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Abstract

The increased need to design higher performing aerodynamic shapes has led
to design optimisation cycles requiring high-fidelity CFD models and high-
dimensional parametrisation schemes. The computational cost of employing
global search algorithms on such scenarios has typically been prohibitive for
most academic and industrial environments. In this work, a novel methodol-
ogy is presented, called AInADS. This strategy leverages the capabilities of
Artificial Neural Networks for regressing complex unstructured data, while
coupling them with dimensionality reduction algorithms. This approach en-
ables employing global-based optimisation methods on high-dimensional ap-
plications through a reduced computational cost. The capabilities of AInADS
are demonstrated on three turbomachinery applications of significant indus-
trial relevance.

The first case performs the efficiency optimisation of a modern jet en-
gine fan blade with constrained pressure ratio. This outcome is compared
against a state-of-the-art adjoint-based approach. Results indicate the strat-
egy proposed achieves comparable improvements to its adjoint counterpart
with a reduced computational cost and run time, and can scale better to
multi-objective optimisation applications.

The second application concerns the stability range of axial fan blades.
Historically, the tip clearance size has been considered to be the main factor
driving its behaviour. This work reveals that the stall characteristics are
defined by the axial momentum flux of the tip leakage flow and that tip
clearance is primarily a strong driver for this metric. AInADS is employed
for carefully tailoing the axial momentum via three-dimensional design, which
enables a higher degree of control over the stability range for cases where the
tip clearance responds to other considerations and cannot be defined for this
purpose. The effect of the axial momentum on efficiency is also addressed and
the trade-off between operability range and design point performance derived.
The results show that that the conditions for optimal stability differ from
those for optimal efficiency and that control over the axial momentum enables
tuning the design for a desired exchange. Numerical simulations have been
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employed to drive the analysis through a high-fidelity computational model
whose behavior is supported by rich set of experimental data. Contrary
to current belief, results further indicate that an accurate characterisation
of stall, including onset mechanism, can be achieved through steady-state
simulations, minimising the need for expensive time-accurate computations
during the design phase.

The final application introduces uncertainties in the design process of
axial fan blades. As they are manufactured, blades deviate from the design
intent shape and such geometrical variability translates to performance drifts.
This work makes use of AInADS, coupled with Uncertainty Quantification
methods, to estimate the statistical behaviour of a fan blade when subjected
to typical manufacturing deviations. This knowledge is employed to optimise
the shape of the fan blade and improve its robustness to uncertain shape
deviations.
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Chapter 1

Introduction

1.1 Background

The civil aviation industry has experienced an accelerated growth in the last
50 years, with the number of Available Seat Kilometers (ASK) increasing
over 7% in 2018 alone [1, 3, 4], see Fig. 1.1. With a more acute environmen-
tal awareness, governments have increased funding and support to develop
greener products in aviation, as well as introduced legislation to penalise
the commercialisation of polluting solutions. As a result, modern day air-
craft engines are required to meet increasingly tighter regulations in terms
of their performance and by-product emissions, which increases the need for
every component in the system to be carefully designed so as to achieve its
operational requirements while employing the least amount of resources.

For decades, aviation engineers worldwide have striven to increase the
efficiency of their designs. This goal has been largely achieved, with modern
turbofan engines reaching improvements in efficiency of over 25% with respect
to the performance of engines at the turn of the century [5]. However, as it
can be observed on Fig. 1.1, the rate of improvement has slowed down, and
the trend suggests that a limit in the maximum improvement is nigh.

Indeed, in recent years, the need to extract the last ounce of performance
from every design has lead to an increased need for higher fidelity models,
which are able to represent more faithfully the complex physical characteris-
tics of the system, thus making the design process more likely to lead to novel,
high-performing shapes. From an aerodynamic standpoint, design optimisa-
tion based on Computational Fluid Dynamics (CFD) is one of the primary
tools engineers have used to improve their aerodynamic designs [6–8]. In
these workflows, the system under study is parametrised with a set of fea-
tures that control its behaviour. In some cases, these are defined by the
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Figure 1.1: Historic evolution of aviation efficiency and global traffic [1]

designer based on prior knowledge. Most commonly, however, the available
information about the system is not sufficient to expertly express the features
driving its behaviour. As a result, generic and flexible parametrisations are
sought. In fact, capitalising on the increased model fidelity usually requires
a very fine parametrisation, enabling the system sufficient degrees of freedom
to respond to even the smallest features, which increases the complexity of
the process. Moreover, in such cases, in addition to improving the system, a
desired outcome of optimisation processes is characterising it and identify-
ing, from this fine set of features, the leading drivers of its behaviour. Both
of these goals require the definition of objective functions, metrics on which
to base the performance of the system; and constraint functions, which set
the bounds of the problem and limit the scope of possibilities. Typical ob-
jective functions in aviation design include efficiency, drag or weight, while
constraints might be lift, thrust or capacity.

While undoubtedly powerful, high dimensional parametrisation schemes
pose many challenges to traditional optimisation workflows, which are un-
prepared to handle the large amount of design features. Perhaps the most
strenuous of them all is an effect commonly referred to as the curse of dimen-
sionalty [9], which will be a recurring topic in this manuscript as methods
are developed to overcome it. This provoking name describes a phenom-
ena whereby, as the number of design features increases, the volume of the
hyperspace spanned by them, the design space, expands exponentially. In
these cases, adequate sampling of the design space requires an exponentially
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growing number of data points, otherwise samples become sparse and pose
risks of misleading further analyses [10]. As a result, and especially when
considering high-fidelity CFD models, which tend to be computationally ex-
pensive, increasing the degrees of freedom of the system can quickly make
the design problem intractable.

Such is the magnitude of the dimensionality challenge that many research
efforts have been devoted to it [11–14]. In CFD applications, gradient-based
computational optimisation methods have gathered much attention, due to
the increased availability of adjoint flow solvers. The adjoint method [15–18],
allows computation of the gradient of an objective function with respect to
design parameters while maintaining the cost of the operation almost inde-
pendent of the number of parameters employed. First order information pro-
vides a wealth of knowledge about the behaviour of the underlying function in
the vicinity of the sampled point. Therefore, adjoint solvers are able to pro-
vide deep insights about the system at an approximately constant cost. First
order search algorithms employ this information to travel in the direction of
steepest descent and efficiently optimise the objective functions [19–21].

This approach has been successfully applied to optimise turbomachinery
components with high-dimensional parametrisation schemes [22–29]. How-
ever, the method is not exempt of limitations. As described in [17, 30], the
residual of the Navier-Stokes equations is assumed to be zero when computing
the adjoint, which requires the primal CFD to achieve exceptional conver-
gence and a near-zero residual. This implies longer solve times than the ones
that would be employed for traditional CFD analysis and a corresponding
increase in the computational expense of the flow solver. Moreover, as doc-
umented in [23], typical running times for discrete adjoint solvers are about
three times higher than the ones of their primal counterpart, making the
adjoint calculation a costly endeavour. In optimisation scenarios involving
several objective function or constraints that depend on the flow behaviour,
the adjoint calculation must be repeated for each objective and constraint,
reducing the scalability of this approach. In addition, much of the outcome
of gradient-based approaches is dictated by the initial design and, if starting
from already high-performing shapes close to a local optimum, the optimi-
sation process might not yield significantly improving designs, regardless of
the parametrisation scheme [31,32].

An alternative to gradient-based solvers are global search algorithms.
These only require zeroth order information from the objective and con-
straint functions, which can usually be obtained with one CFD computation
for any number of them. Moreover, these algorithms are stochastic in nature
and this, in principle, makes them capable of identifying the global opti-
mum of the objective function [33–35]. The application of such algorithms
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to turbomachinery design optimisation has been an active area of research,
with approaches falling into one of two categories: direct application to the
CFD solution [36–41] and surrogate based optimisation, where a number of
computations are first employed to regress the behaviour of the cost function
in the design space and the search algorithm is subsequently applied on this
analytical model [42–46]. Global search algorithms typically require function
evaluations on the order of hundreds to thousands, depending on the dimen-
sionality of the problem, which causes direct approaches on high-fidelity CFD
to be prohibitive for most academic and industrial environments.

Indeed, with the advent of machine learning and data-driven methods,
novel surrogate models are being researched which enable highly accurate
predictions over complex high-dimensional datasets, making them ideal for
global optimisations [47–50]. In particular, Artificial Neural Networks (ANNs)
have become a primary area of study due to their capability to interpolate
unstructured data [51,52]. Unlike other machine learning methods, ANNs do
not assume a predefined shape for the cost function, thus providing a higher
level of flexibility and predictive accuracy in cases where the system cannot
be well expressed through explicit functions. In the field of turbomachinery,
they have been applied to develop physics-based models for unsteady com-
pressor behaviour [53], to predict the performance of compressor cascades
from design considerations [54,55], and on global, surrogate-based optimisa-
tion environments [56–59]. However, the fact that they are unstructured also
implies that the number of data points required to adequately fit them to
high-dimensional, multi-modal systems –such as the parametrised flow be-
haviour of transonic blades– is typically higher than other methods. Thus,
the cost-effectiveness of ANNs can be enhanced by coupling them with di-
mensionality reduction (DR) algorithms.

Several of such DR algorithms exist and have been extensively docu-
mented, such as Factor Analysis [60], Principal Component Analysis (PCA)
[61], Discriminant Analysis [62], Sobol’ sensitivity indices [63], etc. [64]. In
recent years, a novel set of ideas that facilitate subspace-based dimension
reduction has emerged, called Active Design Subspaces (ADS) [65]. Instead
of determining a subset of the input parameters which are most important,
ADS identifies dominant linear combinations of all the parameters that best
describe the variability in the output. While PCA is also able to identify
such subspaces from the parameter space, with that approach the data must
be correlated or conditioned by some process, like the pareto-optimal design
points from a multi-disciplinary optimisation cycle [37]. ADS, on the other
hand, can learn the dominant subspaces from a non conditioned dataset,
which enables its application to uniformly-spread sampled points, such as
those coming from a Design Of Experiment approach, which are typically
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used in regression processes. In the field of turbomachinery, active subspaces
have been linked with fundamental aerodynamic principles to infer pedigree
design rules to improve a compressor’s performance [66], to visualise the ro-
bustness of a design point with respect to uncertain parameters [26] and to
identify dominant subspaces for stagnation temperature probes [67]. The
ADS process requires estimating the gradient of the cost function at various
random points in the design space, for which [26] employed adjoint com-
putations and [66] regressed a second order polynomial to CFD data, and
evaluated the gradients from that model. Both these approaches suffer from
previously described issues: the former does not scale well for multi-objective
scenarios and the latter infers the function behaviour can be well described
by a second order polynomial.

1.2 Motivation

This work develops a novel strategy to approach modern engineering design,
particularly in the field of gas turbines for aviation, called AI Enabled Ac-
tive Subspaces, or AInAS. This strategy exploits the unstructured nature of
ANNs by closely coupling them with ADS to reduce the dimensionality of the
input space, thus providing an ameliorated performance with minimal sam-
ple requirements. The framework also supports enhanced visualisation of the
system under study, which leads to increased understanding of its behaviour,
in addition to parameter sensitivity ranking, which proves instrumental in
identifying the leading drivers of high dimensional systems. The develop-
ment of this methodology was driven by the needs for such a framework in
the design and analysis of fan blades for modern turbofan engines. As a re-
sult, sections of this text are devoted to concepts regarding the aerodynamic
performance of the resulting novel designs.

Three distinct applications are presented which employ AInAS to ap-
proach challenging engineering design problems. The first of these, intended
mostly as a proof-of-concept, performs the aerodynamic efficiency optimi-
sation of a fan blade under pressure ratio constraints. The capabilities of
the AInAS method are compared against a state-of-the-art gradient-based
approach using adjoint. It will be shown that the two methods achieve com-
parable improvements in performance, but the novel strategy is both faster
and more economical. The second application makes use of AInAS to charac-
terise a highly complex system, namely, the aerodynamic stability of a next
generation fan blade. The effect of three dimensional geometry on the tip
leakage flow is assessed and its consequences for stability range are derived,
leading to an increased understanding of the phenomena in place and the
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opportunity to design higher performing shapes which are also more stable
(further away from stall). The final application performs a task of particular
engineering relevance and at the limit of current gradient-based capabilities.
The role of manufacturing variability in the final shape of the fan blade will
be addressed and optimisation under uncertainty is performed, aiming to
improve the mean performance of the fan blade and its sensitivity to typical
geometry deviations introduced in manufacturing.



Chapter 2

AI Enabled Active Subspaces

2.1 Engineering Design Optimisation

The behaviour of engineering systems is usually described through a set of
functions of interest, {Fk(x)}, where k = 1, . . . , K, that model the response
observed to a set of inputs x, where x ∈ χ ⊂ Rm. Here, χ denotes the design
space, where all the allowable values for the inputs to Fk live. The degrees of
freedom for the system are encoded in the dimensionality of the independent
variable, m, which, as described previously, can be arbitrarily large.

The exact form of these functions is typically unknown or very complex,
and usually models are employed through which only functional calls are
available. In other words, the information is typically limited to the value
of the functions at certain discrete points contained in the design space.
For engineering relevance, it is commonly the case that understanding the
way Fk varies with changes in x provides substantial value to designers. In
particular, answers to the following questions are desired:

– Which design features are associated with the output? Are all m de-
grees of freedom equally significant, or can the system be well described
using only a subset of them?

– What effect does a change in xp cause to Fk? Does increasing xp in-
crease the value of Fk or is the opposite true?

– Can the relationship between Fk and x be described through an ana-
lytical model or is the relationship more complex?

The answer to these questions requires making use of available samples
(F

(r)
k ,x(r)) to build a statistical learning model as per (2.1), where the error

term is assumed to be normally distributed with zero mean.

24
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Fk(x) = f̂k(x) + ϵ (2.1)

The analysis of f̂k leads to statistical inference driven by the search for
answers to the questions about the system. This constitutes one of the main
objectives of an optimisation workflow, which is commonly overlooked in lieu
of the other objective, which gives the process its name.

Indeed, the second objective is tasked with optimising the set of inputs
x to achieve a desired performance improvement. In this case, the {Fk(x)}
are partitioned in two groups, objective functions and constraints. A general
optimisation problem can be expressed as in Eq. 2.2 for no objective function
and nc constraints, where no+nc = K. Note that, conventionally, the objec-
tives are minimised. For functions that are to be maximised, it is sufficient
to negate their response.

This problem is typically solved employing numerical search algorithms
that require repeated evaluations of the objective and constraint functions
and, in some cases, higher order information like the functions’ gradient or
Hessian matrices. The number of iterations of the optimisation process is
usually dictated by the dimensionality and range of the design vector, x and
whether local or global optima are desired.

minimise
x

{fi(x)} ; i = 1, . . . no

subject to gj(x) ≤ hj, j = 1, . . . , nc.

x ∈ χ ⊂ Rm.

(2.2)

For single-objective problems, the output of (2.2) is a single design point
x∗ where the system achieves its peak performance, that is f(x∗) ≤ f(x) for
x ∈ χ. In cases where n0 > 1, due to typically conflicting objective functions,
it is appropriate to generate a Pareto set of solutions {xo} where no solution
dominates another. In other words, for every xo it is not possible to further
minimise a certain objective function without worsening the performance of
at least another objective [68, 69]. Equation 2.3 expresses this relationship,
where x dominates x’ if and only if:

fi(x) ≤ fi(x’) for all i in {1, . . . no}
and fi(x) < fi(x’) for some i

(2.3)

Due to the typically very large number of functional calls required to
find optimal designs, it is standard practise to refer to models such as (2.1).
However, in this case, both for the single- and multi-objective frameworks,
the {f̂k} can be treated as black boxes, since the greatest concern is not



2 AI Enabled Active Subspaces 26

b

v1
w1

w2v2

v3

w3

y

Figure 2.1: General structure of perceptron neuron for three inputs

quite understanding their behaviour, but rather the accuracy with which
comparisons can be made to detect dominated designs.

Achieving the engineering optimisation objectives therefore requires a
model which is both interpretable to allow inference and highly accurate
to enable identification of non-dominated designs. The strategy developed
in this study is designed to meet these objectives and it is particularly tai-
lored for cases where a global optimum is sought, the inputs’ dimension, m,
is arbitrarily large and functional calls are expensive such that the available
sampled data is scarce. Moreover, no inferences are made on the complexity
of the objective or constraint functions.

2.2 Fitting Artificial Neural Networks

Artificial Neural Networks (ANNs) are mathematical constructions where
information from a set of inputs, v, is linked, in a non-linear manner, to a
set of outputs Y = f̂(v) by having the information flow across a structure
of neurons, whose behaviour can be trained to achieve a desired outcome.
ANNs are selected to model the behaviour of the cost functionS and con-
straints because, as detailed in [70,71], provided there are sufficient neurons
in the network, ANNs are able to fit any function of arbitrary shape, which
makes them ideal for interpolating complex multi-modal systems, typically
encountered in turbomachinery design optimisation problems. Moreover, in
the presence of high input dimensionality, the number of training samples re-
quired to fit ANNs grows more slowly than other regression methods [72,73],
making them more robust to the curse of dimensionality.

The fundamental element in ANNs is the perceptron neuron, shown in
Fig. 2.1 for an example input vector of three dimensions. The parameters
influencing the neuron’s behaviour are the weights, w, the bias, b, and the
activation function F , where the response follows (2.4). In this way, the
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Figure 2.2: Activation functions for perceptrons

value of each input is ranked with respect to their effect on the output by the
weights. The bias encodes a minimum energy level associated with the neuron
and defines the average activation value. Finally, the activation function
provides an opportunity to introduce non-linearity to the output. Notice in
(2.4) that if F takes the form of the identity function, the system collapses
into a traditional linear model of the inputs.

y = F (wTV + b) (2.4)

This work considers two types of activation function to construct percep-
trons, sigmoid and Rectifier Linear Unit (ReLU), shown in Fig. 2.2. The
existence of the linear part in ReLU enables implementation of continuous
activation functions on the basis of such elements, while the sigmoid func-
tion possesses inversibility properties and continuous differentiability prop-
erties [74].

A traditional perceptron feed-forward network structure is constructed
from the combination of multiple individual neurons producing highly flexi-
ble mapping machines. The collection of neurons placed at the same level in
the structure form a layer. The first layer is designed to match the dimen-
sionality of the inputs, and the last layer is formed of a single neuron, which
outputs the network’s prediction, as shown schematically in Fig. 2.3. The
weights of every neuron connection and the biases of individual neurons are
defined through an optimisation process where the cost function is designed
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Figure 2.3: Schematic of the feed-forward neural network employed

to maximise the network’s prediction accuracy over a training dataset, for
which the true values of the function are known. This work makes use of the
Mean Squared Error (MSE) loss function, computed between the network’s
predictions and the real function value for the training samples. The back-
propagation algorithm [75] is used to compute the gradient of the network’s
parameters with respect to the inputs and facilitate the training process. Be-
cause gradient calculation through backpropagation is expensive, this process
is performed in mini-batches of samples, selected randomly from the whole
set. Not only does this approach ease the computational resources required
to train the network, but mini-batching also provides a stochastic approx-
imation of the expected value of the gradient of the loss function over the
training set, which has been shown to improve generalisation performance
and optimisation convergence [76,77]. A variation of stochastic gradient de-
scent, RMSProp [78] with a learning rate of 0.001, is employed to make use
of these gradients and tune the network.

One pass through all the training data is called a training epoch. In this
work, the number of training epochs is defined via an Early Stopping callback
[79], monitoring the convergence of the MSE evaluated on a validation set
comprising 20% of the samples, which are spared and not used for training.
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Table 2.1: Hyper-parameters tuned in grid search

Parameter Lower Limit Upper Limit
No. of HL 1 4

No. of neurons in each HL 5 500
Regularisation Coefficient 0.0 0.02

Drop-out Factor 0.0 0.5
Activation Function sigmoid relu

A maximum of 500 epochs without change in the MSE of the validation set
is specified to prevent over-fitting.

In fact, due to the potentially very large number of neurons being em-
ployed, over-fitting the neural networks is a possible but unwelcome out-
come of the training process. To prevent this scenario, in addition to early
stopping, a Tikhonov regularisation term [80] is included in the MSE loss
function, as well as neuron drop-out [81,82].

The Tensorflow framework [83] was employed to construct and train the
networks, through its python wrapper Keras [84]. It was discussed that
the network design at the input and output layers follows the dimensionalty
of the problem. The layers in between are called hidden and are a major
consideration when deciding the network’s architecture. How many Hidden
Layers (HL) to use and the number of neurons per layer define the networks
capacity, its ability to map complex functions. In this work, both these
considerations are defined through a hyper-parameter tuning process.

Since this work deals mainly with small datasets, in the order of hun-
dreds of samples, the training of the networks is not a particularly costly
procedure. Therefore, the hyper-parameter tuning can be achieved through
a grid-search, evaluating a large number of different parameter combinations.
For the activation function, as described, only sigmoid and ReLU were em-
ployed. Table 2.1 shows the hyper-parameters tuned and their corresponding
high and low levels. The objective function for the tuning process was set to
maximise the coefficient of determination, R2, using 10-fold Cross Validation
(CV) [85]. Some network parameters are general for this application and
thus are fixed for all network configurations evaluated in the grid search:

– Number of neurons in the input layer: set to match the dimensionality
of the design vector.

– Output layer definition: a single neuron without any activation func-
tion.
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Thus, the network fitting process proposed requires two datasets at every
CV step: one for training the weights and biases and a second for tuning
the network architecture. The former is additionally split to allow for a
validation set and further prevent over-fitting. The proportions of the total
number of samples being placed in each dataset is as follows: 64% for the
weights and biases training, 20% for hyper-parameter tuning and 16% for
early stopping. The splitting of the dataset is performed using seeded random
number generators, such that each network evaluated in the grid search is
trained and tested using the same samples. It is worthy to note that the
samples employed in this study correspond to a same model. While current
AI research indicates NN capabilities that could enable the generalisation of
these networks to other models, these features have not been considered in
this work.

The performance of the network, as determined by the MSE and R2, was
discovered to increase significantly when trained and tested on inputs and
outputs that were normalised to have zero mean and a standard deviation
of one, obtained through the transformation defined in Eq. 2.5 for a given
vector v.

vn =
v− E[v]
σ(v)

(2.5)

2.3 Coupling Active Design Subspaces

Adequately fitting a neural network to high-dimensional input data might
require a large number of samples, which can make the method infeasible in
cases where function evaluations are obtained through a costly procedure.
To enable the application of neural networks to high-fidelity CFD data, this
work proposes coupling them with Active Design Subspaces (ADS) [65].

2.3.1 Active Subspaces

Let Fk be a function of interest to the engineering system under study, where
Fk is differentiable and Lipschitz continuous. Let x be an m-dimensional
input vector to Fk living in a design space χ as per (2.2), such that Fk :
χ− > R, where χ ⊂ Rm. A condensed vector y is sought, where y ∈ Φ ⊂ Rk,
with Φ ⊆ χ and k ≤ m. If y is such that the variability in the function is
expressed more efficiently, Fk(y) is simpler to optimise.

Two approaches can be followed to identify y. One is to identify a subset
of {xi} that, when varied, do not significantly affect the response of Fk. Fol-
lowing, y is formed of all {xj}, where j ̸= i. This is referred to as screening
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and can lead to powerful dimensionality reduction. However, the expense of
confidently screening all the input parameters can well exceed the available
resources in high dimensions. Another approach is to identify an optimal
basis in Rm that is tuned to efficiently express Fk. Given that x is full-rank,
the new basis can be identified by a rotation of the original coordinate sys-
tem, or, likewise, a linear combination of the original dimensions. In such a
system, it’s straightforward to realise directions along which Fk varies little
and perform screening. This is called subspace-based dimensionality reduc-
tion. Moreover, thresholds can be implemented in the linear combination
that produces the new basis, such that low coefficient values indicate pa-
rameters that can be ignored without significant loss of information. It can
be noted, therefore, that subsets are a generalisation of screening tests that
enable more flexibility in the implementation of the dimensionality reduction.

The ADS approach identifies the linear combination of the input param-
eters that best describes the variability in an objective function, through
the eigenvalue decomposition of the function’s gradient covariance matrix,
C, defined in Eq. 2.6, from [86].

C = E[∇xFk ∇xF
T
k ] (2.6)

The eigenvalue decomposition of C, computed as C = WΛW T yields
the dominant directions in the columns of W. Based on the decay of the
eigenvalues, W and Λ can be partitioned as per (2.7), such that the active
subspace is captured in the matrixW1, which maps them-dimensional inputs,
x, to a k-dimensional active vector, y, through the transformation expressed
in (2.8).

Λ =

[
Λ1

Λ2

]
, W = [W1 W2], W1 ∈ Rm×k (2.7)

In practice, the matrix C is approximated through a Monte Carlo method,
by drawing M independent samples {xi} according to the sampling density
ρ = ρ(x) in χ, and computing the gradient for each sample, as defined
in Eq. 2.9. Constantine [65] suggests adopting M = αk log(m), where α is
an oversampling factor, and k is the maximum number of dimensions in the
ADS that can be accurately resolved.

y = W T
1 x (2.8)

C ≈ 1

M

M∑
i=1

∇xFKi
∇xF

T
Ki

(2.9)
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The application of ADS to the optimisation problem stated in Sec. 2.1
requires building such a covariance matrix for all the Fk functions. If the
number of functions of interest, K, is sufficiently low and an adjoint code
is available, then computing the gradients with adjoint can be a viable al-
ternative, requiring M primal CFD computations and M × (K + 1) adjoint
computations. However, for a general scenario, K might be overly large or
adjoint codes might not be available. In such scenarios, an analytical model
such as (2.1) can be trained on sampled data and the gradients estimated
from said model. The computational expense of building C in this case is
dependent on the model employed. Based on the discussion from Sec. 2.2,
this work employs ANNs for this purpose.

2.3.2 Enabling ADS through AI

An ADS is sought to reduce the number of samples needed to adequately
fit a neural network to high-dimensional input data, and a neural network
is required to learn this ADS. This impasse is solved through the iterative
process, shown schematically in Fig. 2.4. This process is defined based on the
knowledge that, regardless of the number of input parameters, as an ANN
is trained with increasing number of samples, provided there is no over-
fitting (for which the fitting procedure in Sec. 2.2 accounts), the prediction
of said network will converge to the true function from which the samples
were taken. Thereby, the estimation of C via gradients evaluated with the
ANN also approximates the true matrix and its eigenvector decomposition
converges to the same set of dominant directions. This work proposes iterat-
ing on the number of samples employed to fit the ANN while monitoring the
convergence of the first k eigenvectors of C, through Eq. 2.10, which mea-
sures the angular variation, θ, between the estimated dominant directions
from successive iterations.

θ
(j)
i = cos−1

(
e
(j)
i

• e
(j−1)
i

)
; i = 1, . . . , k. (2.10)

Where, e
(j)
i is the ith eigenvector of C, estimated at the jth iteration.

Once θ is small enough, the ANN prediction approximates the function
behaviour in the dominant directions sufficiently well to reveal the ADS.
This can therefore be exploited to reduce the dimensionality of the inputs.
Mapping the samples to the active directions and fitting a final ANN to
this low-dimensional dataset generally increases the accuracy of the network
predictions since the data is now structured and there are more data points
per dimension. The initial number of samples, n, and the increment, p, in the
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Figure 2.4: Iterative process proposed to learn the ADS and fit an ANN to
CFD samples

iterative process can be selected to exploit parallel computing capabilities, if
available, to reduce the time requirements of the loop.

2.4 Rewriting the Optimisation Problem

The transformation defined in Eq. 2.8 is called a forward map and, as de-
scribed, transforms the input vector x ∈ Rm to an active vector, y ∈ Rk.
There is no reason why the active vectors of different functions should be the
same, hence, after the fitting procedure, K ANNs are obtained, all respond-
ing to different active vectors in different subspaces. This section details
a reformulation to the optimisation problem described in Eq. 2.2 that al-
lows to navigate through the active subspaces to find an optimum in the
m−dimensional space, while exploiting the low-dimensional structure dis-
covered through the ADS.

The forward map provides a unique vector y for each vector x. However,
the converse is not true. There are infinitely many x that satisfy the inverse
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map for a given y. Let f̂ be the neural network prediction of the cost function
for its active vector:

f(x) ≈ f̂(W T
10
x) (2.11)

Where W10 contains the first k eigenvectors of the cost function’s C ma-
trix. Additionally, let the constraints be approximated by a neural network
built on their active vector:

gi(x) ≈ ĝi(W
T
1i
x); i = 1, . . . , nc. (2.12)

A new function F is defined as:

F (y0) = f̂(W T
10
x∗) (2.13)

Where,

x∗ = argmin
x

1

2

∥∥W T
10
x− y0

∥∥2

2

subject to ĝi(W
T
1i
x) ≤ hi, i = 1, . . . , nc.

x ∈ χ ⊂ Rm.

(2.14)

Each evaluation of F (y0) requires solving a constrained least-squares min-
imisation problem designed to select from the infinitely many x that solve the
inverse map, one that is feasible in terms of the nc constraints. In case there
are no feasible points that satisfy this, then the feasible x that maps to the
closest active vector to y0 is selected. This is a convex minimisation problem
that can be easily solved by a gradient-based search algorithm, employing
finite differences for the gradients of the constraints, ∇ĝi, and Eq. 2.15 for
the cost function gradient. It is worthy to note that there might still be
infinitely many x that solve Eq. 2.14. In such cases, all design points are
considered equal since they map to the same active vector and only differ
in their inactive directions. Hence, the cost function should experience little
variation between these points. The introduction of a regularisation term
(e.g. Tikhonov) to the cost function in Eq. 2.14 is possible without loss of
generality, in the case where there is preference for particular types of x. In
Ch. 4, this approached is followed.

∇CF = W10(W
T
10
x− y0) (2.15)

The constrained optimisation problem defined in Eq. 2.2 can thus be
rewritten as an unconstrained optimisation through function F, as per Eq. 2.16.

min
y0

F (y0) (2.16)
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This formulation enables employing the ANN built on the cost function’s
ADS for global optimisation. Exploiting the dominant directions usually
accelerates the convergence of the optimisation procedure since the function
is very respondent to changes in its active variable. Moreover, selecting the
feasible point through Eq. 2.14 allows employing the ANNs built for the
constraints, which can be obtained cheaply, through the algorithm described
in Fig. 2.4.



Chapter 3

Benchmarking AInADS
performance

Nomenclature

f̂ Neural Network approximation of function f
C Gradient Covariance Matrix
W Eigenvectors of the covariance matrix
Λ Eigenvalues of the covariance matrix
m Dimensionality of design vector
k Dimensionality of active vector
nc Number of constraints in optimisation problem
x Vector of design parameters
y Vector of design parameters in the active directions
E[·] Expected value of the argument in [·]
σ(·) Standard deviation of the argument in (·)

3.1 Comparison to an adjoint gradient-based

approach

To compare the performance of the global strategy proposed, the optimisa-
tion problem in Eq. 2.2 is also solved employing an adjoint-based technique.
The search algorithm chosen is the Sequential Least SQuares Programming
(SLSQP) from scipy [87]. The method wraps the SLSQP routine developed
by [88]. It employs a Han-Powell quasi-Newton method with a BFGS update
of the B-matrix for defining the search direction. This update requires gradi-

36
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Figure 3.1: Primal convergence history for mean-flow residual and non-
dimensionalised cost function and constraint values

ent information of the cost function and the constraints, hereby referred to as
the objectives, which in this section is obtained through the adjoint approach.
Next, SLSQP selects the optimum step size via a line-search optimisation,
which only requires solving a primal to obtain the the objectives’ value at
each iteration.

As discussed in Sec. 1.1, the adjoint computation requires a near zero
residual from the primal solver which increases the computational expense of
that stage. Additionally typical adjoint running times are about three times
longer than the flow solver, making the B-matrix update a costly endeavour.
This work aims to lessen the overall time expense by employing parallel
computing capability and solving the adjoint computation for the objectives
simultaneously.

For the step-length algorithm, there is no need for the primal to achieve
such exemplary convergence and adequate results can be obtained much ear-
lier. Fig. 3.1 shows a typical CFD primal convergence history for an axial
fan. By iteration 400, the objective convergence curves have stabilised and
only minor variations in their value is noticed thereafter. From this point, in
traditional CFD-based SLSQP implementations, the primal solver would be
continued for an additional 1200 iterations to comply with the adjoint con-
vergence requirements. This implies a fourfold increase in the computational
expense for each line search iteration while there is no such requirement.
Hence, this work proposes employing partially converged values to accelerate
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Figure 3.2: Research blade CFD domain

the step-size optimisation of the algorithm.

3.2 Application to a jet engine fan blade

In this section, the optimisation of a modern, low speed, high bypass ratio
research fan blade is approached with the global strategy described in Ch. 2,
and the adjoint-based strategy from Sec. 3.1. The test case under study is
called VITAL, hereby referred to as the research blade, shown in Fig. 3.2. As
documented in [89], for high bypass ratio fans, a 1.4% increase in efficiency
yields a 1.0% reduction in the engine’s specific fuel consumption, making this
component an ideal test case to study the benefits of global optimisation on
high-dimensional parametrisation schemes. The span of the research blade
is about two-thirds smaller than that of a conventional fan blade making it
suitable for rig tests. The rotational speed has been adjusted to emulate
the flow physics at cruise condition and the thickness has been increased to
achieve the mechanical integrity required of a large aero-engine composite
fan blade.

3.2.1 Computational Tools

The Rolls-Royce proprietary CFD code Hydra [90] was used throughout
this study to simulate the flow about the research blade. Hydra is an un-
structured solver employing an edge-based data structure and convergence
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acceleration through an element collapsing multi-grid algorithm. A five-
stage Runge-Kutta scheme with a block Jacobi preconditioner is employed
for pseudo time-stepping when solving the steady-state Reynolds-averaged
Navier-Stokes equations. The turbulence closure model employed in this
work is Spalart-Allmaras. Hydra’s discrete adjoint capability was employed
in this work to estimate the gradients of cost function and constraints with
respect to the design parameters.

The computational domain used in this study is shown in Fig. 3.2. It is
a single-passage, single-blade row model with the downstream splitter. The
whole domain is modelled on a rotating frame, with the casing, splitter, inlet
and exit surfaces set as stationary. The rotor, hub and splitter surfaces are set
as viscous walls. At the inlet, a one-dimensional Boundary Condition (BC) is
enforced, specifying a radial distribution of total pressure, total temperature,
whirl and pitch angles and turbulence intensity, where the values for these
quantities are obtained from experimental analyses. For the bypass and core
exit surfaces, a non-reflecting, radial-equilibrium capacity exit BC is enforced.

The domain is discretised using the Rolls-Royce proprietary geometry
and meshing software, PADRAM [91]. The blocking strategy employed by
PADRAM consists of an H-O-H topology, with H blocks for the upstream
and downstream regions, as well as the upper and lower periodic boundaries.
The blade is enveloped in an O-mesh while a C-mesh is employed for the
splitter. A mesh convergence study was previously undertaken to identify
the optimal distribution of nodes [26], leading to a total of 5.4x106 cells,
placing 30 mesh nodes in the tip gap. The y+ of the mesh is below 1 on all
viscous surfaces. CFD-experimental validation of this set-up have previously
been reported achieving a good match for a number of different operating
conditions [26,27].

3.2.2 Optimisation Problem

The definition of the geometry parametrisation is a critical factor dictat-
ing much of the success that can be obtained through optimisation, since
the search will only comprise geometries that are attainable with it. Many
parametrisation schemes have been introduced in the literature, such as Free-
Form Deformation or B-Splining. However, most of these are abstract in the
sense that the user has little knowledge on how a particular parameter affects
the geometry, and indeed much less on how the interaction between various
parameters affects the final shape. In this work, the geometry parametrisa-
tion is defined through PADRAM’s Engineering Design Parameters (EDP),
which comprise a set of intuitive geometry manipulation handles based on
first principles. Each EDP, illustrated in Fig. 3.3 for an aerofoil section, con-
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Figure 3.3: Geometry parametrisation through EDP. The magnitude of the
perturbations has been enlarged for clarity

trols a particular Degree of Freedom (DOF) for the geometry. The DOFs
applied are: Sweep (axial movement of the section), Lean (circumferential
movement of the section), Skew (rotation about the section’s centroid) and
Leading Edge (LE) and Trailing Edge (TE) recambering. Two additional
DOFs controlling the locality of the LE and TE recambering are also intro-
duced, such that low values of these parameters cause very localised camber
line alterations, and vice-versa. Sufficiently large values can propagate the
perturbations through the aerofoil, thus providing complete control over the
camberline. The EDP are applied on five aerofoil control sections uniformly
distributed through the blade span - at 0%, 25%, 50%, 75%, 100% - pro-
viding a total of 35 DOFs, arranged in the design vector, x. The value of
the deformation applied as a function of the blade span is achieved through
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smooth cubic B-spline interpolation, with multiple control points via the
control sections.

The upper and lower optimisation ranges for each DOF employed in this
study, denoted by the vectors xU and xL respectively, were defined based on
previous experience with the parametrisation scheme. Let χ be the space of
possible designs attainable with the 35 DOFs described, the design space is
thus defined as follows:

{x ∈ χ | xL ≤ x ≤ xU} (3.1)

The cost function (CF) for the optimisations carried out in this work
is the fan bypass isentropic efficiency, defined in Eq. 3.2, where the total
pressure and total temperature quantities employed are extracted from the
CFD solution by performing double averaging over the surface of interest:
mix-out circumferentially and mass-mean radially.

CF = η(x) =

(
p0exit
p0inlet

) γ−1
γ − 1

T0exit

T0inlet
− 1

(3.2)

0.99 PRdatum ≤ PR(x) ≤ 1.05 PRdatum (3.3)

Through the optimisation, upper and lower constraints are enforced for
the fan pressure ratio (PR) according to Eq. 3.3. The lower bound is specified
to prevent new geometries from maximising efficiency by greatly reducing the
PR, which would cause the LP shaft to operate at a higher speed to meet the
engine’s thrust requirement. Similarly, the upper bound is enforced to avoid
designs with overly large PR, that operate at significantly lower shaft speeds
and can lead to overloading of the LP turbine blade. It is worthy to note that
the EDP employed do not alter the thickness of the blade, thus preventing
the search for an aerodynamically optimum design to lead to overly thin
blades which would significantly affect the mechanical integrity of the blade.

3.2.3 Global Optimisation Approach

In this section, the research blade is optimised employing the global strategy
detailed in Ch. 2. The iterative process from Fig. 2.4 is solved for efficiency
and PR, employing n = 105 initial function evaluations with an increment of
p = 17. The sampling was done following a Design Of Experiment approach
employing Sobol’ sequence. The convergence of the algorithm for the first
two dominant directions is shown in Fig. 3.4. The trend demonstrates a
decreasing magnitude of the angular variation between successive iterations,
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Figure 3.4: Eigenvector convergence

suggesting the C-matrix estimation via the neural network predictions is
converging to its true form. By the eighth cycle, corresponding to 250 total
samples, a sufficiently low angular variation has been achieved. Certainly,
the process could be continued with increasing number of samples leading to
an ameliorated resolution in the active directions, however, the trend shown
in the figure suggests that only minor variations in the directions can be
expected thereafter. Hence, the process is deemed converged at the eighth
iteration.

Figures 3.5a and 3.5b plot the eigenvalue decay of the final efficiency
and PR gradient covariance matrices. The rapid decrease noticeable in the
eigenvalues is positive because it denotes that most of the system’s variance
is captured by just a few dominant directions. In fact, through the cumu-
lative energy plots shown in Fig. 3.5c and 3.5d it is noticeable that almost
100% of the total system’s energy can be represented by the first 4 eigenval-
ues. Thereby, for the optimisation task at hand, the ADS was constructed
employing the first four dominant directions.

Through Eq. 2.8, the 250 samples were mapped to the PR and efficiency
active subspaces, and a final neural network was trained and tuned for both
functions. Table 3.1 gathers the prediction accuracy obtained with these
networks and compares it against the ones trained on the high-dimensional
space. A noticeable increase in prediction accuracy is achieved for both func-
tions when training the networks with the low-dimensional space, due to the
fact that the data is structured and the ratio of samples to dimensions is
greatly increased. The ameliorated network performance provides an ad-
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(a) Efficiency eigenvalues (b) PR eigenvalues

(c) Efficiency cumulative energy (d) PR cumulative energy

Figure 3.5: Eigenvalue decay and cumulative energy plots for efficiency and
pressure ratio gradient covariance matrices

ditional level of confidence in the subsequent surrogate-based optimisation
process, since the performance benefit of any optimised designs estimated
from the networks should be close to what CFD would predict.

For visualisation purposes, the data can be condensed even further. The
cumulative energy plots show that over 98% of the energy is captured by
just the first two eigenvalues and this allows building 2-dimensional active
subspace performance maps, following [66], without much loss of informa-
tion. These maps, shown in Fig. 3.6, enable visualising the behaviour of the
objective functions in their active subspaces. The active vector coordinates
(0, 0) in these plots corresponds to the datum design. The efficiency map
shows that this design lies in a corridor of high-performance, but could still
be improved quite significantly by moving in the second active variable’s
positive direction. However, such design changes could affect the PR beyond
the specified tolerances. The active subspace on which the PR map is con-
structed is different than that for efficiency, preventing a direct combination
of both plots. Through the reformulation of the optimisation problem, dis-
cussed in Sec. 2.4, the search algorithm will be able to navigate through these
subspaces searching for the best trade-off design.
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Table 3.1: Network prediction accuracy trained with high-dimensional inputs
and active vectors

Function R2
[
f̂(x)

]
R2

[
f̂(y)

]
Efficiency 0.892 0.937
PR 0.987 0.990

(a) Efficiency subspace (b) PR subspace

Figure 3.6: 2D active subspace maps for the optimisation functions

In this work, a genetic algorithm was employed to perform the search
for a globally optimum design using Eq. 2.16. Upon convergence, the op-
timal design point was simulated with CFD leading to a significant 0.47%
improvement in efficiency, while the PR constraint was achieved.

Figure 3.7a plots the radial profile of circumferentially mixed-out values
of efficiency (as per Eq. 3.2) for the datum and optimised designs. This graph
reveals that the performance increase for the optimum design arises largely
from the upper 20% of the blade’s span, while a slight reduction in efficiency
is noticeable for the mid span region, due to the radial adjustment of the flow.
The isentropic Mach number distribution for the 90% span section, plotted in
Fig. 3.7b, suggests that the primary mechanism for this performance benefit
is an improved shock behaviour via the reduction of the pre-shock Mach
number. Additionally, the pressure side spike has been mitigated, leading
to a more uniform loading at the leading edge (LE). The suction side LE
loading, however, has slightly been worsened for the optimum, noticeable by
a minor peak followed by a sudden decay.

Geometrically, the ameliorated flow behaviour is achieved through a slightly
more convex camber line in the 20% to mid-chord region, as shown in Fig. 3.8a.
This causes a stronger pressure gradient that increases the supersonic diffu-
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sion of the flow, as shown in the contour plots of Fig. 3.9, reducing the
pressure difference across the shock and thereby the entropy creation. In
addition, the shock is spilled out of the passage, increasing the bow shock
stand-off distance. This enables a pressure recovery in the region after the
shock downstream to the LE. The effect is achieved in spite of the LE being
sharper for the optimised design, as can be noted from the increased curva-
ture shown in Fig. 3.8b, which produces a smoother expansion, mitigating
the Mach number spike at the pressure side.

3.2.4 Adjoint-based Approach

The efficiency improvement at each iteration of the optimisation is shown
in Fig. 3.10. It can be appreciated that within the first three iterations, the
optimiser identified an optimal step size, which was employed throughout the
optimisation. This suggests that the function’s Hessian matrix –estimated
with each gradient evaluation– does not significantly change for the design
points assessed during the process. Thus, the SLSQP routine employed in
this section is able to identify the dominant direction for each iteration.

Additional understanding of the process can be gained by analysing the
evolution of the gradients through the optimisation. Each gradient evalua-
tion provides information regarding the sensitivity of the cost function with
respect to each of the parameters at a particular iteration. A gradient com-
ponent with a large magnitude reveals a parameter that is more influential
than the others, and dictates the primary geometrical modification of that
iteration. This information is shown in Fig. 3.11, where each column encodes
the efficiency gradient at a particular iteration. Throughout the process LE
and TE recambering were the most influential parameters, with negative

(a) (b)

Figure 3.7: Radial efficiency profile for datum and optimised designs in (a);
lift plot at 90% span in (b)
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(a) (b)

Figure 3.8: Aerofoil geometry at 90% span. (a): camberline distribution;
(b): curvature vs arc length. The datum curve has been shifted for clarity

(a) (b)

Figure 3.9: Static pressure contours at 90% span. (a): datum blade; (b):
optimised design

gradient values near the root of the blade, and positive towards the tip.
Geometrically, this implies that the camberline curvature was reduced

for the tip section, resulting in an s-shape which is more convex towards the
pressure side, as shown in Fig. 3.12a, with a similar outcome to the global
optimum design from Sec. 3.2.3. This mitigates the expansion along the suc-
tion surface that delays and weakens the shock, as shown in the lift plot in
Fig. 3.12b. For the midspan regions the aerodynamic outcome was similar,
but the geometrical mechanism was different. As shown in Fig. 3.13a, the
blade inlet angle was increased, which causes a reduction in the effective flow
incidence, thus reducing the loading at the LE. Additionally the camber-
line concave curvature was also increased, as shown in Fig. 3.12c, causing
a smoother expansion which delayed the shock further downstream, reduc-
ing the shock-induced separated region. This ameliorated shock behaviour
enabled increasing the flow turning through a reduction in the exit angle
(towards more negative angles), shown in Fig. 3.13b, thus increasing the
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Figure 3.10: Adjoint-based optimisation history. The optimum found is high-
lighted in green

performance of the fan blade at these sections.
The gradient evolution in Fig. 3.11 reveals another interesting behaviour

of the optimisation process. Primarily, that sweep, lean and skew had little
effect on the objectives. Since the research blade is already high-performing,
it is likely that the geometrical features controlled by these parameters were
already at an optimum setting. Additionally, it can be noted that, after the
initial design cycles where predominantly the recambering parameters were
modified, the search direction became affected by the parameters controlling
the locality of the recambering. This suggests that the optimiser was trying to
fine-tune the camberline distribution, resulting in the final shape previously
described, which was found to be tailored at mitigating the shock.

This work was centred on the blade design point. However, off-design
performance is an important consideration when assessing fan blade designs.
This information is presented in Fig. 3.14 for the optimised and datum blades.
The characteristic curves show that stall margin is maintained for both GA
and SQP optimums, while the choke margin has been slightly reduced. Ad-
ditional objective or constraint functions could be introduced in the optimi-
sation problem to maintain the datum off-design performance. Additionally,
bulk-skewing the optimised blades could be considered to recover the choke
margin [26].
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Figure 3.11: Evolution of efficiency gradient through optimisation. The gra-
dient has been normalised by l2 norm.

3.2.5 Remarks on Computational Efficiency

Table 3.2 summarises the computational expense and improvement achieved
by each optimisation method assessed in this study. The global optimisation
of the research fan blade, through the novel strategy proposed, required 250
CFD samples. The incremental number of samples employed for the itera-
tive loop from Fig. 2.4 was adopted to exploit parallel computing capabilities
such that each iteration ran all samples in batch and had the run time re-
quirement of a single CFD computation. For generating the initial dataset, 6
of such batches were required. Thus, the time requirement for generating the
complete dataset was approximately 14 times the running time of a single
CFD. The time requirement of fitting and optimising the neural networks is
not considered since it was significantly lower than that of CFD runs.

In contrast, the adjoint-based optimisation required 19 iterations, of which
16 were B-matrix updates and the remaining 3 were for line search. As dis-
cussed, the update of the B-matrix requires a primal CFD with 4 times the
cost of a normal run, and two adjoint calculations with 3 times the cost of
the primal –hence, 12 times the cost of a normal run. This optimisation
amounts to a total computational expense of approximately 387 CFD runs.
In terms of the time requirement, only the adjoint calculation for the cost
function and constraint can be parallelised, since the optimiser is sequential
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(a) (b)

(c) (d)

Figure 3.12: Camberline distribution and lift plots of datum and optimum
designs at (a), (b): 90% span; and (c), (d): 50% span

and decisions are made based on the previous solution. This leads to a total
time requirement of approximately 256 CFD runs.

The behaviour of the cost and constraint functions in the design space
was such that both algorithms were able to converge to similar regions and
produce optimised designs with comparable performance. The slightly lower
benefit achieved with the global approach arises from the fact that, although
highly accurate, the meta model built on the active subspace is a simplifica-
tion of the true function shape. To overcome this, additional samples can be
taken in the vicinity of the optimised design to refine the neural network in
said region and improve the optimisation accuracy.

The global optimisation strategy achieved, with a reduced computational
cost and runtime, an efficiency improvement comparable to a state-of-the-art
adjoint-based approach. Additionally, the inherent implementation enables
exploitation of parallel computing capabilities, which can significantly reduce
the time requirement of the process. Moreover, the cost function and con-
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(a) (b)

Figure 3.13: Blade metal angle distribution. 3.13a: Inlet angle, 3.13b: Exit
angle

Table 3.2: Summary of computational efficiency for the optimisation ap-
proaches

Global Strategy Adjoint-based
Total Cost (CFD) 250 387

Total Run Time (CFD) 14 256
CF Improvement 0.47% 0.5%

Constraint Achieved yes yes

straint values can all be obtained with a single CFD run, thus providing bet-
ter scalability of the global approach to multi-objective or multi-constrained
optimisation frameworks. This could enable the introduction of additional
constraints designed to maintain the off-design performance, or the specifi-
cation of an exit total pressure radial profile via multiple constraints.

3.3 Conclusion

A novel global optimisation strategy has been developed that leverages the
capabilities of ANNs for regressing complex functions while coupling them
with ADS to reduce the number of samples required. This strategy was ap-
plied on the efficiency optimisation of a modern jet engine fan blade with
constrained PR and compared, both in terms of overall improvement and
computational expense, to an adjoint-based approach employing the same
parametrisation. The global strategy achieved an efficiency increase com-
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Figure 3.14: Fan characteristic curves for optimised designs

parable to the adjoint approach, with a reduced computational cost. In
addition, it was demonstrated that adequate scalability to multi-objective or
multi-constrained optimisation applications is achieved.



Chapter 4

Understanding Fan Stall Range
through AInAS

Nomenclature

ADP Aerodynamic Design Point
ADS Active design subspace
BC Boundary Condition
BOGV Bypass Outlet Guide Vane
C Function’s gradient covariance matrix
CFD Computational Fluid Dynamics
ESS Engine Side Stator
FEA Finite Elements Analysis
LASSO Least absolute shrinkage and selection operator
LE Leading edge
LS Least squares
MAE Mean absolute error
PR Pressure ratio
QoI Quantity of interest
RSM Response surface mode
SA-H Helicity-corrected Spalart-Allmaras turbulence model
SM Stall margin
S-SA Standard Spalart-Allmaras turbulence model
SV Straightener Vane
TE Trailing edge
TOC Top of Climb condition
R2 Coefficient of determination

52



4 Understanding Fan Stall Range through AInAS 53

W Eigenvector matrix of C
Λ Eigenvalue matrix of C
Φ Flow capacity = ṁ

√
T0/p0

ṁ Mass flow
T Mass-averaged total temperature
p Mass-averaged total pressure
Cµ Tip leakage flow axial momentum flux
η Isentropic efficiency
λ LASSO regularization coefficient

4.1 Introduction

Rotating stall is an unstable regime of fan and compressor operation whereby
the presence of non-axisymmetric disturbances prevents the uniform flow of
mass through the machine, limiting the extent to which it can be safely op-
erated. The stall margin of a fan or compressor defines the range of stable
operation and is a major safety criterion that designers need to take into
account for a safe operation of the jet engine and also for a successful certi-
fication.

Upon first appearance, the flow disturbances grow and propagate around
the annulus and stall is said to occur when their effect is sufficient to promote
flow breakdown. Two main paths into breakdown have been identified, dis-
tinguishable by their signatures in the pressure/velocity traces and commonly
referred to as modal oscillations and spikes [92, 93]. Modal oscillations are
employed to describe the occurrence of low-amplitude periodic axial velocity
fluctuations with length scales the order of the compressor circumference.
Such oscillations cause localized increases in blade incidence at certain parts
of the annulus that can drive the loading beyond critical values and lead
to the formation of stall cells. Modal flow oscillations can be detected in a
machine many revolutions prior to stall and can develop smoothly into stall
cells that span a large sector of the annulus. This sequence is commonly
associated with conditions at, or to the left of, the peak of the total-to-static
pressure characteristic [94,95] and the initial stages of its evolution, where the
amplitude remains small, can be well explained through linear models [96,97].

However, modern compression systems employ highly optimized blades
with reduced losses and blockage and typically do not experience a peak
of the pressure-rise characteristic. In addition, design trends favour highly
loaded blades, for which minor distortions in the incoming flow, or blade
shape deviations, can drive the incidence beyond critical values when oper-
ating at a point on the the right side of the characteristic [98, 99]. On such
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scenarios pre-stall waves are not observed [93]. Thus, the more frequent path
into instability for modern fans and compressors is characterised by smaller
scale (a few blade pitches) transients, called spikes, which appear as sharp
oscillations in the pressure traces and propagate circumferentially at speeds
about 70% to 80% of the rotor speed [100]. The amplitude of these distor-
tions is larger compared to the mean flow velocity and they can grow into
fully-formed stall cells within about three rotor revolutions.

Many research efforts have been dedicated to defining the characteristics
of spikes and the fluid mechanisms that lead to their formation in core com-
pressors [101–104] and fan blades [105–107]. The onset of these disturbances
has been shown to be primarily linked to the tip aerodynamics, where flow
separation from the leading edge (LE) begins due to high incidence. This
condition needs only to be present at a single blade to initiate the unstable
evolution towards rotating stall. The vorticity shed from the separated flow
rolls up into a vortex tube that is bounded by the blade suction surface on one
end and the casing on the other, and it propagates circumferentially [108].
The convecting vortex creates blockage in the passage, which increases inci-
dence of the adjacent blade and thus constitutes a positive feedback loop for
the propagation and growth of the instability.

Vo et al. [101], suggest two criteria that promote high incidence and the
formation of a spike-type disturbance, both linked to over tip leakage flow.
The first condition is spillage of the leakage jet ahead of the adjacent blade’s
LE and below the tip radius. As the flow coefficient decreases, so does the ax-
ial momentum of the incoming flow. The blade loading, in turn, rises, driving
more fluid through the tip gap and consequentially increasing the momen-
tum of the leakage jet. These conditions result in an upstream movement
of the interface between incoming and leakage fluids. The flow behaviour
in the tip region can be studied through entropy contours, as per Fig. 4.1a,
which highlight the location of the interface through a sharp gradient when
the low-entropy incoming flow mixes with the high-entropy leakage fluid; or
through radial vorticity contours, as per Fig. 4.1b, which are useful to isolate
the tip clearance jet. The first criteria indicates that stall onset occurs when
the incoming/tip clearance flow interface is aligned with the rotor leading
edge plane, or, equivalently, when the leakage jet becomes tangential. Any
mass flow reductions from this point would tip the leakage jet over and cause
spillage ahead of the leading edge. The occurrence of leakage fluid travelling
upstream of the leading edge further increases the incidence on the tip, which
promotes a detachment of the boundary layer, leading to corner separation
and heavy blockage.

The second condition describes a situation where spike-initiated stall oc-
curs before the interface aligns with the leading edge. In this case, the tip
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(a) Contour of entropy for a near-stall
flow field [101].

(b) Radial vorticity contour at near-
stall [107].

Figure 4.1: Useful markers for analysing flow mechanisms present at stall.

Figure 4.2: Illustration leakage jet impingement at the adjacent blade’s pres-
sure surface.

leakage fluid from an adjacent blade passage impinges on the pressure sur-
face of the adjacent blade at the trailing edge, which creates a backflow that
induces corner separation, as illustrated on Fig. 4.2.

Pullan et al. [102], showed that while tip leakage spillage is a primary
mechanism contributing to the formation of spikes, these disturbances can
also occur in the absence of any leakage flow. The study detected spikes on
rotors without tip clearance, suggesting a secondary mechanism that drives
their formation. Shock-boundary layer interactions at the tip region cause
separation downstream of the shock that create blockage. As the mass flow
is reduced, blockage in the passage grows and reaches the casing, forming a
corner separation and triggering the formation of a spike.

By analysing an array of compressor configurations with varying tip gaps,
Hewkin-Smith et al. [104] found interactions between the two competing
mechanisms and their correlation to the tip gap size. At low clearance values,
casing corner separation is the leading cause of spike formation. However,
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as the gap is opened up, leakage fluid energises the boundary layer and in-
terrupts the passage blockage from reaching the casing, delaying stall onset.
Further increases in the tip gap size, however, increase the axial momentum
of the leakage flow and contributes to early spillage, initiating the forma-
tion of spikes. They found thus a non-zero tip clearance that is optimal in
extending the stability range to lower mass flows.

Kim et al. [107], studied the different spike-inducing mechanisms on fan
blades and found that the radial distribution of loading has an effect on the
final size of the stall cell but not necessarily the path to spike formation.
The study assessed two fan blades that operated at similar pressure ratios at
design point, but presented different loading distributions, one approximately
uniform and the second with a marked decay in the tip region. Their results
show that the fan with uniform loading was more prone to spikes initiated by
casing-corner separation, while the configuration with a reduced tip loading
presented a stronger tip leakage flow that dominated the path to instability.

Significant efforts to improve the stability range of fans and compressors
have been made, mostly through the application of casing treatments [109,
110] or tip injection [111, 112]. These methods have been proved successful
in extending the range of safe operation, but their introduction is commonly
associated with performance deficits. As a result, their practical application
has been limited.

From a blade design perspective, the increased understanding of spike
formation mechanisms has not been thoroughly exploited. The tip clearance
remains considered as the primary lever that designers must consider for
managing the over tip fluid. While it is indeed a critical parameter, its
value also responds to other considerations, such as the desire to minimise
the tip rubs experienced in service, the material and stiffness of the blade
or manufacturing precision. Such other considerations currently limit the
designer’s control over stall margin and hence, the design point performance
may have to be compromised to achieve sufficient stall range.

The axial momentum flux of the tip leakage fluid across the gap (Cµ) has
been found to be a valuable metric to capture the effects of over tip flow on
different designs [104,107]. To enable more control over operability range, in
this study, we present a systematic way to design for a target Cµ by consid-
ering full-span blade shaping whilst keeping the tip clearance and the design
pressure ratio unchanged. By sampling a distribution of different Cµ values,
the behavior of stall margin with respect to this quantity is derived, which
reinforces the notion that significant control over the operability range (in-
cluding the onset mechanism) can be achieved through blade design. Based
on this concept, it is proposed that tip gap variations are purely a strong
driver for Cµ, but that stall characteristics are defined by the latter metric.
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Moreover, the effect of Cµ on the design point efficiency is also assessed and
the trade-off between the stability range and efficiency is discussed in depth.
A sensitivity analysis on the design parameters that control Cµ, design point
efficiency and design pressure ratio is also performed, leading to an increased
understanding of their exchange and which design levers to pull in order to
achieve a better overall performance.

4.2 Computational Model

This study considers a low speed, high bypass ratio jet engine fan blade,
representative of future composite geared turbo-fan, hereby referred to as
the research blade, as the basis for analysis. This rotor is chosen because
it embodies modern design trends resulting in high performance and flow
range and it exhibits spike-initiated route to rotating stall. The span of the
research blade is about one fourth of a conventional engine-size blade span,
as it has been designed to be suitable for rig tests. The rotational speed has
been adjusted to emulate the flow physics at the cruise condition and the
blade thickness-to-chord ratio is representative of that necessary to maintain
the structural integrity of the full scale engine blade.

An experimental campaign has been performed for this blade and the re-
sults were employed to construct a computational domain that would recreate
as accurately as possible the test conditions. A description of the approach
taken to maximise the fidelity to which the model simulates the real system
is reported in this section.

4.2.1 Blade Geometry

A digital representation of the geometry tested on the rig was constructed
by laser scanning the manufactured part and converting the resulting point
cloud to CAD-file format through a novel inverse mapping process [113].
Such a geometry profile is representative of the blade as it was manufac-
tured, in other words, cold and static. To obtain the shape of the blade as
it is subjected to centrifugal and gas loads, representative of running condi-
tions, a multi-physics iterative process involving a structural finite elements
analysis (FEA) model and a computational fluid dynamics (CFD) model was
employed for all speeds assessed in this study. A scheme of the process is
presented in Fig. 4.3. Details of the CFD model are of special relevance to
the current work and will be addressed at a following section. A description
of the FEA model, however, is not provided for the sake of brevity. For ev-
ery iteration in the process (other than the first one, for which no gas loads
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Figure 4.3: Running up process of cold static blade shape.

are applied), the FEA model is solved to find the shape displacements that
result from the application of centrifugal and gas loads to the static shape.
The approximating hot running geometry that stems from this is simulated
with CFD to find the corresponding pressure distribution on the blade, in-
formation which is subsequently fed back to the FEA model for the next
iteration. The L2 norm of the distance field between successive geometries
and the blade untwist is monitored to determine the convergence.

As it can be seen from Fig. 4.4, the process converges well and a criterion
of distance≤ 10µm was achieved in under 7 iterations for the speeds assessed
in this study.

As discussed in the introduction, the size of the tip gap is a particularly
critical parameter defining the stalling mechanism. The rig was configured
with a tip clearance of approximately 1.7% chord, sufficient to guarantee
the blade tip would not rub. To ensure the computational model captures
the correct behavior, the clearance was measured on the rig and the digital
domain applies the corresponding value.

4.2.2 CFD Domain

The computational domain used in this study is shown in Fig. 4.5. It consists
of a single passage for every subdomain employing periodic boundaries. The
model includes the rotor blade, bypass outlet guide vane (BOGV), engine side
stator (ESS) and straightener vane (SV). The rotor subdomain is modeled on
a rotating frame, with the the casing, splitter, inlet, exit and a patch of the
hub set as stationary surfaces. All blades, hub, splitter and casing surfaces
are set as viscous walls. At the inlet, a non reflecting radial profile of total
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Figure 4.4: Convergence of the state to state process at a representative
speed.

pressure, total temperature, whirl and pitch angles, and turbulence intensity
is specified, where the values for these quantities were obtained from the rig
test. For the bypass and core exit surfaces, non-reflecting, radial-equilibrium
capacity (Φ) exit boundary conditions (BC) are enforced, while mixing planes
are employed at the zone interfaces.

The CFD pre-processing makes use of the Rolls-Royce proprietary geom-
etry and meshing software, PADRAM [91]. The structured mesh blocking
strategy employed by PADRAM for each zone consists of an H-O-H topol-
ogy for the blade passage, with H blocks for the upstream and downstream
regions, as well as the upper and lower periodic boundaries. The blades are
enveloped in an O-mesh while a C-mesh is used for the splitter. For the rotor
tip, a butterfly topology is employed. The grid strategy was tailored for the
aerodynamic design point (ADP) and employed for all subsequent operating
points assessed, details of the rotor mesh are shown in Fig. 4.6.

The grid spacing on the solid walls is adjusted to produce y+ values
between 1 and 2 on the blade surfaces and lower than 5 on the rotor tip
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Figure 4.5: Illustration of the CFD domain for the resarch blade. Image
distorted and not to scale.

(a) Hub LE Region (b) Hub TE Region

(c) Tip LE Region (d) Tip TE Region

Figure 4.6: Rotor mesh details

and casing. The radial distributions of nodes in the rotor zone guarantees
a proper grid density not only in the proximity of the hub and casing walls
but also at the mid height span, being set such that 90 nodes were placed
at the core exit and 160 at the bypass exit, with 40 of those being located
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in the tip gap. The downstream stators, in turn, copy the node distribution
from the rotor at the interfaces to avoid any radial mesh discontinuities at
the mixing planes. Figure 4.7 shows the radial distribution of nodes at the
interfaces between the rotor and downstream stators. The O-mesh applies
30 nodes around the blade surface and 30 additional nodes are placed in the
H-mesh blade-to-blade direction. The number of axial nodes for each zone
varies based on their actual distance from inlet to exit. The spacing criteria
employed is such that the average axial spacing is about 2% axial chord at
mid-span.
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Figure 4.7: Radial distribution of nodes at mesh zone interfaces

4.2.3 CFD Solver

While fan stall is inherently an unsteady phenomenon, recent turbulence clo-
sure formulations enable performing steady-state numerical simulations until
just before the onset of instability [114], leading to a cost-effective means to
identify the stall point. This work employs the helicity-corrected Spalart-
Allmaras turbulence closure model [115]. It was found that the scaling of the
production term based on the local flow helicity promotes an increased reso-
lution of the leakage flow and corner separation, stabilising the computations
at lower mass flows and enabling more accurate predictions of the stall point.
The improved accuracy in stall point definition was also observed on similar
fan blade computations with this turbulence model [107]. Interestingly, in
this work, it is also shown that it is possible to accurately predict the differ-
ent spike formation mechanisms through steady-state simulations employing
this turbulence model, providing an accurate characterisation of stall onset
and minimising the need for time-accurate computations. Additional infor-
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Figure 4.8: Schematic of the function implemented for stall identification via
Fibonacci search method.

mation regarding this turbulence model can be found in the Appendix at the
end of this chapter.

The model is implemented within the Rolls-Royce proprietary CFD code
Hydra [90], which was used for all numerical computations in this study.
Hydra is an unstructured solver employing an edge-based data structure
and convergence acceleration through an element collapsing multi-grid al-
gorithm. A five-stage Runge–Kutta scheme with a block Jacobi precondi-
tioner is employed for pseudo time-stepping when solving the steady-state
Reynolds-averaged Navier–Stokes equations (RANS).

4.2.4 Identification of stall point

The fan operating point is controlled in the model through the bypass ca-
pacity BC. We define the numerical stall point as the minimum exit capacity
for which the CFD solution reaches a steady convergence, as defined by in-
let capacity, pressure ratio and bypass isentropic efficiency monitors. The
emergence of small amplitude oscillations in the convergence history of any
quantity was deemed sufficient to infer the presence of unsteady features and
consider the operating point as the onset of instability. The simulations at
those conditions are deemed as not-converged. Therefore, the computation
of the stall point is performed at the last numerically stable operating condi-
tion, just before the onset of instability, and the stalling mass flows reported
in this study are representative of the minimum value that would produce a
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fully steady flow field, where oscillations in the aforementioned monitors are
not observed.

To identify the stall point as efficiently as possible, a bracketing optimisa-
tion approach was employed following a Fibonacci search method [116]. To
implement this, the rotor inlet capacity is modelled as a function of the by-
pass exit capacity BC value, Φin = f(ΦBC) Approaching stall from the right,
namely, for ΦBC > Φ∗, where Φ∗ is the BC value at exactly the stalled point,
the function can be well represented by a linear model and its behaviour
predicted with CFD using discrete function evaluations. At stall and for
ΦBC < Φ∗ the function experiences a discontinuity and CFD can no longer
provide its value. Therefore, it is modelled as a constant with a penalty value
Penalty >> f(Φ∗), as in Fig. 4.8. This representation ensures that there
is a minimum at f(Φ∗) and hence, any bracketing algorithm is capable of
identifying it. The final size of the interval was selected to be 0.2% of the
ADP capacity. Most stall point estimations converged within 5 to 7 CFD
runs.

4.2.5 Model Validation

The aim of this work is to assess the behaviour of different fan designs in
terms of their ADP performance and stall margin. Additionally, the top of
climb (TOC) condition was also selected to monitor the stall margin as it has
typically constituted a challenging condition both from an operability and a
numerical modelling point of view. To provide confirmation that the model is
capturing the correct physics with sufficient accuracy, bypass characteristics
were run at two speeds, 95% and 103%, corresponding to the ADP and TOC
speeds respectively, and were compared against experimental results. To
throttle from choke to stall the bypass capacity BC was gradually reduced,
whilst the core BC was kept at the cruise working line value.

The characteristic curves are presented in Fig. 4.9, showing a close agree-
ment between the helicity-corrected Spalart-Allmaras (SA-H) computations
and experimental results in pressure ratio and temperature rise ratio for
both speeds assessed. The performance variation as the shaft is sped up
from 95% to 103% is captured in the model with negligible deviations with
respect to experimental data, denoting an adequate treatment of the gas and
centrifugal loads on the blade shape. For the 95% curve, the calculations
follow closely the rig results from choke down to a normalised mass flow of
0.8, indicating that the unstalled flow fields are replicated adequately. The
stalling mass flow is over-estimated, with the CFD prediction being about
2.4% higher than the experimentally determined value. For the 103% speed,
however, the stall margin prediction is closer and the model stalled within
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Figure 4.9: Validation of performance characteristics for model against ex-
perimental data.

0.6% of the experimental stalling mass flow, while maintaining a close agree-
ment at higher mass flows. The stall margin computations employing the
standard Spalart-Allmaras model (S-SA) are also included in the figure, i.e.,
the last numerically stable point from the simulation with that model, high-
lighting the significantly increased accuracy obtained in the computation of
this quantity when employing the helicity-corrected term.

The radial profiles of pressure ratio and temperature rise ratio, extracted
at the BOGV LE, are shown in Fig. 4.10 for 95% speed at two conditions,
ADP and the CFD stall point. Near the hub, there is a slight under pre-
diction of both metrics at the conditions assessed, whereas the distribution
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Figure 4.10: Radial profiles at the BOGV LE for 95% speed at the ADP and
near stall conditions.

outboard of 25% highlights the close agreement between the CFD model and
experimental data. The loading increase on the outer 50% span experimented
as the mass flow is reduced from ADP to stall is captured successfully on the
pressure and temperature profiles. This is relevant for the current investiga-
tion as near stall conditions the shock moves closer to the LE and promotes
a thickening of the boundary layer downstream, which in turn, and due to a
low axial momentum, tends to migrate outwards. The ability to adequately
predict this radial migration of the flow has historically been associated with
turbulence modelling. Thus, the validation of the profiles provides confidence
that the turbulence model employed is producing adequate radial mixing and
that the near stall three-dimensional flow field is captured with sufficient ac-
curacy in steady state simulations.
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4.3 Design Space Exploration

The hypothesis of this research work is that the stall margin and the stall
onset mechanism are primarily driven by the axial momentum flux of the
tip leakage jet across the gap. To test it, a systematic method to control
this feature and characterise its behavior through three-dimensional design
is sought. To this end, a flexible control over the geometry under study is
essential, while at the same time it remains necessary to maintain adequate
generalisation to other problems. While free-form deformation or B-splining-
based parametrisations would provide increased geometry control, a subse-
quent analysis would be inherently biased and the location of nodes difficult
to reproduce. Therefore, this work makes use of PADRAM’s Engineering De-
sign Parameters, which are composed of intuitive manipulation handles based
on first principles. The degrees of freedom employed, shown in Fig. 4.11 for
an aerofoil section, include Sweep (axial movement of the section), Lean (cir-
cumferential movement of the section), Skew (rotation about the section’s
centroid) and Leading Edge (LE) and Trailing Edge (TE) recambering, as
well as two additional parameters that control the locality of the recamber-
ing. The locality parameters control the chord-wise extent of the camberline
alterations such that low values concentrate the changes on the LE/TE and
high values propagate them throughout the aerofoil, providing full control
over the camberline. While an important design parameter, the blade chord
is kept unchanged in the current study to avoid inducing changes that might
affect the weight of the system. The parameters are applied on five aerofoil
control sections uniformly distributed through the blade span - at 0%, 25%,
50%, 75%, 100% - providing a total of 35 degrees of freedom. The value of
the deformation applied as a function of the blade span is achieved through
smooth cubic B-spline interpolation, with multiple control points via the con-
trol sections. The design parameters are gathered in the design vector, x,
and its dimensionality is denoted by the letter m, where m = 35. The lower
and upper bounds that define the ranges of the design space are prescribed
based on prior experience with the parametrisation, which has been used on
previous optimisation studies providing sufficient geometry control [2, 117].

4.3.1 AI-Enabled Active Subspaces

To characterise the response of the system to the geometry changes intro-
duced by this parametrisation and perform exploratory analyses, this work
makes use of AI-Enabled Active Subspaces, as described previously in Chap-
ter 2.

We wish to derive a relationship between the design parameters and
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Figure 4.11: Degrees of freedom employed to manipulate the geometry of the
fan blade [2].

the quantities of interest (QoIs). While the parametrisation selected com-
prises aerodynamically intuitive shapes, the number of degrees of freedom
is nonetheless large and regressing the behaviour of any QoI that depends
on them is challenging. Therefore, dimension reduction is desired to nar-
row the scope of the problem and identify a few dominant parameters which
cause active changes in the QoI. Because of their ability to handle non-
conditioned datasets, Active Design Subspaces (ADS) are selected to learn a
low-dimensional representation for each QoI.

By performing the eigenvalue decomposition of the QoI’s gradient co-
variance matrix, C, as C = WΛW T , the ADS approach identifies linear
combinations of all the components of x that best describe the variability
in the function. Essentially it performs a rotation of the coordinate system
such that the new directions explain more efficiently the observed variability.
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The new basis is captured in the eigenvectors of the covariance matrix, W.
The eigenvalues, on the other hand, denote the relative importance of each
direction and allow partitioning Λ and W as per Eq. 4.1, such that the most
dominant directions are captured in the active subspace W1. Thus, ADS first
identifies directions where the function changes most actively and secondly,
performs screening of these directions to keep only the k most dominant
ones, achieving an efficient dimensionality reduction whilst maintaining all
of the original degrees of freedom. The transformation expressed in Eq. 4.2,
called forward map, is employed to map the high-dimensional inputs to their
low-dimensional active representation, y.

Λ =

[
Λ1

Λ2

]
, W = [W1 W2], W1 ∈ Rm×k (4.1)

y = W T
1 x (4.2)

However, learning the ADS requires knowledge on the gradient of the QoI
at a large number of locations in the design space, which has traditionally
limited the applicability of the method due to the high cost associated with
gradient computations. To mitigate this cost, the AI-enabled approach first
employs zeroth order information to train a neural network regressor that
learns a map from the high-dimensional input space to the QoI and exploits
it to estimate the gradients using finite differences, which are subsequently
used to construct the ADS covariance matrix. An iterative loop is employed
to ensure the subspace is detected with the least amount of samples. Upon
identification of the ADS, the forward map is performed for all samples and
a secondary neural network is trained on the active directions. This leads
to increased predictive accuracy as the ratio of samples to dimensions is
increased and the complexity of the function is minimised through the use
of y. Therefore, the final network can be employed as a response surface to
characterise the response of the system with respect to the design parameters
through an enhanced resolution.

4.4 Exploratory Design Analysis

The QoIs considered for exploration are the fan total isentropic efficiency, η,
the total pressure ratio, PR, and the axial momentum flux of the tip leakage
flow normalised by the inlet axial momentum, Cµ. The axial momentum flux
is calculated from Eq. 4.3, where VXjet is the mass-mean axial velocity of the
leakage jet as it leaves the gap through the suction side, ṁjet is the mass
flux through the tip gap, calculated at the suction surface, and ṁinlet and
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VXinlet are the mass flow and mass-mean axial velocity at the passage inlet.
This quantity was adopted to investigate the stability of the fan blade, since,
as described in [104, 107], it correlates well with SM. Moreover, unlike SM,
whose definition requires identification of the stall point (achieved through
5 to 7 CFD simulations), the value of Cµ is obtained at ADP. As a result,
for each design assessed, all metrics were obtained by running a single CFD
computation at the ADP.

Cµ =
ṁjet VXjet

ṁinlet VXinlet

(4.3)

To efficiently explore the design space and obtain the samples necessary
to perform AI-Enabled ADS, a trust region strategy was followed based on
maximising η, since this is the only QoI that with certainty we wish to max-
imise. The approach, shown schematically in Fig. 4.12, involved constructing
sub-regions of the design space where the ranges of the parameters were re-
duced. By considering a reduced sector, the complexity of the function is
inherently mitigated and an accurate regressor can be constructed with a
lower number of samples. Initially the sub-region was centered on the da-
tum blade design and spanned 25% of the design space in each direction.
A quasi-random DOE based on Sobol’ sequences was employed to draw 100
samples. The neural network predictor was constructed for efficiency and a
first optimisation was performed to maximise it within the sub-region. Next,
the center was moved to the location of the optimum and the process re-
peated. For each iteration, the samples from the previous runs were added
and the ranges enlarged to cover the previous sub-regions, such that each
step increased the overall sample count and the extension of the design space
that was being explored. This strategy avoided placing too many samples on
regions of the design space where the fan efficiency was low, while providing
an adequate coverage of the remaining section. The optimisations for each
sub-region step were performed with a standard elitist genetic algorithm and
specified a tight double-bounded constraint on the PR to within ±0.15% of
the datum value. The Cµ value was allowed to float freely. The process was
stopped once the optimised design fell well within the trust region, i.e. away
from its boundaries, conveying little gains from further exploration. Overall,
three iterations were required to identify an optimum efficiency point, leading
to 300 sampled designs which were employed to construct the final response
surfaces.

The performance of the efficiency optimum is of relevance to the current
investigation and its design will be addressed accordingly at a later section.
For now, focus is set on analysing the response of the QoIs and deriving
generic design rules to provide control over each.



4 Understanding Fan Stall Range through AInAS 70

Full Design Space

First SR

Second SR

Third SR

Optimum

Datum

Figure 4.12: Sketch of the sub-region approach followed for exploration of
the Efficiency Design Space.

As previously discussed, the ADS approach produces an eigenvalue matrix
which can be used to identify the number of active dimensions to employ.
Cumulative energy plots are a useful tool to convey how much of the energy
is captured by the first k eigenvalues and thus visualise the potential for
dimensionality reduction. It is worthy to highlight that, even though they
may stem from the same high-dimensional space, the active subspaces for
different functions are indeed different and, therefore, so are the number of
dimensions required to express them.

Figure 4.13 shows the cumulative energy distribution for each of the met-
rics considered. For PR, it can be observed that with the first eigenvalue
(or active direction) almost 100% of the energy is captured. This denotes
that this metric has an approximately unidirectional behaviour in the active
subspace and the 35 original parameters can be replaced by the first active
direction without significant loss of information. Cµ in turn, is approximately
two-dimensional, as suggested by the fact that the first two eigenvectors are
required to capture the same amount of energy as a single one does for PR.
Finally, η requires 6 directions to capture over 99% of the energy, implying
this function’s behaviour is more complex to regress and more dimensions
are needed to explain the variability it experiences within the design space.
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Figure 4.13: Cumulative energy plots for the covariance matrix of Efficiency,
PR and Tip Leakage Axial Momentum Flux. Only the first 10 eigenmodes
are shown.

As such, 1, 2 and 6 active dimensions are employed for PR, Cµ and η, re-
spectively, to build their response surface model (RSM), thus providing a
sufficient dimensionality reduction from the 35 original parameters.

Based on the decay of their respective eigenvalues, the number of active
dimensions to use for each QoI was defined and the response surface models
(RSMs) constructed. The predictive performance of each RSM, evaluated
through cross-validation, is presented in Tab. 4.1, where R2 stands for co-
efficient of determination and MAE is the mean-absolute-error. It can be
observed that high R2 values were obtained for all metrics, confirming that
the responses of the models follow very close the ones of the real system
and therefore any inferences made on them translates well. In addition, the
low MAE values measured provide confidence that the true performance of
any design is close to the value predicted with these RSM. It is worthy to
highlight that generating the training data for the networks required solv-
ing a computationally expensive multi-row CFD analysis per sample. The
methodology described thus enabled constructing accurate response surfaces
with a limited cost. Due to a reduced number training samples, the neural
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Figure 4.14: Performance maps showing the response of the QOIs in the
design space.

networks employed are shallow, consisting of just two hidden layers. As such,
their training can be completed without much expense. For the current task,
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Figure 4.15: Coefficient activation for the first active direction of the QOIs.
Higher magnitude coefficients highlight parameters with increased effect.

this was completed within 10 minutes on a 16-core CPU.
The fact that all QoIs present such low-dimensional structure, enables vi-
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Table 4.1: Performance metrics for the response surfaces constructed through
AI-Enabled ADS.

Metric Active Dimensions R2 MAE

PR 1 0.998 1.90e−4

Cµ 2 0.998 1.77e−5

η 6 0.995 9.77e−5

sualising their response through two-dimensional performance maps, shown
in Fig. 4.14, without significant loss of information. The original samples
used to construct the response surfaces have been included in the maps and
their clustering responds to the movement of the sub-region center. In the
efficiency map, to the left of the figure, the movement is particularly evident
as this metric was employed to drive the exploration. In addition, the effi-
ciency map has been constructed only in the explored region, as this sector of
high-performance was discovered through the trust-region approach. For the
other two metrics, the neural networks are employed to extrapolate the data
to the corners of the design space, which is represented as a solid line en-
veloping the contours. The fact that they are low-dimensional and the trend
is adequately captured with the ADS promotes accurate extrapolation.

It is worthy to note that the performance maps of Fig. 4.14 reveal that the
change in η and Cµ experienced by the samples does not necessarily induce
a variation on the PR, and this was intentionally enforced through the tight
constraint specified on the trust-region exploration. The fact that the model
employs a BC for the ADP bypass exit capacity implies that the mass flow
is constrained as well. Therefore, by constraining the PR and enforcing its
value to be effectively unchanged, the designs assessed are comparable as
they provide the same thrust and share very similar operating points.

The efficiency map further shows that there is a corridor of high effi-
ciency (towards the center-bottom) where the optimum lies. The exploration
driven by the maximisation of efficiency has caused a movement across the
Cµ subspace, particularly along the first dominant direction, that results in
designs with highly variable magnitudes for this quantity. To conceptualise
the changes that have caused the performance variation, the active directions
can be further exploited to assess the effect that each design parameter has
on the variability of the QoIs. The bar graphs in Fig. 4.15 show the activation
coefficient of each parameter in the most dominant direction identified for
each function. Recall that the dominant directions are a linear combination
of all the original parameters, hence higher magnitude activations highlight
parameters with increased effect. Each type of parameter has five bars as-
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sociated with it, corresponding to the perturbation at the various span-wise
locations. The first bar corresponds to the 0% span perturbation, followed
by the remaining four bars for perturbations at 25, 50, 75, and 100% span,
respectively.

A first glance through Fig. 4.15 reveals that the active vector coefficients
for efficiency are almost the mirror-image of the coefficients for Cµ. This sug-
gests that the two metrics are closely coupled and variations in one translate
to variations in the other. This is due to the fact that the interactions of tip
leakage jet (expressed by Cµ), with the incoming flow and passage shock are
a primary source of losses and blockage [118], thus this feature has a strong
effect on efficiency. A closer look at the coefficients for η and Cµ reveal that
the primary design lever that drives their value is the tip LE recambering.
This implies that the incidence angle and camberline distribution at the LE
are responsible for much of the variations detected and have a strong effect
on these quantities. The locality of the LE recambering was not detected
as significant for either, implying that the camberline distribution is of pri-
mary significance only in a small region around LE and full chord control is
not particularly necessary. For η, the LE recambering at 75% is the second
driver, whilst this parameter does not cause a relatively strong effect on Cµ.
In fact, parameters placed at spans other than 100% have a reduced effect
on Cµ, highlighting the local nature of the tip leakage flow.

The analysis of the active coefficients reveal that close control over Cµ,
and hence the leakage jet, can be achieved by setting focus on the tip aero-
foil, while the design of the remainder of the blade can be driven by other
objectives. Consequently, it is noted that the coefficients for LE and TE tip
recambering are positive for Cµ and this implies that to move in the positive
direction of the map (from left to right in Fig. 4.14), and thus decrease Cµ,
positive values must be applied to the recambering parameters. With the
parametrisation employed, this means opening up the tip and taking camber
away from the LE and TE. Inversely, closing the tip airfoil and adding cam-
ber increases the axial momentum of the leakage jet. Some of these changes
may appear counter-intuitive. To illustrate, by closing the blade down, the
incidence angle at the ADP is reduced and thus the peak suction of the airfoil
is mitigated, minimising lift. This effect can therefore be thought to reduce
the mass flow of the leakage jet. However, the higher stagger indicates that
the leakage jet is more axial, thereby increasing its axial momentum. In
addition, increasing camber also increases lift, which drives more over tip
flow.

For other design considerations, it is noted that the most active PR coeffi-
cients are mostly contained within the TE recambering type. This is known
from first principles since the TE camberline distribution and exit angles
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control the amount of turning. Blade skew at all spans is secondary in sig-
nificance for PR while it is not so for the other metrics. Thus, for PR, design
focus can be set on defining these parameters. Likewise, blade lean has a
moderate effect on efficiency and a very small effect on the other metrics,
hence it can be exploited without affecting the PR and leakage jet. There-
fore, such parameters that affect mostly a single QoI can be exploited to
tune the design and provide a higher degree of control over the desired met-
ric without affecting the performance on other considerations. The following
section proposes employing a regularised inverse-mapping methodology to
achieve this tight control.

4.5 Effect of Tip Leakage Flow on Stability

Range

The response surface models constructed based on the active vectors provide
increased control over each QoI. This enables producing designs that achieve
a desired value of η, PR or Cµ. In this section, an array of uniformly spaced
designs is sampled from the Cµ subspace with varying values for this quantity,
ranging from the minimum to the maximum possible values attainable with
the chosen parametrisation. The location of these samples in the zonotope
is shown in Fig. 4.14.

The forward map from Eq. 4.2 is used to map samples in the high-
dimensional space to their corresponding location in the low-dimensional
subspace. This is a well-posed problem yielding a single vector y for a given
vector x. However, the inverse is not true. There are infinitely many xs that
solve the inverse map for a given y. Therefore, to find the high-dimensional
vectors, x∗, that map to the chosen locations in the Cµ subspace, regulari-
sation is needed. This work employs an inverse-map as expressed through
Eq. 4.4.

x∗(y) = argmin
x

1

2

∥∥∥W T
1Cµ

x− y
∥∥∥2

2
+ λ ∥x∥1

subject to

∣∣∣∣PR(x)− PRdatum

PRdatum

∣∣∣∣ ≤ 1.5e−3

(4.4)

The first term of the minimisation cost function in Eq. 4.4 is designed
to identify points that, when forward-mapped, fall on the chosen location
y. The introduction of the constraint, to produce designs where the PR
is within ±0.15% of the datum value, leads to the possibility that there
might not be feasible designs that forward map to y. Therefore, the cost
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function will produce the feasible point that maps closest to y as per the L2

norm. The cost function of Eq. 4.4 employs also a LASSO regularisation term
[119]. This term biases the selection to designs where the least important
parameters in the subspace (the ones that do not affect the value of the first
term) are pushed to zero. By changing the value of the coefficient λ, this
shrinkage effect is strengthened or weakened, thus providing control over the
final design. This study assessed an array of λ values, ranging from 10−1 to
10−4.

For each sample, the inverse map was solved and the resulting design was
simulated with CFD at the ADP condition and at the stall point. The Stall
Margin (SM) was subsequently calculated as per Eq. 4.5.

SM =
ΦADP − Φstall

ΦADP

∗ 100 (4.5)

Figure 4.16 shows the distribution of stall margin as a function of Cµ for
the samples assessed. It can be observed that Cµ is a very strong driver for
SM and that is has a quadratic response, as indicated by a high coefficient of
determination (0.96) for a least-squares (LS) second order polynomial fit to
the data. Three regions of distinctive response are noted and representative
designs indicated by the numbers 1, 2 and 3 in the figure. At low Cµ values,
corresponding to a mitigated leakage jet (point 1), the SM is initially low.
Shock-boundary layer interactions take precedence and, due to its low energy,
the boundary layer separates downstream of the shock, causing blockage that
extends well into the passage, as it can be visualised by the radial vorticity
contours of Fig. 4.17a, which are taken at 95% span. While the leakage jet
cannot be entirely eliminated (for non-zero tip gaps), its effect can be greatly
mitigated causing the spike inducing mechanism to be separation-dominated.
As the Cµ is increased beyond this region, the leakage jet is enhanced and
energises the boundary layer, suppressing the separation and alleviating the
blockage, thus contributing to an increase in SM. The mechanism switches
from being primarily separation-dominated to being leakage-jet dominated,
although there is still some separation-induced blockage, as it can be seen
from Fig. 4.17b, which corresponds to point 2 in Fig. 4.16. This is consistent
with stall onset at the optimal tip gap value identified in [104]. Further
increases in the leakage jet strength promote this feature to become dominant
and impinge on the adjacent blade’s pressure side, promoting flow reversal
and early spillage, as shown in Fig. 4.17c for point 3.

The ideal Mach number distributions, shown in Fig. 4.18, further clarify
how the design parameters are affecting the behaviour of the flow in these
distinctive regions. Going from design 1 to design 2, the camber has been
increased at the LE, strengthening the suction spike, which in turn drives
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Figure 4.16: Stall margin and ADP efficiency versus tip leakage axial mo-
mentum flux, normalised by datum value. The QOIs present a quadratic
response to changes in axial momentum.

more flow over the tip. In addition, the blade has been closed down, resulting
in an overall lower incidence that reduces the pre-shock Mach number. The
combination of a weaker shock and a more energetic boundary layer, produces
a more uniform loading and increases lift. Additional mass flow through the
gap, driven by local LE recambering, and a larger axial jet resulting from
closing the blade lead to design 3, which promotes the impingement of the
adjacent blade’s leakage jet on the pressure surface, causing a significant
loss of pressure at the LE and greatly accentuating the pressure side spike.
The lower incidence delays the peak suction point and the shock gets sucked
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(a) Design 1

(b) Design 2

(c) Design 3

Figure 4.17: Contours of radial vorticity at stall for the three representative
designs at 95% span. The enhancement of the leakage jet initially suppresses
the corner separation leading to increased stall range. Further increases in
its strength cause impingement on the adjacent blade’s pressure surface and
early spillage.
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Figure 4.18: Isentropic Mach number distributions at 95% span.

into the passage, developing a double-shock structure which is detrimental
to stability and performance.

The effect of Cµ on ADP efficiency is also shown in Fig. 4.16. As previ-
ously mentioned, these two metrics are tightly coupled and this figure con-
firms this. The effect of Cµ is again quadratic with a coefficient of determina-
tion of 0.98. The region of low jet momentum is associated with intermediate
efficiency values, as the shock-induced separation causes loss. The suppres-
sion of the separation promotes an efficiency increase, while designs with
overly strengthened leakage jet perform the poorest, due to the detrimental
effects induced by the mixing of the leakage jet with the incoming flow, as
well as passage shock-jet interactions. Moreover, without having actively
controlled the leakage jet during the process, the efficiency optimisation has
produced a design where the Cµ was naturally placed in the region of high-
performance, which corresponds to normalised Cµ values of around 0.75, as it
can be seen from Fig. 4.16. While this design is high-performing at the ADP,
its SM is slightly lower than the datum and indeed far from optimal in that
sense. There is thus a trade-off between efficiency and stability range, which
can be mostly driven by controlling the axial momentum of the leakage flow.

The η-optimised design achieves an efficiency improvement of 0.3% and a
reduction in SM of 0.4%. Figure 4.19 presents a top view of the datum and
the efficiency-optimised design. It can be appreciated that, predominantly,
the optimised design features a lean of the tip towards the pressure side and
the LE has been opened-up. As such, the optimiser has focused on mitigat-
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ing the leakage jet (through LE recambering) and has further enhanced the
performance by applying a parameter which did not affect this flow feature
(lean).

Figure 4.19: Top view of the datum and efficiency-optimised designs.

It can be noticed from Fig. 4.16 that, while slightly lower than the datum’s
value, the optimised design’s SM is higher than other points that have the
same Cµ. In fact, the figure reveals a number of designs that have the same
Cµ but different SM values. This suggests that Cµ is a strong driver for SM,
but there are other parameters that also cause a significant effect. The ADP
efficiency, on the other hand, remains approximately constant for constant
Cµ values. As such, there are designs (such as point 2 in Fig. 4.16) that
have efficiency values very close to the datum’s, but a significantly increased
stability. The different designs at constant axial momentum values were
constructed by employing varying levels of the regularisation coefficient in
Eq. 4.4, and thus incorporate different design considerations. By analysing
the different samples that yield higher SM, further design principles can be
derived.

Focus is now set on the region of normalised Cµ between 1.0 and 1.6,
where the additional designs have been constructed. It was found that the
main difference between these was the tip loading, measured as the average
pressure ratio on the upper 5% span, and the level of lean applied to the tip
aerofoil. Figure 4.20 shows the correlation of these two design considera-
tions with SM. It can be noticed that tip lean presents the higher correlation,



4 Understanding Fan Stall Range through AInAS 82

Tip Lean

St
al
l M

ar
gi
n 
(%

)

0.3%

0.25 deg

R2=0.87

Tip Loading

4e−3

R2= −0.60

Figure 4.20: Secondary design drivers for stall margin. For a given axial
momentum, off-loading the tip and applying lean towards the pressure side
produce increased stability.

and increasing levels promote an increase in SM. Tip lean is calculated as a
circumferential rotation of the tip section (Fig. 4.11), where positive values
are measured in the direction of rotation of the blade. Therefore, the cor-
relation reveals that leaning the tip aerofoil towards the pressure side leads
to increased stability for given Cµ values. This is observed for the efficiency-
optimised design as well (Fig. 4.19). With respect to the tip loading, the
correlation with SM is not as strong but it remains considerable. The results
suggest that off-loading the tip generally improves the stability margin for
constant Cµ values.

4.5.1 Results at Top of Climb

The previous analysis has been performed at 95% speed, which corresponds to
the ADP speed. However, as already mentioned, the TOC is a key condition
to assess the operability range. Therefore, this condition was simulated for a
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few designs from Fig. 4.16 ranging from low to high values of Cµ. It is worth
noting that the derivation of these designs was performed for 95% speed
and therefore the ranges of Cµ quoted in this section are not necessarily the
minimum and maximum possible values that can be attained at this speed.
Moreover, the blade shapes at 103% have been obtained by employing the
running-up process described in Sec. 4.2.1.
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Figure 4.21: Variation of fan performance versus axial momentum flux as the
speed is increased.

Figure 4.21 shows the variation in SM and efficiency with respect to Cµ

for some designs as their are sped up from 95% to 103% speed. To make
the results at the two speeds comparable, the data has been normalised by
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the datum value at the corresponding speed. This figure reveals that the
leakage jet still promotes a quadratic response on both metrics at increased
speeds. However, the variations at 103% are much more pronounced and the
trends fall-over more rapidly at high Cµ values than they do at the ADP
speed, suggesting the system is less robust to variable Cµ at high speeds.
Moreover, for SM, the data indicates that operating on normalised Cµ values
that provide optimal stability at ADP actually leads to operating at the
condition “3”, identified previously, at TOC speed, with a poor stability
performance. There is thus a trade-off in the tip leakage strength for optimal
stability at different speeds. For efficiency, on the other hand, the optimal
axial momentum for maximum performance is consistent at the two speeds,
indicating there is no real trade-off in this metric as the fan is sped-up with
respect to the axial momentum.

4.6 Conclusions

This study has focused on the effect of tip leakage axial momentum flux on
design point efficiency and stability range for an axial fan representative of
future composite geared turbo-fan engines. The analysis has been driven
by the use of a high-fidelity computational model which has been validated
against experimental data. The simulations performed were steady-state
and involved the use of the helicity-corrected Spalart-Allmaras turbulence
model. It has been shown that, through this model, sufficient resolution
can be obtained for the calculation of the stalling mass flow and the onset
mechanism, minimising the need for time-accurate computations.

Furthermore, a design and analysis methodology has been employed,
which enabled building highly accurate meta-models for efficiency, pressure
ratio and stall margin with a reduced computational cost. Through its appli-
cation, the characterisation of the system and the interactions between the
quantities of interest was achieved using only 300 samples for 35-dimensional
input parameters.

A quadratic response has been detected for both efficiency and stabil-
ity with respect to the tip leakage jet’s axial momentum. Three regions
of distinctive behaviour are observed. At low axial momentum values, the
leakage jet is mitigated and shock-boundary layer interactions dominate the
exchange. The stall onset mechanism is driven by separation-induced block-
age and the efficiency is intermediate, responding to losses originated through
the separation. As the leakage jet is strengthened, however, it initially sup-
presses the separation and leads to an increase in both stability and efficiency.
The stall onset mechanism switches to being primarily leakage jet-dominated.
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Nonetheless, further strengthening of the leakage flow promote an increased
effect of this feature which becomes detrimental to stability, by impinging
on the adjacent’s blade pressure side and early spillage ahead of the leading
edge, and efficiency, by inducing increased mixing losses. The optimal set-
ting for efficiency differs from the one for optimal stability but the trade-off
can be exploited through controlling the axial momentum. This trend has
been verified for higher speeds corresponding to the engine’s top of climb
condition. However, it was revealed that the optimal leakage momentum for
maximum stability varies as the shaft speed is increased, and there is also a
trade-off for the stability margin at different speeds, indicating compromises
are required to balance ADP and TOC stability.

Blade design rules for increased over-tip flow control have been derived
which promote local tuning of the tip aerofoil while the remainder of the blade
can be designed for a target pressure ratio. It has been shown that opening
the tip and taking camber away from the leading edge are strong levers to
mitigate the leakage jet. Additional stability enhancements beyond optimal
axial momentum have been shown to be attainable through off-loading the
blade tip and leaning the tip towards the pressure side.

Appendix

The helicity-corrected Spalart-Allmaras model was first introduced by Liu et
al. [115] in 2011. Different flavours of the correction have been proposed in
the literature, but the implementation employed in this work stems from the
original definition. The source term in the S-SA model is augmented as per
Eq. 4.6, where the helicity is computed from Eq. 4.7. The velocity, u, and
vorticity, ω, in the equations are measured in the absolute frame of reference.
The value of the constants is taken from [115].

S̃SA−H = (1 + Ch1h
Ch2 )ω +

ν̃

κ2d2
fν2 (4.6)

h =
|u · ω|
∥u∥ ∥ω∥

(4.7)



Chapter 5

Robust Design Optimisation

Nomenclature

x design vector
χ design space
ω uncertain random variables
Ω event space
PCE Polynomial Chaos Expansion
RDO Robust Design Optimisation
ARMOGA Adaptive Range Multi-Objective Genetic Algorithm
BC Boundary Conditions
DOF Degree of Freedom
PR Pressure Ratio
η Fan isentropic efficiency
µ Mean efficiency
σ Standard deviation of efficiency
DGO Deterministic Global Optimum

5.1 Introduction

The performance of engineering components is inherently variable. Perfor-
mance metrics therefore drift, not only as a result of the conditions un-
der which the components currently operate, but most importantly, due to
their their previous history. Manufacturing variability [120, 121], hystere-
sis [122, 123] and erosion [124, 125] introduce permanent changes in the as-
designed machine that can prevent it from operating optimally.

86
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In fact, the as-designed machine lives only digitally, as the real world is
stochastic and imperfections are inevitable. Safety factors and design tol-
erances are introduced to set bounds to the allowable variability and it is
commonly the case that the less information there is available about the
system, the tighter these can be, which has significant implications to the
cost of manufacturing and maintenance of the machine. The treatment of
uncertainties therefore plays a significant role in the success (or lack thereof)
of any engineering application and their modelling at the design stage has
been the topic of many studies [126–130].

In chapter 4, significant prior information about the system and expensive
processes were employed to closely replicate a real manufactured fan blade,
which led to a very accurate computational model that captured the response
of the physical system to a high degree of certainty. Following, a deterministic
optimisation approach was performed whereby the quantities of interest were
improved and their response characterised. However, in the absence of such
vast information, deterministic approaches can be misleading, as the effects of
uncertainties are ignored in the model. Robust Design Optimisation (RDO)
aims to incorporate the effect of input variability in the quantities of interest
during the design process.

Let f = f(x, ω) represent the response of a quantity of interest for a
design parameterised by the design vector x ∈ χ ⊆ Rm, and subjected to
uncertain random variables ω ∈ Ω ⊆ Rk. Let x1, x2 and x3 be three arbitrary
design points in χ. The response of f can be thought to follow three different
random variables in the event space Ω:

f(x1, ω) = F1(ω)

f(x2, ω) = F2(ω)

f(x3, ω) = F3(ω)

(5.1)

The distributions of such functions are illustrated in Fig. 5.1. Assum-
ing the convention that optimum designs evaluate to the minimum function
value, in a deterministic setting, x1 would dominate the other designs, since
it can be noted that F1 has the lowest central tendency. This conclusion
illustrates the perils of deterministic optimisation, as F1 also experiences the
largest variability introduced by the uncertain parameters. Consequentially,
the true value for f(x1, ω) measured in practise will often be higher than
the response observed for the other design vectors considered. Likely, if only
sensitivity to uncertainty were to be considered, x3 would be adopted, even
though the response promoted is highest. It follows that RDO seeks the best
trade-off between mean performance and sensitivity to uncertainty.
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Figure 5.1: Illustration of probability distribution for the response of the
quantities of interest in the event space Ω.

5.2 Uncertainty Quantification

The formulation and resolution of a framework for design under uncertainty
poses many challenges. In the previous illustration, the probability distribu-
tions for the response to uncertain parameters at the different design points
was known. However, in practice, estimating the distributions is a major field
on its own, called Uncertainty Quantification. A brief description is provided
here, the interested reader is referred to [131] and references therein.

In applications where function evaluations are inexpensive, the propa-
gation of uncertainties can be performed by random sampling in the event
space, such as by Monte Carlo simulations [132], which yield the probability
distributions for the quantities of interest. However, this work deals mostly
with high-fidelity models for which such approaches are unfeasible. In such
cases, surrogate modelling is employed to predict the performance of the
functions. Polynomial Chaos Expansion (PCE) [133] has become the domi-
nant approach for estimating the statistical moments. Following an approach
analogous to Eq. 2.1, PCE aims to to construct an analytical model as per
(5.2), where ω is a k-dimensional vector of independent random variables,

and
{
ψ

(i)
j

}∞

j=0
is a family of polynomials L2-orthogonal.

F (ω) ≈
n∑

j=1

kjψj(ω) (5.2)
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The inherent use of orthogonal polynomials make PCE regression easily
integratable through quadrature rules, and the evaluation of the statistical
moments is straightforward through the expansion’s coefficients. However,
PCE is particularly sensitive to the curse of dimensionality (Sec. 1.1), and
computing the coefficients of the expansion requires significant computational
effort.

To mitigate this effect, first order information of the functions can be
incorporated into the PCE regression, greatly reducing the sampling require-
ments. The traditional approach is to employ a least-squares formulation
to derive the coefficients for the PC expansion by stacking the function and
gradient evaluation matrices. However, as detailed in Ghisu et al. [117], in
the presence of noisy gradient information, this approach is prone to en-
large numerical inaccuracies, leading to poor estimation of the statistics.
Instead, [117] shows that the inaccuracies encountered with the stacked ap-
proach can be greatly mitigated through constrained least-squares approxi-
mations using a linear inequality approach via a null-space method. Such an
approach enables more accurate estimations of the mean and standard devia-
tion of performance metrics associated to a particular design, when subjected
to uncertain conditions, to be obtained at a reduced expense, while main-
taining the flexibility typical of least-square approaches.

While traditional methods for optimising under uncertainty have typi-
cally required designers to employ models of reduced complexity (e.g. 2D)
to lessen the expense of functional evaluations [134], or consider a reduced
number of uncertain parameters to limit the overall number of functional
calls required [135, 136], the null-space approach provides greater flexibility
in both these considerations through full exploitation of gradient informa-
tion. In this section, this approach is combined with AInADS to perform
the Robust Design Optimisation (RDO) of an industrially relevant problem.
Moreover, to demonstrate the differences between deterministic and robust
approaches, the case considered is the same as in Sec. 2.1.

5.3 Optimisation Framework

For a function f = f(x, ω) representing the response of a quantity of interest
for a design parameterised by the design vector x ∈ χ ⊆ Rm, and subjected
to uncertain random variables ω ∈ Ω ⊆ Rk, a general unconstrained RDO
problem can be defined as a multi-objective optimisation problem as per
Eq. 5.3, where µ(x, ω) represents the mean value and σ(x, ω), the standard
deviation of f , respectively.
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minimise
x

{µ(x, ω), σ(x, ω)}

x ∈ χ ⊆ Rm

ω ∈ Ω ⊆ Rk

(5.3)

Assuming the gradient g(x, ω) = ∇f can be computed for all x ∈ χ and
all ω ∈ Ω, the value of the cost functions in (5.3) can be obtained by a least-
squares PCE augmented with gradient evaluations through the null-space
method as per [117], using p quadrature sample points of f and g.

Equation 5.3 involves two design considerations which may present con-
flicting optimality criteria. While the optimisation of µ is aimed at identifying
designs with statistically improved values of f , optimising for σ identifies de-
signs where the variability encountered in f due to the uncertain parameters
is minimised. The trade-offs between these two objectives can be obtained
by analysing the Pareto frontier of the design space, defined as the set of all
solutions for which no other solution is better in all objectives.

Solving (5.3) typically requires numerical search algorithms that identify
designs in the Pareto frontier. Multi-objective evolutionary algorithms are
a popular choice for this task, since they are able to identify non-dominated
individuals in the generations and evolve the entire Pareto set. In this study,
the Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) op-
timiser, present in the optimisation library SOFT [137], was employed to
perform the search.

Due to the large number of function calls required by evolutionary al-
gorithms, they are commonly employed with response surfaces, models con-
structed through a reduced number of evaluations that predict the behavior of
the cost functions in the design space. The authors of this work have proposed
coupling Artificial Neural Networks (ANNs) with Active Design Subspaces
(ADS) to enable highly accurate predictions over complex high-dimensional
spaces while maintaining an overall low sample requirement [138]. In [138],
the approach was applied to the optimisation of the nominal performance
of the Vital fan, while here it is extended to a robust optimisation prob-
lem, using the same strategy to regress the optimisation cost functions and
perform the ARMOGA evaluations. A brief description of this methodology
is presented in this section, for an in-depth analysis the reader is referred
to [138].
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5.4 Computational Tools

The function and gradient evaluations in this section were performed with
the Rolls-Royce proprietary CFD suite Hydra [90]. The primal solver em-
ploys unstructured grids with an edge-based data structure and convergence
acceleration through an element collapsing multi-grid algorithm. A five-
stage Runge-Kutta scheme with a block Jacobi preconditioner is employed
for pseudo time-stepping when solving the steady-state Reynolds-averaged
Navier-Stokes equations. The turbulence closure model employed in this
work is Spalart-Allmaras. The Hydra suite also includes a discrete adjoint
solver, which was employed in this work to estimate the gradients of the
quantity of interest.

The computational model used here is equivalent to the one used in Chap-
ter 3, shown in Figure 3.2, and it is composed of a single passage, single blade
row model with the downstream splitter. The domain is meshed using the
Rolls-Royce proprietary code PADRAM [91], producing a multi-block struc-
tured grid with an H-O-H topology, where the blade is enveloped in an an
O-mesh, H-mesh blocks are used for the upstream and downstream regions
and a C-mesh is employed for the splitter. A mesh convergence study was
previously undertaken to identify the optimal distribution of nodes [26], lead-
ing to a total of 5.4 × 106 cells, placing 30 mesh nodes in the tip gap. The
y+ of the mesh is below 1 on all viscous surfaces.

The whole domain is modelled on a rotating frame with the rotor, casing,
splitter, inlet and exit surfaces set as stationary. A uniform, 1-dimensional
Boundary condition (BC) is specified at the inlet surface, prescribing radially-
varying values for total pressure, total temperature, whirl, pitch and turbu-
lence intensity. Non-dimensional capacity values are specified at the bypass
and core exit surfaces while periodic boundaries are employed on the upper
and lower surfaces to simulate adjacent passages. CFD-experimental vali-
dation of this set-up has previously been reported [26, 27], achieving a good
match for a number of different operating conditions.

5.4.1 Geometry Parametrisation

Due to variability in the manufacturing process, random deviations from
the design intent fan blade are typically encountered on the final product.
The source of these deformations can be difficult to isolate and mitigating
them can require significant efforts and alterations to the production process.
Therefore, it is advantageous to design fan blade geometries that are robust
to manufacturing deformations and maintain a high performance with low
variance.
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Figure 5.2: Parametrisation of Manufacturing Variability

Identification of the geometrical deviations in manufactured blades can
be achieved through reverse engineering processes, which usually decode 3D
scans of the part into more meaningful data formats [139]. This work consid-
ered such a process where the geometry of manufactured blades is encoded in
a vector of uncertain parameters, ω. Each parameter, shown in Figure 5.2 for
an aerofoil section, controls a particular Degree Of Freedom (DOF) for the
geometry. The DOFs applied are: Sweep (axial movement of the section),
Lean (circumferential movement of the section), Skew (rotation about the
section’s centroid) and Leading Edge (LE) and Trailing Edge (TE) recam-
bering. The parameters are applied on five aerofoil control sections uniformly
distributed through the blade span – at 0%, 25%, 50%, 75%, 100% – pro-
viding a total of 25 DOFs. The value of the deformation as a function of
the blade span is achieved through smooth cubic B-spline interpolation, with
multiple control points via the control sections.
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The value of ω was obtained for a large number of manufactured blades (in
the order of hundreds), which enables describing the parameters through their
Probability Density Function (PDF). Typical distributions are shown for
three parameters in Figure 5.3. It was found that the PDFs closely resemble
normal distributions. An inference was therefore made, that all parameters
vary with a normal distribution, where the shape factors were estimated from
the approximation curves shown in Figure 5.3. This knowledge was employed
to define the quadrature collocation points in the UQ of each design assessed
in the optimisation process.
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Figure 5.3: Typical PDFs for uncertain parameters

For the generation of new designs, the design vector, x, was constructed
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using the same parametrisation. In this case, the upper and lower ranges for
each DOF were defined by extending the maximum and minimum values from
ω by a factor of three, to allow sufficient flexibility in the design space. Two
additional DOFs controlling the locality of the LE and TE recambering are
also introduced on each span section, such that low values of these parameters
cause very localised camber line alterations, and vice-versa. Sufficiently large
values can propagate the perturbations through the aerofoil, thus providing
complete control over the camberline. Thus, the resulting dimensionality of
the design vector is 35. Such a parametrisation has been previously used for
design optimisation studies [138].

5.5 Robust Design Optimisation

The quantity of interest for the optimisation carried out in this section is
the fan bypass isentropic efficiency, defined in Eq. 5.4. Function and gradi-
ent evaluations for this quantity were obtained from the primal and adjoint
CFD solution. A first order LSA-G-NS method with no oversampling was
employed to obtain the value for the optimisation cost functions defined in
(5.3). A deterministic constraint on the Pressure Ratio (PR) was enforced as
per Eq. 5.5 to discourage the optimiser from selecting designs with overly low
PR values, which would require the low-pressure shaft to speed up to meet
the engine’s thrust requirement; or overly large PR values which would re-
quire operating at significantly lower shaft speeds and can lead to overloading
of the LP turbine blade.

η(x, ω) =

(
p0exit
p0inlet

) γ−1
γ − 1

T0exit

T0inlet
− 1

(5.4)

0.99 PRdatum ≤ PR(x) ≤ 1.05 PRdatum (5.5)

An initial data set of 250 different designs was constructed through a
pseudo-random design of experiment approach based on Sobol’ sequences.
CFD simulations were carried out for each design, obtaining the correspond-
ing values for µ, σ and PR. This information was employed to train ANNs
through the procedure discussed in Ch. 2. The application of this methodol-
ogy also enabled reducing the dimensionality of the parametrisation, through
the use of active vectors, from 35 parameters to 6 for µ, 9 for σ and 3 for
PR. It is worthy to note that this reduction does not affect the number
of DOFs allowed for the geometry, as each active vector is obtained from a
linear combination of all the original design parameters.
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Table 5.1: Robust performance of Pareto optimal designs relative to datum

Design LSA-G-NS (1st O.) LSA-G-NS (2nd O.)
∆µ(η) ∆σ(η) ∆µ(η) ∆σ(η)

Opt-1 +0.240% -44.353% +0.2511 -45.625
Opt-2 +0.264% -40.028% - -
Opt-3 +0.272% -37.753% - -
Opt-4 +0.365% -20.821% +0.353% -21.140%
DGO +0.470% +32.778% - -

The active vectors can be further exploited to assess the effect of each
DOF on the variability of the quantities of interest. The bar graphs in
Figure 5.4 show the components of the most dominant linear combination
identified for each function. Each DOF has five bars associated with it,
corresponding to the perturbation at the various spanwise locations. The first
bar corresponds to the 0% span perturbation, followed by the remaining four
bars for perturbations at 25, 50, 75, and 100% span, respectively. This figure
shows that LE recambering, particularly on the upper 25% of the blade span is
the most critical perturbation for both the mean and the standard deviation
of the fan efficiency. The low values obtained for the parameters controlling
the locality of this perturbation suggest that the chordwise extent is not
significant and primarily the perturbation on the vicinity of the LE is driving
the function. The main effects can be therefore derived to be the effective
flow incidence angle and the smoothness of the expansion upstream of the
shock wave, both being mainly controlled by the camber line distribution at
the LE. In addition, it is noticeable that the circumferential lean at the tip
section is next in significance for the mean, while it is not so relevant for the
standard deviation. Tip lean primarily affects leakage flow, and this suggests
that while this phenomenon is significant for the average performance of the
blade, it is not sensitive to the manufacturing variability considered in this
study. Thus, a close control of tip leakage flow can be a substantial design
handle for robust fan blades. With respect to the PR, it was found that
skew and TE recambering are the most critical perturbations, which is in
agreement with first principles, as they mostly control flow turning.

An adaptive sampling strategy based on optimising the system was em-
ployed to augment the number of data points and obtain more accurate pre-
dictions. As such, for every iteration, the Pareto frontier was obtained with
ARMOGA, the corresponding designs evaluated with CFD and LSA-G-NS
to obtain the true values of the cost functions, and the data were subse-
quently appended to the data set. Four iterations were required to converge
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Figure 5.4: Coefficients of the most dominant direction for (a): mean of the
efficiency; (b): standard deviation and (c): pressure ratio

the Pareto front. The results are shown in Figure 5.5, which also includes
the values for the Datum design and the dominated designs evaluated from
the DOE and the adaptive sampling iterations. It can be observed from
this figure that there only a slight trade-off between mean and variance of
efficiency, but mostly the dominant directions appear to be aligned for the
parametrisation considered, and optimising one of the functions generally
improves the other. This is also in agreement with the fact that the active
vectors for these quantities are quite similar, as shown in Figure 5.4, which
implies that the search directions are aligned.

The ARMOGA process identified four designs in the Pareto frontier,
namely Opt-1 through Opt-4, whose performance is gathered in Table 5.1.
Relative to the datum design, the optimised geometries achieve improve-
ments in mean efficiency ranging from an additional 0.24% to 0.365%, while
the standard deviation has been reduced in the range of 20.82% through
44.35%. These values were obtained from first order LSA-G-NS approxima-
tions, which assume that the behaviour of the cost functions in the uncer-
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Figure 5.5: Pareto frontier for the robust designs

tainty range is approximately linear. For the extreme designs in the Pareto
front, Opt-1 and Opt-4, as well as the datum design, the value of µ and σ
was also calculated with a second order LSA-G-NS employing 30% of over-
sampling, with the aim of producing a more accurate estimation of their true
robust performance. It was found that the trend predicted with the first
order method is accurate and the performance improvement identified in the
optimisation process is maintained. These results demonstrate that an ad-
equate desensitising of the fan blade to manufacturing variability has been
achieved.

To provide context to these metrics, the robust performance of the Pareto
optimal designs is compared against a Deterministic Global Optimum (DGO),
obtained from the work conducted with the same parameterisation and PR
constraints in Chapter 3. A first order LSA-G-NS process was employed to
derive the robust performance of DGO, which resulted in an increase of 0.47%
in the mean efficiency but a drop of about 33% in the standard deviation.
The DGO design is also Pareto-optimal, as it provides the best mean per-
formance, however its worsened sensitivity with respect to the datum blade
disfavours its potential application. Therefore, while deterministic optimi-
sation processes can lead to designs that are, on average, high-performing,
large variability in the measured performance between physical manufactured
blades happen. This is a particularly discouraged scenario on applications
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where multiple components are expected to work jointly and balanced, like
turbomachinery applications.

(a) Mean Subspace (b) Standard Deviation Subspace

(c) PR Subspace

Figure 5.6: 2D Performance Maps for the Quantities of Interest

For visualisation purposes, the performance of the optimum points can be
visualised in 2-dimensional active subspace performance maps, following [66].
These maps, shown in Figure 5.6, demonstrate that all the designs lie in a
corridor of high mean efficiency, which the optimisation process has been able
to identify, and that could be further exploited to devise design principles
for statistically high-performing blades. The standard deviation map, on
the other hand, shows a less clear trend, with the implication that DGO and
Opt-4 are located in a region where σ changes rapidly, making the robustness
of these designs potentially highly sensitive to design alterations, as well as
highly dependent on the extent of the design uncertainties.
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5.6 Aerodynamic Analysis

To understand the leading factors contributing to the increased robustness of
the optimal designs found, an aerodynamic analysis is performed for Opt-1,
since it offers the lowest sensitivity to manufacturing variations, and DGO
which offers the highest mean performance. The interested reader can consult
[138] for a more in-depth analysis of the DGO shape.

Figure 5.7 shows the geometrical features of Opt-1. It can be noted that
an aft sweep has been applied to the blade tip, which is typically a disfavoured
design practise. This has to do with the fact that, due to centrifugal forces,
the low energy flow from the boundary layer at lower span sectors is forced
radially outwards and, if there is significant backwards sweep, this flow can
interact with an extended portion of the blade’s chord, producing a larger
accumulation of delayed flow. However, in this case, the backwards sweep
is enabled due to circumferential lean, which has inclined the blade pressure
surface further towards the hub at the tip region, causing the blade to exert
a body force on the fluid, directing it towards the hub and minimising its
outward tendency.

These design features bias the airflow to the mid-span region, causing
a slight reduction in this sector’s performance, as can be noted from the
radial efficiency distribution in Figure 5.8a. Nonetheless, this performance
deficit is recovered at the tip, where the sweep produces a reduction in the
effective flow velocity, which strongly mitigates the shock wave and delays
it further downstream, as shown in Figure 5.8b, thus minimising the shock-
induced separated region. This alleviation of shock wave effects is believed
to be the primary mechanism for achieving the increased robustness of the
blade, as generally even slight geometrical deviations can cause the location
and strength of the shock wave to vary, which translates to performance
variations. By having an ameliorated shock behaviour, the blade is able to
cope better with such variability in its shape. With regards to the increased
mean performance, the more uniform loading and better behaved airflow
at the tip enables increasing the blade twist, resulting in an increased flow
turning, which can be noted from the exit axial whirl angle distribution from
Figure 5.8.

The geometry of DGO is presented in Fig. 5.9. It can be appreciated that
this design follows the datum shape more closely throughout the span, with
the most significant design feature being a more skewed tip. This causes the
tip aerofoils to be better aligned with the flow direction, thus reducing the
effective incidence angle. The aerodynamic effect is a reduction in the pre-
shock Mach number, which weakens the shock, as it can be observed from
the lift plot in Fig. 5.10b. In turn, this reduces the shock-induced separated



5 Robust Design Optimisation 100

(a) Meridional View (b) Isometric View

(c) View From the Top

Figure 5.7: Geometrical Features of Opt-1 (orange) relative to Datum (grey)
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Figure 5.8: Aerodynamic behaviour of Opt-1 relative to Datum. (a): radial
efficiency distribution; (b): lift plot at 80% span; (c): exit axial whirl angle
distribution

region of the blade tip, improving the flow attachment, and enabling the
blade to apply more turning to the airflow, thus increasing the performance
at around 90% span, as noticeable from the radial efficiency distribution
shown in Fig. 5.10a.

It is worthy to highlight that the aerodynamic benefit for the DGO has
been obtained from performing slight adjustments to the datum shape, thus
making it more suitable to the conditions for which it was designed. How-
ever, manufacturing variability can significantly alter the operating condi-
tions, which can render the DGO improvements ineffective and indeed conter
productive, thus making this design not robust.

The effects of the optimised geometry are of a highly three-dimensional
nature, and their identification has been possible due to the application of a
3D CFD setup employed in the optimisation process. In turn, such a high-
fidelity model has been enabled through the reduced cost of performing UQ
via the LSA-G-NS method discussed in this work.
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(a) Meridional View (b) Isometric View

(c) View From the Top

Figure 5.9: Geometrical Features of DGO (blue) relative to Datum (grey)
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(a) (b)

(c)

Figure 5.10: Aerodynamic behaviour of DGO relative to Datum. (a): radial
efficiency distribution; (b): lift plot at 90% span; (c): exit axial whirl angle
distribution

5.7 Conclusions

This study made use of Polynomial Chaos Expansion to derive the statistical
behaviour of efficiency and pressure ratio of a fan blade under uncertain per-
turbations in its shape, due to manufacturing variability. AInADS has been
used to perform dimensionality reduction and reduce the computational ex-
pense of performing uncertainty quantification. Through accurate response
surfaces, a multi-objective, robust-based optimization has been performed,
which led to the identification of the trade off between mean and standard
deviation for the isentropic efficiency of a modern aero-engine representative
fan called Vital. The designs in the extreme of the Pareto frontier where
analysed in depth and compared against the result of a deterministic opti-
mization. The analysis shows that the reliability of deterministic optimums
may suffer in the presence of manufacturing variability and hence, it is ad-
visable to incorporate uncertainties in the design process.



Bibliography

[1] D.S. Lee, D.W. Fahey, A. Skowron, M.R. Allen, U. Burkhardt, Q. Chen,
S.J. Doherty, S. Freeman, P.M. Forster, J. Fuglestvedt, A. Gettelman,
R.R. De León, L.L. Lim, M.T. Lund, R.J. Millar, B. Owen, J.E. Penner,
G. Pitari, M.J. Prather, R. Sausen, and L.J. Wilcox. The contribution
of global aviation to anthropogenic climate forcing for 2000 to 2018.
Atmospheric Environment, 244:117834, 2021.

[2] Diego I. Lopez, Tiziano Ghisu, and Shahrokh Shahpar. Global Opti-
mization of a Transonic Fan Blade Through AI-Enabled Active Sub-
spaces. Journal of Turbomachinery, 144(1), 09 2021.

[3] Sri Addepalli, Gerardo Pagalday, Konstantinos Salonitis, and Rajku-
mar Roy. Socio-economic and demographic factors that contribute to
the growth of the civil aviation industry. Procedia Manufacturing, 19:2–
9, 2018. Proceedings of the 6th International Conference in Through-
life Engineering Services, University of Bremen, 7th and 8th November
2017.

[4] Sarah Freeman, David S. Lee, Ling L. Lim, Agnieszka Skowron, and
Ruben Rodriguez De León. Trading off aircraft fuel burn and nox emis-
sions for optimal climate policy. Environmental Science & Technology,
52(5):2498–2505, 2018.

[5] Rolls-Royce plc. Ultrafan: The ultimate turbofan. https://www.

rolls-royce.com/innovation/ultrafan.aspx. Accessed: 2020-09-
14.

[6] J. D. Denton and W. N. Dawes. Computational fluid dynamics for tur-
bomachinery design. Proceedings of the Institution of Mechanical Engi-
neers, Part C: Journal of Mechanical Engineering Science, 213(2):107–
124, 1998.

104

https://www.rolls-royce.com/innovation/ultrafan.aspx
https://www.rolls-royce.com/innovation/ultrafan.aspx


BIBLIOGRAPHY 105

[7] Antony Jameson and John Vassberg. Computational fluid dynamics for
aerodynamic design-its current and future impact. In 39th Aerospace
Sciences Meeting and Exhibit, page 538, 2001.

[8] J. Horlock and J. Denton. A review of some early design practice using
computational fluid dynamics and a current perspective. Journal of
Turbomachinery, 127, 01 2005.

[9] R. Bellman, Rand Corporation, and Karreman Mathematics Research
Collection. Dynamic Programming. Rand Corporation research study.
Princeton University Press, 1957.

[10] David Scott and James Thompson. Probability density estimation in
higher dimension. Computer Science and Statistics: Proceedings of the
Fifteenth Symposium on the Interface, 01 1983.

[11] G. V. Trunk. A problem of dimensionality: A simple example. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-
1(3):306–307, 1979.

[12] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, STOC
’98, page 604–613, New York, NY, USA, 1998. Association for Com-
puting Machinery.

[13] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegal. The
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