
isoforms: CXCR3-A, CXCR3-B, and CXCR3-alt, which are a result of gene splicing. While
CXCR3-A and CXCR3-B sequences display a large overlap, there is a difference in their
N-terminal, which is longer in the case of CXCR3-B due to the insertion of an additional
sequence fragment from exon-2 of the CXCR3 gene. CXCR3-alt, however, consists of five
transmembrane domains rather than seven as a result of the deletion of 337 base pairs
from exon-3 [28]. Different isoforms are known to bind different chemokines—while
CXCR3-A binds CXCL9, CXCL10, and CXCL11, CXCR3-B additionally binds CXCL4 [28];
CXCR3-alt is known to bind CXCL11 [29]. Similarly to CCR3, CXCR3 has been implicated
in the progression of numerous diseases, including but not limited to multiple sclerosis,
rheumatoid arthritis, transplant rejection [20], systemic lupus erythematosus [30], and
allergies [31]. CXCR3 knockout mice are reported to be more resistant to autoimmune
diseases [18]. A clinical candidate for acute lung inflammation targeting CXCR3 has been
suggested by Meyer et al., but it has not yet been tested in clinical trials [32]. Biased
ligands of CXCR3 (biaryl-type VUF10661 and VUF11418) have also been discovered in
addition to the biased signaling observed for endogenous agonists of CXCR3 (CXCL11
bias towards β-arrestin). Recently, these three agonists of CXCR3 have been shown to
activate the formation of the Gαi:β-arrestin complex in non-canonical GPCR signaling [33].
This emphasizes the importance of drug design for CXCR3 in numerous diseases, such as
cancer, inflammatory diseases, and autoimmune disorders.

It is worth mentioning that except for the ACKRs, the structure of chemokine recep-
tors is vastly conserved around the DRYLAIV motif in TM3 and the ICL2 loop [34,35].
However, only 3 drugs out of 45 in trials have so far been clinically approved [36]. Moga-
mulizumab was first approved in 2012 as a CCR4 antibody antagonist for cancer treatment.
Maraviroc was approved in 2007 as an antiviral by acting as a CCR5 antagonist, while
in 2008, Plerixafor was approved as a CXCR4 partial agonist for cancer therapies. To
our knowledge, no drugs have been clinically approved so far for their action on CCR2,
CCR3, or CXCR3.

As mentioned above, CCR2 is involved in a wide range of diseases; however, most of
the clinical trials aiming to find new CCR2-binding drugs have failed in Phase II [36,37].
CCR3 seems to be a target for asthma and allergy, but ongoing studies present a po-
tential role of CCR3 antagonism in two disorders associated with the aging population,
such as macular degeneration (MAD) and cognitive dysfunction in mice models [37].
CXCR3, mostly expressed on the surface of activated T cells, B cells, and natural killer
cells, plays a crucial role in infection, autoimmune diseases, and tumor immunity by
binding to specific receptors on target cell membranes to induce targeted cell migration
and resulting immune responses. CXCR3 and its main ligands (i.e., CXCL9, CXCL10,
and CXCL11) have been linked to the development of many tumors (Table 1). Interest-
ingly, the CXCR3 ligands CXCL9, CXCL10, and CXCL11 demonstrate a dichotomous
activity in cancer ranging from inhibition to the promotion of tumor growth [38]. This
can be explained by the varied expression patterns of CXCR3 in many tumor tissues.
Therefore, it is necessary to better investigate the mode of action(s) (MoAs) and related
signaling pathways for CXCR3 given its potential role as a new target for clinical tumor
immunotherapy. Known antagonists and agonists of CCR2, CCR3, and CXCR3 receptors
are given in Table 1.
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Table 1. Known active ligands of CCR2, CCR3, and CXCR3 receptors.

Chemokine
Receptor Active Ligands Mechanism of Action Indications Status References

Ligand Drugs

CCR2

CCX-140 Antagonist Type 2 diabetes and
diabetic nephropathy

In trial,
II clinical phase [36,39]

Plozalizumab
(MLN-1202) Antagonist Anti-inflammatory In trial,

II clinical phase [36]

Plozalizumab,
MLN-1202 Antagonist Antineoplastic In trial,

II clinical phase [36]

CNTX-6970 Antagonist Analgesic In trial,
II clinical phase [36]

Incb3284 Antagonist Anti-inflammatory In trial,
II clinical phase [36]

azd2423 Antagonist Chronic obstructive
pulmonary disorder

In trial,
II clinical phase [36]

Ccx872 Antagonist In trial,
II clinical phase [36]

Cenicriviroc Antagonist Antiviral, HIV In trial,
II clinical phase [36]

Ccl2-lpm Antagonist Anti-inflammatory In trial,
II clinical phase [36]

CCR3 Tpi-asm8 Antagonist Anti-asthmatic In trial [36]

CXCR3

CXCL9/10

Promotes lymph node
metastasis, lymph node and
lung metastasis, malignant

ascites production, and
tumor growth
and metastasis

Colorectal cancer, breast
cancer, ovarian cancer,

lung cancer, and
stomach cancer

[40]

CXCL9/10/11

Promotes proliferation and
metastasis of cancer cells

and distant metastasis and
inhibits tumor growth

and metastasis

Esophageal cancer,
kidney cancer, and

osteosarcoma
[40]

CXCL10
Promotes tumor growth and

metastasis and inhibits
tumor growth

Prostate cancer and
glioma and myeloma [40]

Drug discovery is a long and costly process, but it can be enhanced by computational
methods, including both structure- and ligand-based virtual screening (SBVS and LBVS,
respectively). Of these two, SBVS is more time-consuming, requiring the use of a target
structure or a homology model to compute the approximate free energy of the ligand bind-
ing [41]. The aim of SBVS is to screen a library of compounds using a receptor homology
model or its cryo-EM/X-ray structure using scoring functions based on simplified force
fields. The computed free energy of binding, approximated by a scoring function (SF), en-
ables the selection of compounds that will likely evoke the highest response in vitro. Many
different programs are available to perform such library screening, including Glide [42],
AutoDock, AutoDock Vina [43,44], DOCK [45], MOE [46], and GOLD [47]. Comparative
studies performed using AutoDock and AutoDock Vina indicate that the latter is better
at predicting binding poses, though it cannot be said that one program is inherently su-
perior to the other—they were found to be better fitted for different drug targets. The
computational time is also crucial in deciding which docking program to choose for virtual
screening purposes. Recently, AutoDock Vina has been modified to fit the GPU architecture,
which significantly accelerates the computations and adds more advantages in comparison
to other molecular docking software [48].

In recent years, scoring functions (SFs) used in SBVS have also begun to be based on
machine learning. In contrast to classical SFs, ML-based SFs do not make use of a fixed
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functional form (usually linear) that is based on the relationship between the characteristics
of the protein–ligand complex and the binding affinity. Instead, in their case, the functional
form is based purely on the information obtained by ML from the training data [49]. This
way, it is possible to reflect non-linear relationships between the protein–ligand complex
structure and the ligand-binding affinity, e.g., by using neural networks (NNs), random
forest (RF), or support vector machines (SVMs) [50]. Deep learning methods—especially,
convolutional neural networks (CNNs)—have been applied in SBVS in order to obtain
more reliable results from docking calculations [50]. Such approaches include DeepVS [51],
DenseFS [52], and Gonczarek et al.’s fingerprinting method involving learnable atomic
convolution [53]. Furthermore, CNNs have also been used in the prediction of binding
poses and affinities, and more robust models can be built by combining them with transfer
and multitask learning [50]. Noteworthily, deep learning methods are not always better
than those based on classical machine learning [54]. Classical ML methods are typically
used for rescoring or ranking the output from popular molecular docking programs rather
than being directly integrated into them, and their results are not easily interpretable [50].
The interpretability of the results of a deep learning method can be important, especially
when it comes to medical applications [55], e.g., for finding gene–drug associations [56].
One of the common methods to explain ML results is SHapley Additive exPlanations
(SHAP) [57]. Shapley values allow the importance of specific features to be assessed by
computing three properties: consistency, missingness, and local accuracy. This method
demonstrates a high consistency with human intuition [57]. Other interpretability methods
include DeepLIFT [58], especially used for deep NNs, or Grad-CAM++ [59], which is used
to visually explain the predictions of CNN models [57]. There are also frameworks joining
various methods to uncover global feature importance in contrast to the local interpretation
of each feature, e.g., SAGE [60,61].

In principle, LBVS is much faster, based solely on the structure and physicochemical
properties of ligands known to interact with the molecular target in order to predict the
affinities of yet untested compounds [62]. This makes it possible to use when the structure
of a receptor is unavailable, which is often the case with GPCRs. The applicability of
machine learning methods in ligand-based virtual screening has been widely discussed
so far, e.g., in [63]. Constantly increasing the number of available ligand datasets for
various drug targets and improving the quality and quantity of such datasets enhance the
accuracy of computational drug discovery despite minor problems with the integration
and optimization of used ML methods [64]. In supervised ML, feature selection is used to
recognize relevant molecular (in case of drug discovery) or genomic (in case of genomic
analysis) features that inform about drug responses or drug–gene associations. These
techniques, however, require the labeling of the used training dataset, e.g., prior knowledge
about drug–target associations [65]. Thus, their use may inhibit the discovery of potential
new actives, as compounds not possessing the preselected features could be discarded.

Data-driven concepts, e.g., the discovery of new drugs or drug targets, require effi-
cient and accurate algorithms, in advance, to process massive data from large biomedical
repositories and to reflect subtle differences in compounds that have a huge impact on
the observed biological response, respectively. Although conventional ML algorithms
belonging to a supervised learners’ group, such as gradient boosting or support vector
machines, seem to be the most accurate in tasks including predictions of compound activity
or binding affinity [54,63,66–68], NNs constantly draw attention [64]. Learning of NNs can
be carried out as supervised learning (first NNs, also including backpropagation NNs) or
unsupervised learning (e.g., deep belief networks) where layers can detect relevant features.
Other types of learning, e.g., reinforcement learning, can also be used to train NNs [69]. In
principle, if no labeled input data are used to train NN, it has many more possibilities of
finding new active-like scaffolds compared to supervised-learning methods. This is the
basis for the popularity of NNs and deep learning NNs in various tasks, ranging from
image recognition, natural language processing, and engineering applications [70], to the
retrieval of relevant information from databases, e.g., in protein structure prediction [71]
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or in drug design [72]. The two, most used systems for machine learning and especially
for deep learning tasks are TensorFlow, developed by Google [73], and PyTorch [74], co-
developed by A. Paszke. Keras API [75] makes it possible to define and train ML models
implemented on TensorFlow or PyTorch platforms to easily release open-source projects
and construct pipelines joining various libraries, e.g., RDKit [76], for compound finger-
prints [77]. TensorFlow with or without high-level Keras API is widely used due to the
easy implementation of algorithms that are otherwise difficult to optimize flawlessly, such
as convolutional neural networks [78]. One of the key concepts recently introduced in
TensorFlow2.0 and PyTorch is a “define-by-run” paradigm [79,80], in which connections in
NNs are defined during the training, not before. This backpropagation allows for a more
efficient automatic differentiation scheme compared to “define-and-run” in TensorFlow1.0.
Recently, TensorFlow has been used for rapid screening for GPCR ligands [81].

Keras/TensorFlow NNs used in this study were based on a sequential NN model,
meaning that it is built layer by layer. In such a model, each layer has one input tensor and
one output tensor, and the resulting NN topology is linear [82]. As an input, it received a
set of compounds represented as SMILES [83] and their activity was measured by pIC50
standardized to pChEMBL values. Here, extended connectivity fingerprints (ECFPs) based
on Morgan fingerprints were used to describe compounds, together with pChEMBL values
and an additional parameter referring to the compound activity class. As a result of
using such a set of molecular descriptors, the NN model learned on both categorical and
numerical data. Developed Keras/TensorFlow NN predicted the most probable activity
class for a given compound in a multi-class classification task instead of binary classification
(active vs. inactive) for which NNs are commonly applied.

Keras/TensorFlow or any other ML system used in LBVS, if additionally combined
with SBVS, allows for a more precise and reliable assessment of the ligand-binding affinity
and its detailed binding mode [54]. In the final step, molecular dynamics (MD) can be
used to validate the molecular docking-based binding affinity and binding modes of
discovered compounds and thus reduce the number of false positives before the bioassay
studies [82]. This combined computational approach significantly reduces both the time
and cost required to find novel chemotypes.

Here, we performed MD simulations for previously obtained novel CCR2 and CCR3
antagonists and used a combination of AutoDock Vina for SBVS, Keras/Tensorflow se-
quential model of neural network (NN) for LBVS, and MD simulations in order in or-
der to find and validate novel small-molecule antagonists for CCR2, CCR3, and CXCR3
chemokine receptors. While previously [81] the impact of the ligand dataset composi-
tion on the ML results was discussed, here, we focused on the ability of ML to reflect
slight structural differences between ligands matching the certain receptor subtype which
account for their receptor subtype selectivity. In [83], we assessed gradient-boosting
decision trees (LightGBM) in the recognition of the receptor subtype-selective and non-
selective ligands of cannabinoid receptors. Here, we assess NNs (Keras/TensorFlow) in
such a task using not only the curated compound datasets for CB1/CB2 cannabinoid
receptors (http://db-gpcr.chem.uw.edu.pl (accessed on 20 August 2023)) but also for
CCR2/CCR3/CXCR3 chemokine receptors.

2. Results
2.1. CXCR3 Model Validation

The positions of transmembrane helices 5 and 6 (TM5 and TM6) were the first to be
analyzed. It is well-known that during the activation of the GPCR receptor, the extracellular
region of its TM5 helix moves inwards, while the intracellular region of TM6 moves
outwards [84]. These differences in the inactive and active-state conformations are shown
in Figure 1. Indeed, the location and shape of TM5 and TM6 in our CXCR3 model are
similar to those observed for inactive-state structures of chemokine receptors.

Similarly, the conformations of selected residues were analyzed (see Figure 1 and
Supplementary S1 Figure S1 [85]): the W6.48 toggle switch with F6.44 from the PIF motif,

http://db-gpcr.chem.uw.edu.pl
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Y7.53 toggle switch, and D3.49R3.50Y3.51 ionic lock [84,86,87]. W6.48 with F6.44 was rotated
counter clockwise (from the extracellular side) as compared to the active-state structure,
the Y7.53 toggle switch was rotated counter clockwise (from the intracellular side), and
R3.50 in the ionic lock was closed to D3.49 instead of interacting with Y4.58 as in active-
state structures of chemokine receptors. On this basis, it was concluded that the model
was suitable for performing structure-based virtual screening, i.e., the molecular switches
present in the model were in the conformations expected to be present in an inactive-state
chemokine receptor.
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Figure 1. The validation of the inactive-state CXCR3 model through an analysis of micro- and
macroswitches. The inactive-state model of CXCR3 (blue-to-red) was superposed on active-state
chemokine receptor structures (gray): 7O7F (CCR5) [88] for TM6 and the tryptophan toggle switch
W6.48 with F6.44 from the PIF motif [89], and 6WWZ (CCR6) for comparison of the tyrosine toggle
switch Y7.53 and the ionic lock including R3.50 from the DRY motif. The residues have been labeled
using the Ballesteros–Weinstein numbering system [90].

2.2. MD-Based Validation of Ligand Binding Modes

CCR2 and CCR3 actives proposed in a recent study by Dragan et al. were docked to
the same receptor structures as before but with a different algorithm (AutoDock Vina) to
confirm their binding modes. Based on these results, 6 out of 10 CCR2 actives and 7 out
of 12 CCR3 actives were discarded as Glide and AutoDock Vina provided significantly
different binding modes for them. For CXCR3, only AutoDock Vina was used for molecular
docking prior to MD simulations. Notably, molecular docking algorithms, extremely useful
for virtual screening, have limitations regarding their reproducibility of ligand binding
modes. This is due to simplified force fields, in which some molecular interactions are
approximated to decrease the computational time and to efficiently screen large libraries of
compounds [63]. For this reason, all-atom MD simulations were used to validate the binding
modes of proposed active compounds (see Supplementary S1 Tables S1–S3), following a
previous study [91,92]. Of the four ligands tested for CCR2, only three remained stable
throughout the course of the simulation (Figure 2). Both Z144527132 and Z199951150
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displayed high stability from the very beginning of the production run—both the RMSD
values and their standard deviations were low. On the other hand, Z2607653088 was stable
initially, but its hydroxyl group began moving upwards after 60 ns, as if it were leaving
the receptor. At the 100 ns cutoff, the only interaction noted by Maestro for this ligand
was pi-pi stacking with Y3.32; at this point in the simulation, the other tested molecules all
displayed more binding interactions, further undermining the Z2607653088 binding mode
obtained from molecular docking. The final compound, Z45637008, stabilized after 10 ns
of the simulation, but after a noticeable relocation of its trifluoromethyl end. This change
made it possible for the sulfonyl group and a nearby nitrogen atom to form hydrogen
bonds with C5.26. Overall, pi-pi stacking interactions with W2.60 and Y3.32 appeared in
multiple cases, suggesting these residues may play a significant role in the binding of
CCR2 ligands.
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Figure 2. Results of the MD simulations for CCR2 for four different compounds proposed by virtual
screening. (Top) The interactions between the receptor and the ligand obtained after 100 ns of the
simulation. The receptor was shown in the red-to-blue color scheme; yellow dashed lines—hydrogen
bonds; blue dashed lines—pi-pi stacking. The residues have been labeled using Ballesteros–Weinstein
numbering system [90]. (Bottom) The RMSD plots obtained for each of the ligands over the 100 ns
simulation, as well as the average RMSD with its fluctuation range.

In the same way, five molecules were tested for the inactive-state CCR3 Robetta model
(Figure 3). Z1912507172 was highly unstable over the first ca. 40 ns of the simulation. The
ligand was observed to move much deeper into the binding site than according to the
molecular docking results. After 40 ns, its location stabilized and remained that way until
the end of the simulation. A comparison of its binding mode, both obtained in molecular
docking and refined in the MD simulations, is presented in Supplementary S1 Table S2 [93].
Of the tested CCR3 compounds, Z2441027668 was the most stable, barely changing its
position with respect to the results from molecular docking. Slightly larger, though still
low, RMSD fluctuations were observed for the remaining three compounds: Z2764968046,
Z1274732994, and Z2606182917. In general, the RMSD fluctuations obtained for the CCR3
complexes were higher than those obtained for CCR2 complexes, likely because a receptor
model was used here rather than a high-quality structure. Similarly, as in the case of
CCR2, W2.60 and Y3.32 were shown to frequently participate in ligand binding; in addition,
interactions with E4.60 were noted in two separate cases.
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Figure 3. Results of the MD simulations for CCR3 for five proposed compounds. (Top) The inter-
actions between the receptor and the ligand obtained after 100 ns of the simulation. The receptor
was shown in the red-to-blue color scheme; yellow dashed lines—hydrogen bonds; blue dashed
lines—pi-pi stacking; green dashed lines—pi-cation; purple dashed lines—salt bridges. The residues
have been labeled using Ballesteros–Weinstein numbering system [90]. (Bottom) The RMSD plots
obtained for each of the ligands over the 100 ns simulation, as well as the average RMSD with its
fluctuation range.

A further five compounds were tested for the CXCR3 model—they all demonstrated a
high stability of their binding mode. The most interactions with the receptor were observed
for Z2233592864—mainly, pi-pi stacking. This compound, along with Z107207944 and
Z1903257002, demonstrated the most stable binding mode. The two final compounds,
Z1167188972 and Z1510954688, fluctuated to a much greater extent, and no specific interac-
tions with the receptor were observed for the latter one, while for the former interactions
with residues N3.33 and Y3.37 were rarely formed during the simulations.

Interestingly, the best compounds selected by the Keras/TensorFlow NN for CXCR3
(in the range of 9 and above of pChEMBL predicted values) did not include any of the
compounds proposed for CCR2 or CCR3 (Figures 2 and 3). It means that like previously [54],
predictions made by the NN model are selective for the receptor subtype because they are
based on known active ligands only and not on the receptor structures which could be
too similar, e.g., for SBVS. Thus, diverse CCR2, CCR3, or CXCR3 ligand training sets will
provide diverse novel chemotypes for each of these receptors, while the similar structures
of these receptors could only provide similar compounds in SBVS. This is further discussed
in Section 2.5.

2.3. Chemical Modifications of Proposed Ligands

Chemical modifications of the structures of the proposed compounds were suggested
in order to increase their affinity towards the receptors. The modified structures as well as
their contacts with the receptor were presented in Supplementary S1 Tables S4–S6. In the
case of the proposed CCR2 ligand Z144527132, the addition of the alkyl substituent with
the hydroxyl group to the hydrogenated quinazoline ring was proposed in order to enable
the formation of a hydrogen bond with E7.39, a residue that participated in the binding of
another ligand for this receptor. A second alkyl group was added in order to fill out the
hydrophobic pocket. For Z199951150, a shortening of the molecule (specifically, of the end
with the trifluoride group) could be suggested, as it did not appear to greatly contribute
to the binding. More significant modifications should be introduced to the structure of
Z2607653088 in order to prevent it from immediately leaving the receptor. A phenyl ring in
the place of the ligand part with carbonyl and hydroxyl groups might support the formation
of pi-pi stacking interactions with the nearby F5.30 or Y5.29. Furthermore, an introduction
of a cyclopentene ring between one of the carbons and an oxygen could facilitate the
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formation of a hydrogen bond with H5.38. No modifications were suggested for Z45637008.
However, only one modified compound based on Z2607653088 (together with Z199951150)
was in the 8–9 predicted activity range by Keras/TensorFlow NN, while the other two (see
Supplementary S1 Table S4) were predicted as inactive (below 5).

For CCR3, the introduction of a hydroxyl group into the structure of Z1274732994
was suggested to facilitate the formation of a hydrogen bond with E7.39. In the case of
Z1912507172, the addition of two separate alkyl groups were suggested in order to better
fill out the hydrophobic region of the binding pocket of the receptor, as well as a hydroxyl
group that could interact with Y3.32 to form a hydrogen bond. For Z2441027668, it was
suggested that the methylpiperidine ring could be transformed into methylpyridine in
order to allow for potential pi-pi stacking interactions with Y1.14. For Z2606182917, the
addition of an alkyl chain is suggested in order to better fill the binding cavity, as well
as an oxygen that could form a hydrogen bond with H5.38. In the case of Z2764968046, a
cyclopentane ring was added to the structure in order to better fill out the binding pocket.
All modified compounds were in the highest predicted activity range (above 9 or in the
8–9 range) except for Z2606182917 which fell into the medium predicted activity
range (7–8).

For CXCR3, an additional double bond to introduce aromaticity was added to the
indane ring of Z107207944. Thus, the formation of pi-pi stacking interactions with the
nearby F3.32, W6.48, or Y6.51 could be facilitated. For Z1167188972, a benzene ring could
be a replacement for the cyclohexane ring to facilitate the pi-pi stacking interactions with
F4.63. Furthermore, an alkene chain was added to fill out the binding pocket. In the case
of Z1510954688, the tetrahydropyran ring can be replaced with a benzene ring, and one
of the methyl groups was removed. This would allow for pi-pi stacking interactions
with Y3.37. In addition, a transformation of one of the other methyl groups present in the
molecule into a hydroxyethyl group would allow for the formation of a hydrogen bond
with D4.60. For Z1903257002, the cyclohexane ring could be replaced with a benzene ring
to facilitate interactions with Y6.51. A subsequent relocation of one of the methyl groups
would help fill out the binding pocket. No modifications were suggested for Z2233592864.
Interestingly, this compound (Z2233592864) together with a modified Z107207944 was the
best among all modified compounds according to Keras/TensorFlow NN (the 8–9 predicted
activity range).

2.4. Comparison of Proposed Compounds with Known CXCR3 Ligands

Recently, Meyer et al. [32] published a novel CXCR3 antagonist. A comparison of the
described structures and Enamine’s Hit Locator Library (HLL) provided three hits. Two
of the molecules, Z2755039307 and Z2755039304, proved most similar to ACT-7779991 (the
clinical candidate) with Tanimoto similarities equal to 0.255 and 0.253, respectively, as well as
ACT-672125, with similarities equal to 0.141 for both. A third compound, Z1695828968, was
most similar to ACT-660602, with a similarity of 0.207. Here, the previous two compounds
had similarities equal to 0.196 and 0.195, respectively. AutoDock Vina-approximated binding
affinities for these similar compounds in Enamine HLL were rather low to medium, ranging
from 6.5 to 7.5. For two compounds, Z2755039307 and Z2755039304, the NN results were also
unsatisfactory (see Table 2). However, the third compound Z1695828968 was assessed by the
Keras/TensorFlow NN as highly active (the activity range above 9—the highest one), and it
was included in less than 20% of the best compounds for CXCR3 in Enamine HLL. It shows
that the Keras/TensorFlow NN does not reproduce molecular docking results but indeed may
provide substantial new information on the compound activity not accessible to physics-based
force fields. For comparison, the NN results for CXCR3 antagonists proposed and tested
in MD simulations in this study fell into 18.6%, 3.7%, 13.5%, 19.5%, and 14.0% of top NN
predictions (see Figure 4) and 72.5%, 14,4%, 52.6%, 76.1%, and 54.9% of top predictions of the
9 and above activity range, respectively.

In addition to the above-mentioned CXCR3 antagonists, we also conducted a search
for compounds similar to the CXCR3-biased ligand VUF10661. Here, the results of NN
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were even better (see Table 2). All three similar compounds were in the activity range of
predicted pChEMBL values of 8 and above, meaning they were predicted as highly active
for CXCR3. All three of these compounds were also among the best compounds found in
Enamine HLL. Despite these results, in our opinion, Keras/TensorFlow NN is a method to
be used in combination with classical virtual screening methods such as SBVS rather than
be used solely in VS.

All four known CXCR3 ligands were docked with AutoDock Vina to five receptor
conformations obtained at the end of MD simulations of five HLL compounds (see Figure 4).
The best binding affinities predicted by AutoDock Vina are given in Table 2, while the
binding modes are given in Supplementary S1 Table S7. There was no common receptor
conformation that proved the best fit for all four compounds, but the Z1903257002-fitted
conformation was discarded by all compounds possibly because of the steric hindrance
caused by Y3.37 forming interactions with Z1903257002 (see Figure 4).

Table 2. A comparison of three known CXCR3 active compounds proposed by Meyer et al. and a
biased CXCR3 ligand with the most similar compounds present in Enamine’s Hit Locator Library.
The common substructure of all six compounds is presented in the last row.

Known CXCR3 Antagonists
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All four CXCR3 ligands were additionally assessed by NN trained on the CXCR3

dataset and the CCR2 and CCR3 datasets to check if NN is sensitive to the receptor subtype
selectivity. The CXCR3 model assessed these ligands rather highly, similarly to the CCR3
model, while the CCR2 model assessed them as inactive compounds. A similar observation
was made for the modified compounds. They were among the top-scored compounds
assessed by the CXCR3 and CCR3 models, but not by the CCR2 model. This means that the
CCR3 and CXCR3 NN models were less selective with respect to each other in their activity
predictions for these compounds in comparison to the CCR2 model. This again suggests
the dependency of NN on the training dataset composition [54], yet in this case with the
desired outcome.

The NN and SBVS predictions were not fully consistent for Meyer’s compounds,
meaning that the best compound proposed by NN was not the best compound proposed
by SBVS. However, both NN and SBVS assessed VUF10661 as the best compound out of
these four actives. This could be due to the fact that VUF10661 consists of much more
functional groups than Meyer’s compounds. More functional groups decrease the energy
of interactions computed in molecular docking as we observed previously for statins [94].
On the other hand, the presence of more functional groups ensures that the compound
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resembles at least any subset of active compounds used for training of NN; thus, NN will
select it as an active compound.
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Figure 4. Results of the MD simulations for CXCR3 for five proposed compounds. (Top) The in-
teractions between the receptor and the ligand obtained for 100 ns of the simulation. The receptor
was shown in the red-to-blue color scheme; yellow dashed lines—hydrogen bonds; blue dashed
lines—pi-pi stacking. The residues have been labeled using Ballesteros–Weinstein numbering sys-
tem [90]. (Bottom) The RMSD computed for each of the ligands over the 100 ns simulation, as well as
the average RMSD with its fluctuation range.

2.5. Performance of Keras/TensorFlow NN in the Receptor Subtype Selectivity Prediction Tasks

To compare with the previous ML study on cannabinoid receptors (LightGBM, CB1/
CB2 selectivity), we also used CB1 and CB2 datasets for the NN training. This time,
we included as many ChEMBL-retrieved compounds as possible (>5000) in contrast to
previously limited datasets for these two receptors [83] available at https://db-gpcr.chem.
uw.edu.pl (accessed on 20 August 2023). The average Tanimoto coefficients between the
current datasets and the previous datasets were equal to 0.138 (mode: 0.17) and 0.141 (mode:
0.17) for CB1 and CB2, respectively. Both datasets included small-molecule compounds only.
However, the previous datasets included data from assays that provided pKi values, while
the current datasets included only data from assays that provided pIC50 (standardized to
pChEMBL values). This means that the current datasets include only CB1 or CB2 small-
molecule inhibitors and not all CB1 and CB2 actives, as previously observed. Furthermore,
the previous datasets did not include any inactive or weakly active compounds (pChEMBL
< 4), the addition of which to training sets was recently discussed in [54]. In the current
datasets, nearly 40% and 25% (CB1 and CB2, respectively) of compounds were inactive
compounds (pChEMBL equal to 0). Among active compounds in the current datasets, 1%
and 2% were weakly active compounds (pChEMBL less than 5, CB1 and CB2, respectively).
Histograms showing the distribution of the activity classes in the current and previous
datasets were provided in Supplementary S1 Table S8. Despite these differences, the results
of the receptor subtype selectivity prediction tasks were similar for the current and previous
datasets, with only a slight improvement in comparison to the previous ones. The accuracy
of the prediction for validation datasets was ca. 0.5 for the same receptor subtype, 0.2 for
the other receptor subtype, less than 0.02 for CB2 selective compounds with the inconsistent
receptor subtype, and nearly 1 for the consistent receptor subtype (see Tables 3 and 4). In
the latter case of the CB2 selective compounds with the matching receptor subtype, the
CB2 model trained on the previous dataset performed much better than that trained on
the current dataset (accuracy: 0.876 vs. 0.521, see Table 4). However, this could be due to
the higher average similarity between the previous training sets and the CB2 selective set
(0.153 and 0.141 for the previous training set and the current one, respectively, see Table 4).

https://db-gpcr.chem.uw.edu.pl
https://db-gpcr.chem.uw.edu.pl
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Table 3. Performance of Keras/TensorFlow NN in the chemokine receptor subtype selectivity tasks.

Training
Set

Number of
Datapoints

Validation
Set

Number of
Datapoints Loss Accuracy

(Change)

Average Tanimoto
Coefficient
Training vs.

Validation Set

Mode Tanimoto
Coefficient
Training vs.

Validation Set

CCR2 1995 CCR2 399 5.406 0.190 0.139 0.16

CCR3 121 9.621 0.231
(+0.041) 0.141 0.16

CXCR3 199 17.878 0.126
(−0.064) 0.125 0.13

CCR3 603 CCR3 121 5.332 0.223 0.243 0.15

CCR2 399 14.013 0.115
(−0.108) 0.142 0.10

CXCR3 199 14.853 0.191
(−0.032) 0.143 0.13

CXCR3 994 CXCR3 199 4.727 0.322 0.198 0.15

CCR2 399 13.681 0.125
(−0.197) 0.124 0.13

CCR3 121 8.029 0.182
(−0.140) 0.142 0.13

Table 4. Performance of Keras/TensorFlow NN in the cannabinoid receptor subtype selectivity tasks.

Training Set Number of
Datapoints

Validation
Set

Number of
Datapoints Loss Accuracy

(Change)

Average Tanimoto
Coefficient

Training vs. Validation Set

2023 ChEMBL datasets

CB1 4509 CB1 902 2.455 0.503 0.129

CB2 818 7.174 0.246 (−0.257) 0.133

CB2 selective 35 6.499 0.0146 0.139

CB2 4087 CB2 818 2.987 0.418 0.137

CB1 902 5.354 0.291 (−0.127) 0.131

CB2 selective 35 2.450 0.521 0.141

2020 ChEMBL datasets [83] from https://db-gpcr.chem.uw.edu.pl (accessed on 20 August 2023)

CB1 1566 CB1 314 1.943 0.464 0.152

CB2 418 4.417 0.203 (−0.261) 0.148

CB2 selective 35 9.187 0.0135 0.150

CB2 2093 CB2 418 1.919 0.509 0.152

CB1 314 4.263 0.210 (−0.299) 0.147

CB2 selective 35 0.487 0.876 0.153

These results confirmed that although the composition of the training dataset has a
noticeable impact on the classification results [63], neural networks are still able to classify
correctly despite an increase in noise in the training sets. Here, noise in datasets was
introduced by adding inactive compounds to the current dataset. This advantage of NNs
over supervised methods like gradient-boosting decision trees (LightGBM) is mostly due
to the fact that NNs can also act as unsupervised learners using unlabeled datasets for
training. What is more, adding inactive or weakly active compounds to training sets only
slightly worsened the accuracy of the activity prediction, which was also expected based

https://db-gpcr.chem.uw.edu.pl
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on [54]. Adding inactive compounds to training sets could improve the binary classification
(active vs. inactive compounds) but not the activity value prediction, which is a multiclass
classification task [54].

If we compare the results presented in Tables 3 and 4, the NN model trained on the
cannabinoid receptor datasets seems to be more accurate in the selectivity prediction than
models trained on the chemokine receptor datasets. In the case of the CB1 model, the
prediction accuracy dropped by more than 0.2 when the validation set with the inconsistent
receptor subtype was tested. In the case of the CB2 model, the accuracy changed by 0.3.
In the case of the chemokine receptor models, the most significant change in the accuracy
was for the CXCR3 model (nearly 0.2 for the CCR2 validation set), but the remaining
models showed only ca. 0.1 or less change in the accuracy. The worst model regarding the
selectivity prediction was the CCR2 model, which is consistent with the fact that the CCR2
ligands from the training set were almost as similar to ligands from the CCR2 validation
as from the CCR3 or CXCR3 validation sets. The CXCR3 model performed the best in
the receptor subtype selectivity prediction task for the same reason. The CXCR3 ligands
retrieved from ChEMBL were the most dissimilar to both CCR2 and CCR3 ligands. In all
cases, the prediction accuracy of NNs correlated with values of the Tanimoto coefficient
between the training and validation sets.

3. Discussion and Conclusions

Due to the role they play in numerous diseases, chemokine receptors represent promis-
ing drug targets—however, drug design is hindered by the unavailability of many of their
structures. In such cases, homology modeling makes it possible to create models of recep-
tors based on their similarity to other receptors with solved structures. Though this can
be completed using webservers, standalone programs, such as Modeller, give researchers
the opportunity to take a more hands-on approach and adjust the modeling process to suit
their own needs. The created models can then be used in SBVS in order to search for novel
active compounds for the receptors in question, and the results validated through the use
of properly trained machine learning algorithms. Regarding virtual screening, the com-
parison to known CXCR3 ligands showed that our recently developed machine learning
approach to ligand-based virtual screening provides substantially new information on the
compound activity, different to predictions made by molecular docking in SBVS. Neverthe-
less, Keras/TensorFlow NN or LightGBM cannot be used solely but rather as a filtering
method to decrease the number of compounds tested in SBVS for their precise binding
modes and affinities. Machine learning also allows the screening of much larger compound
libraries than those accessible to SBVS. Such novel algorithms offer better accuracy and
better computational time efficiency than classical QSAR methods. The pre-filtering of
large compound libraries before the SBVS step requires accurate but fast computational
methods, which can be easily fulfilled by ML. In our opinion, the only limitation of ML
remains in its dependency on the composition of the used training datasets [54]. This seems
to be more crucial for LightGBM, while NNs encounter problems arising from the limited
size of the assay-derived datasets.

Molecular dynamics, though more computationally expensive than LBVS or SBVS, is
much more reliable than these methods in the validation of the ligand–receptor interactions,
as it provides a dynamic image of the protein system in a time-dependent manner. Here,
MD simulations allowed us to decide which of the previously selected compounds could
serve as novel scaffolds for each of the studied receptors and which would require modifi-
cations to improve their binding affinity. As a result, we obtained four novel chemotypes
for CCR2, five for CCR3, and five for CXCR3. These molecules can serve as a basis for
further drug design involving ligand-binding assays and bioassays to confirm their ability
to enhance the biological response of the receptor.

The combination of various computational methods allows us to overcome the limita-
tions of each method. For example, SBVS does not use any prior knowledge about known
active ligands of a given target and encounters problems arising from a simplification of
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used force fields. Nanosecond MD simulations do not allow for the scanning of all possible
receptor binding sites and all possible ligand conformations. Machine learning used in
LBVS does not use any explicit information about the receptor and its interactions with
ligands. On the other hand, SBVS allows performing an exhaustive search through all
possible ligand conformations and ligand–receptor interactions to find the global free en-
ergy minimum. Nanosecond MD simulations allow unstable ligand–receptor interactions
to be discarded and ligand-binding modes to be corrected using detailed all-atom force
fields. ML can perform an extremely fast search for active ligands among huge datasets of
compounds and thus significantly limits the number of ligands to be tested in SBVS. GPU-
accelerated neural networks designed in Keras/TensorFlow or using GPUs for LighGBM
offer the next level of processing cheminformatic data.

Among ML methods, NNs or deep learning NNs built on the Keras/TensorFlow
platform have been used so far mainly in binary classification tasks in drug design [95].
Here, we showed that NNs can also be used in drug design as efficient multi-class classifiers
when trained on datasets with discrete compound activity values [54]. To our knowledge,
this is the first such application of Keras/TensorFlow NNs. Keras/TensorFlow NN multi-
class classifier allows discarding not only inactive compounds from active ones but also
low-active compounds from highly active compounds. This is especially important for
drug design referring to large datasets, in which the number of low-active compounds is so
high and they are so diverse that they would introduce nothing but noise when used as
training sets for binary classification.

Another important application of NN models is the prediction of the receptor subtype
selectivity of a compound. As already discussed, Keras/TensorFlow NNs can accurately
distinguish ligand datasets matching different receptor subtypes. The only requirement
is a sufficient dissimilarity between such ligand datasets, which was met in the case of
CB1/CB2 datasets. Structural differences between ligands of different chemokine receptor
subtypes were hardly sufficient, except for the CXCR3 dataset. Thus, based on the datasets
currently available in ChEMBL, we could only develop the CB1/CB2 selective NN model
and CCR/CXCR selective model of an accuracy sufficient for drug design purposes.

4. Materials and Methods
4.1. Ligand-Based Virtual Screening

In the LBVS step, we used a method described in detail elsewhere [54]. The method
uses the Keras/TensorFlow library version 2.11.0 for constructing, training, and evaluating
the currently used sequential model of neural network. NN was trained on the ChEMBL
datasets of CCR2, CCR3, and CXCR3 compounds following the procedure described in [54].
Extended connectivity fingerprints with bond diameter 4 (ECFP4) [77] based on Morgan
fingerprints were used to describe compound features with RDKit version 2022.9.2 [76]. To
emphasize, Keras/TensorFlow NN was used here not as a typical binary NN classifier but
as a multi-class classifier that is able to distinguish not only active and inactive compounds
but also low- and medium-active from highly active compounds. This was carried out
by labeling the datasets with seven activity categories based on logarithmic pChEMBL
values: 1 (below 4), 2 (4–5), 3 (5–6), 4 (6–7), 5 (7–8), 6 (8–9), and 7 (above 9). Categories
5, 6, and 7 referred to highly active compounds, while 3 and 4 to medium-active, and
1 and 2 to inactive or low-active compounds. An NN was built and trained using the
categorical cross-entropy loss function and stochastic gradient descent to minimize the loss
function (Adaptive Moment Estimation Optimizer). Due to the multi-class application of
NN, Softmax conversion leading to a probability distribution was used as the activation
function for the last layer, instead of the sigmoid function that is used typically for binary
classification. The Rectified Linear Unit activation function (ReLU) was used for hidden
layers for quick convergence. One thousand epochs were used to ensure the sufficient
minimization of the model, although a much smaller number could be also used, e.g.,
200, as cross-entropy loss and accuracy stabilized after 200 epochs (see Supplementary S1,
Figures S3 and S4).
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In principle, in the case of neural networks fitted to solve big data problems, increasing
the training set from 40% to 80% (see Supplementary S1 Figures S5 and S6) should improve
both the model accuracy and the model training efficiency. This improvement was indeed
visible in the case of CCR2 and CCR3 (Supplementary S1 Figure S5). Nevertheless, the
bootstrapping analysis should be performed to undoubtedly confirm this.

For the receptor subtype selectivity tests, the following curated datasets were used
for training (80% randomly selected compounds from the ChEMBL-retrieved datasets):
1995 (CCR2), 603 (CCR3), 994 (CXCR3), 4509 (CB1), and 4087 (CB2), and for validation,
the remaining compounds were used. For cannabinoid receptors, two additional training
sets [63,83] from https://db-gpcr.chem.uw.edu.pl (accessed on 20 August 2023) were used,
consisting of 1566 and 2093 compounds (CB1 and CB2, respectively). A further 35 CB2-
selective compounds (from https://db-gpcr.chem.uw.edu.pl (accessed on 20 August 2023))
were used as one of the validation sets included in Table 4. To generate the results presented
in Table 4, the number of epochs was set to 100, and the average loss and accuracy were
computed for 100 independent training runs of NN.

Python scripts with imported modules from the latest versions of RDKit (v2022.9.2),
scikit-learn (v1.0.2), Keras (v2.11.0), and TensorFlow (v2.11.0) used for data processing.

4.2. Preparation of CCR2, CCR3, and CXCR3 Structures

The 6GPX structure [96] of the inactive-state CCR2 receptor was downloaded from
the Protein Data Bank (PDB) [97], and a model of CCR3 was generated using the Ro-
betta webserver (accessed on 2 February 2022) [98]. Both the structure and the model
were preprocessed using Maestro v2023-1 [99] and evaluated as described in a previous
study [54].

The amino acid sequence of CXCR3-A was obtained from UniProt [100] (see
Supplementary S1 Figure S2). Protein BLAST (https://blast.ncbi.nlm.nih.gov accessed on
9 May 2023) was used to perform a search against PDB to find solved GPCR structures
with a high sequence similarity to CXCR3-A [101]. Of these, the inactive-state 5LWE [102]
and 6MEO [103] PDB entries, with a 33.44% and 36.49% sequence similarity to the target,
respectively, were selected as templates for homology modeling. Modeller v10.4 [104] was
used to generate 5000 models of CXCR3-A. The lowest energy models were analyzed in
PyMol v2.4.0 [105] and validated by comparing their structures to those of other GPCRs
with well-described molecular switches, including PDB entries 7O7F [88] and 6WWZ [106].

4.3. Structure-Based Virtual Screening

SBVS assisted by machine learning was performed using Glide v2021-4 for CCR2 and
CCR3, as described previously [54]. Here, to confirm their binding modes and to test if two
molecular docking programs based on completely different force fields (OPLS and Amber
for Glide and AutoDock, respectively) provide similar results, we used AutoDock Vina
v1.2.3 [43,44,107]. Although the compound ranking proposed by AutoDock Vina was very
similar to the one obtained previously by Glide, a few compounds were discarded due to
significant differences in their binding modes provided with AutoDock Vina in comparison
to Glide results. The remaining CCR2 and CCR3 compounds were subjected to validation
with MD simulations.

The validated model of CXCR3 was used for structure-based virtual screening (SBVS)
with AutoDock Vina, using the Enamine Hit Locator Library (HLL) (accessed on 17 Novem-
ber 2022) [108], consisting of over 460,000 compounds. The position of the grid box for
AutoDock Vina was determined based on the positions of the ligands in the corresponding
template structures, and its size was 31.19 × 29.17 × 38.56. Ten binding modes were
generated for each ligand, and the energy cut-off for selecting ligand poses was equal to
−10.5. The results were analyzed using the vs-analysis.py script [109], and 31 compounds
with the best binding affinities were selected for further investigation.

A set of known CXCR3 inhibitors—the IC50 subset—was downloaded from the
ChEMBL (accessed on 15 May 2023). After the data were curated and compounds with no
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specified activity values (pChEMBL values) were removed, the CXCR3 dataset was used
as a training set for a neural network implemented in Keras/TensorFlow according to a
procedure described elsewhere [54]. The algorithm was then used to predict the activity
values of the molecules in the HLL compound library. The compounds with the highest
predicted activity values (above 9) were mapped against those obtained via SBVS, and as a
result, nine potential CXCR3 actives were obtained. Out of these, five of the best-assessed
compounds were selected for further MD simulations.

4.4. Molecular Dynamics Simulations

For the selected compounds, their complexes with receptors for the MD simulations
were prepared using CHARMM-GUI’s v3.7 [110–112] Membrane Builder [113–116]. In-
formation about the disulphide bonds in the receptor structures was provided based on
known structures of chemokine receptors in the PDB, and the ligand parameterization
was performed using CGenFF [117] and 3D structural files generated by Maestro. The
ligand–receptor complexes were inserted into a lipid bilayer consisting of a 3:1 ratio of
POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) to cholesterol. The periodic
rectangular water box (TIP3P) was fitted to the complex, and each simulation system was
neutralized by adding Na+ and Cl− ions at a concentration of 0.15 M. The number of atoms
in each simulation system was equal to between 135,000 and 148,000 atoms, depending on
the system. The Charmm36 force field was used in each simulation.

The equilibration step included 10,000 steps of the steepest descent minimization, then
25,000 steps of the conjugated gradients minimization. The equilibration simulation was
performed in NVT using the Langevin dynamics (303.15 K). The time integration step in
the equilibration and production runs was set to 2 fs. The production run in NPT was
performed using the Langevin piston Nose–Hoover method (1 bar, 303.15 K) and lasted for
100 ns for each system. The GPU-accelerated version of NAMD v3.0 [118] was used for all
MD simulations. The obtained trajectories were analyzed using VMD v1.9.3 [119].

4.5. Suggested Structural Modification of Active Compounds

Chemical modifications of functional groups of the proposed active compounds for
each receptor were suggested in order to improve their binding affinities. Maestro was used
to analyze the interactions between the modified ligands and the receptor in the final frame
of the MD simulation and to suggest possible changes. Modified structures of proposed
compounds were minimized in Maestro (OPLS4 force field), in order to prevent clashes.

4.6. Structural Comparison of CXCR3 Antagonists

Compounds described by Meyer et al. [32] were reproduced in Maestro in order to
perform a search for similar structures in the HLL compound library. The Fingerprint
Similarity tool was used with the Tanimoto similarity metric. The docking scores and
predicted activities as well as their ranks provided by Keras/TensorFlow NN were extracted
for compounds with the highest Tanimoto coefficients.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijms241915009/s1, References [63,83,85,90,93] are cited in the supplemen-
tary materials.

Author Contributions: Conceptualization, P.D. and D.L.; methodology, P.D., K.J. and D.L.; software,
P.D., K.J. and D.L.; validation, P.D., K.J. and D.L.; formal analysis, P.D., K.J. and D.L.; investiga-
tion, P.D., K.J., A.A. and D.L.; resources, D.L.; data curation, P.D. and D.L.; writing—original draft
preparation, P.D., K.J., A.A. and D.L.; writing—review and editing, P.D., A.A. and D.L.; visual-
ization, P.D. and D.L.; supervision, D.L.; project administration, D.L.; funding acquisition, D.L.
Detailed contributions: Introduction—P.D. and D.L., with contributions from A.A. (Table 1) and K.J.;
Results—P.D. (Figures 1–4, Table 2, Sections 2.1–2.4), D.L. (Tables 2–4, Sections 2.2, 2.4 and 2.5);
Discussion and Conclusions—P.D. and D.L.; Materials and Methods—P.D. (Sections 4.1–4.6), D.L.
(Section 4.1) with contributions from K.J. (performing AutoDock Vina computations for CCR2,
CCR3, and CXCR3, and ML computations for CXCR3); Supplementary S1—P.D. (Figures S1 and S2,

https://www.mdpi.com/article/10.3390/ijms241915009/s1
https://www.mdpi.com/article/10.3390/ijms241915009/s1


Int. J. Mol. Sci. 2023, 24, 15009 19 of 23

Tables S1–S6), D.L. (Figures S3–S7, Tables S7–S10); Graphical Abstract: D.L. and P.D. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science Centre in Poland, grant number
2020/39/B/NZ2/00584. Computational resources were provided by Poland’s high-performance
Infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH), grant number PLG/2023/016255.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used for NN training are publicly available on https://www.
ebi.ac.uk/chembl/ (accessed on 24 May 2023) and https://db-gpcr.chem.uw.edu.pl (accessed on 20
August 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

GPCR G protein-coupled receptor
CCL C-C motif chemokine ligand
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