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ABSTRACT: We present an algorithm to solve the linear
response equations for Hartree−Fock, Density Functional Theory,
and the Multiconfigurational Self-Consistent Field method that is
both simple and efficient. The algorithm makes use of the well-
established symmetric and antisymmetric combinations of trial
vectors but further orthogonalizes them with respect to the scalar
product induced by the response matrix. This leads to a standard,
symmetric block eigenvalue problem in the expansion subspace
that can be solved by diagonalizing a symmetric, positive definite
matrix half the size of the expansion space. Numerical tests showed
that the algorithm is robust and stable.

Linear response calculations1 are commonly encountered in
computational chemistry, because they are used to

compute excitation energies and transition properties. Such
calculations are available at virtually any level of theory, from
Hartree−Fock (HF) and Kohn−Sham Density Functional
Theory (KS-DFT),2−4 to coupled-cluster theory,5−8 to Multi-
configurational Self-Consistent Field (MCSCF),7,9−11 just to
name a few. Given the importance and usefulness of such
calculations, algorithms that allow for efficient implementation
are paramount. In this short communication, we focus on self-
consistent field (SCF) methods, i.e., HF, density functional
theory (DFT), and MCSCF. In particular, we present the
equations and detail the algorithm for MCSCF, as HF and
DFT can be considered as special cases of the former.

The linear response equations for MCSCF have the general
form, assuming that real basis functions are used:1,7,9−13
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where A, B, and Σ are symmetric matrices in ×n n, Δ is an
antisymmetric matrix in ×n n, and y, z are vectors in n. Here,
n represents the size of the problem, e.g., the number of
occupied times number of virtual orbitals for HF and KS-DFT,
or the number of orbital rotations and independent CI
parameters for MCSCF. We further assume that Σ is positive
definite, as are the combinations A + B and A − B, conditions
that are met if the ground-state solution is stable. The
eigenvalue problem (eq 1) has been investigated in the
standard form as well as in the generalized one: in refs 14−16,
the authors developed a minimization principle to find a few
smallest eigenvalues and the corresponding eigenvectors. For
HF and KS-DFT response theory, eq 1 is simplified, as Σ

becomes the identity matrix and Δ becomes the zero matrix.
For the sake of brevity, we also write the response equations as

=x x (2)

eq 2 is a generalized eigenvalue problem with a nonpositive-
definite metric Ω, which means that the standard procedure
used in other quantum chemical calculations, where either a
Cholesky decomposition of the metric or Ω−1/2 are computed
in order to transform eq 2 into a standard eigenvalue problem,
cannot be used. The various algorithms that have been
proposed to tackle such a problem must, therefore, deal with
this complication. A few of the main strategies proposed in the
literature are discussed in the following.

The linear response equations have an important property. If
{ω, (y, z)T} is a solution, then {−ω, (z, y)T} is also a solution
to the same problem. In other words, the eigenvalues of eq 2
always appear as positive−negative pairs. It has been suggested
in the literature17−20 that this symmetry should be encoded in
the iterative algorithm used to solve the response equations,
usually a modified version of Davidson’s method,21 by
expanding each eigenvector x as the linear combination of
two sets of vectors:
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where ±ui and the expansion vectors are defined as
follows:
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with +b b,i i
n. In the following, we use the notation, for a

generic vector v n2 , v(+) = (v+, v+)T and v(−) = (v−, −
v−)T, with +v v, n to denote symmetric and antisym-
metric vectors, respectively. Furthermore, to keep the notation
simple, we present the derivation of the equations for the case
where only one eigenpair is sought: the generalization to many
eigenpairs is straightforward. This choice of expansion spaces is
particularly advantageous, as it gives rise to blocked reduced
matrices for problem 1. In fact,
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In the spirit of Davidson’s method, the response equations can
be therefore solved as follows.

Let +
k and k be the symmetric and antisymmetric

expansion subspaces, respectively, whose dimension increases
with k. Here k represents the number of iterations already
performed. Let

+ = + + =b b b bV V( ) ( ( )... ( )), ( ) ( ( )... ( ))k k k k1 1

be matrices in ×n k2 where the columns are the symmetric and
antisymmetric expansion vectors, respectively. Let the columns
of the matrices Vk(±) form an orthonormal basis for the
subspaces ±

k . Let us also introduce the spaces

± = { ± ± }
= { ± ± }

b b( ) span ( ), ..., ( )

span ( ), ..., ( )
k k

k

1

1

and

± = { }
= { ± ± }

b b( ) span ( ), ..., ( )

span ( ), ..., ( )
k k

k

1

1

that collect the applications of the matrices Λ and Ω to the
expansion vectors. We remark that, in practice, only the vectors

±b n are stored in memory. Specifically, we consider the n
× k m a t r i c e s V k

± = ( b 1
± . . . b k

± ) , t h e s p a c e s
= { }± ± ±span , ...,k k1 and = { }± ± ±span , ...,k k1 , and

the corresponding matrices LVk
± = (σ1

±...σk
±) and BVk

± =
(τ1

±...τk
±).

The Rayleigh−Ritz variational procedure is then performed
to compute the u± coefficients from eq 3 by solving the
projection of eq 1 into the subspace union of Vk

+ and Vk
−. We

get the 2k × 2k problem
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where

= =± ± ±E V LV S V BV( ) , ( )k k k k
T T (8)

that is, for i = 1, ...,k and j = 1, ...,i,

= ±

= +
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+

b b
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We note here that eq 7 has the same structure of the original
response equation, with a nonpositive definite metric.
However, assuming that ω ≠ 0, it is possible to divide both
sides of the reduced equation by ω obtaining
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where now the reduced response matrix, which is symmetric
and positive definite, acts as a metric, making it possible to use
standard linear algebra techniques.

Once the eigenvalue ωk+1 is computed in the reduced space
and the current approximation to the eigenvector xk+1 has been
computed as in eq 3,

= + ++
+ ±x u u uV V( ) ( ) ,k k k

k
1 (10)

we can assemble the residual vector Rk+1 in the full space n2

=+ + +xR ( )k k k1 1 1 (11)

which emerges naturally as the sum of a symmetric term
Rk+1(+) and an antisymmetric term Rk+1(−), whose compo-
nents are expressed in terms of elements of the spaces LVk

± and
BVk

±, i.e.,

=+
± ± ±

+
±u uR LV BVk k k k1 1 (12)

The expansion subspaces are extended, in the next iteration,
using the standard Davidson algorithm, i.e., by solving

=+ + +bD D R( )k k k1 1 1 (13)

where DΛ and DΩ are diagonal matrices whose elements are
the diagonal elements of Λ and Ω, respectively, and bk+1 =
bk+1(+) + bk+1(−). Splitting eq 13 into a symmetric and an
antisymmetric part we get, through simple algebra,

= ++
±

+ +
±

+ +b D D D R D R( ) ( )k A k A k k k1
2

1
2 2 1

1 1 1
(14)

where DA and DΣ are the diagonals of A and Σ, respectively.
The b̃k+1

± vectors are then orthogonalized to Vk
±, respectively,

and the procedure is iterated until convergence is reached.
Each iteration requires four matrix-vector products (MVP), to
compute σk

+, σk
−, τk

+, and τk
−, where the first two MVP are

typically the cost-dominating step (see eqs 5 and 6). However,
the cost of solving the generalized eigenvalue problem (eq 7)
and the cost of orthogonalizing the new expansion vectors can
also become computational bottlenecks, especially if a large
number neig of eigenvalues and eigenvectors are sought. To
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lower the cost of the former operation, Helmich-Paris20

recently proposed a method to reduce the generalized
eigenvalue problem into a half-dimensional problem, i.e., the
size of one of the blocks E± and of S. The proposed algorithm
scales with m( )3 , where m = k · neig is the size of the subspace,
which is an important improvement with respect to the

m((2 ) )3 solution to eq 7. However, it requires a sizable
number of linear algebra operations, including two singular
value decompositions (SVD), which can become rather
expensive.

In this paper, we propose a different approach that results in
a much simpler implementation and that performs, in a m-
dimensional space, only one diagonalization and one matrix−
matrix multiplication. Here, we only consider the case where a
single eigenpair is searched, i.e., m = k.

We start by noting that, if the ground-state solution is stable,
problem (2) has no vanishing eigenvalue, and, therefore, it is
possible to rewrite it as22

= =x x ,
1

(15)

Problem (15) is much easier to solve than problem (2),
because it is a generalized eigenvalue problem with a
symmetric, positive definite metric Λ. It is therefore possible
to introduce a positive definite dot product

=x y x y, T (16)

and the induced Λ-norm =x x x, . We proceed
similarly to what has already been presented and expand the
eigenvector x as the linear combination of symmetric and
antisymmetric expansion vectors as in eq 3, where, in our
approach, we choose the expansion vectors such that

= =+ +b b b b, , ,i j ij i j ij (17)

that is, the expansion vectors are Λ-orthogonal.
With the definition of S given in eq 8, we obtain the

following reduced problem:
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which, due to the choice of Λ-orthogonal expansion vectors, is
no longer a generalized eigenvalue problem. Furthermore, its
block structure allows us to solve it by first computing u+ from

=+ +u uS ST 2 (19)

a symmetric and positive definite eigenvalue problem of size m,
and then by recovering u− as

= +u uS
1

(20)

After assembling the current approximation to the eigenvector,
we compute the residual

=+ + +xR ( )k k k1 1 1 (21)

which can be split into a symmetric and an antisymmetric
term, whose components are

=+
± ±

+
± ±u uR BV LVk k k k1 1 (22)

The new pair of expansion vectors are then obtained by solving

=+ + +bD D R( )k k k1 1 1 (23)

Splitting the new vector and the residual in the sum of
symmetric and antisymmetric components, after some
computation, we get

= ++
±

+ + +
±

+b D D D R D R( ) ( )k k A k A k k1 1
2 2 2 1

1 1 1
(24)

Once the b̃k+1
± vectors have been computed, we enlarge the

expansion subspaces ±
k by determining vectors that are

orthogonal to Vk
±. To this end, the new vectors b̃k+1

± are first
orthogonalized to Vk

± and then orthonormalized. This is done
as follows: first, we project out Vk

± from the vectors

+
± ± ±

+
±b bV V( )k k k k1

T
1 (25)

and then we orthonormalize the resulting vectors using the
Cholesky decomposition of their overlap, as described in a
recent paper by some of us.23 To ensure the numerical stability
of this procedure, these two steps are iterated until the norm of
(Vk

±)Tb̃k+1
± is smaller than a (tight) threshold. In all of our

numerical experiments, two iterations were sufficient to obtain
vectors orthogonal to machine precision. The resulting vectors
b̂k+1

± are then orthogonalized with respect to Λ by computing
the Cholesky decomposition of

= =±
+

±
+

± ± ±bM L L( ) ( )k k1
T

1
T

(26)

and then solving the triangular linear system

=+
± ±

+
±

b bL( )k k1
T

1 (27)

We remark that, if we are seeking one eigenpair, eq 26 is a
trivial case, since M± represents a scalar and L± is the square
root of M±. This step becomes significant when we want to
compute multiple eigenvalues−eigenvectors. Performing the
Λ-orthogonalization after regular orthogonalization may look
unnecessary, but it vastly improves the conditioning of M, thus
ensuring the overall numerical stability and robustness of the
procedure. Summarizing, first, we compute b̃k+1

± ; second, we
compute b̂k+1

± , and finally the expansion vectors bk+1
± , which we

store on the matrices Vk+1
± = (Vk

± bk+1
± ). Note that, to perform

the latter passage, we must apply A + B and A − B to the new
test vectors. In other words, the number of MVP in our
algorithm is the same as in the traditional ones, but the linear
algebra operations are both simpler and less expensive. In
particular, the only m( )3 operations that we need to perform
are the matrix−matrix multiplication STS and the diagonaliza-
tion in eq 19. The price to pay is that we need to perform two
more orthogonalizations (eqs 26 and 27); however, these have
a cost of order +nn n(2 )eig

2
eig

3 , neig being the number of
seeked eigenvectors, and should therefore be less critical.

The overall procedure, which we named Swapped-Metric-
Orthogonal Generalized Davidson (SMO-GD), is summarized
in Algorithm 1. The algorithms of the primitives used for the
orthogonalizations are given in the Supporting Information. An
open-source (LGPL3), Fortran implementation of the
algorithm, including the orthogonalization primitives, can be
found in the DIAGLIB library,23 which is available on GITHUB at
https://github.com/Molecolab-Pisa/diaglib. All of the code
used to generate the numerical examples presented in the
following can be accessed by downloading the code.

Algorithm 1 is general and can deal with any generalized
eigenvalue problem as in eq 1. It exhibits monotonic
convergence of the reduced eigenvalues, as the Hylleras−
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Undheim−McDonald theorem applies,24,25 and can be
implemented efficiently using BLAS and LAPACK routines.

In the following, we report a few numerical tests of the
proposed algorithm and compare it with the original algorithm
proposed by Olsen et al.,17 where the 2m × 2m reduced
problem is solved, and the algorithm recently proposed by
Helmich-Paris,20 which uses a series of transformation to
reduce the size of the problem to m × m. To compare the three
algorithms in a fair way, they all have been implemented in the
DIAGLIB library (RESPONSE branch). As our focus is on the
iterative algorithm and not on the implementation of MCSCF
(or TD-DFT), we generate test matrices with the correct
structure and use in-core matrix−vector multiplications to
compute the required matrix−vector products. This allows us
not only to validate our implementation against dense LAPACK

routines but also to create common grounds to compare the
three algorithms in a fair way. We focus our analysis on the
time required to solve the reduced problem and to orthogon-
alize the new test vectors against the previous ones, as all of the
other steps are identical. We generate symmetric and positive
definite A + B and A − B matrices by putting

l
m
ooooo

n
ooooo

+ =
+ =

+
A B

i i j

i j
( )

5 if

1
otherwiseij

and
l
m
ooooo

n
ooooo

=
+ =

+
A B

i i j

i j
( )

2 if

0.2
otherwiseij

A and B are then obtained as linear combinations. The
symmetric Σ and the antisymmetric Δ matrices are generated
in the following way: the former is obtained by generating a
random matrix and then multiplying it by its transpose, to
ensure that it is symmetric and positive-definite, while the

latter antisymmetric matrix is obtained by generating a random
matrix and subtracting its transpose.

As a first test example, to investigate the elapsed
diagonalization times, we consider a generalized eigenvalue
problem of size 2n × 2n, where n = 10 000 is the size of the
matrices A, B, Σ, and Δ. We solved the generalized eigenvalue
problem by applying the three algorithms discussed in this
work: the original procedure proposed by Olsen and co-
workers (LRstd),

17 where the reduced problem is solved for 1/
ω to have a symmetric, positive-definite metric, the algorithm
recently introduced by Helmich-Paris (LRHP),

20 and our
implementation shown in Algorithm 1 (SMO-GD). We seek
10−100 eigenpairs with increments of 10. Convergence is
achieved when the root-mean-square norm of the residual is
smaller than 10−6 and its maximum absolute value is smaller
than 10−5. We use a subspace dimension of 20, i.e., we keep in
memory up to 20 vectors per eigenvector in the history. For all
of the algorithms, multiple eigenvectors are expanded
simultaneously in the same expansion space, and we exploit
a locking procedure for the converged eigenvectors. In Figure
1, we report the cumulative elapsed time required to solve the

reduced eigenvalue problem for the three algorithms. Such
timings are the sum over all the iterations; note that by design,
the iterations produced by all algorithms are equivalent, and
therefore the number of iterations is shared by all methods. For
the algorithm presented here (SMO-GD), the reported timings
include the time spent for the additional orthogonalization
with respect to the metric (line 20 of Algorithm 1). We
observe that the proposed algorithm significantly outperforms
both the original Olsen’s algorithm and the new method
presented by Helmich-Paris. The differences become more
significant as the size of the reduced problem increases, i.e.,
when more eigenvalues are seeked. Note that in our simple-
minded example, the overall cost is still dominated by the
dense matrix-vector multiplications. Nevertheless, the differ-
ence in timings is sizable and can be expected to have an
impact on large-scale applications when many states are
computed. To better appreciate the overall difference between
the algorithms, we plot, in Figure 2, the total time required to
compute 100 eigenvalues and eigenvectors for increasingly
larger systems with n ranging from 1000 to 10 000. In all cases,
our SMO-GD algorithm is faster than the others, and in
particular, the time difference increases as the dimension
decreases, consistently with what was observed in Figure 1.

These results can be clearly rationalized by looking at the
dense linear algebra operations performed by the various

Figure 1. Time analysis of the three methods discussed for a 2n × 2n
problem, where n = 10 000. Diagonalization time was calculated with
respect to the number of eigenvalues required.
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algorithms. Focusing on the leading m( )3 operations, the
original algorithm by Olsen et al. requires the solution to a
generalized eigenvalue problem of size 2m, which is performed
in our implementation using the DSYGV LAPACK routine,
which performs a Cholesky decomposition of the metric to
transform the problem into a standard eigenvalue problem and
then solves the latter using the DSYEV LAPACK routine. Both
operations require m((2 ) )3 floating-point operations. The
algorithm recently presented by Helmich-Paris20 avoids

m((2 ) )3 by reducing the subspace problem to a m-sized
one, by performing two singular value decompositions
(LAPACK routine DGESVD), two Cholesky factorizations
(LAPACK routine DPOTRF), and eight matrix−matrix
multiplications. In contrast, our algorithm requires only one
matrix−matrix multiplication (to assemble STS and one
symmetric diagonalization (LAPACK routine DSYEV),
resulting in a significantly reduced computational cost. The
two additional Λ-orthonormalizations require only n( )eig

3

operations, which is by definition smaller than m.

We conclude these remarks by comparing our algorithm to
the method proposed by Strattmann, Scuseria, and Frisch
(SSF)4 for the specific case of LR DFT. The SSF algorithm
solves the non-Hermitian problem

+ + = +y z y zA B A B( )( )( ) ( )2 (28)

introducing a nonfaithful representation of eq 28 in the
expansion subspace

=+ + +u uE E 2 (29)

In their work, they show that the two problems become
equivalent when convergence is achieved. Again, the problem

in eq 29 is m-sized and can be solved by transforming it to the
symmetric eigenvalue

=+ u uE E E( ) ( )1/2 1/2 2 (30)

where u′ = (E−)−1/2 u+. In practice, the implementation
requires diagonalization of E− to compute (E−)1/2 (one
symmetric diagonalization and one matrix−matrix multi-
plication), which is then used to assemble the symmetric
matrix in eq 30 (two matrix−matrix multiplications), which is
then diagonalized (a second symmetric diagonalization). Two
further matrix−matrix multiplications are used to recover the
u+ and u− eigenvectors, the latter being the left eigenvectors to
eq 29. The left and right eigenvectors y + z and y − z are then
biorthogonalized. A summary of all the dense linear algebra
operations performed by the SSF, HP, and SMO-GD
algorithms is reported in Table 1. The SSF algorithm generates
a different expansion space, with respect to the Olsen
algorithm (which generates the same expansion space as the
HP algorithm and the one presented in this communication),
making a one-to-one comparison somewhat harder, since, in
general, the number of iterations may be different. However,
results presented by Strattamann, Scuseria, and Frisch in their
paper4 show that their procedure generates subspaces that are
of the same size as the ones generated by the Olsen algorithm,
making thus a qualitative comparison possible. We have thus
employed both algorithms to solve TD-DFT like equations,
obtained by setting Σ = 1 and Δ = 0 in eq 1. We use the same
A and B matrices used in previous tests; however, as these are
very well-behaved, starting the iterations from an optimal guess
(the canonical basis vectors corresponding to the lowest
diagonal elements of A + B) results in almost immediate
convergence of both algorithms and offers little material to
compare results. To offer a more realistic comparison, we
perturb the optimal guess by adding a random vector to each
guess vector, the elements of which are random numbers
chosen in the interval [0, 0.01]. The results are reported in
Figures 3 and 4. As can be seen from the figure, SMO-GD

outperforms SSF in this well-behaved case. The better
performances of SMO-GD are due not only to the smaller
number of dense linear algebra operations but also to its faster
convergence. All the calculations reported in Figures 3 and 4
required in fact 10 SMO-GD and 9 SSF iterations to achieve
convergence. As the SSF algorithm performs twice as many

Figure 2. Total time (s) of the three methods for different dimensions
n and 100 eigenvectors required.

Table 1. Number and Type of m( )3 Dense Linear Algebra
Operations Required by the Algorithm SMO-GD,
Compared with the Strattmann-Scuseria-Frisch (SSF) and
Helmich-Paris (HP) Onesa

SMO-GD SSF HP

EV 1 2 0
MM 1 5 8
SVD 0 0 2
CD 0 0 2

aHere, m is the size of the expansion subspace. EV is the symmetric
diagonalization, MM the matrix−matrix multiplication, SVD the
singular value decomposition, and CD the Cholesky factorization.

Figure 3. Comparison of the SMO-GD and SSF algorithms for the
solution of a 2n × 2n TD-DFT like generalized eigenvalue equations,
with n = 10 000 as a function of the number of required eigenvectors.
The total time for the dense linear algebra operations required to
solve the problem in the subspace is reported for both methods.
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matrix-vector multiplications than SMO-GD per iteration, the
total number of matrix−vector multiplications is smaller in
SMO-GD, which explains the sizable difference in the total
elapsed time. We note, in passing, that we have tested the
algorithms using randomly generated matrices, where the
diagonal was then shifted to make the problem more
diagonally dominant and could not achieve convergence
using the SSF implementation. On the other hand, SMO-GD
always managed to converge. Similar results were obtained by
using a very tight (10−10 RMS of the residual) convergence
threshold. In the latter case, SSF approached convergence and
then started to stagnate, while SMO-GD exhibited no problem.
Both cases as summarized in the Supporting Information.
While neither describes a particularly realistic application
scenario, as the response equations in TD-DFT are typically
strongly diagonally dominant and thus well-conditioned, we
believe that such tests further confirm the good numerical
stability of the SMO-GD algorithm.

In conclusion, we have presented a new algorithm to solve
the MCSCF linear response equations and also the related TD-
SCF equations that is not only more efficient than what was
previously reported in the literature, but also conceptually
simple and easy to implement. Thanks to the robust
orthogonalization procedures described in the Supporting
Information, it is also numerically robust and stable. If the
expansion space becomes ill-conditioned, which is bound to
happen near convergence, then the metric in the reduced space
can exhibit small (i.e., numerically zero) or even negative
eigenvalues, independent of whether the actual metric is ill-
conditioned. This can make the overall procedure fail. By
choosing expansion vectors that are orthogonal with respect to
the scalar product induced by the metric, we avoided this
problem from the beginning. Furthermore, by limiting the
linear algebra operations to a symmetric diagonalization in the
subspace, we avoid further propagation of possible numerical
instabilities. The combination of robustness and efficiency
makes the new algorithm therefore an ideal strategy to tackle
the solution to the linear response equations.
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