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ABSTRACT 

A commercial soda-lime glass slide was decorated with palladium nanoparticles by UV light 

irradiation. The response, limit of detection, response and recovery times of the resistive gas 

sensor obtained were investigated at different temperatures (300-500°C) with four different 

gases (acetone, benzene, ethanol, and toluene). To overcome the main problem of this type of 

sensor (the lack of selectivity due to the one-dimensional output signal) a new approach was 

applied, which merges the sensor response values at different working temperatures. The 

responses obtained at five different temperatures (300-500°C), combined into 5-dimensional 

points, were then analyzed using a support vector machine. After a calibration with a training 

dataset, the detection system was able to accurately classify (recognize the gas) and quantify 

(estimate its concentration) all tested gases. The results showed that this sensing system 

achieved perfect classification (100%) and a good estimation of the concentration of tested 

gases (average error <19% in the range 1-30 ppm). These performance demonstrate that with 

our approach (different temperatures and machine learning) a single resistive sensor made of 

glass can achieve true selectivity and good quantification, while remaining much simpler, 

smaller and cheaper than an electronic nose. 

 

Keywords: Gas sensor, Soda-lime glass, Pd, Selectivity, Machine learning  
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1. Introduction 

The detection of volatile compounds and gases in different places (work, home, car 

interiors, hospitals, etc.) is increasingly important because of the pollution related to 

urbanization and industrialization. A capillary network of sensors is important in agriculture 

[1], food and beverage quality control [2], security against terrorism [3], and medical 

diagnosis [4].  

Metal oxide semiconductors (MOS) are being used extensively as gas sensors because of 

their high sensitivity to a wide range of gases and compounds and relatively simple detection 

mechanism, providing an easily processable signal. MOS nanostructures are the last and best 

generation of such devices because their huge surface-to-volume ratio gives them a very high 

active interface with gas particles, thereby increasing their response [5]. In addition, the 

properties of the sensors can be tuned by changing the size and shape of MOS nanostructures 

because of their structure-dependent behavior [6,7]. Unfortunately, the stability of these 

nanostructures to temperature and humidity requires improvement. Different approaches, such 

as hybrid nanostructures [8,9] and surface decoration with catalytic noble metal nanoparticles, 

have been used to improve the sensitivity and selectivity of MOS gas sensors [10,11]. Metal 

nanoparticles work through two effects: chemical and electronic sensitization. In the first 

case, the metal has catalytic activity that depends on the gas being detected, as well as its 

dissociation and adsorption. In the second case, a Schottky barrier is formed at the interface 

between the two materials, and the modulation of its height greatly improves the sensor 

response. 

Most substrates used for such devices are silicon or glass [12,13]. Recently, glass has also 

been investigated as a sensing material because it is inexpensive and can be worked easily 

with microelectronics techniques. This way, the glass can act as both the structural substrate 

and active sensing material. Porous glass was impregnated through two-step coloration 

reactions to obtain an optical sensor that can detect ppb-levels of NO2 [14]. A thin film of fast 
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proton-conducting glass was used to fabricate solid-state potentiometric hydrogen and 

methanol sensors that can work at room temperature [15,16]. Peres et al. used glass material 

as a resistive sensor for the first time in 2018, demonstrating its ability to discriminate 

different VOC vapors [17]. The sensing mechanism of soda-lime glass was recently 

investigated. The results showed that the glass polarization is affected by the reaction of 

gaseous species on its surface [18]. Because the diffusion of ions inside the glass is a 

thermally activated effect, the sensing performance is expected to change with working 

temperature. A recent study focused on the functionalization of soda-lime glass with different 

noble metal nanoparticles to compare their sensing performance [19]. 

Unfortunately, the main problem with this type of sensor whose output signal is one-

dimensional (for example current or voltage) is that the response is a pure number, and 

therefore inherently non-selective. For this reason, a resistive sensor works well only in 

limited conditions, when the gas to be measured is only one. To overcome this defect, 

numerous sensors based on different materials are often used together in an array, in order to 

increase the dimensionality and therefore the information that the sensing system gives out 

[20,21]. This is the approach used in electronic noses, which have attracted considerable 

interest [22-24]. Unfortunately, this traditional approach in electronic noses requires separate 

electrical connections for each sensor and different conditions for each material (metal oxides 

need high temperatures, polymers and small conjugated molecules need low temperatures, 

etc.) and this makes them complex, large, and expensive. 

Therefore, a different approach was used in this study to achieve true selectivity while 

keeping the complexity and size of the device low: different temperatures were used instead 

of different materials [25,26]. In this novel approach, the responses obtained at different 

working temperatures were combined (similar to how the responses from different materials 

are combined in traditional electronic noses), and processed through machine learning 

algorithms [27,28].  
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Specifically, in this study a single slide of soda-lime glass was functionalized with Pd 

nanoparticles and used at the same time as a substrate and sensing material between 

interdigitated metal electrodes. The sensor responses at different temperatures (300–500°C) 

were combined in a more informative five-dimensional 5D output that was processed using a 

machine-learning algorithm (support vector machine, SVM). Each 5D point was the 

combination of five responses at the same concentration of the same gas, but collected at 

different working temperatures. A first dataset of 5D points was used to train the system (a 

kind of calibration), while a second dataset of 5D data was used to test the sensor 

performance. 

The detection system obtained a perfect classification (accuracy and specificity = 100%) 

of the four tested gases (acetone, benzene, ethanol and toluene) and a good estimate of their 

concentrations (error <19% for concentrations above 1 ppm). These results demonstrate that 

by exploiting the response at different temperatures, real selectivity can be achieved using 

only a simple soda-lime glass based resistive sensor. 

  

2. Experimental 

2.1. Preparation of the Pd-functionalized soda-lime glass 

Soda-lime glass microscope slides were purchased from Knittel-Gläser (Germany). The 

soda-lime glass surface was functionalized by dipping the slides into a solution of PdCl2 

dissolved in deionized water (Fig. 1b). The glass slides were then irradiated with 0.11 

mW/cm2 of UV light for 1 s (Fig. 1c). The short irradiation time (like the choice of Pd 

functionalization) was determined from an optimization step recently reported [19]. Finally, to 

remove residual solvents and improve the crystallization of the Pd nanoparticles 

functionalized on soda-lime glass slides, the samples were annealed at 500°C for 30 min (Fig. 

1d). The sensing material was ready at the end of these steps (Fig. 1e). 
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2.2. Characterization 

The morphology of the functionalized glasses was examined by field emission scanning 

electron microscopy (FE-SEM, JEOL 7600 F). The elemental composition of the Pd-glass 

slide was investigated by energy-dispersive X-ray spectroscopy (EDX) incorporated in the 

FE-SEM. The hysteresis I-V loops were measured using a Keithley 2400 sourcemeter. 

 

2.3. Gas sensing test 

The gas sensor was fabricated by depositing interdigitated electrodes (Pt over Ti, with a 

thickness of 200 and 50 nm, respectively) by DC sputtering on the glass surface through 

shadow masks (Fig. 1f,g). The two comb-like electrodes had seven fingers with a width of 

400 microns and a gap of 400 microns between them (Fig. 1h,i). The two metal electrodes 

were connected to a Keithley 2400 Sourcemeter, and a constant DC bias of 1 V was applied. 

The current flowing through the sensing material was used to calculate the dynamic response 

of the sensor. The sensor was then inserted into a horizontal-quartz oven that could be heated 

to several hundred degrees Celsius. Pure synthetic dry air was flowed into the chamber for 30 

min while the sensor was kept at a constant DC bias of 1 V to stabilize its signal. Each target 

gas (acetone, benzene, ethanol, and toluene) was then injected cyclically into the sensing 

chamber, while maintaining a total flow rate of 500 sccm. The sensor response was calculated 

as Ig/Ia, where Ig is the current in the presence of a target gas, and Ia is the current flowing 

through the sensor in dry air. 

 

3. Results and discussion 

3.1. Characterization of the Pd-functionalized glass 

The morphology of the glass slide before and after the functionalization with Pd 

nanoparticles was examined by FE-SEM, as shown in Fig. 2. Several Pd nanoparticles 

covered the glass surface homogeneously (Fig. 2b), which is in contrast to the smooth surface 
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of the bare glass shown in Fig. 2a. The particles had diameters in the range of 100–200 nm. 

This coverage was chosen because a previous study found it to be the most effective for 

improving the sensing properties of soda-lime glass [19]. EDX was carried out to confirm the 

chemical composition of the nanoparticles. Figs. 2c and d present the EDX spectra of the bare 

and Pd-functionalized glass samples, respectively. The evident peaks corresponding to Si, O, 

Na, Ca, Mg, and Al indicate that the samples are typical soda-lime glass. A peak from Pd was 

observed only for the Pd-functionalized sample, as shown in Fig. 2d, showing that the 

nanoparticles formed on the bare glass slide were Pd. Table S1 lists the chemical composition 

estimated from the integration area of a peak in the EDX spectra. The observed morphology 

and chemical composition confirmed that the functionalization process of the surface was 

successful. 

 

3.2. Sensing mechanism of the Pd-functionalized glass 

The electrical properties of the Pd-functionalized soda-lime glass sensor were 

investigated to understand the sensing mechanism. The results show that the sensor had 

significant electrical conductivities at high temperatures, as shown in Fig. 3. The hysteresis 

feature of the soda-lime glass sample appeared only at 300oC, as shown in Fig. 3a. In addition, 

the maximum current during the I-V loops depends strongly on the sweeping speed, while 

showing a similar shape for various voltages at the same sweeping speed, as shown in Fig. 3b. 

This behavior indicates the accumulation of electrostatic surface charges by local 

electrochemical effects between the electrodes under bias [29,30].  

Exponential capacitive decay was observed upon DC biasing (Fig. 3c), indicating that 

polarization developed in the Pd-functionalized soda-lime glass [31-33]. The three continuous 

runs took 30 minutes to reach a steady current of approximately 0.045 μA at 300°C and 1 V 

DC bias. At this stage, the maximum charge was stored between the electrodes by glass 

polarization [34,35]. The electrical charge eventually dissipates during a final continuous run, 
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i.e., 0 V-4th run in Fig. 3c. A significant negative current, ranging from -0.37 to -0.03 μA, 

flowed through the sourcemeter without an external bias for more than 500 s after the three 

continuous runs, eventually leading to an equilibrium zero current. The temperature-

dependent hysteresis I-V loops (Fig. 3d) revealed the Arrhenius behavior [36] of the 

conductivity in the Pd-functionalized soda-lime glass sample.  In our earlier report [18], the I-

V characteristics of bare soda-lime glass were presented. For example, the I–V loop obtained 

at 1 V and sweeping rate of 120 s/sweep at 300oC revealed a current of ±0.21 A, 

corresponding to a resistance value of 4.76 MThis confirms that the soda-lime glass 

without Pd decoration is quite insulating. The I-V loops obtained from the Pd-decorated soda-

lime glass at the same condition revealed a current of ±0.12 A, corresponding to a resistance 

value of 8.33 MThis indicates that the Pd decoration makes a greater resistance value in 

comparison to the bare soda-lime glass. 

A previous study described the gas sensing mechanism for the Pd-functionalized glass 

[19]. Under high working temperatures, alkali ions with a positive charge in the soda-lime 

glass can gain good mobility and rearrange themselves under an applied external electric field. 

This results in a concentration gradient of the cations, leading to the macroscopic glass 

polarization, as shown schematically in Fig. 4a. Under this circumstance, the output current (I) 

at a fixed applied voltage can be explained as I=Iv-Ic, where Iv and Ic are voltage- and charge-

dependent current terms, respectively. Although Iv is dependent only on the applied voltage, Ic 

is strongly dependent on the number of mobile cations. When a bias voltage is applied, 

mobile alkaline positive ions, such as Na+, are highly populated near the cathode. Electrical 

neutral compounds (ENCs) were formed when a target gas was introduced to the glass sensor, 

reducing the polarization of the glass sensor. Accordingly, Ic decreases, which can explain the 

increase in total current when a target gas is introduced.  

As illustrated in Fig. 4b, Pd nanoparticles can play a catalytic role in facilitating the 
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decomposition of target gas molecules and providing a spillover effect, leading to more 

surface reactions. Hence, more ENCs were generated, and Ic is reduced further. This is why 

Pd functionalization gives an increased output current, resulting in an enhanced gas response. 

In our earlier work [19], the specific effects of metal decoration such as Pd, Pt and Au on 

soda-lime glass were investigated. The gas sensing results revealed that Pd functionalization 

leads to a relatively high selectivity to benzene. This selective sensing property was explained 

by the adsorption energy of benzene onto Pd. The experimental adsorption energy of benzene 

onto Pd was 1.35 eV, which is a good value for easy adsorption and desorption in comparison 

with the values of other metals. 

As shown in Fig. S2, sensing properties toward hydrogen and ammonia gases of the Pd-

decorated soda-lime glass sensor were also tested. Regardless of the well-known effect of Pd 

on hydrogen sensing capability, the sensor in this work showed a superior benzene-sensing 

capability in comparison with all other tested gases such as ethanol, acetone, toluene, 

hydrogen, and ammonia at the optimized operating temperature of 350oC.  

 

3.3. Dynamic current and traditional selectivity 

The Pd-functionalized glass sensor was exposed to different concentrations of acetone, 

benzene, ethanol, and toluene gas, as listed in Table S2. The background color of the columns 

will be important in the next section, when it will be used to explain the machine learning 

post-processing. 

As a first step, the dynamic current passing through the sensor was measured during a 

few gas cycles at different concentrations. All the plots showed similar behavior (Fig. 5), with 

the dynamic current increasing steeply when the gas was injected and then decreasing when 

the gas was expelled. The current increased significantly with increasing gas concentration. In 

all cases, the current returned to its previous value, proving the reversibility of the sensor 

response. During each peak (a period in which the gas concentration was constant), the sensor 
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current tended to drop more or less noticeably. This did not affect the sensor operation 

because the decrease was slow compared to the sensor response and recovery times. 

The sensor responses for each gas were calculated from Fig. 5, as described in Section 

2.3. Fig. 6 presents the results for 100 ppm for each gas. Typically, these measurements are 

used to determine the optimal working temperature for a sensor to maximize its response. In 

the present case, these data are much more important. The responses towards all gases 

reached their maximum at the same temperature: 350°C. The sensor stability was tested by 

measuring the dynamic sensing curve for repeated cycles of 10 ppm benzene gas at 350oC, 

and the result is shown in Fig. S1. It shows that the sensor responses fall in a reasonable error 

range for five measurements, evidently demonstrating the good sensor stability. More 

important than the temperature at which the maximum response is obtained, is the internal 

structure between the bars at 350°C, showing that the selectivity also reached its maximum at 

this temperature. Note that the selectivity is traditionally defined as the lowest value among 

the partial selectivities, which were calculated on each couple of gases [37]. For example, at 

all temperatures the sensor was selective to benzene, with toluene being the first interferer 

(except at 350°C). At 350°C, the responses of both ethanol and benzene increased 

considerably; the sensor was still selective to benzene, but the first interferer, in this case, was 

ethanol. The selectivity of benzene towards the other interfering gases was as follows: 4.3 

(acetone), 2.25 (ethanol), and 3.7 (toluene). Therefore, the overall selectivity of the sensor at 

350°C was 2.25. The selectivity was calculated at different temperatures to confirm the best 

selectivity of the sensor, as listed in Table 1.  

The selectivity at 350°C was the best for the glass sensor, which showed more than 

double the response to benzene than to ethanol. A situation like the one in Fig. 2 at 350°C was 

much better than that at 300°C because the sensor responds much more intensely to a single 

gas than to the other gases. 

Nevertheless, if one of the tested gases is injected on the sensor without knowing which 
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one, there is no information as to which gas it is. Any response could be generated by a low 

concentration of benzene, a higher concentration of ethanol, or an even higher concentration 

of acetone or toluene. Therefore, a novel approach was applied, which uses the response 

values at different working temperatures as multidimensional data to be processed by machine 

learning algorithms to achieve real selectivity. This idea combines the different responses 

(obtained at different working temperatures) in more informative 5D points.  

Each very informative 5D point contains the five response values and all the correlations 

among them. In other words, each 5D point summarizes one thermal fingerprint (response as 

a function of the working temperature), as shown in Fig. 7, and previously explained 

elsewhere [38,39]. 

Each plot in Fig. 7 is relative to one gas and can be used to recognize it with future 

measurements because its shape is characteristic of that gas. In a first step, a series of these 

fingerprints (in form of 5D points) was given to the sensing system to teach it how to 

recognize each gas (like a more complex calibration step). During this step, a set of 5D points 

was provided with two labels: the name of the gas and its concentration. The sensing system 

can learn the shape of each gas-specific fingerprint, and, by comparing the fingerprint of a 

new unknown measurement, recognize the gas in a new test. The second label (the gas 

concentration) is important because the fingerprint of each gas maintains the same shape, but 

changes with the gas concentration, as shown in Fig. 8. 

Fig. 8 shows the thermal fingerprints obtained for different concentrations of ethanol gas. 

The shape of the fingerprint remains the same, but the intensity increases with increasing gas 

concentration. Owing to these two labels, the system can learn how to recognize each gas and 

subsequently estimate its concentration. Note that the system can be trained to recognize new 

gases and distinguish them. The system only needs a first training dataset for each gas, as for 

a simpler calibration step. 
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3.4. Principal component analysis (PCA) 

Because the data used by the sensing system are 5-dimensional, it is impossible to 

visualize them on a screen or paper. To give the reader an idea of how the sensor works, a 

dimensions reduction was applied through principal components analysis (PCA). This 

unsupervised method is a statistical procedure, in which the data are fed to the system with no 

label. The procedure is used frequently to reduce the number of dimensions and allow the data 

to be visualized. This type of projection chooses the principal components as the orthogonal 

directions, maximizing the variance of each subsequent component. 

Fig. 8 shows the first three principal components, helping to visualize the relationships 

among the points better. Each point in Fig. 9 is the reduction from a 5D point to a 3D point, 

which contains all the measurements of the same gas at the same concentration but at different 

working temperatures. Each segmented line in Fig. 7 or 8 is combined in a multidimensional 

point that is then minimized in a colored point in Fig. 9. Only the training points come with a 

label that identifies them as relating to a certain gas, which translates into a color in the PCA 

plot. A small dense cloud of cyan points, relative to air without any target gas, can be seen in 

the center of Fig. 9. The points cluster quite densely because there is no difference among 

them. Therefore, the different position rises only from the error on the raw signal from the 

sensor. Around this cyan cloud, the points relative to the target gases (acetone in red, ethanol 

in green, benzene in blue, and toluene in purple) lay on curved lines, quite far from each 

other. Owing to the PCA projection, they are well separated and easy to distinguish.  

The fact that the points of each gas are not grouped in a small cloud (as is often reported) 

is not a weak point of this method. Points lying on lines instead of in small clouds make it 

more difficult to classify a system. However, this makes it possible to perform further analysis 

and obtain an estimate of the gas concentrations, as shown in section 3.6. 

 

3.5. Classification of gases 
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As shown in the previous section, points relating to different gases occupy different 

regions of space. The points relating to the different gases are recognizable in Fig. 9, 

facilitating the classification of new unknown points based on their position with respect 

them. For example, a new gray dot from a new sensor measurement can be classified by 

looking at Fig. 9 and seeing near which line of dots it is placed. If it is close to the purple 

spots, the gas in question will likely be toluene. This assessment can be made using the 

human eye; however, the sensing system can work in five dimensions. 

The core of the sensing discrimination and selectivity is a support vector machine, which 

is a supervised learning algorithm that produces a model consisting of 4D hyperplanes in 5D, 

which indicate the boundaries between 5D areas corresponding to different gases. This model 

is produced using a first dataset of training points (the ones shown in Fig. 9) to recognize the 

regions of 5D space “belonging” to each target gas. 

Any new data (the points with a white background in Table S2) are compared by the 

system with the trained model to classify it. Table 2 lists the confusion matrix of the sensor 

classification; each row is related to the actual gas in the sensing chamber, while each column 

is giving the gas that the sensing system has identified. This means that the numbers on the 

diagonal of the matrix are correctly identified measurements, while those outside are 

misclassified. As listed in Table 2, the Pd-decorated soda-lime glass sensors performed 

perfect classification, with an accuracy and a specificity of 100%. This proves that the SVM, 

working in 5D space, discriminates even better than the human eye with only a three-

dimensional plot in Fig. 9. 

As shown in Fig. S3, the sensor was also tested with a 50-50% mixture of benzene and 

toluene, in order to verify if the system is able to distinguish and quantify even gas mixtures. 

As can be seen, the points relating to the two gases and the mixture are well separated, and 

follow distinct lines. It should be emphasized that the concentration, in all three cases, 

increases from bottom to top in the figure (from 1 to 100 ppm). The first step carried out by 
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the sensor is to distinguish the two gases and the mixture. A support vector machine acts as a 

classifier, and recognizes (using a first series of "calibration" points) the areas of the 5D space 

where the points relating to benzene, toluene and the mixture are located. In this way, each 

new measurement made with the sensor is automatically labeled by the system, which 

recognizes what is present in the measurement chamber, whether it is gas or mixture.  

 

3.6. Estimation of gas concentration 

The previous section showed that the sensing system can perfectly classify the test gases, 

even if the new measurements are taken at different concentrations. In other words, the sensor 

can distinguish the 5D space areas related to each gas, even if the points of each gas in Fig. 9 

are very far from each other. This arrangement of points makes the classification more 

difficult, but it can achieve a further objective, which is illustrated and explained. Small and 

dense clouds of points from PCA plots (unlike in Fig. 9) can be managed easily using 

untrained methods, relying on the distance between points. On the other hand, this 

arrangement makes it impossible to differentiate the points belonging to the same gas at 

different concentrations. 

Because the points in Fig. 9 are distant and positioned on lines, a support vector regressor 

can be used to estimate the gas concentration of each point [40,41]. This step must be done 

after the previous one because the system needs to know how the gas has been classified. As 

in the previous section, the classification occurs using four different combined dual 

classifiers; here, four regressors are used, one for each gas. Each SV regressor is trained with 

the data classified for that gas, using their concentration label. Each new point is sent to the 

regressor chosen by its classification. An incorrect classification would often lead to an 

incorrect estimate of the concentration. 

The sensing system can understand which gas is present and its concentration, even 

though that gas has not been tested at that specific concentration. Fig. 10 presents the support 
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vector regression results, where each gas is plotted in a different color. As already mentioned, 

if a point is classified incorrectly in the previous step, it would be plotted with a different 

(incorrect) color. 

The points in Fig. 10 indicate the regression results: the concentration estimate versus the 

real concentration of the gas. The true concentrations (on the abscissas) correspond to those of 

the test points (those with a white background in Table S2). The quality of the regressor 

estimates is easy to evaluate in Fig. 10 because the diagonal indicates the perfect estimate, 

which corresponds to the true concentration. As shown in Fig. 10, the points relative to all 

four gases are laying close to the diagonal, meaning that the estimated concentrations are 

good. The mean percentage error for each gas was calculated to quantify how good the 

concentration estimate is, as listed in Table 3. 

The test points were chosen to be alternating with those used to teach the model, as listed 

in Table S2. In this way, the test points are as far as possible from the reference points, and 

the error is the maximum achievable. This means that measurements of random 

concentrations (a more realistic case) would be characterized by a smaller error. Benzene and 

ethanol showed larger errors than acetone and toluene. The sensor could not detect acetone at 

sub-ppm concentrations; thus, the point at 0.2 ppm is missing for acetone. The error was 

strongly affected by the points on the left (Fig. 9). Indeed, the error has a common trend for 

most gases; it is higher at low concentrations, lower in the middle, and larger (but less) at 

higher concentrations. 

Two effects can explain this: i) the calibration border and ii) the proximity to the limit of 

detection [42]. The support vector machine model works like a calibration; it works worse 

away from trained concentrations. Hence, the model is weaker approaching the border of the 

trained interval, and the error is larger. This occurs at both extremities of the tested 

concentrations range. Furthermore, the limit of detection of the sensor is being approached on 

the left of Fig. 10. Therefore, the raw response of the resistive sensor gradually loses its 
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meaning. This second effect adds to the first, further enlarging the error of the estimate. 

The analysis can be limited to this concentration interval, given that most of the hazard 

thresholds are in the ppm range. If the average percentage error leaving out the points below 1 

ppm can be calculated, the sensing system is much more precise, as shown in Table 4. 

Considering only the concentrations above 1ppm, the average percentage errors are 13.2%, 

29.4%, 18.2%, and 14.7% for acetone, benzene, ethanol, and toluene, respectively. In 

addition, as shown in Fig. S4, The error on the measurement of the mixture concentration 

(14.4%) is comparable to that made on the single gases (benzene 13.3%, toluene 8.5%). Such 

errors are acceptable, especially considering that the dangerousness of the various gases varies 

with the order of magnitude of the concentration and not with the individual ppm. 

These results indicate that this is not a theoretical technique, because it has proven to be 

able to discriminate individual gases perfectly (100% correct classification) in the case of real 

measurements, even in double blind conditions. It is also worth pointing out that with this 

technique the sensor system makes decisions autonomously, without the need for the presence 

of a human operator. 

 

4. Conclusions 

A resistive gas sensor based on Pd-decorated soda-lime glass with metal interdigitated 

electrodes was fabricated and used to detect four different reducing gases (acetone, benzene, 

ethanol, and toluene). The response values obtained at five different working temperatures 

(300-500°C in steps of 50°C) were combined in highly informative 5-dimensional points, 

which were then processed using machine learning algorithms. Using a support vector 

machine as a classifier and then as a regressor, one single sensor was able to discriminate all 

four gases perfectly (100%) and estimate their concentrations with an average error <19%. 

With this novel approach that uses one single sensor at different temperatures instead of 

several sensors of different materials, it was possible to achieve true selectivity and good 
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quantification with a much smaller, simpler and cheaper detection system than a traditional 

electronic nose. This could allow the widespread diffusion of tiny selective sensors integrated 

into portable devices and networked, enabling to monitor the environment much more 

effectively. 
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Table and Figure Captions 

Table 1. Selectivity measured at different working temperatures. 

Table 2. Confusion matrix for the testing points (in each row, there is the true gas, while in 

each column, there is the gas identified by the sensing system). 

Table 3. Average percentage error calculated for each gas. 

Table 4. Average percentage error calculated for each gas, limited to concentrations greater 

than 1 ppm. 

Fig. 1.  Process steps to obtain the sensing material (a-e) and steps to fabricate the sensing 

device (f-i). (a) Commercial soda-lime slide, b) immersion in solution, c) irradiation with UV 

light, d) annealing at 500°C, e) Pd-functionalized soda-lime glass. f) deposition of an 

adhesion layer of Ti, g) deposition of the Pt electrode, h) final sensor, i) cross-section of the 

sensor to show the different materials. 

Fig. 2.  FE-SEM images and EDX spectra of the bare glass (a and c) and Pd-functionalized 

glass (b and d) surfaces, respectively.  

Fig. 3.  Electrical characteristics of the Pd-functionalized soda-lime glass: (a) Normalized 

hysteresis I-V loops using at different temperatures in a continuous sequence from 100 to 

300oC with 120 s/sweep sweeping speed. (b) Hysteresis I-V loops for various sweeping 

speeds measured in a continuous sequence from 12 to 120 s/sweep at 300oC. The inset 

presents the hysteresis I-V loops obtained at various sweeping voltages in a continuous 

sequence from 0.5 to 5 V using sweeping speed for 120 s/sweep at 300oC. (c) Capacitive 

decays of current obtained under 1 V DC bias for three continuous runs, followed by the 

fourth unbiased run at 300oC. (d) Temperature dependence of the electrical conductance. The 

data points represent the corresponding conductance values calculated with the current I 

values during the I-V sweeping at various temperatures. 

Fig. 4.  Schematic illustration of the sensing mechanism of Pd-functionalized soda-lime glass: 

(a) Macroscopic glass polarization under external electric field and cation change by the target 

gas in a bare glass. (b) Catalytic effect by Pd functionalization after the introduction of the 

target gas. 

Fig. 5.  Plots of the dynamic current measured at different temperatures for different gases at 
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different concentrations. 

Fig. 6. Sensor response to 100 ppm of each gas, measured at different temperatures. 

Fig. 7. Thermal fingerprints (sensor response as a function of working temperature) relative 

to each gas, measured at a concentration of 100 ppm. 

Fig. 8. Thermal fingerprints (sensor response as a function of the working temperature) 

relative to different concentrations of ethanol gas. 

Fig. 9. Three-dimensional plot of the first three principal components, showing the data 

relative to the different gases in different colors. 

Fig. 10. Concentration estimate by the sensing system (Y-axis) versus real concentration (X-

axis). Perfect estimates lay on the diagonal. 
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Table 1. Selectivity measured at different working temperatures. 

Temperature 300°C 350°C 400°C 450°C 500°C 

Target gas benzene benzene benzene benzene benzene 

First interferer toluene ethanol toluene toluene toluene 

Selectivity 1.17 2.25 1.19 1.06 1.005 
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Table 2. Confusion matrix for the testing points (in each row, there is the true gas, while in 

each column, there is the gas identified by the sensing system). 

 Acetone Air Benzene Ethanol Toluene 

Acetone 2     

Air  5    

Benzene   3   

Ethanol    3  

Toluene     3 
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Table 3. Average percentage error calculated for each gas. 

Gas Acetone Benzene Ethanol Toluene 

% Error 17.9 63.9 70.6 15.4 
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Table 4. Average percentage error calculated for each gas, limited to concentrations greater 

than 1 ppm. 

Gas Acetone Benzene Ethanol Toluene 

% Error 13.2 29.4 18.2 14.7 
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ABSTRACT 

A commercial soda-lime glass slide was decorated with palladium nanoparticles by UV light 

irradiation. The response, limit of detection, response and recovery times of the resistive gas 

sensor obtained were investigated at different temperatures (300-500°C) with four different 

gases (acetone, benzene, ethanol, and toluene). To overcome the main problem of this type of 

sensor (the lack of selectivity due to the one-dimensional output signal) a new approach was 

applied, which merges the sensor response values at different working temperatures. The 

responses obtained at five different temperatures (300-500°C), combined into 5-dimensional 

points, were then analyzed using a support vector machine. After a calibration with a training 

dataset, the detection system was able to accurately classify (recognize the gas) and quantify 

(estimate its concentration) all tested gases. The results showed that this sensing system 

achieved perfect classification (100%) and a good estimation of the concentration of tested 

gases (average error <19% in the range 1-30 ppm). These performance demonstrate that with 

our approach (different temperatures and machine learning) a single resistive sensor made of 

glass can achieve true selectivity and good quantification, while remaining much simpler, 

smaller and cheaper than an electronic nose. 

 

Keywords: Gas sensor, Soda-lime glass, Pd, Selectivity, Machine learning  
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1. Introduction 

The detection of volatile compounds and gases in different places (work, home, car 

interiors, hospitals, etc.) is increasingly important because of the pollution related to 

urbanization and industrialization. A capillary network of sensors is important in agriculture 

[1], food and beverage quality control [2], security against terrorism [3], and medical 

diagnosis [4].  

Metal oxide semiconductors (MOS) are being used extensively as gas sensors because of 

their high sensitivity to a wide range of gases and compounds and relatively simple detection 

mechanism, providing an easily processable signal. MOS nanostructures are the last and best 

generation of such devices because their huge surface-to-volume ratio gives them a very high 

active interface with gas particles, thereby increasing their response [5]. In addition, the 

properties of the sensors can be tuned by changing the size and shape of MOS nanostructures 

because of their structure-dependent behavior [6,7]. Unfortunately, the stability of these 

nanostructures to temperature and humidity requires improvement. Different approaches, such 

as hybrid nanostructures [8,9] and surface decoration with catalytic noble metal nanoparticles, 

have been used to improve the sensitivity and selectivity of MOS gas sensors [10,11]. Metal 

nanoparticles work through two effects: chemical and electronic sensitization. In the first 

case, the metal has catalytic activity that depends on the gas being detected, as well as its 

dissociation and adsorption. In the second case, a Schottky barrier is formed at the interface 

between the two materials, and the modulation of its height greatly improves the sensor 

response. 

Most substrates used for such devices are silicon or glass [12,13]. Recently, glass has also 

been investigated as a sensing material because it is inexpensive and can be worked easily 

with microelectronics techniques. This way, the glass can act as both the structural substrate 

and active sensing material. Porous glass was impregnated through two-step coloration 

reactions to obtain an optical sensor that can detect ppb-levels of NO2 [14]. A thin film of fast 
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proton-conducting glass was used to fabricate solid-state potentiometric hydrogen and 

methanol sensors that can work at room temperature [15,16]. Peres et al. used glass material 

as a resistive sensor for the first time in 2018, demonstrating its ability to discriminate 

different VOC vapors [17]. The sensing mechanism of soda-lime glass was recently 

investigated. The results showed that the glass polarization is affected by the reaction of 

gaseous species on its surface [18]. Because the diffusion of ions inside the glass is a 

thermally activated effect, the sensing performance is expected to change with working 

temperature. A recent study focused on the functionalization of soda-lime glass with different 

noble metal nanoparticles to compare their sensing performance [19]. 

Unfortunately, the main problem with this type of sensor whose output signal is one-

dimensional (for example current or voltage) is that the response is a pure number, and 

therefore inherently non-selective. For this reason, a resistive sensor works well only in 

limited conditions, when the gas to be measured is only one. To overcome this defect, 

numerous sensors based on different materials are often used together in an array, in order to 

increase the dimensionality and therefore the information that the sensing system gives out 

[20,21]. This is the approach used in electronic noses, which have attracted considerable 

interest [22-24]. Unfortunately, this traditional approach in electronic noses requires separate 

electrical connections for each sensor and different conditions for each material (metal oxides 

need high temperatures, polymers and small conjugated molecules need low temperatures, 

etc.) and this makes them complex, large, and expensive. 

Therefore, a different approach was used in this study to achieve true selectivity while 

keeping the complexity and size of the device low: different temperatures were used instead 

of different materials [25,26]. In this novel approach, the responses obtained at different 

working temperatures were combined (similar to how the responses from different materials 

are combined in traditional electronic noses), and processed through machine learning 

algorithms [27,28].  
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Specifically, in this study a single slide of soda-lime glass was functionalized with Pd 

nanoparticles and used at the same time as a substrate and sensing material between 

interdigitated metal electrodes. The sensor responses at different temperatures (300–500°C) 

were combined in a more informative five-dimensional 5D output that was processed using a 

machine-learning algorithm (support vector machine, SVM). Each 5D point was the 

combination of five responses at the same concentration of the same gas, but collected at 

different working temperatures. A first dataset of 5D points was used to train the system (a 

kind of calibration), while a second dataset of 5D data was used to test the sensor 

performance. 

The detection system obtained a perfect classification (accuracy and specificity = 100%) 

of the four tested gases (acetone, benzene, ethanol and toluene) and a good estimate of their 

concentrations (error <19% for concentrations above 1 ppm). These results demonstrate that 

by exploiting the response at different temperatures, real selectivity can be achieved using 

only a simple soda-lime glass based resistive sensor. 

  

2. Experimental 

2.1. Preparation of the Pd-functionalized soda-lime glass 

Soda-lime glass microscope slides were purchased from Knittel-Gläser (Germany). The 

soda-lime glass surface was functionalized by dipping the slides into a solution of PdCl2 

dissolved in deionized water (Fig. 1b). The glass slides were then irradiated with 0.11 

mW/cm2 of UV light for 1 s (Fig. 1c). The short irradiation time (like the choice of Pd 

functionalization) was determined from an optimization step recently reported [19]. Finally, to 

remove residual solvents and improve the crystallization of the Pd nanoparticles 

functionalized on soda-lime glass slides, the samples were annealed at 500°C for 30 min (Fig. 

1d). The sensing material was ready at the end of these steps (Fig. 1e). 
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2.2. Characterization 

The morphology of the functionalized glasses was examined by field emission scanning 

electron microscopy (FE-SEM, JEOL 7600 F). The elemental composition of the Pd-glass 

slide was investigated by energy-dispersive X-ray spectroscopy (EDX) incorporated in the 

FE-SEM. The hysteresis I-V loops were measured using a Keithley 2400 sourcemeter. 

 

2.3. Gas sensing test 

The gas sensor was fabricated by depositing interdigitated electrodes (Pt over Ti, with a 

thickness of 200 and 50 nm, respectively) by DC sputtering on the glass surface through 

shadow masks (Fig. 1f,g). The two comb-like electrodes had seven fingers with a width of 

400 microns and a gap of 400 microns between them (Fig. 1h,i). The two metal electrodes 

were connected to a Keithley 2400 Sourcemeter, and a constant DC bias of 1 V was applied. 

The current flowing through the sensing material was used to calculate the dynamic response 

of the sensor. The sensor was then inserted into a horizontal-quartz oven that could be heated 

to several hundred degrees Celsius. Pure synthetic dry air was flowed into the chamber for 30 

min while the sensor was kept at a constant DC bias of 1 V to stabilize its signal. Each target 

gas (acetone, benzene, ethanol, and toluene) was then injected cyclically into the sensing 

chamber, while maintaining a total flow rate of 500 sccm. The sensor response was calculated 

as Ig/Ia, where Ig is the current in the presence of a target gas, and Ia is the current flowing 

through the sensor in dry air. 

 

3. Results and discussion 

3.1. Characterization of the Pd-functionalized glass 

The morphology of the glass slide before and after the functionalization with Pd 

nanoparticles was examined by FE-SEM, as shown in Fig. 2. Several Pd nanoparticles 

covered the glass surface homogeneously (Fig. 2b), which is in contrast to the smooth surface 
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of the bare glass shown in Fig. 2a. The particles had diameters in the range of 100–200 nm. 

This coverage was chosen because a previous study found it to be the most effective for 

improving the sensing properties of soda-lime glass [19]. EDX was carried out to confirm the 

chemical composition of the nanoparticles. Figs. 2c and d present the EDX spectra of the bare 

and Pd-functionalized glass samples, respectively. The evident peaks corresponding to Si, O, 

Na, Ca, Mg, and Al indicate that the samples are typical soda-lime glass. A peak from Pd was 

observed only for the Pd-functionalized sample, as shown in Fig. 2d, showing that the 

nanoparticles formed on the bare glass slide were Pd. Table S1 lists the chemical composition 

estimated from the integration area of a peak in the EDX spectra. The observed morphology 

and chemical composition confirmed that the functionalization process of the surface was 

successful. 

 

3.2. Sensing mechanism of the Pd-functionalized glass 

The electrical properties of the Pd-functionalized soda-lime glass sensor were 

investigated to understand the sensing mechanism. The results show that the sensor had 

significant electrical conductivities at high temperatures, as shown in Fig. 3. The hysteresis 

feature of the soda-lime glass sample appeared only at 300oC, as shown in Fig. 3a. In addition, 

the maximum current during the I-V loops depends strongly on the sweeping speed, while 

showing a similar shape for various voltages at the same sweeping speed, as shown in Fig. 3b. 

This behavior indicates the accumulation of electrostatic surface charges by local 

electrochemical effects between the electrodes under bias [29,30].  

Exponential capacitive decay was observed upon DC biasing (Fig. 3c), indicating that 

polarization developed in the Pd-functionalized soda-lime glass [31-33]. The three continuous 

runs took 30 minutes to reach a steady current of approximately 0.045 μA at 300°C and 1 V 

DC bias. At this stage, the maximum charge was stored between the electrodes by glass 

polarization [34,35]. The electrical charge eventually dissipates during a final continuous run, 
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i.e., 0 V-4th run in Fig. 3c. A significant negative current, ranging from -0.37 to -0.03 μA, 

flowed through the sourcemeter without an external bias for more than 500 s after the three 

continuous runs, eventually leading to an equilibrium zero current. The temperature-

dependent hysteresis I-V loops (Fig. 3d) revealed the Arrhenius behavior [36] of the 

conductivity in the Pd-functionalized soda-lime glass sample.  In our earlier report [18], the I-

V characteristics of bare soda-lime glass were presented. For example, the I–V loop obtained 

at 1 V and sweeping rate of 120 s/sweep at 300oC revealed a current of ±0.21 A, 

corresponding to a resistance value of 4.76 MThis confirms that the soda-lime glass 

without Pd decoration is quite insulating. The I-V loops obtained from the Pd-decorated soda-

lime glass at the same condition revealed a current of ±0.12 A, corresponding to a resistance 

value of 8.33 MThis indicates that the Pd decoration makes a greater resistance value in 

comparison to the bare soda-lime glass. 

A previous study described the gas sensing mechanism for the Pd-functionalized glass 

[19]. Under high working temperatures, alkali ions with a positive charge in the soda-lime 

glass can gain good mobility and rearrange themselves under an applied external electric field. 

This results in a concentration gradient of the cations, leading to the macroscopic glass 

polarization, as shown schematically in Fig. 4a. Under this circumstance, the output current (I) 

at a fixed applied voltage can be explained as I=Iv-Ic, where Iv and Ic are voltage- and charge-

dependent current terms, respectively. Although Iv is dependent only on the applied voltage, Ic 

is strongly dependent on the number of mobile cations. When a bias voltage is applied, 

mobile alkaline positive ions, such as Na+, are highly populated near the cathode. Electrical 

neutral compounds (ENCs) were formed when a target gas was introduced to the glass sensor, 

reducing the polarization of the glass sensor. Accordingly, Ic decreases, which can explain the 

increase in total current when a target gas is introduced.  

As illustrated in Fig. 4b, Pd nanoparticles can play a catalytic role in facilitating the 
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decomposition of target gas molecules and providing a spillover effect, leading to more 

surface reactions. Hence, more ENCs were generated, and Ic is reduced further. This is why 

Pd functionalization gives an increased output current, resulting in an enhanced gas response. 

In our earlier work [19], the specific effects of metal decoration such as Pd, Pt and Au on 

soda-lime glass were investigated. The gas sensing results revealed that Pd functionalization 

leads to a relatively high selectivity to benzene. This selective sensing property was explained 

by the adsorption energy of benzene onto Pd. The experimental adsorption energy of benzene 

onto Pd was 1.35 eV, which is a good value for easy adsorption and desorption in comparison 

with the values of other metals. 

As shown in Fig. S2, sensing properties toward hydrogen and ammonia gases of the Pd-

decorated soda-lime glass sensor were also tested. Regardless of the well-known effect of Pd 

on hydrogen sensing capability, the sensor in this work showed a superior benzene-sensing 

capability in comparison with all other tested gases such as ethanol, acetone, toluene, 

hydrogen, and ammonia at the optimized operating temperature of 350oC.  

 

3.3. Dynamic current and traditional selectivity 

The Pd-functionalized glass sensor was exposed to different concentrations of acetone, 

benzene, ethanol, and toluene gas, as listed in Table S2. The background color of the columns 

will be important in the next section, when it will be used to explain the machine learning 

post-processing. 

As a first step, the dynamic current passing through the sensor was measured during a 

few gas cycles at different concentrations. All the plots showed similar behavior (Fig. 5), with 

the dynamic current increasing steeply when the gas was injected and then decreasing when 

the gas was expelled. The current increased significantly with increasing gas concentration. In 

all cases, the current returned to its previous value, proving the reversibility of the sensor 

response. During each peak (a period in which the gas concentration was constant), the sensor 



10 
 

current tended to drop more or less noticeably. This did not affect the sensor operation 

because the decrease was slow compared to the sensor response and recovery times. 

The sensor responses for each gas were calculated from Fig. 5, as described in Section 

2.3. Fig. 6 presents the results for 100 ppm for each gas. Typically, these measurements are 

used to determine the optimal working temperature for a sensor to maximize its response. In 

the present case, these data are much more important. The responses towards all gases 

reached their maximum at the same temperature: 350°C. The sensor stability was tested by 

measuring the dynamic sensing curve for repeated cycles of 10 ppm benzene gas at 350oC, 

and the result is shown in Fig. S1. It shows that the sensor responses fall in a reasonable error 

range for five measurements, evidently demonstrating the good sensor stability. More 

important than the temperature at which the maximum response is obtained, is the internal 

structure between the bars at 350°C, showing that the selectivity also reached its maximum at 

this temperature. Note that the selectivity is traditionally defined as the lowest value among 

the partial selectivities, which were calculated on each couple of gases [37]. For example, at 

all temperatures the sensor was selective to benzene, with toluene being the first interferer 

(except at 350°C). At 350°C, the responses of both ethanol and benzene increased 

considerably; the sensor was still selective to benzene, but the first interferer, in this case, was 

ethanol. The selectivity of benzene towards the other interfering gases was as follows: 4.3 

(acetone), 2.25 (ethanol), and 3.7 (toluene). Therefore, the overall selectivity of the sensor at 

350°C was 2.25. The selectivity was calculated at different temperatures to confirm the best 

selectivity of the sensor, as listed in Table 1.  

The selectivity at 350°C was the best for the glass sensor, which showed more than 

double the response to benzene than to ethanol. A situation like the one in Fig. 2 at 350°C was 

much better than that at 300°C because the sensor responds much more intensely to a single 

gas than to the other gases. 

Nevertheless, if one of the tested gases is injected on the sensor without knowing which 
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one, there is no information as to which gas it is. Any response could be generated by a low 

concentration of benzene, a higher concentration of ethanol, or an even higher concentration 

of acetone or toluene. Therefore, a novel approach was applied, which uses the response 

values at different working temperatures as multidimensional data to be processed by machine 

learning algorithms to achieve real selectivity. This idea combines the different responses 

(obtained at different working temperatures) in more informative 5D points.  

Each very informative 5D point contains the five response values and all the correlations 

among them. In other words, each 5D point summarizes one thermal fingerprint (response as 

a function of the working temperature), as shown in Fig. 7, and previously explained 

elsewhere [38,39]. 

Each plot in Fig. 7 is relative to one gas and can be used to recognize it with future 

measurements because its shape is characteristic of that gas. In a first step, a series of these 

fingerprints (in form of 5D points) was given to the sensing system to teach it how to 

recognize each gas (like a more complex calibration step). During this step, a set of 5D points 

was provided with two labels: the name of the gas and its concentration. The sensing system 

can learn the shape of each gas-specific fingerprint, and, by comparing the fingerprint of a 

new unknown measurement, recognize the gas in a new test. The second label (the gas 

concentration) is important because the fingerprint of each gas maintains the same shape, but 

changes with the gas concentration, as shown in Fig. 8. 

Fig. 8 shows the thermal fingerprints obtained for different concentrations of ethanol gas. 

The shape of the fingerprint remains the same, but the intensity increases with increasing gas 

concentration. Owing to these two labels, the system can learn how to recognize each gas and 

subsequently estimate its concentration. Note that the system can be trained to recognize new 

gases and distinguish them. The system only needs a first training dataset for each gas, as for 

a simpler calibration step. 
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3.4. Principal component analysis (PCA) 

Because the data used by the sensing system are 5-dimensional, it is impossible to 

visualize them on a screen or paper. To give the reader an idea of how the sensor works, a 

dimensions reduction was applied through principal components analysis (PCA). This 

unsupervised method is a statistical procedure, in which the data are fed to the system with no 

label. The procedure is used frequently to reduce the number of dimensions and allow the data 

to be visualized. This type of projection chooses the principal components as the orthogonal 

directions, maximizing the variance of each subsequent component. 

Fig. 8 shows the first three principal components, helping to visualize the relationships 

among the points better. Each point in Fig. 9 is the reduction from a 5D point to a 3D point, 

which contains all the measurements of the same gas at the same concentration but at different 

working temperatures. Each segmented line in Fig. 7 or 8 is combined in a multidimensional 

point that is then minimized in a colored point in Fig. 9. Only the training points come with a 

label that identifies them as relating to a certain gas, which translates into a color in the PCA 

plot. A small dense cloud of cyan points, relative to air without any target gas, can be seen in 

the center of Fig. 9. The points cluster quite densely because there is no difference among 

them. Therefore, the different position rises only from the error on the raw signal from the 

sensor. Around this cyan cloud, the points relative to the target gases (acetone in red, ethanol 

in green, benzene in blue, and toluene in purple) lay on curved lines, quite far from each 

other. Owing to the PCA projection, they are well separated and easy to distinguish.  

The fact that the points of each gas are not grouped in a small cloud (as is often reported) 

is not a weak point of this method. Points lying on lines instead of in small clouds make it 

more difficult to classify a system. However, this makes it possible to perform further analysis 

and obtain an estimate of the gas concentrations, as shown in section 3.6. 

 

3.5. Classification of gases 
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As shown in the previous section, points relating to different gases occupy different 

regions of space. The points relating to the different gases are recognizable in Fig. 9, 

facilitating the classification of new unknown points based on their position with respect 

them. For example, a new gray dot from a new sensor measurement can be classified by 

looking at Fig. 9 and seeing near which line of dots it is placed. If it is close to the purple 

spots, the gas in question will likely be toluene. This assessment can be made using the 

human eye; however, the sensing system can work in five dimensions. 

The core of the sensing discrimination and selectivity is a support vector machine, which 

is a supervised learning algorithm that produces a model consisting of 4D hyperplanes in 5D, 

which indicate the boundaries between 5D areas corresponding to different gases. This model 

is produced using a first dataset of training points (the ones shown in Fig. 9) to recognize the 

regions of 5D space “belonging” to each target gas. 

Any new data (the points with a white background in Table S2) are compared by the 

system with the trained model to classify it. Table 2 lists the confusion matrix of the sensor 

classification; each row is related to the actual gas in the sensing chamber, while each column 

is giving the gas that the sensing system has identified. This means that the numbers on the 

diagonal of the matrix are correctly identified measurements, while those outside are 

misclassified. As listed in Table 2, the Pd-decorated soda-lime glass sensors performed 

perfect classification, with an accuracy and a specificity of 100%. This proves that the SVM, 

working in 5D space, discriminates even better than the human eye with only a three-

dimensional plot in Fig. 9. 

As shown in Fig. S3, the sensor was also tested with a 50-50% mixture of benzene and 

toluene, in order to verify if the system is able to distinguish and quantify even gas mixtures. 

As can be seen, the points relating to the two gases and the mixture are well separated, and 

follow distinct lines. It should be emphasized that the concentration, in all three cases, 

increases from bottom to top in the figure (from 1 to 100 ppm). The first step carried out by 
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the sensor is to distinguish the two gases and the mixture. A support vector machine acts as a 

classifier, and recognizes (using a first series of "calibration" points) the areas of the 5D space 

where the points relating to benzene, toluene and the mixture are located. In this way, each 

new measurement made with the sensor is automatically labeled by the system, which 

recognizes what is present in the measurement chamber, whether it is gas or mixture.  

 

3.6. Estimation of gas concentration 

The previous section showed that the sensing system can perfectly classify the test gases, 

even if the new measurements are taken at different concentrations. In other words, the sensor 

can distinguish the 5D space areas related to each gas, even if the points of each gas in Fig. 9 

are very far from each other. This arrangement of points makes the classification more 

difficult, but it can achieve a further objective, which is illustrated and explained. Small and 

dense clouds of points from PCA plots (unlike in Fig. 9) can be managed easily using 

untrained methods, relying on the distance between points. On the other hand, this 

arrangement makes it impossible to differentiate the points belonging to the same gas at 

different concentrations. 

Because the points in Fig. 9 are distant and positioned on lines, a support vector regressor 

can be used to estimate the gas concentration of each point [40,41]. This step must be done 

after the previous one because the system needs to know how the gas has been classified. As 

in the previous section, the classification occurs using four different combined dual 

classifiers; here, four regressors are used, one for each gas. Each SV regressor is trained with 

the data classified for that gas, using their concentration label. Each new point is sent to the 

regressor chosen by its classification. An incorrect classification would often lead to an 

incorrect estimate of the concentration. 

The sensing system can understand which gas is present and its concentration, even 

though that gas has not been tested at that specific concentration. Fig. 10 presents the support 
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vector regression results, where each gas is plotted in a different color. As already mentioned, 

if a point is classified incorrectly in the previous step, it would be plotted with a different 

(incorrect) color. 

The points in Fig. 10 indicate the regression results: the concentration estimate versus the 

real concentration of the gas. The true concentrations (on the abscissas) correspond to those of 

the test points (those with a white background in Table S2). The quality of the regressor 

estimates is easy to evaluate in Fig. 10 because the diagonal indicates the perfect estimate, 

which corresponds to the true concentration. As shown in Fig. 10, the points relative to all 

four gases are laying close to the diagonal, meaning that the estimated concentrations are 

good. The mean percentage error for each gas was calculated to quantify how good the 

concentration estimate is, as listed in Table 3. 

The test points were chosen to be alternating with those used to teach the model, as listed 

in Table S2. In this way, the test points are as far as possible from the reference points, and 

the error is the maximum achievable. This means that measurements of random 

concentrations (a more realistic case) would be characterized by a smaller error. Benzene and 

ethanol showed larger errors than acetone and toluene. The sensor could not detect acetone at 

sub-ppm concentrations; thus, the point at 0.2 ppm is missing for acetone. The error was 

strongly affected by the points on the left (Fig. 9). Indeed, the error has a common trend for 

most gases; it is higher at low concentrations, lower in the middle, and larger (but less) at 

higher concentrations. 

Two effects can explain this: i) the calibration border and ii) the proximity to the limit of 

detection [42]. The support vector machine model works like a calibration; it works worse 

away from trained concentrations. Hence, the model is weaker approaching the border of the 

trained interval, and the error is larger. This occurs at both extremities of the tested 

concentrations range. Furthermore, the limit of detection of the sensor is being approached on 

the left of Fig. 10. Therefore, the raw response of the resistive sensor gradually loses its 
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meaning. This second effect adds to the first, further enlarging the error of the estimate. 

The analysis can be limited to this concentration interval, given that most of the hazard 

thresholds are in the ppm range. If the average percentage error leaving out the points below 1 

ppm can be calculated, the sensing system is much more precise, as shown in Table 4. 

Considering only the concentrations above 1ppm, the average percentage errors are 13.2%, 

29.4%, 18.2%, and 14.7% for acetone, benzene, ethanol, and toluene, respectively. In 

addition, as shown in Fig. S4, The error on the measurement of the mixture concentration 

(14.4%) is comparable to that made on the single gases (benzene 13.3%, toluene 8.5%). Such 

errors are acceptable, especially considering that the dangerousness of the various gases varies 

with the order of magnitude of the concentration and not with the individual ppm. 

These results indicate that this is not a theoretical technique, because it has proven to be 

able to discriminate individual gases perfectly (100% correct classification) in the case of real 

measurements, even in double blind conditions. It is also worth pointing out that with this 

technique the sensor system makes decisions autonomously, without the need for the presence 

of a human operator. 

 

4. Conclusions 

A resistive gas sensor based on Pd-decorated soda-lime glass with metal interdigitated 

electrodes was fabricated and used to detect four different reducing gases (acetone, benzene, 

ethanol, and toluene). The response values obtained at five different working temperatures 

(300-500°C in steps of 50°C) were combined in highly informative 5-dimensional points, 

which were then processed using machine learning algorithms. Using a support vector 

machine as a classifier and then as a regressor, one single sensor was able to discriminate all 

four gases perfectly (100%) and estimate their concentrations with an average error <19%. 

With this novel approach that uses one single sensor at different temperatures instead of 

several sensors of different materials, it was possible to achieve true selectivity and good 
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quantification with a much smaller, simpler and cheaper detection system than a traditional 

electronic nose. This could allow the widespread diffusion of tiny selective sensors integrated 

into portable devices and networked, enabling to monitor the environment much more 

effectively. 
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Table and Figure Captions 

Table 1. Selectivity measured at different working temperatures. 

Table 2. Confusion matrix for the testing points (in each row, there is the true gas, while in 

each column, there is the gas identified by the sensing system). 

Table 3. Average percentage error calculated for each gas. 

Table 4. Average percentage error calculated for each gas, limited to concentrations greater 

than 1 ppm. 

Fig. 1.  Process steps to obtain the sensing material (a-e) and steps to fabricate the sensing 

device (f-i). (a) Commercial soda-lime slide, b) immersion in solution, c) irradiation with UV 

light, d) annealing at 500°C, e) Pd-functionalized soda-lime glass. f) deposition of an 

adhesion layer of Ti, g) deposition of the Pt electrode, h) final sensor, i) cross-section of the 

sensor to show the different materials. 

Fig. 2.  FE-SEM images and EDX spectra of the bare glass (a and c) and Pd-functionalized 

glass (b and d) surfaces, respectively.  

Fig. 3.  Electrical characteristics of the Pd-functionalized soda-lime glass: (a) Normalized 

hysteresis I-V loops using at different temperatures in a continuous sequence from 100 to 

300oC with 120 s/sweep sweeping speed. (b) Hysteresis I-V loops for various sweeping 

speeds measured in a continuous sequence from 12 to 120 s/sweep at 300oC. The inset 

presents the hysteresis I-V loops obtained at various sweeping voltages in a continuous 

sequence from 0.5 to 5 V using sweeping speed for 120 s/sweep at 300oC. (c) Capacitive 

decays of current obtained under 1 V DC bias for three continuous runs, followed by the 

fourth unbiased run at 300oC. (d) Temperature dependence of the electrical conductance. The 

data points represent the corresponding conductance values calculated with the current I 

values during the I-V sweeping at various temperatures. 

Fig. 4.  Schematic illustration of the sensing mechanism of Pd-functionalized soda-lime glass: 

(a) Macroscopic glass polarization under external electric field and cation change by the target 

gas in a bare glass. (b) Catalytic effect by Pd functionalization after the introduction of the 

target gas. 

Fig. 5.  Plots of the dynamic current measured at different temperatures for different gases at 
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different concentrations. 

Fig. 6. Sensor response to 100 ppm of each gas, measured at different temperatures. 

Fig. 7. Thermal fingerprints (sensor response as a function of working temperature) relative 

to each gas, measured at a concentration of 100 ppm. 

Fig. 8. Thermal fingerprints (sensor response as a function of the working temperature) 

relative to different concentrations of ethanol gas. 

Fig. 9. Three-dimensional plot of the first three principal components, showing the data 

relative to the different gases in different colors. 

Fig. 10. Concentration estimate by the sensing system (Y-axis) versus real concentration (X-

axis). Perfect estimates lay on the diagonal. 
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Table 1. Selectivity measured at different working temperatures. 

Temperature 300°C 350°C 400°C 450°C 500°C 

Target gas benzene benzene benzene benzene benzene 

First interferer toluene ethanol toluene toluene toluene 

Selectivity 1.17 2.25 1.19 1.06 1.005 
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Table 2. Confusion matrix for the testing points (in each row, there is the true gas, while in 

each column, there is the gas identified by the sensing system). 

 Acetone Air Benzene Ethanol Toluene 

Acetone 2     

Air  5    

Benzene   3   

Ethanol    3  

Toluene     3 
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Table 3. Average percentage error calculated for each gas. 

Gas Acetone Benzene Ethanol Toluene 

% Error 17.9 63.9 70.6 15.4 
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Table 4. Average percentage error calculated for each gas, limited to concentrations greater 

than 1 ppm. 

Gas Acetone Benzene Ethanol Toluene 

% Error 13.2 29.4 18.2 14.7 
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