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Abstract 27 

Contaminated sites are complex systems posing challenges for their characterization as both contaminant distribution 28 

and hydrogeological properties vary markedly at the metric scale, yet may extend over broad areas, with serious issues 29 

of spatial under-sampling in the space. Characterization with sufficient spatial resolution is thus, one of the main 30 

concerns and still open areas of research. To this end, the joint use of direct and indirect (i.e., geophysical) investigation 31 

methods is a very promising approach. This paper presents a case study aspiring to demonstrate the benefit of a 32 

multidisciplinary approach in the characterization of a hydrocarbon-contaminated site. Detailed multi-source data, 33 

collected via stratigraphic boreholes, laser-induced fluorescence (LIF) surveys, electrical resistivity tomography (ERT) 34 

prospecting, groundwater hydrochemical monitoring, and gas chromatography-mass spectrometry (GC-MS) analyses 35 

were compiled into an interactive big-data package for modeling activities. The final product is a comprehensive 36 

conceptual hydro-geophysical model overlapping multi-modality data and capturing hydrogeological and geophysical 37 

structures, as well as contamination distribution in space and dynamics in time. The convergence of knowledge in the 38 

joint model verifies the possibility of discriminating geophysical findings based on lithological features and 39 

contamination effects, unmasking the real characteristics of the pollutant, the contamination mechanisms, and the 40 

residual phase hydrocarbon sequestration linked to the hydrogeological dynamics and adopted remediation actions. The 41 

emerging conceptual site model (CSM), emphasizing the necessity of a large amount of multi-source data for its 42 

reliable, high-resolution reconstruction, appears as the necessary tool for the design of remedial actions, as well as for 43 

the monitoring of remediation performance.  44 

Keywords 45 

Hydrocarbon contamination; 3D modeling; multi-source geodatabase; laser-induced fluorescence; electrical resistivity 46 

tomography. 47 
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1. Introduction 54 

Contamination and hazards related to leaking underground fuel storage tanks represent an open environmental problem 55 

that needs to be addressed through the investigation and remediation of petroleum hydrocarbon sites (Ghosh et al. 2019; 56 

McCall et al. 2018). Petroleum hydrocarbons are part of the contaminant class known as light non-aqueous phase 57 

liquids (LNAPLs) (Vasudevan et al. 2016). These widespread and persistent pollutants are typically released into the 58 

environment as mixtures of various chemical compounds (Åslund et al. 2013). Furthermore, LNAPL aging and 59 

weathering induce mutations in the composition of the mixture, resulting in an impoverishment of both volatile and 60 

soluble chemicals (Totsche et al. 2003), thus accumulating toxic, semi-, and non-volatile, insoluble constituents of 61 

heavier molecular weight (Lari et al. 2019). This last aspect tends to affect the selection of a reasonable characterization 62 

method and the choice of an appropriate approach for remediation (Brusseau, 2019; Suthersan et al. 2016). 63 

An adequate characterization of the nature, chemical transformation, and spatial distribution of LNAPLs in the 64 

subsurface is one of the main open research questions (Lari et al. 2018; Totsche et al. 2003). Detailed local data may be 65 

obtained through core and borehole surveys, but such evidence is inherently 1D and unevenly distributed (e.g., Deiana 66 

et al. 2007). Field studies highlight the limitations and substantial errors that result from the use of traditional 67 

prospecting techniques (i.e., soil coring and groundwater monitoring) in estimating the amount and spatial extent of 68 

LNAPLs in the subsurface (Algreen et al. 2015). Investigations with direct methods are affected by the limited number 69 

of samples across a 3D potentially contaminated space (the subsoil) inevitably leading to spatial aliasing and inaccurate 70 

reconstruction of the pollution spatial extent (Binley et al. 2015; Cassiani et al. 2014; Ciampi et al. 2021b; Crook et al. 71 

2008; Deiana et al. 2007; McCall et al. 2018). Aliasing occurs when the sampling frequency is inadequately low 72 

compared with the frequency of signal variation (Shannon, 1949). As a result of spatial aliasing, the sampled variable 73 

assumes smooth variations in space, with a spatial frequency that is much lower than the true one, thus appearing 74 

different from what reality is (i.e., an alias). The impact of such aliasing on the assessment of the contamination extent 75 

and total pollutant mass is dramatic, resulting in the overestimation of contaminated volumes and pollutant masses.  76 

Correspondingly, geophysical methods capture the subsurface with high spatial resolution, permitting to depict 77 

hydrogeological heterogeneities (Ruggeri et al. 2014), and define confining geological structures which control 78 

groundwater flow and contaminant migration. Hence, geophysical methods are potentially able to bridge the gap 79 

between resolution and coverage associated with conventional hydrological investigations (e.g., Crook et al. 2008). 80 

Geophysical investigations may characterize the distribution of a plume with high LNAPL concentration (Bücker et al. 81 

2017; Caterina et al. 2017; Flores Orozco et al. 2012, 2015, 2019a, 2019b, 2021; Xia et al. 2021), monitor LNAPL leaks 82 

and the evolution of the pollution source (Shao et al. 2019) and thus avoid the interpolation of ground truth data. In the 83 
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context of environmental science, geophysical techniques have become an effective instrument to assist the study of the 84 

shallow subsurface and to control hydrological dynamics and hydrochemical processes (e.g., Binley et al. 2010, 2015). 85 

A few of the distinctive advantages of geophysical exploration tools include minimizing the requirement for direct 86 

intrusive surveys (Chambers et al. 2010) and delivering spatially continuous records of subsurface geology (Samouelian 87 

et al. 2005). Some geophysical methods may emphasize potential relationships between the meaningful measured 88 

physical parameters and the hydrological and environmental crucial aspects concerning the contaminated site 89 

characterization (Cassiani et al. 2014). Site investigation using different survey techniques (boreholes and geophysical 90 

methods) in combination with an integrated approach for data interpretation can reduce the collection of redundant 91 

information (Abbaspour et al. 2000). Also, merging linear prospection methods, which assist spatialization of data, with 92 

traditional, non-substitutable point survey techniques (Binley et al. 2015; Crook et al. 2008) can go beyond the 93 

limitations arising from their distinct implementation. On the one hand, conventional investigations are expensive, 94 

invasive, one-dimensional, and usually characterized by limited densities and irregular distributions. On the other hand, 95 

geophysical techniques cannot replace in situ sampling, do not directly record lithological or contaminant properties, 96 

and require interpretation by conventional methods to avoid potential misinterpretation of findings (Arato et al. 2014). 97 

Note that the valid hydrological understanding of geophysical data is influenced by the constitutive links (e.g., 98 

petrophysical relationships) that translate recorded geophysical parameters (e.g., electrical conductivity) into 99 

hydrological properties (e.g., water and clay content) (Binley et al. 2015). 100 

 While electrical properties may be linked to lithological structure, it is extremely challenging to link geophysical 101 

signals to contamination (Binley et al. 2015). A considerable amount of experimental research on the geophysical 102 

response of contaminants has revealed a gap in understanding a comprehensive physicochemical framework capable of 103 

relating geophysical signatures and directly measured pollutant characteristics (Arato et al. 2014; Binley et al. 2015; 104 

Cassiani et al. 2014; Flores Orozco et al. 2021; Prasanna et al. 2008). Due to the complexity and the large number of 105 

variables involved in physicochemical processes within polluted porous media, the pursuit for common and versatile 106 

models that couple geophysical records with contaminant features is not effective (Binley et al. 2015), and some degree 107 

of site-specific relationships have generally to be sought (Cassiani et al. 2014). In this respect, ancillary direct 108 

information about contaminant presence and state is essential. In this regard, the development of laser-induced 109 

fluorescence (LIF) technology helps to deliver direct knowledge on LNAPL migration and distribution with high 110 

resolution (Teramoto et al. 2019). LIF is a direct, real-time, and in-situ detection system for screening non-aqueous free-111 

phase pollutants in the subsurface. LIFs measure a percentage fluorescence intensity relative to the standard calibration, 112 

known as the reference emitter (RE), which reflects the amount of oil in the pores (Teramoto et al. 2019). The LIF 113 

technology utilizes ultraviolet (UV) laser light provided by direct push boring instruments to excite polycyclic aromatic 114 
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hydrocarbons (PAHs) molecules present in LNAPLs and simultaneously records the resulting fluorescence as a function 115 

of depth, enabling the semi-quantitative characterization of LNAPL distribution within the subsurface at least in terms 116 

of quasi-continuous 1D profiles with depth (Pepper et al. 2002). The LIF measurements coupled with cone 117 

penetrometer testing (CPT) have been extensively used for time- and cost-effective in situ detection of fuels and 118 

petroleum products and demonstrated their effectiveness in obtaining geophysical and geotechnical properties (via 119 

specific sondes placed on direct-push devices) of subsurface environments (Einarson et al. 2018; Gruiz et al. 2017; 120 

Pepper et al. 2002). Note that currently available LIF equipment is not designed to detect dissolved-phase contaminants 121 

(Fedotov et al. 2019). In the investigation and management of contaminated sites, the challenge is to integrate the 122 

information coming from different data sources to provide a consistent, realistic, and accurate conceptual model (Harris 123 

et al. 2004). Usually, multi-modality data analyze different parameters, in different configurations, with various 124 

investigation depths. Instead of handling each data set individually, a single, coherent image (model) should be 125 

generated. (Pollard et al. 2004). Coupled hydrogeophysical techniques aim to bridge this gap, but a knowledge 126 

harmonization procedure is still an open area of research (Binley et al. 2015). The synthesis of a huge volume of 127 

information and diverse sources of experience typically found at most polluted sites into a convergent, hybrid, and 128 

multi-source geodatabase may simply develop and enhance a model by collecting and incorporating new evidence or 129 

reinterpreting and validating available data (Binley et al. 2015; Chiabrando et al. 2019). 130 

In this study, we suggest a stepwise refinement methodology to develop a comprehensive 3D conceptual site model 131 

including multi-source data gained from direct and indirect methods. The expected data-driven model contributes to the 132 

convergence of different types of spatial subsurface information (i.e., lithological, hydrogeological, geophysical, 133 

chemical, geotechnical), establishing a connection between the environmental variables to overcome both the spatial 134 

sampling limitations of direct methods and the interpretation of geophysical investigations. We aim at investigating the 135 

effectiveness of a single big-data package and multi-source hydrogeophysical model, capturing hydrogeological and 136 

geophysical evidence, as well as contamination dynamics over time. The application of data fusion has the goals to (i) 137 

reduce the uncertainty associated with subsurface interpretation, (ii) decipher geophysical findings based on geological, 138 

chemical, and physical information, and (iii) provide compelling insights into LNAPL behavior in the saturated and 139 

unsaturated domains. The presented case study concerns contamination caused by jet fuel in a military airbase in Italy. 140 

From the approach investigated here, integration of heterogeneous data in nature and resolution demonstrates to provide 141 

additional information without the requirement for additional investigations, differentiating geophysical results based on 142 

lithologic characteristics and contamination effects as well as revealing the actual distribution and mechanisms of 143 

contamination, pollutant aging, and residual phase hydrocarbon sequestration related to hydrogeologic dynamics and 144 

adopted remediation measures. 145 
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2. Materials and Methods  146 

2.1 The case study: remediation history and available data 147 

The study site is the military airport of Decimomannu (Cagliari, Italy), affected by jet fuel-JP8 spills due to a leaking in 148 

a fuel transfer line (Ciampi et al. 2021b). The spills have occurred in 2007 (40 m3), in 2009 (5 m3), and 2010 (5 m3). 149 

The remediation/safety measure adopted at the site consists of pumping wells and a hydraulic barrier for groundwater 150 

extraction (Brusseau, 2019). During the characterization and remediation of the site, a suite of investigations has taken 151 

place (Tab. 1 of Supplementary Material), such as grain size analysis of cores, hydrogeological tests, geophysical 152 

surveys, groundwater samplings and analyses. In total, 85 stratigraphic boreholes were realized from 2007 to 2016 to 153 

deliver an overview of the geological sequence found at the site. They reach depths ranging from 10 m to 26 m below 154 

ground and cover an investigation area of about 26.5 hectares. The deposit permeability was first estimated from the 155 

grain distributions reported in Flores Orozco et al. (2021). Additionally, two pumping tests and ten slug tests were 156 

performed as part of this work to provide a measurement of the aquifer permeability coefficient. For the monitoring of 157 

groundwater levels and contamination, 62 piezometers have been installed on-site. Periodic hydrochemical 158 

measurements were made on the piezometric network between 2011 and 2018, providing the necessary information to 159 

deduce the evolution of the hydrocarbon contaminant plume. Some comparative analyses, performed through gas 160 

chromatography-mass spectrometry (GC-MS) on "fresh" products (original jet fuel) and supernatant sporadically 161 

recovered in the piezometric network, enriched the collected data. Such analyses aimed at delivering the speciation of 162 

the hydrocarbon mixture components to research any evidence of aging or weathering (Vozka et al. 2019). Additionally, 163 

to gain direct information about the distribution of the NAPL, 30 points were surveyed using the LIF-ultraviolet optical 164 

screening tool (UVOST) technology in combination with CPT measurements. 165 

 2.2 The geophysical dataset 166 

The geophysical dataset consists of several surface Electrical Resistivity Tomography (ERT) - (e.g., Binley and Kemna, 167 

2005; Cassiani et al. 2014; Crook et al. 2008) - lines located both inside and outside of the base perimeter. The detailed 168 

map of the ERT investigations realized as part of this study is shown in Figure 1 of the Supplementary Material. Two 169 

slightly different acquisition strategies were adopted:  170 

• Line 15, which runs along the Southern side of the airbase, is a 330 m line with 1 m electrode spacing, 171 

composed of 7 individual ERT lines made of 72 electrodes each, with a partial superposition of neighboring 172 

lines of 24 electrodes; 173 

• Lines 1-14 are single ERT lines made of 48 electrodes each, with electrode spacing equal to 1 m.  174 
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In both cases, a dipole-dipole skip-4 acquisition scheme was adopted (skipping 4 electrodes in each dipole means that 175 

the dipole lengths, for both current injection and voltage difference measurement are 5 m long). The full reciprocal 176 

acquisition was performed to assess measurement errors, as good practice for high-quality data surveys (e.g. Cassiani et 177 

al. 2006). A complete acquisition of all reciprocals (swapping potential with current electrodes) is essential for 178 

estimating the errors in the acquisition and permits the elimination of outliers before data inversion (Binley et al. 1995). 179 

The location of the ERT profiles (see Figure 1 of the Supplementary Material for details) was decided based on the need 180 

to investigate geological constraints on contamination dynamics in areas hydrogeologically down gradient of spills and 181 

the hydraulic barrier. In particular, line 15 covers the entire Southern border of the base in the area of interest, while the 182 

other short lines sample with fine detail the areas where contamination, and thus biodegradation, is expected to be 183 

maximal, with a few lines also placed outside the expected contaminant plume to provide background (uncontaminated 184 

information). The ERT lines to the West cover for the most part, inside and outside the base fence, the region where 185 

clays are expected to be very shallow or emerge at the surface.  186 

In all cases, inversion of ERT was conducted using the Profiler-R2 suite of programs provided by Lancaster University 187 

(http://www.es.lancs.ac.uk/people/amb/Freeware/R2/R2.htm) now incorporated in the ResIPy package (Blanchy et al. 188 

2020). The inversion strategy is based on Occam’s approach, thus obtaining the smoothest model compatible with the 189 

error in the data, in this case, equal to 5% reciprocal error. 190 

2.3 The big-data package for multi-source geomodeling 191 

This huge volume of different source data was then georeferenced and added into an interactive big-data package, 192 

which is structured as a multiple excel worksheet and relational database (Ciampi et al. 2019b). The developed multi-193 

thematic, four-dimensional (4D) big-data package considers time as the fourth dimension and should permit the 194 

management, integration, and release of data during the knowledge acquisition phase (Ciampi et al. 2019a, 2021a), 195 

behaving as a decision support tool (DST) during the remediation period (see e.g., Huysegoms and Cappuyns, 2017). 196 

The big data package aided in the planning of investigations as it permitted to follow field findings, and in time-lapse 197 

monitoring of remediation actions at the pilot-scale described by Ciampi et al. 2021b. Grid and block spatial modeling 198 

of multidisciplinary data contained in the geodatabase has the purpose of generating a multi-source conceptual model in 199 

2D or 3D, containing geological, hydrochemical, and geophysical information (Ciampi et al. 2021b; Wang and Huang, 200 

2012). The 3D conceptualization of spatial and physical parameters was built using the RockWorks 17 software 201 

(Ciampi et al. 2019b). The reconstruction of a solid model that overlays different types of knowledge arises from the 202 

spatial interpolation and joint processing of the geological, geophysical, and hydrochemical parameters (Kaliraj et al. 203 

2015, Safarbeiranvnd et al. 2018). The parameters include stratigraphic borehole data (depth and lithological types), 204 
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groundwater level elevations, LIF data (percentage fluorescence intensity), geophysical information (resistivity), 205 

geotechnical records (cone resistance), and the chemical analysis of water sampled (contaminant concentration). The 206 

interpolation of all the above point data was performed using the algorithm of inverse distance weighting (Mirzaei and 207 

Sakizadeh, 2016; Safarbeiranvnd et al. 2018) to generate quasi-continuous 3D models (and 2D canvas), in which the 208 

spatial distribution of the parameters obtained from all investigations is easily accessible. The inverse squared distance 209 

(weighting exponent of 2) was used and the search neighborhood was limited to 4 points, so that the extrapolated value 210 

gradually approaches the value of the nearest sample point, honoring the data value (Liu et al. 2020). Additional options 211 

included a high fidelity filter to preserve control point values and low smoothing (Falivene et al. 2010). Joint grid and 212 

block modeling, which employs elementary volumes (voxels) in a three-dimensional mesh, aims to store, overlay, and 213 

represent multi-source information related to stratigraphic, piezometric, resistivity, fluorescence, and cone resistance 214 

data in a geo-referenced space (Høyer et al. 2015). The 3D mesh covers the area of the airbase and extends vertically 215 

from 8.8 m below sea level to 23.4 m above sea level, representing the maximum depth of investigation and the 216 

maximum elevation of the ground surface respectively. The solid and block geological model was built by interpolating 217 

the top and base grid surfaces of each unit listed in the database to isolate the volumes of the different strata. Spatial 218 

interpolation of water table elevations and contaminant concentrations was performed to generate the piezometric 219 

surface and contamination state contour maps. Voxel modeling was used to interpolate data acquired via ERT, LIF, and 220 

CPT. A voxel stores a single numerical value for each physical parameter assigned by interpolation to explain potential 221 

spatial relationships among aggregated complex data-driven structures. The voxel grid discretization is 0.5 m x 0.5 m x 222 

0.2 m in the x, y, z directions. The multi-source block model has a size of 780 x 1379 x 162 voxels. These dimensions 223 

were chosen to achieve a high resolution of the mapped geological structures, consistent with the acquisition resolution 224 

of ERT investigations. Signal acquisition from LIF-CPT images was averaged at the set voxel resolution to combine 225 

multi-modality data within a unique 3D mesh domain. A distance clipping filter was employed to limit the resistivity 226 

model based on a node’s distance of 5 m from the ERT lines. The integrated extraction of geological-physical attributes 227 

from each voxel of the 3D mesh and their coupled analysis was intended to geostatistically discriminate lithological 228 

structures based on electrical properties. Such a joint-modeling approach has the purpose of developing a CSM that 229 

considers extension and degree of contamination, characteristics, and chemical-physical parameters that condition the 230 

mobility and the pollutant partition among aqueous, non-aqueous, solid, and gas phases. The adopted holistic approach 231 

aims to demonstrate how the joint integration of the different investigations overcomes not only the limitations related 232 

to their single applicability but also the indirect and thus uncertain nature of non-invasive investigations. 233 

3. Results 234 
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3.1 Geological and Hydrogeological Settings 235 

In the Decimomannu airbase area, the most recent deposits are related to a Plio-Quaternary depositional sequence of 236 

alluvial sediments (Bini, 2013; Reuter et al. 2017). Building on the information collected through the execution of 237 

stratigraphic surveys and as illustrated in Fig. 1, the geological structure of the subsoil is subdivided as follows: 238 

1. Backfill (anthropogenic) materials to a depth of 1-1.5 m; 239 

2. Recent alluvia extending to depths between 1 m and 5 m and characterized by gravels and sands with a 240 

presence of fine fraction; 241 

3. Intermediate clays forming a horizon of sandy-gravelly clays having hazelnut color characterized by an 242 

average thickness of 1.5 m; 243 

4. Ancient alluvia defining a layer around 3.5 m thick (on average) comprised of gravel and sand in a silty-clay 244 

matrix; 245 

5. Base clays found in a thick level of clays and silty clays are located at depths between 10 m and 24 m; 246 

6. Base gravels at a depth of about 24 m from the ground surface, a horizon made of gravels and sands immersed 247 

in a silty-clayey matrix. 248 

The reconstructed three-dimensional geological model reveals both the irregularity of the stratigraphic contacts and the 249 

geometric structures that characterize the different horizons. A vertical exaggeration factor is used to mark the 250 

lithological steps. The set of all information acquired during the phases of characterization and remediation converges 251 

within the solid geo-referenced model (Figure 1). 252 

 253 
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Fig. 1 Three-dimensional geological model of the Decimomannu military airbase depicting the stratigraphic 254 

relationships. Position of the fuel spill areas, pumping wells, hydraulic barrier, LIF-CPT investigations, and ERT lines 255 

inside the military domain 256 

The recent and ancient alluvia have a highly variable thickness and are separated by intermediate clays. The alluvial 257 

sequence hosts the shallow aquifer and overlies the base clays. Based on the particle size distribution of soil samples, 258 

the hydraulic conductivity of the coarse-grained deposits ranges from 1.8x10-4 and 6.5x10-6 m/s for the recent alluvia 259 

and between 1.7x10-6 to 1.9x10-8 m/s for the ancient alluvia as reported by Flores Orozco et al. (2021). A permeability 260 

coefficient of about 4.2x10-9 m/s has been attributed to the intermediate clays, while for the base clays it approximates 261 

2.7x10-10 m/s. Aquifer permeability obtained by slug tests varies between 9.96 x 10-4 and 2.54 x 10-6 m/s. The aquifer 262 

permeability coefficient estimated by pumping tests ranges from 1.48 x 10-3 to 3.15 x 10-4 m/s. The base and the 263 

intermediate clays have a relevant hydrogeological role as aquiclude and aquitard, respectively. The base gravels 264 

constitute the confined aquifer, while the shallow aquifer is the most sensitive to fuel spills. In undisturbed conditions, 265 

the piezometric surface stands at 4.5 m below ground level. Groundwater flows from NE to SW and is hosted in an 266 

aquifer that exhibits variable conditions from locally phreatic to partially confined elsewhere. In such a geological 267 

context, intensive extraction by pumping wells and hydraulic barrier may potentially trigger local modifications of 268 

groundwater head distribution and drawdowns of the water table. 269 

3.2 Geophysical Model 270 

The acquisition and the incorporation of ERT profiles within the voxel-based and multi-source model provide the 271 

necessary data to refine and strengthen the conceptual geological model, which arises from the interpolation of point 272 

measurements. Hence, ERT data reinforces and validates stratigraphic data, and avoids potentially serious spatial 273 

aliasing effects from interpolation of borehole data above ERT resolution threshold (Binley et al. 2015; Crook et al. 274 

2008). In particular, the overlay of voxel-based geophysical data and geological information portrays a clear correlation 275 

between the low resistivity layers and the clays. This correlation is expected due to the high surface area and surface 276 

charge of clays, which in turn contribute to surface conductivity in addition to the electrolytic conductivity (e.g., Revil 277 

et al. 2017; Flores Orozco et al. 2021). The intermediate layer of clays is of course the main structural feature affecting 278 

groundwater flow, and thus contaminant distribution, because of their very low hydraulic conductivity. The geophysical 279 

surveys concluded that the intermediate clays reach the maximum thickness in the western sector, while locally they 280 

disappear to the east, where communication of groundwaters hosted in the alluvial sediments can occur, as illustrated in 281 

Fig. 2. 282 
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 283 

Fig. 2 Integrated three-dimensional model illustrating the results of the geophysical surveys, the layer of intermediate 284 

clays, and the stratigraphic logs 285 

The filling material reveals values of resistivity generally between 80 and 250 Ω·m (log10 resistivity range: 1.9-2.4). 286 

Coarse deposits constituting recent and ancient alluvia exhibit a variant geoelectric signature between 40 and 126 Ω·m 287 

(log10 resistivity range: 1.6-2.1). The intermediate and base clays are distinguished by an average value between ~ 8 288 

and 60 Ω·m (log10 resistivity range: 0.9-1.8). The combined extraction of geological and physical properties from the 289 

mesh elements of the data-driven model provides the resistivity distribution of shallow lithologies, correlating the 290 

electrical behavior with the geological parameter (Fig. 3). 291 
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 292 

Fig. 3. Frequency histograms related to the resistivity (in log scale) of the mesh elements encoding the geological 293 

information for the different stratigraphic horizons 294 

Although some lithologies reveal overlaps in resistivity signals, incorporation of ERT prospecting into the geological 295 

model discretizes geological-physical properties in space. This leads to the differentiation of geological heterogeneities 296 

with high resolution, especially in the horizontal direction, managing uncertainties arising from both sources of 297 

information. In the Western sector of the site, where the intermediate clays exhibit a larger thickness, the layers 298 

characterized by a low electrical resistivity correspond to the clayey horizons, whereas the levels with a higher electrical 299 

resistivity coincide with the sandy layers of the shallow aquifer. In the Eastern sector, the ERT profiles reveal higher 300 

electrical resistivity values (Fig. 2). In this portion of the airbase, the clayey intermediate lens is almost totally absent, 301 

with the preponderance of the recent alluvia. This affects the electrical properties of the subsoil, resulting in higher 302 

resistivity values. Therefore, even though ERT is not able to quantify the hydraulic conductivity of porous media, it aids 303 

in the discrimination between formations marked by different electrical and hydraulic resistivities (Cassiani et al. 2014). 304 
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Integrating the findings of geophysical investigations into the geological model leads to the geoelectrical 305 

parametrization, the qualitative and quantitative geophysical interpretation of near-surface sediments. Accordingly, the 306 

combination of the data potentially reduces the misinterpretation of stratigraphic variations resulting from interpolation 307 

through increased density and resolution of geophysical data (Binley et al. 2015; Crook et al. 2008; Hermans and Irving, 308 

2017). Statistical data analysis experimentally explores the results of the multi-source models, correlating the 309 

stratigraphy of mesh elements with their resistivity distribution and providing an explanation of the electrical behavior 310 

based on the knowledge of the lithological parameter. 311 

Locally, the superposition of the geoelectric response does not allow for the discretization of deeper sediments. This 312 

effect is observed in the hydrogeologically downstream portions of the spills. However, in such areas, the geophysical 313 

model shows locally low resistivity values in the upper levels. The latter variations can be observed in figure 4 at a 314 

depth between 1.5 and 4 m, in correspondence with some bands with a resistivity between 16 and 40 Ω·m (log10 315 

resistivity range: 1.2-1.6). From the cross-validation of the geological-geophysical section shown in Figure 5, it appears 316 

plausible to hypothesize that the pronounced increase in electrical conductivity may be associated with biodegradation 317 

activity at shallow sediments impacted by petroleum hydrocarbons rather than geological heterogeneity (see Cassiani et 318 

al. 2014, and references therein). 319 

 320 
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Fig. 4 Comparison of a stratigraphic and a geophysical section extrapolated from the big-data package at a trace located 321 

hydrogeologically downstream of the jet fuel spills 322 

The conceptual geological-geophysical model demonstrates qualitative and quantitative discrimination of ERT results 323 

based on lithologic characteristics and contamination effects. 324 

3.3 Evolution of Groundwater Quality 325 

Utilizing total petroleum hydrocarbons (TPH) as the revealing pollution parameter, thematic maps have been 326 

constructed using the big-data package. From 2011, the detected contamination appears to be fairly widespread and has 327 

been the target of years of a pump and treat action (still operational). Such remediation has allowed both a reduction of 328 

the contaminant mass and a restriction of the contaminant plume, which gradually reached an asymptotic pattern 329 

(Ciampi et al. 2021b). The thematic maps presented in Figure 5 reveal a decrease in pollutant concentrations and the 330 

plume shrinkage over time. 331 

 332 

Fig. 5 Contour maps of TPH concentrations in groundwater from 2011 to 2018 333 

The evolutionary scenario reveals a decrease in TPH concentrations from values locally approximating 1 g/L (2011) to 334 

a few mg/L (2018), hinting at the aging of the primary contamination source (Ciampi et al. 2021b). In the last 335 

represented monitoring campaign, limited areas show the impact of significant dissolved concentrations in groundwater 336 

(exceeding the limits established by Italian regulations). Such areas are mainly found at piezometers located within the 337 
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tank storage area and around the hydraulic barrier zone. Here monitoring wells locally exhibit a measured concentration 338 

of TPH between 350 and 3500 µg/L. This phenomenon is likely to be linked to the production of bio-surfactants by 339 

micro-organisms rendering oily substances more bio-available (see e.g., Cassiani et al. 2014). These “critical” areas 340 

have been both historically affected by the presence of TPH in groundwater and by the infrequent appearance of 341 

LNAPL as a separate phase. Variable apparent thicknesses of supernatant (up to 1 m) were rarely detected in 342 

monitoring piezometers until 2013 (near the spill points and the hydraulic barrier). A sporadic sampling of limited 343 

apparent thicknesses (less than 1 cm) of separated phase at extraction wells has been recorded since 2014.  344 

3.4 Analytical evidence disclosing the source-aging scenario 345 

The multi-source big-data package was enriched by detailed speciation, through GC-MS (Vozka et al. 2019), of 346 

supernatant that has been occasionally detected in the piezometric monitoring network. The chromatograms of jet fuel 347 

and supernatant samples show a significant difference in the fingerprint regarding the peaks of more volatile fractions, 348 

less present in the supernatant, coherently with the expected aging of the contaminant separate phase (Fig. 6a, b). 349 

Besides, comparing the GC/MS chromatographic fingerprint of jet fuel and supernatant samples, a clear difference is 350 

noted for all linear components that are drastically reduced in the supernatant. This is not surprising, as these fractions 351 

are known to be more bioavailable to biodegradation (Tran et al. 2018) (Fig. 6c, d). 352 

 353 

Fig. 6 GC/MS chromatographic fingerprints (total ion) related to jet fuel (a) and supernatant (b) that was occasionally 354 

collected as a free phase in the piezometric monitoring network. GC/MS chromatographic fingerprint relative to linear 355 

aliphatics (C6 – C16) measured in the “fresh” jet fuel (c) and the supernatant (d) 356 

GC-MS analysis demonstrates that the medium-light aromatic fractions (C8- such as toluene, xylene, etc.) are nearly 357 

completely absent in the supernatant sample (Tran et al. 2018). For medium-heavy compounds (C10-es. butylbenzene, 358 

tetramethylbenzene) the phenomenon is much less pronounced (Fig. 7). 359 
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 360 

Fig. 7 GC-MS analysis of medium-light (a, c) and medium-heavy (b, d) aromatic fractions measured in the jet fuel (a, 361 

b) and the ex-situ extracted free phase (c, d) 362 

The analysis of dissolved components in water confirms the aging of the LNAPL phase. These laboratory tests were 363 

performed on a sample of water previously partitioned with supernatant and jet fuel in equilibrium conditions (Fig. 8). 364 

 365 

Fig. 8 Solubilization of components in water for jet fuel (a) and the supernatant (b) 366 

The analytical investigations for water samples in contact with the supernatant and the jet fuel exhibit a very low 367 

presence of light aromatic fractions in the first case. Such an aspect reveals the exhaustion of the soluble fraction in the 368 

recovered separated phase sample. The exhaustion of the more mobile and degradable components with the 369 
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accumulation of the heavier fraction is associated with the natural and progressive "aging" of the contamination source 370 

(Lekmine et al. 2017). This source-aging scenario is highly representative of petroleum hydrocarbon pollution, since the 371 

composition of these mixtures, which contain compounds distinguished by widely differing chemical/physical and 372 

biodegradable characteristics, is highly complex (Vozka et al. 2019). The lighter, more soluble hydrocarbon fractions 373 

(e.g., BTEX) are mobilized into groundwater in the initial step of the primary pollution event, and aerobic 374 

biodegradation processes act on the more degradable components. The comparative analyses conducted on “fresh” 375 

product (original jet fuel) and supernatant recovered during the monitoring campaigns unmasked the presence of a 376 

weathered and aged product in the residual phase (Lekmine et al. 2017). This residual fraction, albeit still present in the 377 

environmental matrices, is not able to release significant quantities of soluble substances into groundwater. This latter 378 

aspect is confirmed by the total absence of the aromatic fraction in the supernatant. However, the residual, insoluble 379 

fraction of higher molecular weight hydrocarbons persists in the primary source area. This is sporadically "mobilized" 380 

and hence caught during dynamic sampling activities (Ciampi et al. 2021b). 381 

3.5 The Findings from LIF-UVOST and CPT Surveys 382 

The investigation through the LIF technique delineated the presence of the residual fraction of spilled fuel in the 383 

subsurface. Qualitative calibration of direct push profiles with spatially adjacent stratigraphic logs validates the 384 

lithotechnical interpretation (Gruiz et al. 2017). Although geologic model interpolation is not constrained by CPT data, 385 

the overlap of such data differing in nature and resolution accounts for vertical heterogeneity. The extraction of such 386 

data from the multi-source model captures lithotechnical parameterization and spatial variability of the stratigraphic 387 

profile (Einarson et al. 2018; Pepper et al. 2002) (Fig. 9). 388 
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 389 

Fig. 9 Resistance to penetration of the cone resulting from CPT and fluorescence signals detected by LIF-UVOST 390 

technology along with a vertical profile (a). Adjacent stratigraphic log representing the calibration borehole (b) 391 

The LIF-CPT11a presented in Figure 9 reveals several peaks in a depth range between 6.48 m and 7.05 m, with an 392 

intensity reaching a maximum value of 25%. Some appreciable fluorescence signals, observed at depths between 10.42 393 

m and 10.82 m with an average intensity of 4%, suggest that the spilled product may have potentially and locally 394 

reached the basement clays. Also, figure 9 displays an example of the CPT response as a function of depth in presence 395 

of different lithologies, depicting a major difference between coarse-grained (recent and ancient alluvia) and fine-396 

grained (intermediate and base clays) deposits. Coarse-grained deposits exhibit cone penetration resistance values 397 

generally between 20 and 60 Mpa. Intermediate and base clays always show cone penetration resistance values below 398 

10 MPa. The direct geotechnical investigations validate the geological and geophysical characterization, thus, 399 

improving, in general, the integrated multidisciplinary model. The geotechnical voxel-based model exhibits an excellent 400 

correlation between the low cone resistance bands and the levels ascribable to the intermediate clays in the Western 401 

area. Differently, in the Eastern portion, cone resistance increase is due to the presence of the gravel levels belonging to 402 

the ancient and recent alluvia, as presented in Fig. 10. 403 
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 404 

Fig. 10 Two viewpoints of the 3D geotechnical model illustrating the resistance to penetration (MPa) of the CPT cone 405 

arising from the LIF-CPT surveys and representation of the realized geological boreholes 406 

The execution of 30 LIF-UVOST soundings permitted to identify with high vertical resolution the presence of 407 

contaminants as free-phase droplets or adsorbed on the solid matrix. Accordingly, the LIF investigations delineate the 408 

areas impacted by secondary and residual contamination and thus recognize the subsoil thickness affected by the 409 

presence of aged product in the geological domain (Algreen et al. 2015), as illustrated in Fig. 11. 410 

 411 

Fig. 11 3D model of fluorescence measured by LIF-UVOST probes in the geological framework of the site. The 412 

executed stratigraphic boreholes are portrayed in the three-dimensional solid and multi-source picture 413 



20 
 

3.6 The Joint Integration of Multi-Source Data Revealing the Contamination Dynamics 414 

Extracting the overlapped hydrogeophysical knowledge from the big-data package yields important information about 415 

the contamination mechanisms which is not accessible without the proposed approach. In the primary source area, the 416 

free phase contaminant is present both as oil droplets trapped in the pore space and adsorbed onto the solid matrix 417 

(Trulli et al. 2016). Such contaminant is distributed across the so-called smear zone, often with a thickness of 4 meters 418 

(Fig. 12). 419 

 420 

Fig. 12 Stratigraphic section, piezometric level, and fluorescence peaks detected along the track reported in the map 421 

Relatively high fluorescence signals are measured in the LIF-UVOST15 survey at depths ranging from 5.58 to 6.77 m, 422 

with a maximum peak (54% of fluorescence) at 6.02 m depth. The LIF-UVOST16 survey records moderate signals (a 423 
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maximum fluorescence peak of 10%), over a depth range of 3.76 to 5.57m. The fluorescence peaks unveil the presence 424 

of residual free-phase/adsorbed hydrocarbons in the region surrounding the water table fluctuation range, which varies 425 

between about 19 m and 14 m above sea level (Fig. 2 of Supplementary Material). Fig. 12 also reveals a potential 426 

contribution of the extraction wells on the pollution dynamics. The depression of the piezometric surface due to the 427 

pumping operated by the extraction wells and the seasonal oscillation of the water table favored the redistribution of the 428 

product in the residual phase across the smear zone (as also observed in Trulli et al. 2016) as well as laterally. The 429 

redistribution of the LNAPL along the smear zone was favored by the absence of intermediate clays in the area of the 430 

storage tanks and the pumping wells. The intercalations of intermediate clays could have limited the vertical dispersion 431 

of the contaminants caused by the changes in the water table. In the vicinity of the hydraulic barrier, the multi-source 432 

model evidences hydraulic perturbation on contamination mechanisms. The pronounced cone of depression induced by 433 

the intensive pumping favored redistribution of the aged product to the base of the aquifer and in the base clays (as 434 

observed in Fig. 13). 435 
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 436 

Fig. 13 Comparison between the stratigraphic and the resistivity sections which are extracted along the track reported in 437 

the map. The stratigraphy intersected by the wells, the measured piezometric level, and the recorded fluorescence peaks 438 

are overlapped on the multi-modality profiles 439 
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Although the presence of a peak in the low-permeability layer bounding the aquifer is unexpected, calibrating the 440 

stratigraphic profile via the ERT permits to improve the reconstruction of the aquifer conformation, by defining the 441 

geometry of the basal clay shallow interface. In such an area with a high density of input data, the geological model 442 

produced with an exact interpolator assumes the role of a training tool to develop spatial links between geological 443 

properties and geophysical signals. Although the control boreholes lie 5 m away from the ERT line and the geological 444 

model is affected by the correct interpretation of lithological data, geophysical findings reveal a substantial consistency 445 

with the geological observations at known points as well as local and abrupt deepenings of the low-permeability basal 446 

layer where interpolation failed to delineate the undulating surface of this level between stratigraphic boreholes. At 447 

borehole PB02 the resistivity section of Fig. 13 suggests a deeper contact of the base clays compared to the stratigraphic 448 

profile. Such local deviation of the geologic data from the ERT image may be related to marked lateral geologic 449 

variability over short distances or may delineate potential misinterpretations of the borehole data. The LIF detector 450 

tracks two remarkable percent fluorescence peaks at depths of 5.67 m (24%) and 7.77 m (50%). Such signals disclose 451 

the occurrence of aged product within the ancient alluvia and base clays. The overlap and interference of multiple radii 452 

of influence for intensive pumping reduced hydraulic head, dewatering the aquifer horizon. A part of the LNAPL that 453 

was originally mobile was smeared to the base of the aquifer and within the base clays due to piezometric surface 454 

depression over time (Fig. 2 of Supplementary Material). Such residual LNAPL is adsorbed to the soil particles and 455 

trapped into the pore of the saturated domain when the water table rises for aquifer recharge or recovery system 456 

pumping is reduced, providing a persistent source of groundwater contamination.  457 

4. Discussion 458 

The joint use of point data coming from piezometric surveys, hydrogeochemical samplings, vertical profiling of 459 

geotechnical and hydrocarbon presence (via LIF), and of spatially distributed data from ERT (i.e., geophysical) surveys 460 

led to the construction of a comprehensive 3D conceptual model concerning both (a) the hydro-geophysical structure of 461 

the site subsurface, and (b) the distribution of jet fuel contamination. This model is a tool through which the user can 462 

analyze geospatial data, giving a rapid and intuitive way to access a vast amount of data. Such an approach has also 463 

been discussed in other studies for different areas (Ciampi et al. 2019a; Harvey et al. 2017; Jones et al. 2009). One of 464 

the main results obtained using the integrated geodatabase has been to provide evidence for an improved interpretation 465 

of the ERT results based on physical information. In this regard, for our site, low electrical resistivity may be caused 466 

either by lithological features (such as clayey formations) or by contamination effects (as a result of bio attenuation) 467 

(Fig. 14). 468 
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 469 

Fig. 14 Low resistivity anomalies at the Decimomannu site, caused by either (a) lithology (clays) and (b) contamination 470 

(via biodegradation) 471 

Figure 14 shows the cross-analysis of ERT surveys and geo-stratigraphic reconstruction from borehole cores, which 472 

allows the identification of contaminated areas. Note that without such cross-analysis the interpretation of ERT results 473 

would be impossible, in particular, to distinguish between contaminants and clays as the cause of the low electrical 474 

resistivity values. While low resistivity caused by clay is a barrier to contamination spreading, low resistivity caused by 475 

biodegradation of petroleum hydrocarbons is a viable signal of contaminant presence (e.g., Cassiani et al. 2014). The 476 

multi-source CSM provides qualitative-quantitative indicators to reduce uncertainties associated with subsurface 477 

interpretation by separating the signatures of geologic material in the absence of LNAPL (Hermans and Irving, 2017) 478 

and the substantial increase in electrical conductivity caused by petroleum hydrocarbon biodegradation (Cassiani et al. 479 

2014). The conceptual model offers a window into in situ bioattenuation at the LNAPL-affected site and represents a 480 

tool for sharing robust evidence of microbiological activity to policymakers, who very often do not recognize natural 481 

attenuation (NA) as a remediation technology and oppose its application for limited information on natural attenuation 482 

processes (Declercq et al. 2012; Lari et al. 2019). The methods advocated in this paper could help promote a high 483 

degree of confidence and return of experience from the CSM, so NA technology could be seen as eligible by 484 

environmental authorities. Besides, the multi-source model led to the understanding of both the real pollutant 485 

characteristics and the contamination mechanisms depending on the hydraulic dynamics (Ciampi et al. 2021a). 486 

Laboratory tests proved necessary to verify the occurrence of aged product persisting in the residual phase (Lekmine et 487 

al. 2017; Vozka et al. 2019). The smearing of LNAPL caused by the water table fluctuation (Gatsios et al. 2018), the 488 
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entrapment of an "immobile" phase at the base of the aquifer linked to intensive pumping, and the detection of 489 

lithotypes affected by the presence of residual product may be unveiled only by data fusion into a hydrogeophysical 490 

clone (Ciampi et al. 2021a). Again, ERTs are crucial to delineate the geometry of the base clay shallow interface, which 491 

is poorly solved by relying on borehole data exclusively. In the absence of sediment geoelectric signature spatialization, 492 

the association of a fluorescence signal to the base clays would remain approximate and uncertain. The joint-modeling 493 

findings identify the secondary contamination source that sporadically and slowly releases constituents into 494 

groundwater as a result of both piezometric surface fluctuation and horizontal groundwater flow that can cross LNAPL 495 

accumulations in the saturated aquifer (Gatsios et al. 2018; Lari et al. 2018). Such a conceptual reconstruction also 496 

explains the sporadic presence of a TPH plume downstream of the barrier, coherently with the evidence derived by 497 

Flores Orozco et al. (2021) via multi-frequency complex conductivity imaging. Future integration of complex 498 

conductivity imaging data into the multi-source model may exploit the full potential of the method adopted in this study 499 

by providing a quasi-continuous link between textural information, aquifer hydraulic properties, preferential plume 500 

transport pathways, hydrocarbon concentrations, and biogeochemical transformations via quantitative interpretation of 501 

electrical signatures of subsurface phenomena in addition to geologic contrast. Following the principles of Binley et al. 502 

(2015), Jones et al. (2009), and Crook et al. (2008), the confluence of disparate types of hydrogeophysical geomodeling 503 

develops a picture linking hydrologically relevant properties and measurable geophysical parameters of the 504 

contaminants. The fusion of multiple data sources into the data-driven model is critical to understand the underlying 505 

mechanisms that influence contamination dynamics (Ciampi et al. 2021a; Kueper et al. 2014). The fusion, exchange, 506 

and extraction of knowledge from multi-source data pursue the concepts of Breunig et al. (2019), enhancing the 507 

interoperability of multi-modal information and further advancing the utility of merged data to explain the contaminant-508 

physicochemical behavior and guide the design of a remediation strategy tailored to site-specific characteristics. In this 509 

sense, Ciampi et al. (2021b) exploit the capabilities of the big-data package and conceptual model confined to the scale 510 

of a pilot test for 4D time-lapse monitoring of decontamination dynamics induced by reagent injection in the source 511 

area via two additional ERT profiles. Although the above study does not account for the LIF and ERT investigations 512 

reported in this work, it unveils the potential performance of the data-driven model in handling end-of-process 513 

remediation strategies, by interpreting the physicochemical modifications in space-time induced by the remediation 514 

process at the field scale and revealing the mobilization of the immobile material constituting the residual phase of 515 

hydrocarbons. 516 

5. Conclusions 517 
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The 3D hydrogeophysical model exploits information from different sources to discretize the different causes 518 

influencing the measured physicochemical properties, differentiating the signature of geologic features from the 519 

contamination effects and explaining pollution dynamics in space-time. GC-MS analyses unveil a source-aging scenario 520 

of petroleum hydrocarbon contamination while LIF investigations delineate the subsoil volume impacted by the 521 

presence of residual spilled fuel fraction. Incorporating electrical models from geophysical surveys into the 522 

hydrogeochemical model surmounts the limitations of spatial aliasing associated with conventional geological 523 

investigations and permits to improve the geophysical interpretation. In particular, our approach allows us to 524 

discriminate low conductivity values related to clay layers and due to aging hydrocarbon contaminants. At a 525 

contaminated site subject to remediation action through groundwater extraction wells, bridging such a gap and 526 

capturing the spatial variations of the data permits to understand the pollution mechanisms within the geological and 527 

hydraulic framework. The integrated analysis and joint data modeling approach unmask the LNAPL weathering and 528 

reveal both the trapping of residual phase hydrocarbons across the smear zone and locally to the aquifer base, due to 529 

water table fluctuation and hydraulic perturbations triggered by extraction wells. On the one hand, the redistribution and 530 

sequestration of aged contaminants in the separated phase by hydraulic processes is in agreement with the geological 531 

units and the presence of low permeability layers. On the other hand, LNAPL aging reduces the mobility of pollutants 532 

both trapped in pore spaces and adsorbed onto the solid matrix. The geodatabase-driven and multi-modality portrayal 533 

emphasize the need for a large amount of multi-source data to build a reliable and high-resolution conceptual model, an 534 

indispensable prerequisite for planning an effective remediation strategy. 535 
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