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Introduzione  

La fusione nucleare controllata è un'opzione per produrre energia pulita, 

sicura, scalabile e non intermittente. In particolare, la fusione a confinamento 

magnetico è l'approccio più studiato per la produzione di energia e i Tokamak e gli 

Stellarator sono di gran lunga i concetti più promettenti per i futuri reattori a 

fusione. Entrambi i dispositivi confinano il plasma con forti campi magnetici e 

producono linee di campo magnetico elicoidali. I Tokamak sono macchine a 

funzionamento pulsato in cui il campo magnetico poloidale, necessario per il 

confinamento, è ottenuto inducendo una corrente toroidale nel plasma, mentre negli 

Stellarator le bobine hanno una geometria complessa per generare direttamente il 

campo elicoidale. Questa differenza determina il funzionamento dei due dispositivi 

e i vantaggi e gli svantaggi di ciascun progetto.  

Il funzionamento di entrambi i dispositivi richiede una profonda comprensione 

della fisica del plasma e un'attenta pianificazione dei parametri di controllo. In 

effetti, ci sono due obiettivi principali che devono essere soddisfatti durante 

l'esecuzione di esperimenti nei dispositivi attuali: il raggiungimento di elevate 

prestazioni del plasma e la salvaguardia dell'integrità della macchina. Infatti, se da 

un lato i ricercatori mirano a ottenere le migliori condizioni di plasma in termini di 

temperatura, densità e lunghezza di scarica, dall'altro l'interazione con il plasma può 

danneggiare i componenti di prima parete, costringendo a interrompere le 

operazioni, riducendo il tempo sperimentale disponibile nei dispositivi attuali e 

portando a una costosa riparazione del dispositivo.  

Uno dei principali svantaggi dei Tokamak è che la corrente toroidale rende i 

dispositivi soggetti a disruzioni. La disruzione è la perdita improvvisa della corrente 

di plasma e rilascia enormi forze elettromeccaniche e termiche sulle pareti del 

dispositivo. Poiché le disruzioni possono causare gravi danni ai componenti del 

plasma, molti sforzi sono diretti all'identificazione dei precursori, delle cause e delle 

conseguenze delle disruzioni dei Tokamak; l'obiettivo finale è lo sviluppo di schemi e 

strategie automatiche per mitigare o evitare le disruzioni. Esistono studi in cui le 

disruzioni vengono classificate identificando le sequenze di eventi che portano alla 

disruzione, e altri dedicati allo sviluppo di routine e algoritmi in grado di rilevare 

eventi specifici correlati alle disruzioni. In letteratura sono stati implementati sia 

approcci basati sulla fisica sia approcci guidati dai dati per prevedere e classificare 

le disruzioni. I metodi basati sulla fisica hanno il vantaggio di essere direttamente 

interpretabili e più scalabili tra diversi dispositivi, ma non sono ancora disponibili 

modelli fisici generali e autoconsistenti che possano essere eseguiti in tempo reale. 

Gli approcci basati sui dati possono invece sfruttare la grande quantità di dati 

disponibili dagli esperimenti e sono considerati un approccio alternativo alla 

previsione delle disruzioni. A questo scopo sono stati studiati sia metodi statistici 

che di intelligenza artificiale (AI), come il Machine Learning e il Deep Learning.  
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D'altra parte, lo Stellarator può funzionare in regime stazionario e gli effetti 

delle perdite di confinamento sulla struttura della macchina sono trascurabili. 

Tuttavia, a causa dei lunghi tempi di funzionamento ottenibili con questa 

configurazione, molti sforzi sono dedicati alla prevenzione dei surriscaldamenti nella 

prima parete di questi dispositivi. A questo scopo, un'intensa attività di ricerca mira 

a rilevare gli eventi termici nello stellarator Weldenstein 7-X (W7-X), dove 

telecamere a infrarossi monitorano lo stato della prima parete durante gli 

esperimenti e dove è in fase di sviluppo un sistema di sicurezza completamente 

automatico per interrompere il funzionamento se viene rilevato un 

surriscaldamento. Soprattutto negli stellarator, a causa della loro geometria 

tridimensionale, una complessa interazione tra la topologia magnetica nel confine 

dell'isola, la modellazione locale delle componenti di fronte al plasma e il rapporto 

tra il trasporto in campo parallelo e quello in campo incrociato determina la 

distribuzione del flusso di calore. Per analizzare e controllare la distribuzione del 

flusso di calore sulla prima parete, è necessario sviluppare algoritmi in grado di 

stimare in modo affidabile il flusso di calore dalla temperatura in tempo reale.  

Questa tesi discute l'uso di metodi di intelligenza artificiale per la protezione 

dei dispositivi di fusione nucleare con riferimento al Tokamak Joint European Torus 

(JET) situato a Culham, nel Regno Unito, e allo Stellarator Wendenstein 7-X (W7-

X), a Greifswald, in Germania. Entrambi i dispositivi fanno parte del programma 

EUROfusion per lo sviluppo della ricerca sulla fusione nucleare. JET è attualmente 

il più grande Tokamak operativo al mondo e l'unico che può funzionare con il 

combustibile Deuterio-Trizio, mentre W7-X è lo Stellarator più grande e avanzato al 

mondo, con l'obiettivo di studiare la possibilità di un’alternativa di tipo Stellarator 

in vista di una commercializzazione dei reattori a fusione. 

Per quanto riguarda JET, in questo lavoro di tesi, il database esistente, gestito 

dall'Università di Cagliari, è stato aggiornato con le scariche provenienti dalle 

campagne sperimentali JET dal 2016 al 2020, con particolare attenzione alle 

campagne C36 (2016) [1] e C38 (2019-2020) [2]. Sia le scariche disrotte che quelle 

regolarmente terminate sono state selezionate dalle campagne sperimentali 

effettuate al JET, dopo l'installazione della parete simile a quella di ITER (ILW o 

ITER Like Wall). In totale, il database di questo lavoro contiene 198 scariche disrotte 

e 219 scariche regolarmente terminate con una corrente di plasma al flat-top 

superiore a 1,5 MA e una lunghezza di flat-top superiore a 200 ms. L'analisi degli 

impulsi si riferisce alla fase di flat-top e il tempo di inizio del flat-top è stato assunto 

come il primo istante in cui il plasma è in configurazione X-point. Negli impulsi del 

database delle campagne sperimentali C28-C30 (2011-2013), gli autori di [A. Pau, et 

al., Nucl. Fusion 51 (2019) 106017] hanno identificato manualmente il cosiddetto 

tempo pre-disruttivo di una scarica disrotta, che fornisce un tempo di riferimento per 

separare la corrente di plasma flat-top di ogni scarica disrotta in due parti: una parte 

non perturbata e una parte pre-disruttiva. Questa seconda parte è definita come la 

fase in cui si verifica la catena di eventi che porta alla disruzione. L'introduzione di 
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tempi pre-disruttivi coerenti (𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟) è doppiamente vantaggiosa. In primo luogo, 

questi tempi permettono di identificare la fase pre-disruttiva, che viene utilizzata 

per descrivere lo spazio di input disrotto di qualsiasi modello predittivo di IA. In 

secondo luogo, essendo il tempo pre-disruttivo fortemente legato all'insorgenza di 

fenomeni destabilizzanti, la risposta del predittore dovrebbe essere collegata alla 

fenomenologia o ai precursori che caratterizzano i vari tipi di disruzioni. Nella 

maggior parte della letteratura, questa fase pre-disruttiva è stata identificata 

statisticamente o euristicamente e assunta uguale per tutti le disruzioni presenti nel 

database, introducendo informazioni contraddittorie nel modello di previsione. La 

chiave per un modello di previsione di successo è quindi la capacità, per ogni scarica 

disrotta nell'insieme di addestramento, di discriminare tra le fasi non disrotte e 

quelle pre-disrotte seguendo criteri standard e coerenti, legati ai meccanismi fisici 

osservati. Tuttavia, questa classificazione richiede un'analisi manuale molto 

dispendiosa in termini di tempo; di conseguenza, adottarla per classificare decine di 

migliaia di impulsi sarebbe altamente impraticabile. Pertanto, durante il dottorato, 

è stato sviluppato un algoritmo per l'identificazione automatica dei tempi pre-

disruttivi, basato su un approccio statistico [1]. Gli istogrammi sono stati utilizzati 

per stimare la distribuzione di probabilità, basandosi sul fatto che l'istogramma di 

una misura fornisce la base per una stima empirica della distribuzione di probabilità. 

Per quantificare la somiglianza/difformità di due istogrammi si possono utilizzare 

diversi approcci.  

Nell'approccio proposto, i due istogrammi sono considerati come vettori 

multidimensionali e la somiglianza/dissimilarità di due istogrammi (o distribuzioni 

di probabilità) è valutata come distanza tra vettori. Per valutare la misura di 

distanza geometrica sono disponibili diverse metriche, come le semplici funzioni 

norma L1 o L2, o quelle appartenenti alle famiglie dell'intersezione o del prodotto 

interno. In questo caso è stata utilizzata la metrica del coseno, appartenente a 

quest'ultima famiglia. La dissimilarità viene valutata per diversi parametri del 

plasma e poi si assume una somma ponderata ottimale come dissimilarità 

complessiva. È stato introdotto un criterio ottimale per scegliere automaticamente, 

per ogni scarica, il tempo di pre-disruzione su questa misura di dissimilarità totale. 

L'algoritmo si basa sull'analisi statistica dei parametri del plasma selezionati dalle 

campagne sperimentali JET eseguite dal 2011 al 2013 e fornisce, per ogni scarica 

perturbata, il tempo di pre-distruzione ( 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 ). Questi tempi sono stati 

confrontati con quelli (𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁) identificati manualmente in [A. Pau, et al., Nucl. 

Fusion 51 (2019) 106017], in termini di prestazioni dei modelli di previsione basati 

sul machine learning Generative Topographic Mapping (GTM) [C.Bishop, et al., 

Neural Comput. (1998) 10(1), 215-234]. Inoltre, l'algoritmo proposto è stato applicato 

al database JET aggiornato e le prestazioni del modello GTM aggiornato confermano 

l'idoneità dell'algoritmo [1,6]. Un altro aspetto legato ai modelli AI data-driven 

riguarda l'uso di caratteristiche informative legate ai fenomeni fisici osservati 

sperimentalmente. In particolare, informazioni preziose possono essere ottenute dai 



iv                                                                                               INTRODUZIONE 

profili di temperatura, densità e radiazione del plasma a causa della loro stretta 

connessione con la stabilità del plasma e la destabilizzazione dei modi MHD che 

possono causare perturbazioni. A titolo di esempio, nella maggior parte dei casi, una 

disruzione è la conseguenza dello sviluppo di tearing modes nel plasma, che porta 

alla crescita delle isole magnetiche. Di solito, ben prima dell'insorgere dei tearing 

modes, si osserva un aumento dell'emissione di radiazione nel nucleo, che porta a un 

profilo di temperatura bucato, mentre un aumento dell'emissione di radiazione ai 

bordi del plasma porta a un raffreddamento ai bordi. In caso di collasso della 

temperatura, si osserva un allargamento del profilo della densità di corrente 

dall'interno, mentre un restringimento dello stesso profilo dall'esterno corrisponde 

al raffreddamento del bordo. In entrambi i casi si può verificare uno scenario MHD 

instabile, dovuto a un continuo aumento del gradiente di densità di corrente in 

prossimità della superficie di risonanza del modo. D'altra parte, l'informazione 

spazio-temporale contenuta nei profili del plasma è cruciale per descrivere fenomeni 

localizzati destabilizzanti, come l'emissione di radiazione nel nucleo piuttosto che al 

bordo, che non può essere sufficientemente descritta da parametri zero-dimensionali 

(0-D) variabili nel tempo, come la frazione della potenza irradiata. A tal fine, sono 

stati sintetizzati parametri 0-D con peaking factors per codificare l'informazione 

spaziale contenuta nei profili unidimensionali (1-D), attraverso il rapporto tra i 

valori medi delle misure su diverse regioni della sezione trasversale del plasma. La 

dimensione temporale viene trascurata quando si considera la dimensione dei dati 

poiché il modello data-driven riceverà un singolo valore del segnale alla volta. 

I parametri dei peaking factors costruiti a partire dai profili di temperatura, 

densità e radiazione del plasma, e quindi direttamente collegati alla fisica del 

plasma, hanno dimostrato di aumentare le prestazioni del modello GTM di 

apprendimento automatico che prevede le disruzioni con un preavviso 

sufficientemente ampio per consentire la messa in atto di strategie di recupero 

dell’esperimento. Tuttavia, le definizioni di tali peaking factors si basano su 

euristiche che assumono arbitrariamente le definizioni del "core" e del "divertore" e 

possono perdere preziose informazioni spaziali contenute nei profili del plasma. 

Inoltre, le definizioni dei peaking factors devono essere modificate in base ai diversi 

sistemi diagnostici disponibili nei vari dispositivi. Recentemente, le reti neurali 

convoluzionali (CNN), appartenenti al paradigma del Deep Learning, si sono 

dimostrate in grado di superare le tecniche di apprendimento automatico più 

consolidate, soprattutto nel campo dell'elaborazione delle immagini e della computer 

vision, per la loro capacità di apprendere caratteristiche rilevanti da immagini a 

diverse scale, evitando l'estrazione manuale delle caratteristiche. 

In questa tesi, le CNN vengono proposte sia per estrarre le caratteristiche 

spazio-temporali dai profili di temperatura, densità e radiazione del plasma, 

superando i limiti precedentemente descritti dei peaking factors 0-D, sia per 

sviluppare un modello di previsione delle disruzioni basato su una rete neurale 

profonda piuttosto semplice che utilizza queste caratteristiche insieme ad altri 
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segnali diagnostici comunemente utilizzati in letteratura. Il modello di previsione 

della rete neurale profonda è stato addestrato utilizzando i dati delle campagne 

sperimentali effettuate al JET dal 2011 al 2013. Poiché la CNN è un algoritmo 

supervisionato, durante l'addestramento è necessario assegnare esplicitamente 

un'etichetta alle finestre temporali (o fette temporali) del dataset. Tutti i segmenti 

appartenenti alle scariche regolarmente terminate sono stati etichettati come 

"stabili". Per ogni scarica disrotta, l'etichettatura di "instabile" è stata effettuata 

identificando automaticamente la fase pre-disruttiva mediante l'algoritmo proposto 

in [1]. Le sue prestazioni in predizione sono state valutate utilizzando scariche 

disrotte e regolarmente terminate di un decennio di campagne sperimentali JET, dal 

2011 al 2020, dimostrando la robustezza dell'algoritmo. Inoltre, le prestazioni del 

predittore di disruzioni proposto sono state confrontate, sugli stessi set di test, con 

quelle del predittore GTM [1] e di una rete neurale Fully Connected (FC), 

dimostrando il vantaggio della CNN nell'elaborazione dei dati dell'intero profilo. 

Tuttavia, uno studio dell'evoluzione delle prestazioni nelle diverse campagne ha 

rivelato l'invecchiamento del predittore, con un degrado dell'accuratezza, soprattutto 

nel tasso di falsi allarmi. Infatti, durante gli esperimenti ad alta potenza di JET 

2020, i ricercatori hanno osservato la comparsa di radiazioni localizzate nel Low 

Field Side (LFS). Poiché il predittore precedentemente sviluppato analizzava solo le 

informazioni provenienti dalla telecamera orizzontale del bolometro, in questi casi 

la CNN non era in grado di localizzare correttamente la sorgente di radiazioni, 

innescando così un falso allarme. Questo fatto ha motivato lo sviluppo di un nuovo 

predittore basato sulle CNN, in cui la telecamera verticale del bolometro viene 

aggiunta all'insieme di caratteristiche 1-D del profilo del plasma [4]. Quindi, due 

diversi classificatori CNN, i cui parametri liberi sono ottimizzati per ottenere le 

migliori prestazioni complessive del predittore, sono addestrati per rilevare diversi 

eventi destabilizzanti. Il rilevamento automatico di specifici meccanismi 

destabilizzanti viene utilizzato per addestrare le architetture CNN [1,2,4,5]. 

Il monitoraggio e la limitazione in tempo reale del flusso di calore sulle 

piastrelle del divertore è un obiettivo fondamentale per il funzionamento a lungo 

termine della fusione ad alte prestazioni. Per questo motivo, sono necessari diversi 

strumenti diagnostici per monitorare lo stato del dispositivo durante gli esperimenti. 

A questo proposito, una delle questioni fondamentali per i dispositivi di fusione 

magnetica è garantire l'integrità dei componenti di prima parete (Plasma Facing 

Components o PFCs) durante il funzionamento ad alte prestazioni. A W7-X, le 

telecamere a infrarossi (IR) monitorano i componenti di prima parete misurando la 

loro temperatura superficiale. In genere, il flusso di calore è localizzato su specifiche 

regioni ad alto carico del divertore, chiamate strike lines. Poiché valori elevati di 

flusso di calore localizzato possono danneggiare i PFCs, molti sforzi sono dedicati 

alla stima e al controllo del flusso di calore sulle tegole del divertore. Per quanto 

riguarda la stima, a partire dalla temperatura misurata sulla superficie del target, 

la distribuzione della temperatura interna può essere calcolata risolvendo 
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l'equazione di diffusione del calore. Diversi codici di ricostruzione del flusso di calore 

sono stati sviluppati seguendo questo approccio, come THEODOR, attualmente 

impiegato a W7 X per l'analisi dei dati offline [Y. Gao et al., Nucl. Fusion 51 (2019) 

106017]. Tuttavia, ai fini del controllo del carico termico, sono necessari schemi di 

calcolo veloci per la stima del flusso di calore in tempo reale. Nell'ambito della borsa 

di ricerca finanziata dall'associazione DAAD, parte del lavoro di dottorato è stato 

dedicato al refactoring e all'ottimizzazione del codice THEODOR, con l'obiettivo di 

velocizzare i tempi di calcolo e renderlo compatibile con un utilizzo in tempo reale. 

Questo lavoro ha portato a velocizzare THEODOR di un fattore 10 su un computer 

di test. Tuttavia, poiché il computer disponibile in tempo reale poteva dedicare solo 

le unità di elaborazione grafica (GPU) a questa operazione, il codice THEODOR 

originale non era adatto a essere eseguito in tempo reale. Per questo motivo, è stato 

proposto un modello di Physics Informed Neural Network (PINN) per accelerare il 

calcolo del flusso di calore verso l'implementazione in tempo reale [3]. Una PINN è 

essenzialmente una rete neurale (NN) tradizionale, in cui una parte della funzione 

di errore, o Loss Function, vincola la rete a rispettare una legge fisica, sotto forma di 

equazione differenziale ordinaria o parziale. Questo fatto rende l'architettura della 

PINN piuttosto flessibile, poiché è possibile sfruttare molte architetture di reti 

neurali tradizionali, anche se la rete Feed-Forward è spesso utilizzata per la sua 

semplicità. Le PINN presentano diversi vantaggi rispetto agli altri risolutori 

numerici di PDE: possono essere utilizzate per regredire operatori di PDE non 

lineari; sono prive di mesh e possono gestire domini irregolari; sono in grado di 

sfruttare le capacità di calcolo parallelo delle GPU. In questa tesi, viene proposta 

un'architettura Feed-Forward NN per ricostruire la distribuzione di temperatura 

all’interno della tegola e il flusso di calore sulla superficie di un tipico profilo del 

divertore dello Stellarator W7X. 



 

 

Introduction  

Controlled nuclear fusion power is an option to produce clean, safe, scalable, 

and non-intermittent energy. In particular, magnetic confinement fusion is the most 

investigated approach for energy production, and Tokamaks and Stellarators are by 

far the most promising concepts for the future fusion reactors. Both devices confine 

the plasma with strong magnetic fields and produce helicoidal magnetic field lines. 

Tokamaks are pulsed operation machines where the poloidal magnetic field, 

necessary for the confinement, is obtained by inducing a toroidal current in the 

plasma, while in Stellarators the coils have a complex geometry to directly generate 

the helicoidal field. This difference determines how the two devices are operated, and 

the advantages and disadvantages of each design.  

The operation of both devices requires a deep understanding of plasma physics 

and the careful planning of the control parameters. In fact, there are two main 

objectives which should be matched while running experiments in the current 

devices: the achievement of high plasma performance and the preservation 

safeguard of the integrity of the machine. In fact, while researchers aim to achieve 

the best plasma conditions in terms of temperature, density and discharge length, 

the interaction with the plasma can damage the components, forcing the operation 

to stop, reducing the available experimental time in the actual devices, and leading 

to a costly repair of the device.  

One of the main disadvantages of Tokamaks is that the toroidal current makes 

the devices subject to disruptions. The disruption is the abrupt loss of the plasma 

current and releases huge electromechanical and thermal forces on the walls of the 

device. Since disruptions could cause severe damage to the plasma facing 

components, a lot of effort is directed to the identification of the precursors, the 

causes, and the consequences of Tokamak disruptions; the final goal is the 

development of automatic schemes and strategies to mitigate or avoid disruptions. 

There are studies where disruptions are classified by identifying the sequences of 

events that lead to the disruption, and others dedicated to the development of 

routines and algorithms capable of detecting specific events correlated to 

disruptions. In literature, both physics-based and data-driven approaches are 

implemented for predicting and classifying disruptions. The physics-based methods 

have the advantage of being directly interpretable and more scalable among different 

devices, but self-consistent and general physical models which can be run in real-

time are not yet available. Instead, data-driven approaches can exploit the large 

amount of data available from the experiments and are considered as an alternative 

approach to disruption prediction. Both statistical, and Artificial Intelligence (AI) 

methods, such as Machine Learning and Deep Learning, have been investigated to 

this purpose. 
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On the other hand, the Stellarator can be operated in steady state and the 

effects of confinement losses on the vessel structure are negligible. However, due to 

the long operation times achievable with this configuration, a lot of efforts are 

devoted to the prevention of overloads in the first wall of these devices. For this 

purpose, an intense research activity aims to detect thermal events at Weldenstein 

7-X (W7X) stellarator, where infrared cameras monitor the state of the first wall 

during the experiments and a fully automatic interlock system is under development 

to stop the operation if an overload is detected. Especially in Stellarators, due to 

their 3D geometry, a complex interplay of magnetic topology in the island boundary, 

local shaping of the Plasma Facing Components (PFC), ratio between parallel- and 

cross-field transport determines the heat flux distribution patterns. To analyse and 

control the heat flux distribution on the first wall, there is the need to develop 

algorithms able to reliably estimate the heat flux from the temperature in real-time.  

This thesis discusses the use of Artificial Intelligence methods for the 

protection of the nuclear fusion devices with reference to the Joint European Torus 

(JET) tokamak situated in Culham, UK and the Weldenstein 7-X (W7X) stellarator, 

in Greifswald, Germany. Both devices are part of the EUROfusion program for the 

development of nuclear fusion research. JET is currently the largest operating 

tokamak in the world and the only one which can run with the Deuterium-Tritium 

fuel, while W7-X is the largest and most advanced stellarator in the world, with the 

aim to investigate the possibility of a stellarator reactor path to fusion commercial 

reactors. 

Concerning JET, the existing database maintained by the University of 

Cagliari, has been updated with the discharges coming from the JET experimental 

campaigns from 2016 to 2020, focusing on the C36 (2016) [1] and the C38 campaigns 

(2019-2020) [2]. Both disrupted and regular terminated discharges have been 

selected from experimental campaigns performed at JET, after the installation of 

the ITER-Like Wall. In total, the database for this work contains a total of 198 

disrupted and 219 regularly terminated discharges having a flat-top plasma current 

higher than 1.5 MA, and a flat-top length greater than 200 ms. The analysis of the 

pulses refers to the flat-top phase, and the flat-top starting time has been assumed 

as the first time instant where the plasma is in X-point configuration. In the pulses 

of the database from the C28-C30 experimental campaigns (2011-2013), the authors 

of [A. Pau, et al., Nucl. Fusion 51 (2019) 106017] manually identified the so-called 

pre-disruptive time of a disruption, which provides a reference time to separate the 

plasma current flat-top of each disrupted discharge into two parts: a non-disrupted 

part and a pre-disrupted part. This second part is defined as the phase where the 

chain of events leading to the disruption occur. 

The introduction of consistent pre-disruptive times ( 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟 ) is doubly 

beneficial. Firstly, these times allow to identify the pre-disruptive phase, which is 

used to describe the disrupted input space of whatever AI predictive models. 

Secondly, being the pre-disrupted time strongly linked to the onset of destabilizing 
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phenomena, the predictor response should be connected to phenomenology or 

precursors that characterize the various types of disruptions. In most of the 

literature, this pre-disruptive phase was statistically or heuristically identified and 

assumed equal for all the disruptions in the database, introducing contradictory 

information in the prediction model. The key to a successful prediction model is 

therefore the capability, for each disrupted discharge in the training set, to 

discriminate among the non-disrupted and the pre-disruptive phases following 

standard and coherent criteria, linked to the observed physical mechanisms. 

However, this classification requires a very time-consuming manual analysis; hence, 

adopting it to classify tens of thousands of shots would be highly impractical. 

Therefore, during the Ph.D., an algorithm for the automatic identification of the pre-

disruptive times has been developed, based on a statistical approach [1]. The 

histograms have been used here to estimate the probability density function (PDF,) 

relying on the fact that a histogram of a measurement provides the basis for an 

empirical estimate of the PDF. Several approaches can be used to quantify how 

similar/dissimilar two histograms are.  

In the proposed approach, the two histograms are considered as 

multidimensional vectors, and the similarity/dissimilarity of two histograms (or 

PDFs) is evaluated as the distance between vectors. Several metrics are available to 

evaluate the geometric distance measure, such as the straightforward L1-norm or 

L2- norm functions, or those belonging to the intersection or inner product families. 

The cosine metric, belonging to the latter family, has been used here. The 

dissimilarity is evaluated for several plasma parameters and then an optimal 

weighted sum is assumed as the overall dissimilarity. An optimal criterion has been 

introduced to automatically choose, for each discharge, the pre-disruptive time over 

this total dissimilarity measure. The algorithm is based on the statistical analysis of 

the plasma parameters selected from the JET experimental campaigns performed 

from 2011–2013, and provides, for each disrupted discharge, the pre-disruptive time 

( 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 ). These times have been compared with the ones ( 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁 ) 

manually identified in [A. Pau, et al., Nucl. Fusion 51 (2019) 106017], in terms of the 

performance of prediction models based on machine learning Generative 

Topographic Mapping (GTM) [C.Bishop, et al., Neural Comput. (1998) 10(1), 215–

234]. Moreover, the proposed algorithm has been applied to the updated JET 

database, and the performance of the updated GTM model confirms the suitability 

of the algorithm [1,6].  

Another aspect related to the data-driven AI models concerns the use of 

informative features linked to the physical phenomena observed experimentally. In 

particular, invaluable information can be obtained from temperature, density and 

radiation plasma profiles due to their close connection with plasma stability and 

destabilization of MHD modes that may cause disruptions. Just as an example, in 

most cases, a disruption is the consequence of the development of tearing modes 

inside the plasma, which leads to the growing of the magnetic islands. Usually, well 
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before the onset of the tearing modes, an increase of the radiation emission in the 

core, which leads to a hollow temperature profile, can be observed, whereas an 

increase in the radiation emission at the edge of the plasma leads to a cooling at the 

edge. In case of temperature hollowing, there is a broadening of the current density 

profile from inside, whereas a shrinking of the same profile from outside corresponds 

to the edge cooling. In both cases an unstable MHD scenario may arise due to a 

continuous increase of the current density gradient near the mode resonant surface. 

On the other hand, the spatiotemporal information contained in the plasma profiles 

is crucial in describing destabilizing localized phenomena, such as the radiation 

emission in the core rather than at the edge, which cannot be enough described by 

zero-dimensional (0-D) time varying parameters, as the radiated fraction of the total 

input power. The time dimension is neglected when considering the data dimension 

since the data-driven model will receive a single instance of the signal at once. 

To this end, 0-D peaking factor time variant signals have been synthesized to 

encode the spatial information contained in the one-dimensional (1-D) profiles, 

through the ratio between the mean values of measurements over different regions 

of the plasma cross section. The peaking factor signals constructed starting from 

temperature, density and plasma radiation profiles, and therefore well anchored to 

the plasma physics, demonstrated to increase the performance of the machine 

learning GTM models predicting disruptions with enough warning time to more 

efficiently enable avoidance strategies. However, the definitions of such peaking 

factors are based on heuristics that arbitrarily assume the ‘core’ chords and the 

‘divertor’ chords and can lose precious spatial information contained in the plasma 

profiles. Moreover, the peaking factor definitions must be changed depending on the 

different diagnostic systems available in the different devices. Recently, 

Convolutional Neural Networks (CNNs), belonging to the Deep Learning paradigm, 

have proved capable of overcoming the most established machine learning 

techniques, especially in the field of image processing and computer vision, for their 

ability to learn relevant features from images at different scales, avoiding hand-

engineered feature extraction. In this dissertation, CNNs are proposed both to 

extract the spatiotemporal features from the plasma profiles of temperature, density 

and plasma radiation, overcoming the previously described limits of the 0-D peaking 

factors, and to develop a quite simple deep neural network disruption prediction 

model that uses these features together with other diagnostic signals commonly used 

in the literature. The deep-CNN predictor has been trained using data from 

experimental campaigns performed at JET from 2011 to 2013. As the CNN is a 

supervised algorithm, during the training, a label must be explicitly assigned to the 

time windows (or time slices) in the dataset. All the segments belonging to the 

regularly terminated discharges have been labelled as ‘stable’. For each disruptive 

discharge, the labelling of the ‘unstable’ has been carried out by automatically 

identifying the pre-disruptive phase by means the algorithm proposed in [1]. Its 

prediction performance has been evaluated using disrupted and regularly 
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terminated discharges from a decade of JET experimental campaigns, from 2011 to 

2020, showing the robustness of the algorithm. Moreover, the performance of the 

proposed disruption predictor has been compared, on the same test sets, with the 

performance of the GTM predictor [1] and of a Fully Connected (FC) neural network, 

demonstrating the advantage of the CNN in the processing of the entire profile data. 

However, a study of the performances evolution over the different campaigns 

revealed the predictor ageing, with an accuracy degradation, mainly in the false 

alarm rate. Indeed, during the 2020 JET high power experiments, researchers 

observed the appearance of localized radiation in the Low Field Side (LFS). Since the 

previously developed predictor was only analyzing the information from the 

bolometer horizontal camera, the CNN could not correctly locate the radiation source 

in these cases, hence triggering a false alarm. This fact motivated the development 

of a new predictor based on CNNs, where the vertical bolometer camera is added to 

the set of 1-D plasma profile features [4]. Then, two different CNN classifiers, whose 

free parameters are optimized to achieve the best overall predictor performance, are 

trained to detect different destabilizing events. The automatic detection of specific 

disruptive mechanisms is used to train the CNN architectures [1,2,4,5].  

Monitoring and limiting the heat flux on the divertor tiles in real-time is a key 

objective for long high-performance fusion operation. For this reason, several 

diagnostics are needed to monitor the state of the device during the experiments. In 

this regard, one of the fundamental issues for magnetic fusion devices is to ensure 

the integrity of the PFCs during high-performance operation. At W7-X, infrared (IR) 

cameras monitor the plasma facing components (PFCs) by measuring their surface 

temperature. Typically, the heat flux is localized on specific high load regions of the 

divertor called strike lines. Since localized high heat flux values can damage the 

PFCs, a lot of effort is devoted to the estimation and control of the heat flux on the 

divertor tiles. Regarding the estimation, starting from the measured temperature at 

the target surface, the internal temperature distribution can be computed by solving 

the transient heat conduction equation. Several heat flux reconstruction codes have 

been developed following this approach, such as THEODOR which is currently 

employed at W7-X for offline data analysis [Y. Gao et al., Nucl. Fusion 51 (2019) 

106017]. However, for heat load control purposes, fast computation schemes for the 

real-time heat flux estimation are required. In the framework of the Research Grant 

funded by the DAAD association, part of the Ph.D. work was dedicated to the 

refactoring and optimization of the THEODOR code, with the aim of speeding up the 

computation time and to make it compatible with a real-time use. This work led to 

the speed up of THEODOR by a factor of 10 on a test computer. Nevertheless, since 

the real-time computer available in real-time could only dedicate the Graphical 

Processing Units (GPU) for this operation, the original THEODOR code was not 

suitable to be run in real-time. For this reason, a Physics Informed Neural Network 

(PINN) model is proposed to speed up the heat-flux computation towards the real-

time implementation [3]. A PINN is essentially a traditional Neural Network (NN), 
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where a part of the loss function constrains the network to respect a physic law, in 

the form of an Ordinary or Partial Differential Equation. This fact makes the 

architecture of the PINN quite flexible, since many traditional NN architectures can 

be exploited, even though the Feed-Forward NN is often used due to its simplicity. 

PINNs have several advantages with respect to the other numerical PDE solvers: 

they can be used to regress nonlinear PDE operators; they are mesh-free and can 

handle irregular domains; they are able to exploit the parallel computing capabilities 

of GPUs. In this thesis, a Feed-Forward NN architecture is proposed to reconstruct 

the temperature distribution in the bulk and the heat-flux on the surface of a typical 

divertor profile of W7X stellarator.
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Organization of the thesis  

The thesis is organized as follows.  

Part 1  

Chapter 1 provides a background on nuclear fusion energy, and on the differences between 

the Tokamak and Stellarator designs. Moreover, it links the characteristics of these 

devices to the problems addressed in this thesis.  

In Chapter 2, the machine learning and deep learning methodologies used in this thesis 

are explained in detail. The large quantity of available data from fusion experiments 

motivates the use of data-driven approaches. 

Part 2: Disruption prediction at JET 

Chapter 3 details the disruption prediction problem and the state of the art. Over many 

years, several techniques, either physics based or data-driven, have been developed for 

disruption prediction in tokamaks. This chapter provides an overview of the approaches 

in the literature highlighting the advantages and disadvantages of each one. 

In Chapter 4, the JET database used for the disruption prediction is discussed, describing 

the available diagnostics and signals and the number of discharges belonging to the 

disrupted and non-disrupted classes. 

Chapter 5 introduces the disruption prediction (DP) approach using the machine learning 

GTM method, presents the algorithm for automatically determining the pre-disruptive 

phase, and reports the performance of the GTM DP models trained using the automatic 

identification of the pre-disruptive phase. 

Chapter 6 proposes a feed forward neural network model for DP and discusses its 

performance on the full database. 

Chapter 7 proposes CNN models for disruption prediction and discusses their 

performance. Early and late fusion of features are compared, and different diagnostics 

combinations are tested. 

Chapter 8 reports the comparison of the different AI models on the same training and test 

databases, and the same features, based on a wide set of performance metrics. This 

Chapter draws some conclusions on the metrics used to compare the different disruption 

predictors and on their main advantages and disadvantages.  

Part 3: Heat-Flux computation at W7-X 

In Chapter 9, the problem and the adopted methods applied for monitoring the thermal 

loads at W7-X are presented. The automatic system for real-time overload detection is 

described. 

Chapter 10 discusses the computation of heat-fluxes at W7-X with the THEODOR code, 

together with its optimization and the bottlenecks for the real-time implementation. 

Chapter 11 discusses the development of a PINN approach for the solution of the PDE 

heat equation, to port the heat-flux computation on a GPU in view of a real-time 

application.  
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Finally, in the Conclusions the work is summarized, and some future research directions are 

given. 
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1 Chapter 1 

1 Fusion and magnetic confinement 

1.1 What is Fusion 

Fusion is a form of nuclear energy that powers the Sun and the stars and has 

the potential to provide an almost unlimited source of energy for the Earth. Fusion 

represents an attractive source of energy for a list of reasons: 

• Environmental sustainability: The fuels used in a typical fusion power plant, water 

and lithium, are clean and environmentally sustainable not producing atmospheric 

pollution as the greenhouse gases. In the middle of the process a radioactive isotope 

of Hydrogen, Tritium, is produced, but its half-life is 12 years, compared to the 109 

years of Plutonium 

• Fuel supply: The necessary fuels are also particularly abundant in the Earth, such 

that their supply will not represent a problem in the future 

• Limited risk of proliferation: Fusion doesn't employ fissile materials like uranium 

and plutonium. (Radioactive tritium is neither a fissile nor a fissionable material). 

There are no enriched materials in a fusion reactor like ITER that could be exploited 

to make nuclear weapons. 

• No risk of accidents: A meltdown nuclear accident is not possible in a tokamak fusion 

device. Reaching and maintaining the necessary conditions for fusion is difficult, and 

if the plasma is destabilized, it cools suddenly stopping the reaction. Moreover, the 

quantity of fuel present in the vessel at any one time is enough for a few seconds only 

and there is no risk of a chain reaction. 

A nuclear fusion reaction produces energy for the same reason nuclear fission 

does. The mass defect is related to the energy released when the nucleus is formed 

according to the well-known Einstein law: 

 𝐸 = ∆𝑚 · 𝑐2 (1-1) 

Therefore, energy is released when two lighter atoms join to form a heavier 

one, as in the case of fusion, or if a very heavy atom splits to form lighter fragments 

in a fission process. Figure 1.1 shows a graph where the nuclear binding energy 

(which keeps the components of the atom nucleus together) is plotted with respect to 

the mass of the element. We can also notice that, from the Iron (Fe), the fusion 

process does not produce any more energy: this is exactly the reason why stars stop 

burning when only the iron core remains 

[http://abyss.uoregon.edu/~js/ast122/lectures/lec18.html]. On Earth, conditions for 

fusion are extremely hard to achieve. Low atomic number elements, as hydrogen and 

its isotopes, must be heated to very high temperatures (around 100 million degrees 

Celsius) for reaching the right conditions for fusion. When these conditions are met, 

gas mixture evolves into another state of the matter named plasma, where the 

http://abyss.uoregon.edu/~js/ast122/lectures/lec18.html
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negatively charged electrons are separated from the positively charged atomic nuclei 

(ions). The extremely hot temperatures are necessary so that the nuclei receive 

enough energy to overcome the electrostatic repulsive forces, allowing fusion 

between the nuclei (due to attractive nuclear forces) and the resulting release of 

energy. 

  

Figure 1.1: Nucleon binding energy in function of their mass number (A) [1] 

Fusion energy has the potential to provide substantial amounts of baseload 

electricity, and this would have an enormous impact on the economy and society 

overall. Nowadays, there are already thermonuclear magnetic confinement fusion 

experiment which are operated all over the world, but in order to make fusion a 

commercial energy source, several critical issues must be addressed from the 

technological and engineering point of view. In fact, this is the purpose of next 

generation of fusion reactors such as ITER and DEMO, which are among the most 

challenging scientific experiments of the upcoming future. The goal is the 

development of proper technologies to demonstrate the technical and the economic 

feasibility of a fusion power plant, which provides energy to electric grid. In Figure 

1.2 a schematic representation of the DEMO power plant is reported. Deuterium (D) 

and Tritium (T) fuel burn at an extremely hot temperature in the central reaction 

chamber. The energy is released as charged particles, neutrons, and radiation, and 

it is absorbed in a Lithium blanket surrounding the reaction chamber, where the 

neutrons react to convert the lithium into tritium fuel. Energy is then generated 
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using the heat of the reaction in a conventional steam-generating plant. The waste 

product from the nuclear reaction is helium.  

 

Figure 1.2: Schematic of a DEMO power plant [2] 

1.2 Basis of Fusion reaction 

The strong interest in fusion reactions is motivated by political, economic and 

environmental considerations regarding the use of fossil fuels for the energy 

production. Moreover, the fusion energy has an enormous potential in terms of 

produced energy with respect to other fuels and sources of energy. In fact, the energy 

produced with 0.14 tons of Deuterium by fusion reactions is equivalent to the one 

produced by burning 106 tons of fossil oil or 0.8 tons of Uranium by nuclear fission. 

At the moment, the most relevant fusion reactions are the D-D and the D-T reactions. 

The D-D reaction produces energy by the nuclear interaction between two deuterium 

nuclei according to the two equally likely reactions: 

 𝐷 +  𝐷 →  𝐻𝑒3 +  𝑛 +  3.27 𝑀𝑒𝑉 (1-2) 

 𝐷 +  𝐷 →  𝑇 +  𝑝 +  4.03 𝑀𝑒𝑉 (1-3) 

Instead, in the D-T reaction a Deuterium and Tritium nuclei interact, as shown 

in Figure 1.3. This reaction is the one considered for the next generation devices such 

as ITER, because it is the one with the highest likelihood of occurrence. The D-T 

reaction can be written as:  
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 𝐷 +  𝑇 →  𝛼 +  𝑛 +  17.6 𝑀𝑒𝑉 (1-4) 

This reaction produces 17.6 MeV of energy, which is released in the form of 

kinetic energy associated in part with the neutron (14.1 MeV) and in part with the 

alpha particles (3.5 MeV). The goal in fusion is the confinement of the alpha particles 

within the plasma, so that their energy can be transferred by collisions to plasma 

ions and electrons. In this case, the reaction would release 3.5 MeV per nucleon, 

oppositely to the 1.01 MeV per nucleon of the D-D reaction. 

 

Figure 1.3: Deuterium-Tritium reaction.  

Unfortunately, the high energetic neutrons may activate the vessel materials, 

and the reaction requires the breeding of the Tritium. In fact, Tritium is radioactive, 

it undergoes beta decay with a half-life (approximately 12.5 years) and is not 

naturally present on Earth. Nevertheless, the high likelihood of occurrence with 

respect to the others, makes this reaction the main option under study for future 

fusion reactions. In Figure 1.4 it is possible to confirm that the D-T reaction has a 

much higher probability of occurring, especially at energy below 100 keV. Note that 

the current record in terms of sustained operation of a nuclear fusion device has been 

set in KSTAR, where researchers have been able to sustain an ion temperature of 10 

keV (corresponding to 120 million degrees Celsius) for tens of seconds [3]. For that 

range of temperatures, the probability for the D-T reaction to take place is much 

higher than for the other reactions. 
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Figure 1.4: Cross sections versus center-of-mass energy for key fusion reactions. [from 

http://iec.neep.wisc.edu/] 

On the other hand, for the D-T reaction, Tritium must be bred in the fusion 

power plant, by capturing neutrons in Lithium. When a neutron interacts with 

Lithium, the primary reactions through which Tritium can be produced are the 

following:  

𝐿𝑖6  +  𝑛(𝑠𝑙𝑜𝑤)  →  𝛼 +  𝑇 +  4.8 𝑀𝑒𝑉  (1-5) 

𝐿𝑖7  +  𝑛(𝑓𝑎𝑠𝑡)  →  𝑇 +  𝛼 +  𝑛 − 2.5 𝑀𝑒𝑉 (1-6) 

Both reactions give rise to the production of Tritium, although one releases 

energy whereas the second one consumes it. However, the reaction with 𝐿𝑖7  is 

particularly important as it releases another neutron, which would enable the self-

sufficient Tritium production in a fusion reactor. This is a critical issue, since the 

fusion devices are designed to satisfy a specific Tritium budget which depends on the 

amount of space left for the Lithium blanket, where Tritium is bred. The availability 

of 𝐿𝑖7 is larger, but the reaction related to 𝐿𝑖6 has a higher likelihood of occurrence. 

Therefore, the first one is the reaction which dominates in the breeding of Tritium. 

1.3 Magnetic confinement fusion 

Magnetic confinement and inertial confinement are the two different 

approaches studied for nuclear fusion. The first approach confines the plasma with 

strong magnetic fields, whereas, in the second one, small pellets containing fusion 

fuel are compressed to extremely high densities through strong lasers or particle 

beams. Inertial confinement fusion recently demonstrated, for the first time, the 

possibility of having a net energy gain from a fusion reaction, when on 5th December 

2022 “NIF researchers fired 2 MJ of energy at a fuel target and recorded a fusion 

energy release of just over 3 MJ” [4]. Even though the net energy gain does not take 

into account the efficiency of the energy transfer from the power supply to the laser 
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system and then to the plasma, this result is quite remarkable and marked a 

milestone for nuclear fusion research. 

 Regarding magnetic confinement, the widely investigated concepts are 

tokamaks (together with spherical tokamaks), stellarators, reversed field pinches, 

spheromaks and levitated dipoles [5]. All the machines are basically 2-D 

axisymmetric toroidal configurations, except the stellarator, which is an inherently 

3-D configuration. Among all the configurations, tokamaks have achieved the best 

overall performance, followed by stellarators. In fact, these two configurations are 

the ones mainly investigated by the EUROfusion research program 

[https://www.euro-fusion.org/eurofusion/roadmap/] 

In magnetic confinement nuclear fusion, the plasma can be treated as a system 

which is globally neutral but locally charged and interacts with the magnetic field. 

A particle with charge 𝑞  moving in a magnetic field with velocity 𝑣 will be subject to 

the Lorentz force 𝑭 =  𝑞(𝑬 + 𝒗 × 𝑩), where 𝑩 is the magnetic field, and 𝑬 is the 

electric field. This force produces a circular particle motion in the plane 

perpendicular to the magnetic field line, making the particle spiral along the 

magnetic field line. In presence of a simple toroidal field, the magnetic field 

curvature and gradient cause the particles to drift. Since the drift force depends on 

the particle charge, the ions and electrons velocities 𝒗𝒅.𝒊 and 𝒗𝒅.𝒆 respectively will 

have opposite signs, determining an electric field in the vertical direction, as shown 

in Figure 1.5. Finally, the electric field produced by the charge separation causes an 

outward 𝑬 × 𝑩 drift of the plasma particles. Hence, the toroidal magnetic field (𝐵𝑡𝑜𝑟) 

cannot confine the plasma by itself, and an additional poloidal magnetic field 

component (𝐵𝑝𝑜𝑙 ) is necessary. The configuration produces helical magnetic field 

lines around the torus and the typical magnetic surfaces, which are surfaces with 

constant magnetic flux.  

 

Figure 1.5: Particles drift in a toroidal configuration 

https://www.euro-fusion.org/eurofusion/roadmap/
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1.3.1 The tokamak 

In a tokamak, the toroidal field coils produce 𝐵𝑡𝑜𝑟 , whereas 𝐵𝑝𝑜𝑙  is due to the 

inductive toroidal current flowing in the plasma. To induce the plasma current, a 

central solenoid acts as the transformer primary where the plasma is the 

transformer secondary, so that the plasma current is ramped up by a transformer 

effect. Figure 1.6 reports a schematic of the configuration. The typical plasma 

current values in JET are of few Mega-Amperes (MA). This configuration has the 

following drawbacks: 

• The tokamak is a pulsed operation machine: the central solenoid can induce a 

current until the core saturates, which means that the core is fully magnetized, and 

the magnetic flux cannot increase. For this reason, fusion researchers investigate 

the use of non-inductive current drive by external systems, such as Electron 

Cyclotron Resonance Heating (ECRH), Ion Cyclotron Resonance Heating (ICRH), 

Lower Hybrid Waves (LHW) and Neutral Beam Injection (NBI). The non-inductive 

current drive is fundamental for running long experiments, in view of ITER. 

• The toroidal current is strongly coupled with the equilibrium of the system. The loss 

of the plasma current can determine a disruption and the release of huge 

electromechanical forces on the walls of the device. The real-time prediction of 

disruptions allows the operator to mitigate the effects of a disruption or to enable 

early termination strategies if enough time is available before the final 

destabilization. 

 

Figure 1.6: Schematic of a tokamak [6] 
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1.3.2 Disruptions in tokamaks 

A disruption is an abrupt loss of the plasma confinement in a tokamak plasma. 

The sudden loss of plasma confinement, followed by the quench of the plasma 

current, could result in the release of large amounts of energy and large thermal and 

electromagnetic loads, possibly causing severe damage to the plasma facing 

components and stressing the device with high mechanical forces [7]. Therefore, 

huge efforts are devoted to the task of identifying the precursors, the causes, and the 

consequences of tokamak disruptions. In particular, the following phases of a 

disruption have been identified by the community [8], [9]: 

1. Pre-precursor phase: there is a change in the operative conditions that leads 

toward an unstable configuration. This change is often clear, as in the case of an 

increase of the plasma density or the auxiliary power shutdown when the reactor 

operates near at the Greenwald density limit. Actually, in a pioneering study of the 

JET tokamak disruptions, it has been observed that [10], [11]: “As expected, all 

disruptions at JET were eventually pushed close to an operational limit resulting in 

the onset of physics instabilities.” Unfortunately, due to the complex interplay of 

phenomena that govern the disruptions, this phase is not always clearly identifiable.  

2. Precursor phase: in this phase, the magnetic confinement starts to 

deteriorate and MHD instability grows, for instance with the development of 

perturbations of the magnetic field as in the second plot of Figure 1.7. 

3. Fast phase/thermal quench: the central temperature collapses.  

4. Quench phase/current quench: the plasma current decays to zero. 

The disruption is a very complex phenomenon. Often the chain of events that 

leads to a disruption has numerous root causes and follows a complicate path [10]. 

Different events and paths can lead to the same disruption type. In the literature, 

several types or classes of disruption have been identified on the base of the chain of 

events that leads to the disruption, depending on the operative regime [10], [12].  
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Figure 1.7: Temporal sequence of a disruption [8] 

The aim of disruption prediction is the automatic identification of the 

disruptions, in order to avoid or mitigate the occurrence of disruptions in tokamak 

plasmas.  

For an avoidance action, the early identification of a specific destabilization 

mechanism is a necessary step to adopt a strategy for recovering the discharge, for 

instance in the case of the mode stabilization with ECRH [13], or for the early 

termination of the discharge [14]. Instead, the mitigation aims to lessen the damaged 

produced by a disruption. In this case, the automatic identification of an incoming 

disruption triggers the Disruption Mitigation System (DMS), which in the timespan 

of the tens of milliseconds injects impurities into the plasma, with the aim of 

radiating most of the plasma energy before the disruption. Mitigating or, even better, 

avoiding plasma disruptions has become mandatory in view of future nuclear fusion 

devices. In ITER, for instance, during the operations at full performances, the failure 

rate in the detection of the current quench (CQ) and the vertical displacement event 

(VDE), should be less than 1% [15]. The estimated total cost of ITER is around 20 

billion euros [16]: this means, of course, that a huge cost is associated with any 

damage to the machine components.  

1.3.3 The stellarator 

In a stellarator (Figure 1.8), external coils generate 𝐵𝑡𝑜𝑟 and 𝐵𝑝𝑜𝑙, which makes 

the magnetic configuration non-axisymmetric [17]. Instead of having two different 

sets of toroidal and poloidal field coils, modern stellarators have a complex set of 

coils. W7-X was designed to be a flexible device, allowing several magnetic 

configurations. It is equipped with 50 modular non-planar coils and 20 auxiliary 

planar coils. Because of the periodic and symmetric geometry of the stellarator only 
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five modular and two auxiliary coil currents are free for variations, i.e. there are 

seven different currents to produce various magnetic fields and configurations [18]. 

Moreover, a set of trim coils is used to correct error fields and equalize the power 

loads among 10 divertors [19]. 

Apart from the main superconducting nonplanar and planar coils for main 

magnetic field configuration, a group of 10 control coils, one for each submodule, are 

situated inside the plasma vessel, behind the baffle and target plates. Their main 

functions are to control and modify the size and the position of the islands 

intersecting the divertor at the boundary, correct symmetry-breaking error fields 

and sweep the strike-line to avoid excessive temperatures. [20] The main advantages 

of the stellarator are due to the absence of the inductive toroidal current. The 

configuration can be operated in steady state, but more unconfined particle orbits in 

stellarators can lead to higher neoclassical transport of energetic and thermal 

particles than in tokamaks [17]. 

 

Figure 1.8: Schematic of a stellarator 

The interaction of the plasma with the first wall during long experiments may 

lead to overload of the divertor, and an erroneous magnetic configuration may expose 

some parts of the first wall to higher heat flux than the one they can withstand.  

The geometry of W7-X is 3D helical shape with a five-fold modular symmetry, 

as in Figure 1.9. Each module has two divertor units (an upper and a lower one) for 

a total of 10 units. The divertor targets intersect the magnetic islands at the edge to 

maximize power transfer and particle exhaust removal. Figure 1.10 shows an IR 

image overlaid to the CAD with the different divertor parts. 
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Figure 1.9: W7-X five-fold modules with its 10 divertor units, 5 upper and 5 lower divertor 

units. The divertor targets intersect the magnetic islands at the edge for power and particle 

exhaust [21]. 

The dominant fraction of the energy leaving the confined plasma region is 

guided towards the divertor targets. Each divertor unit consists of a horizontal and 

a vertical target and it is designed to sustain a maximum heat flux of up to 

10 𝑀𝑊 𝑚−2. 

1.3.4 Thermal events and overloads of the first wall in steady state operation 

In W7-X the magnetic configuration, plasma parameters and chosen scenario 

determine the structure of the power deposition pattern. During operation phase 

OP1.2, ten IR thermographic systems with wide-angle optics were installed to 

monitor the surface temperature on the fine-grain graphite plates of the ten 

inertially cooled test divertor units (TDUs) [22]. The activity involved the 

investigation of the heat fluxes [23], local effects of leading edges [24], error fields 

[25] and particle drifts [26]. In particular, an intense research activity is devoted to 

the detection of thermal events carried out at W7-X, where infrared cameras monitor 

the state of the first wall during the experiments and a fully automatic interlock 

system is being developed to stop the operation if an overload is detected. Thermal 

events are due to the presence of temperature peaks in the machine. In terms of 

image processing, they are defined as a cluster of pixels which have a temperature 

significantly higher than the nearby ones. However, the events are different from 

each other, and they can be classified depending on their size, shape, location or on 

the cause of their appearance. 
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Figure 1.10: Example of IR image of the divertor, where the different parts of the wall 

are identified. 

The classification of these different events is a complicated and cumbersome 

work, also due to the presence of different causes for the same event. At W7-X, a 

system to detect thermal events in real-time and timely interrupt operation in the 

case of a critical event is under development [21]. The fast reaction times required 

for damage prevention need the creation of fully automatic image analysis 

algorithms. 

Identifying and controlling the regions of highest thermal load (strike lines) 

on the targets is a key challenge in view of the future fusion power plants, which will 

have a long operation time. The observation confirmed that a complex interplay of 

magnetic topology in the island boundary, local shaping of the PFCs, ratio between 

parallel- and cross-field transport determines the strike lines properties. Actuators 

such as electron cyclotron current drive (ECCD) and control coils were tested in the 

first divertor campaign for an active control of power distributions on the divertor.  



 

 



 

 

 

2 Chapter 2 

Methods 

2.1 Introduction  

Fusion experiments are complex, and a large set of diagnostics is available to 

assess the plasma state, understand the physics and protecting the machine. The 

huge amount of data produced by the diagnostics is difficult to handle, but it provides 

an opportunity to develop data-driven models for a variety of tasks. Literature 

proposes a plethora of data-driven approaches, many of them belonging to the wide 

area of Artificial Intelligence (AI) techniques in general, and to Machine Learning 

(ML) and Deep Learning (DL) methods, in particular. In this thesis, ML and DL 

models are developed and applied to two different tasks: disruption prediction and 

heat-flux computation.  

In the disruption prediction case, the goal is to develop models able to detect 

the onset of an instability, so that an action can be taken in response to the plasma 

destabilization, thus avoiding the disruption or mitigating its effects. In this case, 

despite the progress in the modelling of the disruption physics, a general physical 

model, able to predict the disruption occurrence, does not exist. Hence, the objective 

is to be able to construct models which can recognise the disruption behaviour from 

the experimental data. This work will focus on manifold mapping with Generative 

Topographic Mapping (GTM) [27], and deep learning with Artificial Neural 

Networks (ANNs) [28] and Convolutional Neural Networks (CNNs) [29]. Moreover, 

since these algorithms require the construction of labelled databases to train the 

models, the development of codes able to automatically build such databases is 

pivotal.  

On the other hand, in the case of the heat-flux computation, codes able to 

reconstruct the surface heat flux on the divertor tiles exist, but these codes are not 

sufficiently fast to be run in real-time. Nevertheless, the knowledge of the physics of 

the problem can be exploited to build reliable and fast models, informed by the 

physics. In this thesis, the proposed DL approach is based on the so-called Physics 

Informed Neural Networks (PINNs) [30]. 

In the following paragraphs, the fundamental of the Machine Learning and 

Deep Learning methods, used in this thesis, have been synthesized. 

2.2  Generative Topographic Mapping 

The GTM [27] belongs to the class of the so called "generative models", which 

are based on the idea that the data of interest lies on a low-dimensional manifold, 

embedded in the high-dimensional space. Generative models try to model the 

distribution of the data by defining a density model with low intrinsic dimensionality 

in the data space. The method preserves the topology of the input data space: this 
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means that points close to each other in the data space will be mapped still close in 

the latent space. Through a nonlinear mapping from the latent space to the data 

space, the algorithm generates a mixture of Gaussians, whose centres are 

constrained to lie on the nodes of a low dimensional space embedded in the high-

dimensional one (see Figure 2.1). The gaussians model the uncertainty in the low 

dimensional representation of the data space [27], and are iteratively fitted to the 

data through the Expectation Maximization (EM) algorithm. This method basically 

extends the principle of the most popular Self-Organizing Map (SOM) [31] but with 

a more explicit formulation of the mathematical properties of the data. In fact, the 

GTM has these advantages compared to the SOM: 

• it explicitly formulates a density model over the data. 

• it uses neighbourhood parameters to ensure topographic ordering 

• it uses a cost function that quantifies how well the map is trained. 

• it uses a sound optimization procedure (EM algorithm). 

 

Figure 2.1: GTM mapping and manifold: each node located at a regular grid in the latent 

space is mapped to a corresponding point 𝑦(𝑥; 𝑊) in the data space and forms the centre of a 

corresponding Gaussian distribution. In Figure 2.1 the correspondences between a data point 

in the manifold embedded in the data space and the mean of the posterior distribution in the 

latent space x* is also shown.  

More formally, let 𝐗 =  {𝐱1;  𝐱2; ⋯ 𝐱K} ∈ ℜL be a regular grid of nodes in the 

latent space, and 𝑻 =  {𝒕1;  𝒕2; ⋯ 𝒕𝑁}  ∈  ℜ𝐷 be the training data set in the data space. 

The GTM algorithm performs a parameterized nonlinear mapping 𝑦(𝒙; 𝑾) from X to 

T consisting of a linear combination of Radial Basis Functions (RBF) 𝛷  (but in 

principle other non-linear functions could be defined) with weighting coefficients 𝑾:  

 𝑦(𝒙, 𝑾)  =  𝑾 ∙ 𝛷(𝒙) (2-1) 

Another internal hyperparameter is the width 𝜎 of the RBFs, which allows to 

control two important properties of the manifold iteratively fitted to the data: 

smoothness and flexibility. As said before, the uncertainty related to the assumption 
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that the actual data points lie on an embedded low dimensional manifold is modelled 

through symmetric Gaussian probability density functions, whose centres 

correspond to the mapped latent points into the T-space. This Gaussian noise 

assumption added to the model gives rise to a mixture of Gaussians where 𝛽 is the 

inverse of the noise variance:  

 
𝑝(𝒕|𝒙, 𝑾, 𝛽)  = (

𝛽

2𝜋
)

−
𝐷
2

e−
𝛽
2

{‖𝑦(𝒙,𝑾)−𝒕‖2}   (2-2) 

The probability distribution over the T-space is integrated over the 𝑿 

distribution under the assumption that the latent variable distribution is modelled 

as a superposition of delta functions associated to the K nodes of the regular grid in 

the latent space. Through the steps described in [27], the final formulation for the 

distribution function over the T-space can be obtained:  

 
𝑝(𝒕|𝑾, 𝛽)  =

1

𝐾
∑ 𝑝(𝒕|𝒙𝑘, 𝑾, 𝛽) 

𝐾

𝑘=1

 (2-3) 

The GTM, therefore, defines a parametric probability density model that is 

fitted to the data by maximizing the log likelihood function by means of the 

Expectation Maximization (EM) algorithm [32], [33]:  

 
𝑚𝑎𝑥
𝑾,𝛽

ℒ  = ∑ 𝑙𝑛(
1

𝐾
∑ 𝑝(𝒕𝑛|𝒙𝑘, 𝑾, 𝛽) 

𝐾

𝑘=1

)

𝑁

𝑛=1

 (2-4) 

The adaptive hyperparameters of the model (𝑾 and 𝛽) are updated during such 

an iterative learning to compute the final values 𝑾∗, 𝛽∗. At the end of the iterative 

procedure, the GTM defines a probability distribution over the data space 

conditioned on the latent variable, whereas the visualization of the resulting 

mapping is possible only in the low dimensional latent space. The corresponding 

posterior distribution over the latent space can be computed through the Bayes’ 

theorem referring to the prior distribution of the latent variable 𝑝(𝒙):  

 𝑝(𝒙𝑘|𝒕𝑛)  =
𝑝(𝒕𝑛|𝒙𝑘, 𝑾∗, 𝛽∗) ∙ 𝑝(𝒙𝑘)

∑ 𝑝(𝒕𝑛|𝒙𝑝, 𝑾, 𝛽) 𝐾
𝑝=1 ∙ 𝑝(𝒙𝑝) 

 (2-5) 

In order to visualize the whole data space on the map, the posterior probability 

distribution over the latent space is usually summarized through a statistical 

measure such as the mean or the mode: 

 
𝒙𝑛

𝑚𝑒𝑎𝑛 = ∑ 𝒙𝑘 ∗ 𝑝(𝒙𝑘|𝒕𝑛) 

𝐾

𝑘=1

 (2-6) 

 
𝒙𝑛

𝑚𝑜𝑑𝑒 = ∑ 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝒙𝑘|𝒕𝑛) 

𝐾

𝑘=1

 (2-7) 
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2.3 Artificial Neural Networks  

Artificial Neural Networks (ANN) try to mimic the way biological nervous 

systems, such as the brain, process information. Their structure is typically a series 

of interconnected layers: the most common model is the fully connected (FC) neural 

network which, as visible in Figure 2.2, is made of an input layer, an output layer 

and an arbitrary number of hidden layers, each containing processing elements 

(neurons).  

 

Figure 2.2: a) An example of feed-forward neural network; b) the neuron 𝑢𝑗  is the basic 

processing unit of an artificial neural network  

An artificial neural network takes a vector of inputs 𝒙 and processes it through 

a number of 𝐾 layers of neurons to produce the output 𝑦 (Figure 2.2.a). A neuron of 

the layer 𝑘 is the basic processing unit (𝑢𝑗), visible in Figure 2.2b, which weighs its 

input data and produces normalized output through its activation function. An 

artificial neuron 𝑢𝑗 takes a set of inputs 𝒁𝒋 from the neurons of the previous layer to 

which it is connected. These connections are weighted with the matrix 𝑾𝒋, which is 

used to compute a weighted sum of the inputs 𝑷𝒋. To this sum, a bias term 𝑏𝑗 is 

added, and the neuron then merely computes its output 𝑧𝑗  = 𝑓(𝑾𝒋
𝑇𝒁𝒋  +  𝑏𝑗), where 

𝑓(∙)  is the neuron activation function. The activation function is a non-linear 

function, which is fixed in the architecture among a set of commonly used ones, such 

as the logistic function, the sigmoid, the hyperbolic tangent (tanh) and the rectified 

linear unit (ReLU). In a FC-NN, all neurons of a layer are connected to all the 

neurons in the following one, as in Figure 2.2a. To calculate how well the network is 

approximating the array of target outputs 𝑡, an error function 𝐸 is used; an example 

of this function is the Mean Squared Error (MSE), which is dependent on the weights 

and the biases of the network: 

 𝑀𝑆𝐸 =
1

𝑛
 ∑(𝑁𝑁(𝒙𝑛) − 𝑡𝑛)2

𝑘

 (2-8) 

where 𝑁𝑁(𝒙𝑘) is the neural network output for the input 𝒙𝑛 , and 𝑡𝑛  is the 

target output for the nth input. The cost function goes to 0 when the neural network 

can correctly map the input output relationship for all the data in the dataset. The 

output of the network can be a single numerical value or a vector (as in one-hot 

encoding for classification problems); in the latter case, vectorial distances can be 
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used to compute the MSE. The MSE or other kinds of loss functions can be minimized 

using the gradient descent algorithm. The number of misclassified samples cannot 

be used directly to evaluate the weights because the relation of a specific weight with 

the misclassified pattern is not straightforward (if compared to the single 

perceptron): changing the weight might not produce an immediate change of the 

number of correctly classified data, but can reduce the distance from the desired 

output array 𝒕 and, consequently, ease the improvement of the classification by small 

steps; this algorithm exploits the gradient descent and is called backpropagation. 

Backpropagation is the learning algorithm for NNs and exploits the continuity 

and the differentiability of the output. The influence of a weight change in a hidden 

layer can be calculated knowing the error of the following layers, so that, using as a 

reference Figure 2.2a, the output is computed starting from the inputs at the left to 

the right (forward phase), while the back-propagation computes and updates the 

weights from the right to the left (backward phase). In practice, considering a FC 

neural network, as in Figure 2.2b, 𝑢𝑗 is the neuron of layer 𝑘, with its inputs 𝒁𝒋 and 

its output 𝑧𝑗, 𝑤𝑗𝑖 denotes the weight of the connection from unit 𝑢𝑖 at layer 𝑘 − 1 to 

unit 𝑢𝑗  at layer 𝑘 . The weighted inputs of 𝑢𝑗  are 𝑷𝒋 = 𝑾𝒁𝒋 . A gradient descent 

approach is then used to update the weights: starting from a random 𝑾, when 𝐸 is 

greater than 0, the algorithm changes the weights to reduce 𝐸 

 
𝑤𝑗𝑖(𝑛𝑒𝑤) ← 𝑤𝑗𝑖(𝑜𝑙𝑑) − 𝜂

𝜕𝐸

𝜕𝑤𝑗𝑖
, 𝑖 = 0,1, … 𝑑 (2-9) 

 

where 𝑑 is the total number of neurons at the layer 𝑘 − 1. This update reduces, 

in a first order approximation, the loss function 𝐸. Considering an improvement on 

the single sample 𝑛, the term 
𝜕𝐸

𝜕𝑤𝑗𝑖
 can be rewritten as: 

 𝜕𝐸

𝜕𝑃𝑘
=

𝜕𝐸

𝜕𝑷𝒋

𝜕𝑷𝒋

𝜕𝑤𝑗𝑖 
 (2-10) 

Where 𝑷𝒋 depends on the outputs 𝒁𝒋 from the 𝐼 neurons of the previous layer: 

 
𝑷𝒋 = ∑ 𝑤𝑗𝐼

𝐼

𝑧𝐼 (2-11) 

so that 
𝜕𝑷𝒋

𝜕𝑤𝑗𝑖
= 𝑧𝑖. The term 

𝜕𝐸

𝜕𝑷𝒋
, instead, is the influence of the input of 𝑢𝑗 to the 

error. This is called 𝛿𝑗 and can be computed depending on the position of the neuron 

in the network. There are two cases: 

• 𝑢𝑗 is an output neuron: the input 𝑷𝒋 comes from a hidden layer, while the output 𝑧𝑗 

is equal to the output of the network or to one of its components (for simplicity, here 
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𝑧𝑗 = 𝑦). Remembering that 𝑧𝑗 is calculated with a continuous update function, here 

we use the logistic function 𝑓 = (1 + 𝑒−𝑷𝒋)
−1

, we can calculate the MSE 

 𝐸𝑛  =
1

2
[𝑦 − 𝑡𝑛]2  =

1

2
 [𝑧𝑗 − 𝑡𝑛]

2
 =

1

2
[𝑓(𝑷𝒋) − 𝑡𝑛]

2
 (2-12) 

 

So that 

 𝛿𝑗  =
𝜕𝐸𝑛

𝜕𝑷𝒋
 =  [𝑓(𝑷𝒋) − 𝑡𝑘][1 − 𝑓(𝑷𝒋)]𝑓(𝑷𝒋)  =  [𝑧𝑗 − 𝑡𝑛][1 − 𝑧𝑗]𝑧𝑗 (2-13) 

 

• 𝑢𝑗 is a hidden neuron: the input 𝑷𝒋 comes from an input or from another hidden layer 

and the output 𝑧𝑗 feeds the 𝑀 neurons of the following layer. Then 𝛿𝑗 is 

 𝛿𝑗  =
𝜕𝐸𝑘

𝜕𝑷𝒋
 = ∑

𝜕𝐸𝑘

𝜕𝑝𝑀

𝜕𝑝𝑀

𝜕𝑷𝒋
𝑀

 (2-14) 

In this expression 
𝜕𝐸𝑘

𝜕𝑝𝑀
 is the influence of the input to the 𝑀 units of the next 

layer with respect to the total error. This is equal to the sum of the 𝛿𝑚 of the following 

layer. The term 
𝜕𝑝𝑀

𝜕𝑷𝒋
, instead, can be split into the contribute 

𝜕𝑝𝑀

∂𝑧𝑖
 and 

𝜕𝑧𝑖

𝜕𝑷𝒋
, where the 

first one depends on the input weights of the following layer and the second one is 

the same derivative of the activation function. 

 𝜕𝐸𝑘

𝜕𝑝𝑀
 = ∑ 𝛿𝑀𝑀   (2-15) 

 𝜕𝑝𝑀

𝜕𝑝𝑗
  =

𝜕𝑝𝑀

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑝𝑗
= 𝑤𝑚𝑗

𝜕𝑓(𝑷𝒋)

𝜕𝑝𝑗
= 𝑤𝑚𝑗𝑧𝑗(1 − 𝑧𝑗) (2-16) 

This method allows you to update all the weights, starting from the deeper 

layer to the first one. There are some differences depending on the network 

structure, on the error function, on the activation function, and on the gradient 

descent algorithm chosen. These parameters can be edited to achieve different 

results. 

2.4  Convolutional Neural Networks  

Convolutional neural networks are inspired by the visual system structure [34] 

and revolutionized the field of computer vision, due to their capability of exploiting 

local patterns in the image data. The deep architecture of a CNN normally consists 

of a cascade of blocks of different layers which performs a filtering of an input image 

to extract significant features from it. The features are produced by a cascade of 

filtering blocks, interconnected through nonlinear activation functions as in the FC 

neural networks (typically a Rectified Linear Unit), and a FC layer combines them 

to produce the output of the network.  

The processing blocks can be of different kinds [35]: 
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• Convolutional Layer: 

This layer exploits the convolution operation to extract feature maps from the 

input image. During the forward step, the kernel or filter is convolved with 

the image-producing the image representation of that receptive region. The 

convolution produces an activation map. In the backward step, the filter 

weights are tuned with backpropagation [36]. The kernel has several design 

parameters which must be set, such as the kernel or filter size, stride, padding 

and dilation. The stride is the sliding size of the filter. The image can be 

padded at the sides to adapt the output size. The number of filters determines 

the number of activation maps produced. In a traditional convolutional layer 

with an input of size 𝐿 x 𝐿 x 𝐷 and 𝐷𝑜𝑢𝑡 filters with a spatial size of F with 

stride S and amount of padding P, then the output size will be 𝐿𝑜𝑢𝑡, computed 

as: 

 
𝐿𝑜𝑢𝑡 =

𝐿 − 𝐹 + 2𝑃

𝑆
+ 1 (2-17) 

The convolutional layer can have extra parameters, such as the stride of the 

convolution, the dilation, which is the creation of empty spaces among the 

kernel elements. The dilation parameter is used to keep the kernels compact 

while focusing on larger areas of the input image. Other variations of the 

convolutions are described in [29]. 

• Batch Normalization Layer: 

This layer has been introduced in a recent paper [37] and it is added to 

normalize the input of the previous layer before passing them to the following 

one. This layer has two learnable parameters (𝛽, 𝛾), and two estimated or 

learned parameters, the mean moving average and the standard deviation 

moving average (𝜇𝑚𝑜𝑣 , 𝜎𝑚𝑜𝑣). The two moving averages are used to normalize 

the data according to the equation: 

 
𝑥𝑗

𝑙′
=

𝑥𝑗
𝑙−1 − 𝜇𝑚𝑜𝑣,𝑗

𝑙

𝜎𝑚𝑜𝑣,𝑗
𝑙  (2-18) 

So that the data has unitary standard deviation and 0 mean. 𝑥𝑗
𝑙′

is the output of this 

intermediate step. Then, the data is rescaled and shifted using 𝛽 and 𝛾: 

 𝑥𝑗
𝑙 = 𝛾𝑥𝑗

𝑙′
+ 𝛽𝑙 (2-19) 

Where 𝑥𝑗
𝑙 is the output of the batch normalization layer. This layer is placed before 

the activation layer in the original publication [37], but other ones propose to move 

it after the nonlinear activation. 

• Activation Layer: 

In this layer, a nonlinear activation function 𝑔 is applied to the input feature 

maps. As in the FC neural networks, this layer follows a processing layer such 

as the convolutional layer. 

• Subsampling/Pooling Layer: 
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This layer is used to down sample the input feature maps. The down sampling 

is applied independently for each input map, preserving the third dimension. 

In general, this layer contains a kernel which computes a max or an average 

function sliding over the input maps. For example, if a 2x2 kernel is employed, 

the output dimensions will be half of the input ones. 

• Fully Connected Layer 

This is the fully connected layer which computes the score of each class from 

the extracted features from a convolutional layer in the preceding steps. The 

final layer feature maps are represented as vectors with scalar values which 

are passed to the fully connected layers 

• Classification/Regression Layer 

This layer is the output layer of the CNN. If the task is a classification, then a 

SoftMax operation is performed to the input from the fully connected network 

and then a criterion is applied to classify the image. If the layer performs a 

regression, generally a simple linear layer produces the final output. 

This structure is very general, and several variations can be applied depending 

on the actual task. This architecture is very flexible and can be employed in a 

plethora of different problems and contexts. The CNN is able to process local spatial 

properties among the features and is considered the state of the art in computer 

vision tasks. It is usually employed in a supervised learning framework, despite self-

supervised applications are being developed [38], [39]. An example of CNN structure 

is visible in Figure 2.3. 

 

 

Figure 2.3: The overall architecture of the Convolutional Neural Network. Includes an input 

layer, multiple convolutions, activations (ReLU) and pooling layers and one fully connected 

layer [40] 

2.5  Physics Informed Neural Networks  

In the past years, the research community increased the understanding of 

multiscale physics problems in a variety of applications, by implementing more 

efficient solvers for Partial Differential Equations (PDEs). The solvers can be based 
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on finite differences, finite elements, spectral and meshless methods. Nevertheless, 

the use of classical analytical and computational tools may not be sufficient to model 

and predict the evolution of large nonlinear multiscale systems or may require 

prohibitive costs. Finally, the solution of real-life physical problems with missing or 

noisy boundary conditions through traditional approaches is very complex. In this 

context, machine learning can be implemented, due to its capability of analyzing 

large design spaces, exploiting correlations in multi-dimensional domains and being 

suitable to ill-posed problems. Deep learning approaches may be used for feature 

extraction purposes when a large amount of observation is available. Unfortunately, 

despite their flexibility and the high performances obtained in several fields [41], 

most data-driven approaches currently are not interpretable and may require huge 

amount of data to handle multidimensional domains. Since the solution of multiscale 

physics problem may require the use of very complex models, the target data 

generation may be a bottleneck in the traditional approach.  

Moreover, in the absence of a regularizing term, even though purely data-

driven models may fit observations very well, their predictions may be physically 

inconsistent or implausible. Therefore, fundamental physical laws and domain 

knowledge could be integrated in the machine and deep learning models, providing 

a physics-based regularizing term additional to the observational one [42]. Physics-

informed learning is the process by which prior knowledge derived from our 

observational, empirical, physical or mathematical understanding of the world is 

exploited to improve the performance of a learning algorithm. Physics-informed 

neural networks (PINNs) are the most investigated example of this learning 

paradigm: a class of deep learning algorithms which integrate data and abstract 

mathematical operators, including PDEs with or without missing physics. 

Constraining the neural network with prior knowledge or a physics bias has several 

advantages: 

• Since the model will also learn the underlying physics principles linked to the 

observations, the model results are robust in the presence of noise and the 

extrapolation power of the model will be higher. 

• The model output will be more interpretable, and the regularizing term could provide 

a metric for measuring the performances of the model in the inference.  

• The presence of a regularizing term reduces the number of necessary data for the 

model training, as visible in Figure 2.4. The better knowledge of the problem physics 

allows to build the model using fewer data, up to the possibility of training PINNs 

without experimental data [43]. 

Physics-informed neural networks [30] can integrate the information from both 

the measurements and partial differential equations (PDEs) by embedding the PDEs 

into the loss function of a neural network using automatic differentiation [44]. The 

PDEs could be integer-order PDEs , integral-differential equations [45], fractional 

PDEs [46] or stochastic PDEs [47], [48].  
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The generic equation: 

 𝑁𝑥,𝑡(𝑢, 𝜂) =  0, 𝑥 ∈  𝛺, 𝑡 ∈  [0, T] (2-20) 

 

with a suitable initial condition 𝑢0 for t = 0 

 𝑢(𝑥, 0) =  𝑢0(𝑥), 𝑥 ∈  Ω (2-21) 

and Dirichlet boundary conditions  𝑢𝑏(𝑥𝑏 , 𝑡)  at the boundary of the spatial 

domain 

 𝑢(𝑥, 𝑡)  =  𝑢𝑏(𝑥𝑏, 𝑡), 𝑥𝑏 ∈  𝜕Ω, t ∈  [0, T]  (2-22) 

can be solved in with numerical methods such as finite difference methods 

(FDMs) finite element methods (FEMs) or finite volume methods (FVMs).  

In the case of the PINN, considering a set of points 𝑇(𝑥, 𝑡; �̂�), where �̂� is the 

PDE solution computed with a traditional solver, a traditional neural network can 

be trained by regressing �̂� in the training set, as in Figure 2.4a. Instead, a PINN can 

be trained by computing the gradients of �̂� with automatic differentiation, and then 

by constraining the model solution to solve the PDE respecting the boundary and 

initial conditions, as in Figure 2.4b. If the problem is completely defined and well-

posed, then the solution is unique, and the PINN can also be trained without 

additional training data. Of course, a mixed approach can also be used where 

measurement data are available and the PDE is fully known. 
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Figure 2.4: a) Traditional Neural Network solving the PDE problem; b) PINN solving the 

problem without using target data (only physics loss). The network output can be 

automatically differentiated with respect to the inputs using automatic differentiation, 

enabling the satisfaction of the PDE. The other components of the loss are the boundary and 

initial conditions of the PDE. Adapted from [45] 

A general algorithm for training the PINN is the following [42], [45]: 

Construct a neural network (NN) 𝑢(𝑥, 𝑡; 𝜃)  where 𝜃  is the set of trainable 

parameters (weights and biases). The network output is differentiable with respect 

to the inputs of the network, so that it is possible to compute the PDE loss. Moreover, 

if boundary points are provided, also the boundary condition loss can be computed 

by enforcing the values of the solution and its derivatives at the boundary. Finally, 

if real measurement or solver data {𝑥𝑖, 𝑡𝑖 , �̂�𝑖} for 𝑢 and the residual points {𝑥𝑗, 𝑡𝑗} are 

available, it is also possible to compute the data loss. The total loss 𝐿 is obtained by 

summing the weighted data, boundary and PDE losses. Train the NN to find the best 

parameters 𝜃* by minimizing the loss 𝐿 with backpropagation until a stop condition 

is matched.  

The weights of the losses are not necessarily kept equal for the entire training, 

and they are crucial for the PINN convergence; it was shown that the order of 

magnitude of the PDE loss components can be different from the one of their 

gradients or derivatives and how their scale can slow down or prevent convergence 

[49], [50]. Nevertheless, the problem of PINN convergence is still under research, as 

several techniques can be used to improve the learning of the PDE. For instance, 

other works [51]–[53] exploit the fact that any point within the domain can be 

sampled since there is no need to have a target value to compute the loss. Actually, 
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several approaches adopt resampling strategies to refine the quality of the solution 

in specific points of the domain until convergence [52], [53]. PINNs have several 

advantages with respect to the other numerical PDE solvers: they can be used to 

regress nonlinear PDE operators[43], [54]–[56]; they are mesh-free and can handle 

irregular domains; they are able to exploit the parallel computing capabilities of 

Graphical Processing Units (GPUs) [42], [43], [54]. It is a very recent learning 

paradigm which is applicable to several classes of contexts and problems where 

additional information on the problem is known.



 

 

 

 



 

 

 

 

 

Part 2: Disruption prediction at JET 

 



 

 

 

3 Chapter 3 

Disruption prediction and state of the art  

3.1 Disruption prediction methods in Tokamaks 

In tokamaks, the forces produced during an unmitigated disruption can 

seriously threaten the machine. A disruption is characterized by a sudden collapse 

of the plasma energy, both in terms of thermal energy (plasma temperature) and 

plasma current. The thermal quench initiates a major plasma disruption event, but 

as the plasma resistivity increases as its temperature decreases, the plasma cooling 

causes the current quench. The loss of the plasma current may also cause an abrupt 

drift of the plasma column, making it collide with the conductive vessel and 

compromising the integrity of the first wall and of the coils. For this reason, since 

the 90s, the ITER Physics Basis [57] review paper discussed the idea of radiating the 

plasma energy before the disruption, mitigating the consequences of a disruption. In 

a following issue [58], the areas of disruption prediction and mitigation were 

established. Unfortunately, the prediction of disruption is a complicated task, since 

the thermal quench is not affecting global plasma parameters but its local properties, 

and, despite advances in the non-linear MHD simulation codes as JOREK [59], 

NIMROD [60] and M3D [61], the process is not yet fully understood. Several physical 

limits, which constrain the operational space of the magnetic confinement devices, 

have been found. The high density and the high beta limits, the safety factor at the 

edge and the Greenwald limit have been investigated. It is also well known that an 

asymmetric perturbation of the toroidally symmetric magnetic field can induce large 

MHD modes in low density and low 𝑞 plasmas and cause a disruption. Moreover, a 

large increase of the impurity density can also lead firstly to a radiative collapse and 

ultimately to a thermal quench. Nevertheless, the first work that provided a 

systematic study of the disruption statistics is [62], where a statistical analysis of 

JET disruptions is made. The work aimed at explaining the trend of the disruption 

rate (i.e., the percentage of pulses that disrupted) over a long period of time. The 

work demonstrated that a better understanding of the device operation helped in 

reducing technical failures and errors. Moreover, it was shown that, in critical 

experimental campaigns, such as the first D-T campaign at JET, the more careful 

operation led to a lower disruption rate. A follow up publication [10] investigated the 

root cause of 2309 JET disruptions to provide the chain of events which determined 

the disruption, a list of possible technical issues and several limits related to JET 

operation. The analysis was made manually, with the help of measurements and 

logbook reports of the experiments. This work identified the main root causes behind 

disruptions and influenced the research on physics-based and data-driven disruption 

prediction methods.  
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3.1.1 Physics-based methods 

One of the approaches to the prediction of disruptions is the development of 

physical models for disruption prediction and avoidance. The physical model should 

be able to identify the plasma equilibrium by fixing as boundary condition the 

measurements by the pick-up coils, then to predict the evolution of the plasma state 

in real-time, sufficient to adopt avoidance or mitigation actions. This task is very 

complicated and, despite a lot of progress in the MHD modelling of the plasma [63], 

a code able to include the full physics related to the problem and sufficiently fast to 

be adopted in real-time is not available yet [64]. For this reason, the “physics-based” 

approaches available either make use of simplified physics models or aim to the 

detection of specific “off-normal” events to enable their use in real-time. For instance, 

the Disruption Event Characterization and Forecasting (DECAF) algorithm, is a 

framework where different physics models, each targeted to detect a relevant physics 

event are combined to estimate the risk of a disruption [65], [66]. The code can detect 

rotating MHD modes, resistive wall and Edge Localized modes among other events. 

A real-time version of the code is being developed for the KSTAR tokamak [65], [67]. 

On the other hand, the detection of specific events related to the physics is also 

adopted for the avoidance and mitigation purposes. For instance, the parameters 

such as the radiation peaking, the locked mode signal or other indicators of 

off-normal MHD activity have been exploited to trigger safe stop procedures or 

mitigation at JET [68]. These approaches have the advantage of providing a response 

to the specific physical mechanism which is destabilizing the discharge and of being 

more interpretable. On the other hand, most of these models are either not 

sufficiently fast to be ported in real-time or they cannot address all the various kinds 

of events which can determine a disruption. For this reason, complex schemes, which 

handle the simultaneous detection of different events, are being developed for 

several devices [14], [69], [70].  

3.1.2 Data-Driven Methods 

The lack of a general physical model for the prediction of disruptions motivated 

the development of data-driven models from the experiments. Data-driven methods 

are usually characterized by the lack of a precise mathematical model that describes 

the plasma state, which is instead analysed in terms of the univariate or 

multivariate statistics of the experimental data. There is a plethora of data-driven 

approaches, each one with specific advantages or disadvantages. The general idea is 

that, for a set of input data 𝒙, which should clearly describe the state of the system, 

the model should learn a function 𝑓(𝒙) which provides the level of disruption risk. In 

contrast with the physics-based methods, the 𝑓(𝒙) function is not known beforehand, 

but it can be learnt from labelled or unlabelled experimental data. The following 

paragraphs describe the main methods adopted in the disruption prediction task. 
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3.1.3 Statistical Methods  

Statistics is pivotal for evaluating the soundness of the any data-driven 

methodology and provides insights on the data. For this reason, univariate or 

multivariate analyses are usually the first approach before developing a machine 

learning model [71], [72]. Moreover, in the literature, the statistical analysis has 

been applied to identify the start of the pre-disruptive phase [15], [71], [73]–[75] or 

to find cross-machine disruption indicators [76]. Moreover, an explorative analysis 

is necessary to select experiments from specific scenarios [77] compatible with the 

ones developed for the next generation tokamaks such as ITER or SPARC. In [78], 

the statistical method of Survival Analysis is integrated with Random Forest (RF) 

binary classification of disruptions for time-to-disruption studies. In [79], 

Discriminant Analysis (DA) is used as the main approach to disruption prediction 

on AUG. A log-linear discriminant function, constructed with five 0-D plasma 

parameters is derived for the edge cooling (EC) disruptions. DA [80] falls into the 

multivariate statistics approaches, and it makes use of a training data set (𝒙𝑖, 𝑦𝑖),

𝑖 = 1, ⋯ , 𝐼, to determine a boundary between two response classes. The assumption 

of this method is that the input points of each class belong to a 𝑛 − 𝐷  normal 

distribution. The work finds a linear boundary between the disruptive and the 

non-disruptive regions, describing the plasma state using the 0-D following plasma 

parameters: internal inductance 𝑙𝑖 , Greenwald density 𝑛𝑒𝐺𝑊 , Loop Voltage 𝑈𝑙𝑜𝑜𝑝 , 

poloidal beta 𝛽𝑝𝑜𝑙, and the fraction of the radiated power over the total input power 

𝑃𝑓𝑟𝑎𝑐. The Logistic Regression method has been used in [75] to develop a disruption 

predictor for ASDEX Upgrade. Logistic regression is a nonlinear regression method 

which models the probability 𝑝(𝑦 = 1| 𝒙) of a vector  𝒙  of independent variables to 

be classified into one category of the dependent variable 𝑦 ∈  {0, 1}. Depending on 

the probability 𝑝 , the value is classified with a binary classification scheme. 

Moreover, in [81] an auto regressive exogenous inputs model (ARX) is built using 

𝑃𝑓𝑟𝑎𝑐, 𝑙𝑖, and 𝛽𝑝𝑜𝑙 from the non-disrupted pulses of ASDEX Upgrade. This model can 

be trained using only safe pulses, which is promising since ITER can only tolerate a 

few percent of disruptions. 

3.1.4 Machine learning and Deep learning methods 

The first techniques to be applied to the disruption prediction task were 

Support Vector Machines (SVM) and Neural Networks (NN). The SVM is a 

supervised machine learning algorithm, which projects the data in a higher 

dimensional space to find a linear boundary between two classes of vectors 𝒙. The 

boundary is found by maximizing the distance between the separating hyper plane 

and the closest training data points 𝒙𝑖 (named support vectors). The kernel function 

is a nonlinear function used to increase the domain dimensionality and is a fixed 

hyperparameter of the SVM. In [82] a first application of the SVM is proposed as a 

disruption predictor at JET for mitigation purposes using plasma diagnostic signals. 
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Then, the SVM has been also adopted in [83], [84], and posteriorly upgraded and 

installed in JET real-time network in 2012 (APODIS) [84]–[87]. Moreover, SVM is 

implemented at JT-60U for disruption mitigation [88], [89].  

As previously cited, Fully Connected Neural Networks can approximate any 

continuous function of one or more variables [90], and if the network is trained with 

a binary target, its outputs can be interpreted as posterior probabilities. This is very 

useful for classification tasks, as it gives a certainty measure on the classification 

performance [28]. The earliest applications of FC-NN based disruption predictors are 

in [91]–[95] and new models based on FC-NN are still developed [96], [97]. The input 

of these networks are plasma diagnostic signals from disruptive and/or 

non-disruptive pulses. In [92], [93], [98], a disruption prediction tool based on a FC-

NN neural network, ideally suitable for real-time application, has been implemented 

and tested over the flat-top phase of JET and AUG discharges. In [93], [99], the AUG 

predictor has been adaptively trained whenever it triggers a missed alarm.  

More recently, a FC-NN model has been developed also for the J-TEXT 

tokamak, focusing on the prediction of density limit disruptions [96]. Moreover, in 

[100] a hybrid two-stage neural network architecture is proposed: the first stage is a 

custom network, which uses time series diagnostics as inputs to predict plasma 

density, and the second stage is a FC-NN to predict the probability of density limit 

disruptions. Finally, in [97] the FC-NN is employed to determine whether an 

equilibrium data point from NSTX is below or above the no-wall stability limit.  

In the literature, also decision trees have been widely adopted for developing 

interpretable disruption predictors. Among these, the Random Forest algorithm has 

been employed to classify disruptions at DIII-D and Alcator C-Mod [71], [73], [78]. 

The forests are grown by developing parallel sets of predictors, thus collecting a large 

number of independent and identically distributed, de-correlated decision trees [101]. 

The trees are usually fully grown, and the final prediction is aggregated, using 

majority voting, from a large number of trees. 

Among the unsupervised machine learning algorithms there are Manifold 

Learning Algorithms such as Self Organizing Maps (SOMs) [9], [81], [102], and 

Generative Topographic Maps (GTMs) [15], [72], [103], which have been used for 

both disruption prediction and classification with very successful results. This class 

of algorithms aims to group data exploiting only the properties of the data itself. 

Therefore, they can be used for an exploratory analysis of the data space, or for 

feature extraction and selection. In this context, they were exploited for mapping 

and visualizing the high dimensional space, typical of the disruptive process, in a 

lower dimensional space. Moreover, the projected discharge trajectory on the map 

allows to clearly visualize the principal differences among the chain of events which 

cause the disruptions [15], [72]. 

In [103] the k-Nearest Neighbours (k-NN) is used as a comparative method for 

evaluating the Generative Topographic Mapping results on disruption classification. 

In fact, the k-NN error tends to the Bayes error when the size of the training set 
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tends to infinity, giving a statistical lower bound on the error achievable for a given 

classification problem and associated data.  

Finally, recently, deep learning methods have been adopted to develop 

disruption predictors. DL consists in the use of deep neural networks to address 

complex problems. CNN and Recurrent Neural Networks (RNNs) are extremely 

popular architectures of this field. As previously cited, CNNs are mostly applied to 

image analysis. Their main advantage is the ability to achieve ‘spatial invariance’, 

which implies that they can learn to recognize and extract image features 

independently on their position in the image. Moreover, thy can act as feature 

extractors, simplifying the cumbersome feature engineering process, which is 

necessary in traditional machine learning pipelines. RNNs instead are used to 

process time series and dynamical data by introducing recurrent connections which 

cause the network output to be determined from the current inputs and the previous 

ones. Long-Short Term Memory (LSTM) neural network is the most common RNN 

architecture. CNNs have been employed for developing disruption predictors either 

alone [104], [105] or in combination with RNNs [100], [106]–[109].  

3.1.5 Adaptive learning 

Data-driven approaches are affected by the problem of ageing, which is the 

deterioration of their performance when the device changes or undergoes profound 

modifications (e.g.,  the change of the JET wall). To deal with this issue, researchers 

developed data-driven models from scratch with data from the machine itself [110] 

or incorporate a small quantity of new data into the previously trained model [106]. 

This implies the generation of predictors that require at least one disruptive 

discharge and one non-disruptive discharge to be able to distinguish between the two 

plasma behaviours [111]. However, these models created with so much scarcity of 

information need to be updated in an adaptive way to incorporate relevant 

information as new discharges are produced [82], [92], [93], [99]. The adaptive 

procedure includes not only gaining knowledge (i.e. to learn) about disruptive and 

non-disruptive features of the parameter space but also accomplishing a de-learning 

process (i.e. to remove training samples that are no longer valid due to their 

statistical irrelevance from the evolution of the experimental program of the device). 

The need of at least one disruptive discharge to create a first predictor from 

scratch can be avoided by using anomaly detection methods [75], [112]. These 

methods are based on recognizing off-normal behaviours in plasma quantities that 

are related to potential incoming disruptions.



 

   

 

 



 

 

 

1 Chapter 4 

4 JET Database 

4.1 Introduction 

A tokamak discharge is generally divided into 3 phases, depending on the 

plasma current trend: ramp-up, which is the phase when the plasma current rises 

to the chosen value; flat-top, which is the phase when the control system keeps the 

current stable; ramp-down is the final phase of the discharge, when the current 

decays in a controlled way, until the experiment terminates. A general correctly 

terminated (named here as “safe”) pulse develops by passing through all the 3 

phases, with only minor problems which do not compromise the overall plasma 

stability. A disrupted pulse, instead, is characterized by the destabilization of the 

plasma equilibrium by a series of events of variable complexity; the disruption may 

occur in any of the phases, but the plasma during the flat-top yields generally much 

more energy, due to the higher current and temperature values. In Figure 4.1, a 

schematic is reported, which describes the development of the plasma current of a 

generic safe (blue) and disrupted (red) discharge. 

 
Figure 4.1: Sketch representing the 3 phases of a pulse: ramp-up, flat-top and ramp-down 

The construction of a database is a mandatory step for the development of 

whatever data-driven technique. The analysis of nuclear fusion data is particularly 

challenging due to the high dimensionality of the operational space of the devices, to 

the large amount of available data and to the expertise required for the selection of 

the set of relevant diagnostics in a specific application. The existing database 

maintained by the University of Cagliari, contains several disrupted and regularly 

terminated pulses from the first JET ITER-Like Wall (ILW) campaigns. In 

particular, the database was adopted for disruption prediction and classification 

[113] studies and contains non-intentional and unmitigated disruptions. During the 

three years of PhD research program, the database has been updated with the 
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discharges coming from the JET experimental campaigns from 2016 to 2020, 

focusing on the C36 (2016) and the C38 (2019-2020) campaigns. Since these 

campaigns were carried out using higher input power, the number of unmitigated 

disruptions was very low. For this reason, also mitigated disruptions have been 

considered, adopting as disruption time the time of mitigation. The overall database 

for this work contains a total of 198 disrupted and 219 regularly terminated 

discharges having a flat-top plasma current higher than 1.5 MA, and a flat-top 

length greater than 200 ms. The analysis of the pulses refers to the flat-top phase. 

In particular, for each selected discharge, the flat-top starting time has been 

assumed as the first time instant where the plasma is in X-point configuration. For 

the disrupted pulses, the flat-top ending time (𝑡𝑒𝑛𝑑) is assumed as the time of the 

valve activation for those terminated by Massive Gas Injection (MGI), and as the 

disruption time (𝑡𝐷), corresponding to the drop of the core temperature and the start 

of the plasma current spike, for the unmitigated ones. Disruptions caused by Vertical 

Displacement Events have been excluded at all from the data set. These criteria are 

widely employed in disruption prediction and avoidance studies to select relevant 

experiments [15], [106]. The considered database covers a wide set of experimental 

conditions, starting from the earlier campaigns with the ILW until the recent 

experiments where high power experiments were carried out. It has been grouped in 

3 datasets, as detailed in Table 4.1, following the different experimental campaigns.  

Table 4.1: Database composition 

Dataset Years Campaigns 
Composition 

Disruptions Regular pulses 

I 2011÷2013 C28-C30 132 115 

II 2016 C36 29 41 

III 2019÷2020 C38 37 63 

The database was analysed with univariate and multivariate statistics. Table 

4.2 reports the diagnostics used for the preliminary analyses, the development and 

the testing of the disruption predictors presented in the thesis. Among these 

diagnostics, the first 5 were used to carry out the main exploratory analyses of the 

database, while the remaining ones were used to extract relevant features for the 

disruption prediction task. The differences among the three datasets in terms of 

explored regions in the operational space are shown in Figure 4.2 where, from top-

left to bottom-right, the distributions of the plasma current (𝐼𝑝), the toroidal field 

(BT), the normalized beta (𝛽N), the total input power, the line integrated density, and 

the edge safety factor (q95) are reported for the regularly terminated discharges. It 

can be noted that the Datasets I and II share the same parameter ranges even if, for 

some parameters (such as 𝐼𝑝, BT or q95), their distributions slightly differ. Instead, 

the Dataset III, which is related to experiments aiming to study the baseline scenario 
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suitable for sustained high D-T fusion power, is characterized by higher currents, 

density and input power, also exceeding the range of the other two datasets. 

Table 4.2 Diagnostic signals, acronyms and units. 

Plasma signal Acronym Diagnostics Dimension 

Plasma Current 𝐼𝑝 MAGN 0-D 

Poloidal Beta 𝛽𝑝 BetaLi 0-D 

Normalized Beta 𝛽𝑁 BetaLi 0-D 

Line Integrated density 𝑛𝑒,𝑖𝑛𝑡 FIR interferometer 0-D 

Safety factor at the edge 𝑞95 EFIT 0-D 

Toroidal magnetic field 𝐵𝑇 MAGN 0-D 

Electron Temperature 𝑇𝑒 HRTS 1-D 

Electron Density 𝑛𝑒 HRTS 1-D 

Radiated Power 𝑃𝑟𝑎𝑑  Bolometer 1-D 

Total Radiated Power 𝑃𝑟𝑎𝑑−𝑇𝑂𝑇 Bolometer 0-D 

Total Input Power 𝑃𝑇𝑂𝑇 BetaLi 0-D 

Internal Inductance 𝑙𝑖 BetaLi 0-D 

Normalized locked mode 𝐿𝑀𝑛𝑜𝑟𝑚 LMS 0-D 

Mirnov Coil signal 𝑀𝑠𝑖𝑔𝑛𝑎𝑙 Mirnov Coil 0-D 

Spectrogram S Mirnov Coil 1-D 

Previous studies [15], [72], [73], [106] demonstrated the importance of the 

plasma profiles for the early detection of unstable plasma states. For this reason, the 

profile quantities such as electron temperature, density and radiation have been 

exploited for the development of disruption predictors. Figure 4.3 shows the area 

covered by the HRTS diagnostic installed at JET with respect to the poloidal section, 

while Figure 4.4 shows the lines of sight of the horizontal and vertical bolometer 

cameras. 

Moreover, other quantities were taken into consideration such as the internal 

inductance (𝑙𝑖), which provides information on the current profile, and the mode lock 

signal normalized by the plasma current (𝑀𝐿𝑛𝑜𝑟𝑚 ), which is commonly used to 

predict the onset of a mode-locking before the final destabilization of the plasma [15], 

[76], [114]. Moreover, to anticipate the alarms provided by the mode lock signal, a 

signal coming from the Mirnov coil diagnostics was analyzed with the aim of 

detecting the presence of slowing down MHD modes.  

As detailed in the next Part, for the analysis of the 1-D plasma profiles, two 

main approaches were used. One involves the synthesis of 0-D indicators, which 

could represent the spatial distribution of the profile quantity, the other is the 

creation of 2-D images by processing the profile data and extracting the profile signal 

with a sliding window, producing a spatiotemporal representation of the profile 

evolution. 
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Figure 4.2: Distributions of the main parameters of the regularly terminated discharges in 

the Dataset I (blue), Dataset II (green) and Dataset III (red) for (from top left to bottom right): 

plasma current, toroidal field, normalized beta, total input power, line integrated density and 

edge safety factor. 

 

Figure 4.3: Area covered by the HRTS at JET (in red), and the reconstruction of the 

magnetic surfaces with EFIT in shot #100776 
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Figure 4.4: View of the JET bolometer camera system: horizontal camera (left side) and 

vertical camera (right side) 

4.2 Processing the plasma profiles 

The profiles represent the time evolution of fundamental plasma quantities 

such as the electron temperature, the electron density, and the radiation. In [72] 

these 1-D profiles have been processed to synthesize physics-based indicators called 

“peaking factors” (PFs). The peaking factors demonstrated very useful to 

discriminate between a non-disruptive plasma state and a disruptive one. The 

peaking factors for both density and temperature have been considered as features 

defined with a “core versus all” metric; they are computed as the ratio between the 

mean value of the considered radial profile (temperature, radiation, density) around 

the magnetic axis and the mean value of the measurements over the entire radius. 

The radial interval to define the “core” with respect to the magnetic axis is the 25% 

of the radial coordinate (the minor radius for poloidal mid-plane measurements) in 

the case of electron temperature ( 𝑇𝑒𝑝𝑓 ) and density ( 𝑁𝑒𝑝𝑓 ) peaking factors. 

Regarding the radiated power, in [15] the same authors computed the peaking 

factors using the main-vessel bolometric camera with a horizontal view of the plasma 

cross-section (Bolo H). Two different peaking factors have been derived splitting the 

information carried out by the global poloidal radiation distribution. Firstly, the core 

is defined as 4 channels of the Bolometer, from 13th to 16th, and the divertor as 8 

channels, from 1st to 8th. Then, the two peaking factors, the 𝑅𝑎𝑑𝑝𝑓−𝐶𝑉𝐴  and the 

𝑅𝑎𝑑𝑝𝑓−𝑋𝐷𝐼𝑉  have been computed: the first one is the ratio between the average 

radiation in the core, and the average radiation in the entire plasma excluding the 

divertor area. The 𝑅𝑎𝑑𝑝𝑓−𝑋𝐷𝐼𝑉 is instead computed as the ratio between the average 

radiation in the divertor and the average radiation in the entire plasma excluding 

the area of core (20 channels).  
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Note that, the peaking factors are obtained by heuristically defining the core 

of the plasma with either a set of channels or as a percentage of the minor radius of 

the plasma, and the construction of the synthetic feature causes a loss of information. 

On the contrary, it is possible to analyze the full spatiotemporal information 

contained in the electron temperature and density, and radiated power profiles by 

converting the same set of 1-D diagnostics used in [15], [72], [115] in 2-D images.  

In order to generate images from the profiles input data, the following steps 

have been implemented: 

1. Firstly, data from the High-Resolution Thompson Scattering (HRTS) for the electron 

temperature (𝑇𝑒) and density (𝑁𝑒), and the horizontal lines of sight of the bolometer 

for the radiated power (𝑃𝑟𝑎𝑑 ), is resampled at the same JET real-time network 

sampling time of 2 ms. Since the objective is developing real-time compatible 

disruption predictors, the resampling is made by only exploiting current and past 

values information. This operation allows the system to work with signals at the 

same time scale, as these diagnostics have different sampling times, which vary from 

10−4 to 10−2 s. Note that, the raw measures from these diagnostics are used. 

2. Once the resampling has been carried out, the 1-D profile data is processed to create 

a set of input images, as detailed in the following and sketched in Figure 4.5a-c: 

− a pre-processing is applied to each diagnostic to remove outliers. In particular, for 

the HRTS diagnostic, the pre-processing consists in the comparison of the 

measurement with the diagnostic estimated error [116]. As some shots, both for 

HRTS and Bolometer profiles, presented corrupted measures, a pre-processing 

procedure has been developed, based on the correlation between the measure of each 

line of sight and those of their neighbours. The corrupted measures are replaced by 

the interpolated values between the closest ones. From an inspection of the training 

dataset, the outer 9 lines of sight (from major radius greater than 3.78 m) of the 

HRTS are discarded as, at least on the selected dataset, they usually provide 

unreliable data. For the Bolometer data, no estimation of the measurement error 

was available, so negative power values have been substituted with null values, 

whereas unreliable positive ones are saturated to a fixed threshold empirically fixed 

to 1MW/m2;  

− for the HRTS diagnostics, the lines of sight are ordered from the inner (R=2.96m) to 

the outer one (R=3.78), where R is the major radius. For the bolometer diagnostic, 

the lines of sight are ordered as labelled in Figure 4.4. Then a spatiotemporal matrix 

is built, whose elements assume the value of the measure in the corresponding line 

of sight and the corresponding time sample. The obtained images are shown in 

Figure 4.5b; 

− the three images are vertically stacked, and their ranges are normalized with respect 

to the signal ranges in the training set. After retrieving the maximum and the 

minimum values from each diagnostic in the training set, its value 𝑥 is normalized 

between [-1,1] by 

𝑥𝑛𝑜𝑟𝑚 =
(2𝑥 − 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

obtaining the final image in Figure 4.5c;  
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− the final image is segmented using an overlapping sliding window of 200 ms, as 

sketched by the dashed black line in Figure 4.5c. In this way, each segment 

corresponds to an image of NCHANNELSx101 pixels, where NCHANNELS is the number of 

input channels.  

 

 
Figure 4.5: Sketch of the pre-processing steps applied to pulse #96385 to generate the input 

images: a) Original data from the HRTS and Bolometer diagnostics; b) Pre-processed data 

are converted into images; c) Input data, obtained by normalizing the data at point b) with 

the training set ranges and by vertically stacking the lines of sight. An overlapping window 

of 200 ms produces the segmented images to feed the prediction models. 
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4.3 Processing the Mirnov signals 

Rotating magneto-hydro-dynamic (MHD) modes in tokamaks may grow in 

amplitude and slow down during plasma operation; eventually, they will stop 

rotating and remain in a certain position. This phenomenon is known as mode 

locking and leads very often to disruption or, in any case, to a degradation of 

confinement. Tangential pick up or Mirnov coils can be used to measure the mode 

propagation velocity in real-time, and specific signals, such as the mode-lock signal, 

have been synthesized to measure the amplitude of the radial component of the 

magnetic field. The locked mode amplitude is calculated from the saddle coils and it 

is normalised by the plasma current (𝐼𝑝) [117]. When the mode is locking the its 

amplitude can be evaluated through the measure of the voltage induced in the saddle 

coils. In JET and in other tokamaks, the mode locking is a very late but extremely 

reliable disruption precursor, and several data-driven approaches aiming to 

disruption mitigation have adopted it as input feature [76], [82], [85]. Moreover, the 

frequency of the magnetic amplitude oscillations detected by the Mirnov coils has 

been studied by means of Singular Value Decomposition (SVD) [118], [119], Wavelets 

[120], [121], Kalman Filters [122]. In this thesis, to test the feasibility of the use of 

1-D MHD information in disruption prediction, the Mirnov coil signals have been 

processed as in [123], [124] to create images for a Convolutional Neural Network 

disruption prediction model.  

Figure 4.6 reports the list of the JET’s main magnetic diagnostics, where 

H301-H307 is an array of high resolution Mirnov coils with a sampling frequency of 

2 MHz. Among these coils, the signals from H302 and H305 were selected as possible 

input signals for MHD analysis. 
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Figure 4.6: Overall view of the JET's main magnetic diagnostics for MHD analysis 

The raw signal from the Mirnov coil is firstly down sampled to 125 kHz. This 

frequency is anyway much larger than the ones of interest for the application, which 

are usually below 40 kHz [123]. To build the spectrogram, a short-time Fourier 

Transform is then applied with a length and a step of 256 points, but with an overlap 

of 6 samples. The overlap allows to have a sampling time of 2ms to synchronize the 

spectrogram sampling time with the other diagnostics. The amplitudes of the power 

spectrum are converted in decibels (dB), the values are saturated between 

[-80,-10] dB, and the frequencies higher than 40 kHz are removed. Images of size 

81x101 are obtained by extracting 200 ms windows from the spectrogram, as shown 

in Figure 4.7. It is possible to see that the locking of the mode is visible at around 

59.5 s, before the disruption time. 
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Figure 4.7: top) Plasma current (orange line) and Mirnov coil signal (blue line). The dashed 

black line highlights the disruption time; bottom) spectrogram of the Mirnov coil.  

4.4 Processing the 0-D parameters 

The 0-D parameters include both the synthetic ones obtained by processing the 

plasma profiles, and the 𝑙𝑖, 𝑃𝑓𝑟𝑎𝑐  and the 𝐿𝑀𝑛𝑜𝑟𝑚  which are used for prediction 

purposes. The signals were resampled at the same time samples of the 1-D data. 

Moreover, 𝑃𝑓𝑟𝑎𝑐 data may include outliers, especially in the transients close to the 

switch-on or switch-off of the Neutral Beam Injector (NBI). For this reason, values 

higher than 9 are considered outliers and saturated to 9. 

4.5 Creation of a disruption prediction dataset 

The disruption prediction models developed in this thesis require the use of 

labelled data, which is necessary for the training step. To this purpose, for each 

disruption in the training set, it is mandatory to identify, as precisely as possible, 

the time of precursors, named here 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟, which determines the moment when 

the final chain of events destabilizes the plasma, i.e., the beginning of the precursors 

phase. The precursor time is the moment where the disruption predictor should 

trigger the alarm, to avoid a premature detection of the disruption. This task, far 

from being easy, has been solved in most of the literature, assuming the same value 

for all the disruptions on the base of statistics or heuristics, inevitably introducing 

contradictory information in the prediction models. As an alternative, a manual 

identification of the pre-disruptive times (𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟−𝑀𝐴𝑁) can be done, as in [15], but 

this task is very time consuming and complicated and can also be uncertain due to 

the possible interplay of many different mechanisms. In this thesis, an algorithm to 

automatically estimate the pre-disruptive times ( 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟−𝐴𝑈𝑇)  on unlabeled 

disruptive discharges has been developed, starting from a set of 0-D diagnostics 

including the peaking factors, the 𝑙𝑖 , the 𝑃𝑓𝑟𝑎𝑐  and the 𝐿𝑀𝑛𝑜𝑟𝑚 . The algorithm is 

described in detail in the following Chapter.



 

   

 

 



 

 

5 Chapter 5 

Disruption Prediction with Generative Topographic 

Mapping 

5.1 Introduction 

As reported in the literature presented in Chapter 2, several machine learning 

and deep learning algorithms have been developed for predicting disruptions in 

tokamaks. On the other hand, the community is moving towards the use of these 

automatic systems for the identification of disruptive events in real-time control 

systems for avoidance and prevention actions, as well as mitigation. The use of 

machine learning disruption predictors for avoidance poses new challenges. First of 

all, the warning times of the data-driven models should be sufficient for 

implementing an avoidance strategy. Secondly, the output of the predictor should be 

interpretable or at least linked to a well-defined chain of physical phenomena, in 

order to enable a specific strategy for recovering the discharge, or to safely terminate 

it. Finally, there is a strong effort to build common data sets and metrics for the 

comparison of the different disruption prediction models. For addressing the first 

two issues, it was observed that the use of parameters connected to the plasma 

profiles could allow an earlier detection of an unstable plasma state. For this reason, 

synthetic parameters called “peaking factors”, or 2-D images from the 1-D plasma 

profiles, described in Chapter 1, were developed to inform the data-driven model on 

the electron temperature, electron density and radiated power profiles. In this 

context, the Generative Topographic Mapping (GTM) model is an unsupervised 

machine learning algorithm which allows to project a very high dimensional feature 

space in a lower dimensional latent space. The mapping is exploited for several 

purposes. Firstly, it allows to easily visualize patterns in the feature distributions 

and how disrupted plasma state differs from the regular one. For instance, the use 

of the GTM allowed to highlight the presence of a compact normal operational space 

of the JET experiments. Secondly, it allows to develop a disruption predictor by 

projecting a new discharge on the map and associating the disruption risk to the 

composition of the node of the map where the discharge is projected. The GTM, 

however, needs a labelling of the disruptive samples in order to be adopted as a 

predictor. Commonly, in the literature the pre-disruptive time was heuristically or 

statistically defined and fixed for all the disrupted discharge. In [15], [72], the 

manual detection of the pre-disruptive phase reduced the amount of ambiguous 

information provided to the data-driven model and allowed to identify a 

destabilization time which is different for every disruption. The pre-disruptive time 

identifies the beginning of the phase where the destabilization of the discharge is 

detectable, and a corrective action may be taken. However, the manual labelling of 

tokamak disruptions is a time-consuming task and prevents the application of 
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automatic procedures for the retraining of disruption prediction algorithms. For this 

reason, In the framework of the PhD, an algorithm has been implemented to 

automatically identify a pre-disruptive time for each disruption for the creation of 

disruption prediction databases. In order to validate the algorithm outcomes the 

performance of the GTM prediction model trained with the manual times has been 

compared with the one trained with the automatic times with very good results. 

Moreover, the algorithm allowed to extend the GTM training set to include more 

recent pulses. 

5.2 Generative Topographic Mapping 

In this thesis, the GTM mapping has been made from a latent 2-D space to the 

6-D set of plasma parameters reported in Table 5.1. This fact enables the exploration 

of the low dimensionality domain, also called the latent space, to visualize properties 

of the input data space. For instance, in Figure 5.1a the Unified distance matrix (U-

matrix) representation [125] of the JET operational space is reported. This matrix, 

a standard way of representing the latent space, visualizes the Euclidean distance 

among adjacent clusters of the map by using different shades of grey. In this way, 

the U-matrix allows one to display the similarity of data elements into one cluster 

with respect to the data into nearest ones. With this representation, it is possible to 

detect if there are macro-clusters of data and to judge if they are well separated or 

not.  

 

Figure 5.1: a) Example of U-Matrix of a GTM. b) Example the same GTM coloured using 

information from the labelling of the disruptive and non-disruptive samples 

Moreover, the training instances {𝒙, 𝑦} can be used to assign a different label, 

or color, to the map units depending on their composition. As previously cited, 

labelling of the training disrupted discharges is critical for the performance of the 

map. The estimation of the beginning of the precursors phase is difficult, and several 

works defined it with a time before the disruption time 𝑡𝐷, usually statistically or 
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empirically fixed [71], [82], [126]. Of course, this definition is not suited to represent 

the different physical timescales of the several mechanisms involved in the 

disruptive process. In Figure 5.1b, an example of a GTM is shown where each unit 

is colored using the manually detected pre-disruptive phases. The colors of the map 

units depend on the samples associate to it: green units are associated to samples 

labeled as non-disrupted (y=0), red units are associated to samples labeled as 

disrupted ( 𝑦 = 1 ), whereas grey units are associated to both disrupted and 

non-disrupted samples. The white units are empty. It is possible to see that the green 

region on the right in Figure 5.1b is a compact area representing the space of JET 

non-disruptive operation. This area is surrounded by a grey boundary where the 

transition between non-disruptive and disruptive behavior could be located and the 

rest is occupied by disruptive clusters, together with a few grey ones. In Figure 5.1a 

it is possible to confirm that the boundary obtained by looking at the distance 

between the clusters in the U-matrix matches very well with the green region of 

Figure 5.1b. Once the GTM model has been trained and successively colored, it can 

be used to track the dynamics of a new discharge, by projecting the temporal 

sequence of its samples on the map. In Figure 5.2a, the trajectory of the discharge is 

represented with a dashed line, the color of which darkens during the time evolution 

up to the tip of the arrow representing the end point. Usually, a disrupted discharge 

evolves in the green region until disruption precursors appear, moving the trajectory 

towards the red disruptive region. The disruptive likelihood of the discharge is 

obtained by evaluating the percentage of disrupted samples contained in the units 

visited by the trajectory, as the one represented in Figure 5.2b. In disruption 

prediction literature, the GTM has been implemented for disruption classification 

[15], [127], [128] and prediction [15], [72], [73] and it is implemented in the PETRA 

control system at JET [129].  

 

Figure 5.2.a) 2-D GTM map of a n-D space, coloured on the basis of the unit composition, and 

trajectory of a disrupted pulse. b) Disruptive likelihood computed depending on the 

composition of the node where the pulse is tracked. The star indicates the overcoming of an 

alarm threshold and the triggering of an alarm 
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In the disruption prediction literature, there is a general effort towards the 

standardization of the reference times considered for the prediction. For instance, in 

[130] the authors made a first step, developing a tool for the automatic definition of 

important times and parameters of the disruptions, such as the thermal quench and 

the current quench times, the time of disruption (𝑡𝐷) and the Mode Lock time (𝑡𝐿𝑀), 

which is the time where the locked mode amplitude starts to rise [130]. Similarly, in 

[15], [72] the authors manually identify the so-called reference pre-disruptive time 

of a disruption, which provides a reference time to identify the start of the chain of 

events destabilizing the discharge and leading to the disruption. The introduction of 

consistent pre-disruptive times ( 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟 ) is doubly beneficial. Firstly, the pre-

disruptive times allow to identify the pre-disruptive phase, which is used to describe 

the disrupted operational space. Secondly, being the pre-disruption time strongly 

linked to the observation of physical properties of the plasma state, the predictor 

should provide a response, which can be explained by the knowledge of the physical 

phenomena. Moreover, as disruption research is moving from the process of 

disruption mitigation to the use of the prediction for avoidance purposes, the 

predictors should provide its response hundreds of milliseconds prior the disruption, 

and it should allow distinguishing among the different type of destabilizing chain of 

events. The key to a successful prediction model is therefore the capability, for each 

disrupted discharge in the training set, to discriminate among the non-disrupted and 

pre-disruptive phases following standard and coherent criteria, linked to the 

observed physical mechanisms. However, this classification requires a very time-

consuming manual analysis [15], [72]; hence, adopting it to classify tens of thousands 

of shots would be highly impractical. Therefore, in this thesis, an algorithm for the 

automatic identification of early plasma instabilities, which may lead to the 

disruption, has been developed.  

Starting from the training discharges, described in Chapter 1, the algorithm 

is trained by providing a set of input points extracted from the pre-disrupted part of 

the disruptions and from the regularly terminated pulses. The pre-disrupted part of 

disruptions is identified automatically with the algorithm developed in [115] and 

described later in this Chapter. Since the number of non-disrupted samples is much 

higher than the disrupted ones, the non-disrupted samples are subsampled by taking 

one point every 18 ms, while the disrupted samples are not down-sampled.  
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Table 5.1: Plasma parameters: parameter names, Acronyms, optimized weights. 

Parameter name  Acronym Weight 

Peaking Factor of Temperature Tepf 1 

Peaking Factor of Electron Density Nepf 1 

Peaking Factor of the Radiation (excluding the 

contribution of the X-point/divertor region)  

Radpf_CVA 0.8 

Peaking Factor of the Radiation (excluding the 

contribution of the core region) 

Radpf_XDIV 0.5 

Internal Inductance li 1 

Fraction of the Radiated Power Pfrac 0.7 

After labelling the disruptive data, the GTM can be used in prediction by 

projecting a discharge on the latent space. A typical regular trajectory will stay 

within the green region of the map, while a disruptive trajectory will exit the green 

region and then terminate in the red area as in Figure 5.2. A disruption risk can 

then be assigned to each time sample of the experimental discharge by evaluating 

the percentage of disrupted samples contained in the cluster where is projected and 

its neighborhood [113] and alarming at the exit of the green region (yellow star in 

Figure 5.2b). Moreover, the use of synthetic parameters representative of the shape 

of the plasma profiles and of manually selected times for identifying the beginning 

of the unstable phase for each disruption allowed to better interpret the physical 

mechanism, which is causing the disruption, as discussed later in the examples. The 

identification of early pre-disruptive training times allows the possibility to develop 

avoidance schemes or to terminate the experiment with a soft stop rather than using 

the mitigation valve (DMV) which is instead a last resort system used to mitigate 

the disruption effects on the vessel.  

The GTM model, developed for disruption prediction purpose in this thesis, has 

2500 latent points, 400 radial basis functions with variance 𝜎 = 0.8. The 

hyperparameters have been assumed equal to the ones in [15], as well as the training 

set, which contains the same 89 disrupted shots and 70 regular terminations and 

was instead trained using the manually identified pre-disrupted phase.  

In order to detect possible sudden events due to locked mode disruptions or 

other events with fast time scales, or false alarms due to transients, the multiple 

conditions alarm scheme reported in Figure 5.3 has been optimized starting from the 

implementation in [15] to trigger the alarm. In particular, the GTM model triggers 

an alarm when the trajectory stays in a disruptive or a mixed cluster containing a 

percentage of disruptive samples DS > 99.75% (likelihood>0.9975) for at least 𝑑 

seconds. The total assertion time 𝑑 has been assumed to vary with the time evolution 

of the discharge with the exponential law: 𝑑 =  60 +  300 ⋅ 𝑒−5(𝑡−𝑇0)𝑚𝑠 where 𝑇0 is 

the time when the plasma assumes the X-point configuration. Conversely, if the 

operating point lays in a mixed cluster with a percentage of disruptive samples 
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50% <  𝐷𝑆 <  99.75 %, also the locked mode amplitude signal, normalized with 

respect to the plasma current, is considered to trigger the alarm. A threshold of 

0.43 mT/MA is used to trigger the mode-lock branch. The alarm criteria parameters 

have been optimized by minimizing the total prediction error of the GTM on a 

validation set composed by all the training discharges. This set is different from the 

set used to train the GTM model, since the phase of disruptive discharges before 

𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟  is not used in the training, whereas regarding the non-disruptive 

discharges, the training set, because of the down-sampling, contains only 

approximately 10% of the total samples. 

  

Figure 5.3: Multiple condition alarm scheme of the disruption predictor [15]. DS is the 

percentage of disrupted samples in the cluster where the discharge trajectory stays for at 

least 𝑑 consecutive milliseconds (𝑑 is the assertion time). 𝑇0 is the starting point of the flat-

top. 

5.3 Automatic detection of the pre-disruptive time 

In this Chapter an algorithm for the automatic identification of the pre-

disruptive phase of tokamak discharges is presented. The challenge of the 

understanding of very complex high dimensional spaces led researchers to the use of 

manifold learning techniques such as Self-Organizing Map [131], [132] and 

Generative Topographic Mapping [15], [72], [127]. Especially with the latter, the 

encouraging results led to the application of the method in a real-time framework 

[129]. On the other hand, these models need labelled data, which is necessary for the 

training step. To this purpose, for each disruption in the training set, it is mandatory 

to identify, as precisely as possible, the time of precursors, 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟 , which 

determines the moment when the final chain of events destabilizes the plasma, i.e., 

the beginning of the precursors phase. In this thesis, using a set of features, 

synthetized to detect some of the main known disruption precursors in fusion 

experiments, an algorithm for the automatic identification of the precursors times 

has been developed and tested. The algorithm is based on the use of similarity 

measures between distributions, and it weights the contribution of each input 

GTM

DS>99.75 %

OR

DS>50 %

AND

AMPL>
0.43 

mT/MA
LM

Alarm
time [s]

𝑑 = 60 + 300  𝑒−5(𝑡−𝑇0)𝑚𝑠
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feature to construct a Precursors Time Indicator (PTI). The study of the features 

distribution in the regular discharges allows to optimize a coherent threshold value 

for the identification of the pre-disruptive times. Once the value of 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 is 

determined, the discharge samples in the time window from 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇  to the 

disruption time 𝑡𝐷, are labelled as disrupted. Note that, for disruptions mitigated by 

massive gas injection (MGI), the time of the valve activation, 𝑡𝑣𝑎𝑙𝑣𝑒, is considered in 

place of 𝑡𝐷. The samples of disrupted discharges, from the beginning of the flat-top 

to 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇, and all the flat-top samples in the regularly terminated discharges 

are labelled as non-disrupted.  

5.3.1 Statistical analysis 

A univariate statistical analysis has been firstly performed to evaluate the 

power of each selected feature in discriminating between disruptive and non-

disruptive behaviour. This analysis has been performed on the first set of discharges 

of the data base (C28-C30 data set). Figure 5.4 reports the probability density 

functions (pdf) of the six parameters in Table 5.1 for the non-disruptive pulses (blue) 

versus the non-disrupted phase of the disruptive pulses (red). Here, the manual 

selected pre-disruptive times have been used to discriminate between the non-

disrupted and pre-disruptive phases of the disrupted discharges. The results of the 

analysis, reported in Figure 5.4, refer to phases that can be considered in a non-

disrupted condition. It can be observed that there is an overlap between the pdf of 

the parameters of non-disrupted (or safe) discharges and the non-disrupted phase of 

disrupted ones. Figure 5.5 reports the pdf of the parameters of the non-disruptive 

pulses (blue) versus the pre-disruptive phase of the disrupted pulses (red) for the 

same parameters in Figure 5.4. Looking at Figure 5.5, it can be seen that the 

parameters distribute differently during the unstable phase (i.e., after the  pre-

disruptive time 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁) with a wider range of parameter values. Moreover, the 

pdfs of the pre-disruptive phases of the disrupted discharges shift with respect to the 

stable phases. The orange arrows in Figure 5.5 highlight the shifts. Summarizing, 

during the non-disrupted phase of the disrupted discharges the distribution of the 

parameters is remarkably similar to the distribution of the regularly terminated 

discharges, while during the pre-disruptive phase, the values are distributed quite 

differently.  

The main idea of the proposed algorithm is to introduce distance/similarity 

measures between these probability density functions when the pre-disruptive time 

varies, in order to automatically identify the moment when a disrupted discharge 

starts its pre-disruptive evolution. For instance, Figure 5.6 compares the 

distribution of the temperature peaking factor of the non-disrupted pulses (blue) in 

the database with the pdf of a window of 500 ms, centered at different time instants, 

of the disruptive discharge #81916. From a) to d) the time instant is getting closer 

and closer to the time of disruption, where in c) the time instant is the closest to the 
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manually selected pre-disrupted time (𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁 ) (about 50.07s) [15]. The time 

evolution in Figure 5.6 clearly shows that, approaching to the actual pre-disruptive 

time, the overlap of the two distributions reduced. 

 

Figure 5.4: C28-C30 data set: Probability density functions of the parameters of the safe 

pulses (blue) versus the non-disrupted phase of the disrupted pulses (red) for (from top left 

to bottom right): electron temperature peaking factor, electron density peaking factor, 

internal inductance, radiation at the core peaking factor, radiation at the edge peaking factor, 

fraction of radiated power.  
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Figure 5.5. C28-C30 data set: Probability density functions of the parameters of the safe 

pulses (blue) versus the pre-disruptive phase of the disrupted pulses (red) for (from top left 

to bottom right): electron temperature peaking factor, electron density peaking factor, 

internal inductance, radiation at the core peaking factor, radiation at the edge peaking factor, 

fraction of radiated power. The shift of the distributions is marked with an orange arrow. 

 

Figure 5.6: Probability density functions of the temperature peaking factor (Tepf) of the safe 

pulses (blue) in the C28-C30 data set versus the pdf of a 500 ms window, centered at different 

time instants (indicated on each subplot), of the disruptive discharge #81916. From a) to d) 
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the time instant is getting closer and closer to the time of disruption, where in c) the time 

instant is the closest to the manually selected warning time (𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁) [13]. 

5.3.2 Features weights 

Table 5.1 reports the nondimensional plasma parameters considered to develop 

the proposed algorithm for the automatic identification of the pre-disruptive times 

𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟: the last column of the table reports the weights assigned to the parameters 

as a result of an optimization of the algorithm, which will be detailed in the following. 

Literature [15], [72] proved that the selected features discriminate well between safe 

and disrupted pulses. Figure 5.7 and Figure 5.8 report these features for the 

regularly terminated discharge #83747 and the disrupted discharge #81916 

respectively. The disrupted discharge is a high-Z impurity accumulation (or 

Radiation Peaking RPK) disruption [72], [133] with warning time 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁 

manually set at 50.07 (highlighted with a red vertical line in Figure 5.8). It can be 

noted that, in the regularly terminated discharge, the variation range of the signals 

is generally smaller than in the disrupted one; while this remark may be valid in 

most of the cases, it is not necessarily true for all the discharges. Moreover, looking 

at Figure 5.8, it can be seen that the peaking factors characterize well the typical 

Radiation Peaking (RPK) evolution: the 𝑛𝑒𝑝𝑓 shows an increase of the density in the 

plasma core correlated with a temperature drop. Moreover, the peaking factor of 

radiation at the core rises, as well as the overall fraction of radiated power, while the 

internal inductance starts to decrease. This chain of events starts from the 

penetration of high-Z atoms in the core of the plasma that produces a destabilization 

of the MHD equilibrium in the plasma itself. The proposed algorithm weighs the 

variations in these signals’ distributions to identify the start of the chain of events 

leading to disruption. This is done by comparing the distribution of each signal in 

the regularly terminated discharges in different time instants with the distribution 

of the same parameter of the single disrupted discharge, as detailed in the following 

section. 

The data base includes datasets I from Table 4.1. This first set has been used 

to perform the statistical analysis and to assess and optimize our algorithm. In order 

to test the generalization capability of the algorithm, a second data set (C36 data 

set) has been used, which includes 29 disrupted and 41 regularly terminated pulses 

within the more recent (2016) high performance campaigns both in baseline and 

hybrid scenarios. In this case, the suitability of the algorithm to correctly identify 

the pre-disruptive phase of the disrupted discharges has been evaluated in terms of 

the composition of the GTM that maps the more recent plasma operational space, 

i.e., in terms of its capability to discriminate between disrupted and non-disrupted 

regions. 
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Figure 5.7: The input features for the algorithm for the JET regularly terminated discharge 

#83747: a) the peaking factors of the temperature (𝑇𝑒𝑝𝑓, in blue) and density (𝑁𝑒𝑝𝑓, in green); 

b) the radiation peaking factors with the metric “Core Vs All” (𝑅𝑎𝑑𝑝𝑓−𝐶𝑉𝐴, in blue), which 

excludes the divertor, and with metric “Edge Vs All” (𝑅𝑎𝑑𝑝𝑓−𝑋𝐷𝐼𝑉, in green), which excludes 

the core, and the Power Fraction (PFRAC, in black); c) the internal inductance (𝑙𝑖, in green). 

 

Figure 5.8: The input features for the algorithm for the JET disrupted discharge #81916: a) 

the peaking factors of the temperature (𝑇𝑒𝑝𝑓, in blue) and density (𝑁𝑒𝑝𝑓, in green); b) the 

radiation peaking factors with the metric “Core Vs All” (𝑅𝑎𝑑𝑝𝑓−𝐶𝑉𝐴, in blue), which excludes 

the divertor, and with metric “Edge Vs All” (𝑅𝑎𝑑𝑝𝑓−𝑋𝐷𝐼𝑉, in green), which excludes the core, 

and the Power Fraction (PFRAC, in black); c) the internal inductance (𝑙𝑖, in green). A vertical 

red line marks the manually detected warning time 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁. 
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5.3.3 The algorithm 

As discussed in [15], [72], the selection of the pre-disruptive time 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁 

required a tedious and time-consuming analysis of several events and parameters, 

additional to the ones used as inputs for the proposed algorithm, and not necessarily 

available in real time. A Predisruptive Time Indicator (PTI) has been built here that 

can be used to automatically detect the pre-disruption time in the disrupted 

discharges. 

As previously mentioned, the algorithm is based on the comparison of the 

distributions of the selected plasma parameters in the regularly terminated and in 

the disrupted discharges. In particular, it is assumed that, before the onset of the 

chain of events leading to disruption (before the actual pre-disruption time 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟), 

the distributions of the parameters in the non-disrupted phase of a disruption be 

close to those of the safe discharges, whereas they become more and more dissimilar 

while approaching the disruption time. Hence, for each plasma feature in Table 5.1, 

the distribution of the safe pulses (SAFE_distr) has been considered as the reference 

distribution. Then, for each discharge and for each time instant t, the algorithm 

scans every parameter from the beginning to the end of the flat-top, identifying two 

different distributions:  

− LEFTpart_distr: the distribution before t 

− RIGHTpart_distr: the distribution after t  

and computes the distance/similarity between these two distributions to the 

SAFE_distr.  

Note that, for time instants at the beginning (at the end) of the flat-top, a very 

small number of samples is available for the LEFTpart_distr (RIGHTpart_distr). 

This creates a border effect at the beginning (at the end), which has been partly 

compensated by padding the first 125 ms of the initial and final part of each signal. 

The padding has been done by simply replicating the respective part of the signal, so 

that at the beginning of the flat-top and at its end, the distributions could be 

represented by more values. 

In order to evaluate the distance/similarity, several metrics have been 

considered [24], based both on the computation of misclassification probability, such 

as Bhattacharya, Hellinger, Kullback-Leigler Divergence and Matusita and on the 

computation of the distribution similarities, such as those belonging to the inner 

product family. Among all the tested metrics, in this thesis, the final choice was the 

Cosine similarity metric, which basically implements the normalized inner product: 

𝑠𝐶𝑜𝑠 =
∑ 𝑃𝑖𝑄𝑖

𝐵
𝑖=1

√∑ 𝑃𝑖
2𝐵

𝑖=1 √∑ 𝑄𝑖
2𝐵

𝑖=1

 

where, P and Q are the two probability density functions, each composed by 

the same number B of bins.  
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This metric is itself normalized between 0 and 1 and allows to add the 

measures referred to different parameters without rescaling them regardless of their 

range of variation. 

Hence, two similarity measures have been evaluated for each parameter: the 

similarity of the left part of the discharge with the safe operational space 

(LEFTpart_simil) and the similarity of the right part of the discharge again with the 

same safe operational space (RIGHTpart_simil). For a disrupted discharge, when 

approaching the actual pre-disruptive time 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟, it is expected that the right part 

distribution has similarity value close to 0, and the left part has similarity value 

close to 1. In fact, in such a case, in the left part the discharge is still in the non-

disrupted phase, whereas in the right part it already shows a disruptive behavior. 

These similarity measures are normalized with respect to the similarity of the 

whole flat-top phase (Total_simil), then truncates the values to 1; this adjustment 

makes the algorithm work for the shots where the signal range is very different from 

the safe one, even during the non-disrupted phase.  

Subsequently, the normalized left part similarity is subtracted from the 

normalized right part similarity and the negative values are truncated to 0.  

Then, the standard deviation of each plasma parameter is computed in a 

sliding window of 500 ms width, when the flat-top phase lasts more than 500ms, 

otherwise it is set equal to half flat-top length. Since the parameters may have 

different ranges, they are normalized between 0 and 1 before computing the 

standard deviation.  

For each plasma parameter, an indicator is evaluated by weighing its standard 

deviation with the difference of the similarities. Hence, the parameter variations 

which do not produce a destabilization of the discharge are neglected.  

Figure 5.9 shows, as an example, the construction of the indicator for the 

Radpf_CVA signal of the pulse #81916. Figure 5.9a) reports the signal Radpf−CVA (blue) 

and the same signal padded at the beginning and at the end (red dashed line) to 

avoid border effects processing the signal. Figure 5.9b) reports the normalized left 

part similarity (in blue), the normalized right part similarity (in red), and the 

difference between the blue and red signals (in yellow), where negative values are 

truncated to 0. Figure 5.9c) reports the Radpf_CVA standard deviation computed in the 

sliding window (red) and the Radpf_CVA indicator (in blue), computed as a time-by-time 

product between the yellow signal in Figure 5.9b) and the standard deviation.  
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Figure 5.9 Construction of the indicator for the parameter 𝑅𝑎𝑑𝑝𝑓−𝐶𝑉𝐴, of the disrupted shot 

#81916: a) 𝑅𝑎𝑑𝑝𝑓−𝐶𝑉𝐴  (blue), and 𝑅𝑎𝑑𝑝𝑓−𝐶𝑉𝐴  padded at the beginning and at the end (red 

dashed); b) normalized LEFTpart_simil (blue), normalized RIGHTpart_simil (red), and their 

difference (yellow), where negative values are truncated to 0; c) standard deviation computed 

in a sliding window of variable length, adjusted depending on the signal length (maximum 

value is 0.5s) (red) and the indicator (blue). 

It can be noted that, at around 48 s, the original signal varies and produces 

some peaks in the windowed standard deviation; these variations of the signal, on 

the other hand, are not moving the signal distribution outside the safe one: this 

determines a low value of the similarity difference and hence a low value of the 

indicator for the Radpf−CVA. This is not true for the following variation at around 50s, 

which is the time when there is the beginning of the chain of event leading to the 

disruption. The indicator highlights the points where there is both a variation from 

the safe operational space and a variation in the signal trend. This is the reason why, 

in Figure 5.9c, the indicator grows at around 50.3s and then drop afterwards, due to 

the drop of the standard deviation. 

Finally, an overall indicator (Pre-disruptive Time Indicator or PTI) is 

evaluated as the weighted sum of the single plasma parameter indicators. To set the 

parameter weights an optimization procedure has been performed, as described in 

the next subsection. Table 5.1 (last column) shows the finally adopted weights.  

Figure 5.10 shows the PTI for the regularly terminated discharge #83747(a) 

and for the disrupted discharge #81916 (b), already considered in Figures 5.8 and 

5.9. Note the different range of variation. 
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Figure 5.10. Overall Indicator: a) regularly terminated pulse #83437; b) for the disrupted 

pulse #81916.  

Figure 5.11 reports the pseudo-code of the algorithm to construct the PTI. 

 

Figure 5.11 Pseudo-code for the PTI 

5.4 Thresholding the PTI 

As expected, the ranges of variation of the PTI are very different among the 

safe and the disrupted pulses. Moreover, looking at Figure 5.10b, it can be noted that 
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the PTI highlights the moment when the features are varying, so that a threshold 

can be used to identify the onset of the chain of events leading to disruption.  

Figure 5.12 shows the distribution of the values of the PTI for the safe pulses 

in the C28-C30 data set where the values 0.3 corresponds to the 99th percentile. 

Using this value as a threshold on the PTI, a pre-disrupted time of 50.02 s is obtained 

(magenta star in Figure 5.10b). Other criteria have been taken into consideration to 

detect the pre-disrupted time, such as the time corresponding to the first local 

maximum of the PTI greater than 0.3 (red star in Figure 5.10b), or the mean between 

the previous two. 

 

Figure 5.12: Probability density function of the PTI values for the regularly terminated 

pulses in the C28-C30 data set. 

The best criterion is the mean between the time detected using the threshold 

equal to 0.3, with an assertion time of 20 ms, and the time of the first peak of the 

PTI greater than 0.3. It has been chosen in order to maximize the degree of 

separability of disrupted and non-disrupted regions in the GTM map.  

Moreover, in order to consider disruptive processes characterized by fast time 

scales, which cannot be identified through the proposed statistical method, the mode 

locking occurrence has been also considered.  

Finally, the pre-disruptive time has been identified as the lower time between 

the mode locking occurrence and the time obtained with the PTI. In this case, the 

value of the PTI may be greatly lower than the threshold. 

Assuming such criterion on the PTI, the corresponding pre-disrupted time 

𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇  for the pulse #81916 is 50.075s, which is very close to the manually 

selected pre-disruptive time 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁 (50.07s) (see Figure 5.10b where this time 

is identified by the black star, whereas 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁 corresponds to the vertical red 
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dashed line). Furthermore, no pre-disrupted time is detected for the regularly 

terminated discharge #83747 (see Figure 5.10a). 

5.5 Optimization of the algorithm parameters 

As previously mentioned, the PTI is obtained as a weighted sum of the 

indicators of the plasma parameters in Table 5.1. Varying the weights leads to 

different pre-disrupted times, and therefore to different GTM maps. The optimal 

weights are reported in the last column of Table 5.1. They have been chosen, again, 

to maximize the degree of separability of disrupted and non-disrupted regions in the 

map, which means to minimize the percentage of samples falling in the mixed 

clusters of the GTM (grey clusters in Figure 5.13).  

Figure 5.13a) shows the GTM ( GTMC28−C30−AUT ) trained using the pre-

disrupted times 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 obtained with the optimal weights reported in Table 5.1. 

Figure 5.13b) reports the GTM trained using the manually identified pre-disrupted 

times 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁 (GTMC28-C30-MAN).  

The six parameters listed in Table 5.1 have been used to train both the GTMs. 

For the sake of comparison, the GTM hyperparameters, such as the number of latent 

points (2500), the number of radial basis functions (400) and their variance 𝜎 = 0.8, 

have been assumed equal to the ones used in [15], as well as the training set, which 

contains the same 89 disrupted shots and 70 regular terminations used in this thesis. 

However, unlike in [15], in Figure 5.13a) the pre-disruptive phase of the disrupted 

discharges has been identified using 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 instead of 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁. It can be seen 

that, in both the maps, there is a well-defined separation between the two regions 

representing the disruptive (red) and non-disruptive (green) operational space. 

Moreover, the shape and the compositions of the two maps are quite similar (see 

Table 5.2): the percentage of samples falling in the mixed grey clusters differs by 

about 3% and the percentage of white clusters differs less than about 1%. Hence, it 

is expected that the two maps have quite similar performances when used as 

disruption predictors, as it will be shown in the next section.  
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Figure 5.13: a) 𝐺𝑇𝑀𝐶28−𝐶30,   𝐴𝑈𝑇  of the 6 plasma dimensionless parameters obtained using 

𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇  to determine the pre-disruptive samples; b) 𝐺𝑇𝑀𝐶28−𝐶30,𝑀𝐴𝑁  of the same 

parameters obtained using 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁.  

Table 5.2: GTMs composition (using 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇  and 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁) 

GTM 

% safe samples 

belonging to safe 

(green) clusters  

% disr. samples 

belonging to disr. 

(red) clusters 

% samples in 

the grey 

clusters 

% empty 

clusters 

𝐆𝐓𝐌𝐂𝟐𝟖−𝐂𝟑𝟎−𝐀𝐔𝐓 75.25 81.51 21.47 4.92 

𝐆𝐓𝐌𝐂𝟐𝟖−𝐂𝟑𝟎−𝐌𝐀𝐍 79.17 84.74 18.12 5.52 

 

5.6 Prediction performances  

In the disruption prediction literature, the performance of a predictive model 

is evaluated in terms of: 

• Successful predictions (SP): pulses correctly predicted by the system (alarm 

for disruptions and no alarm for regularly terminated discharges); 

• Missed alarms (MAs): disruptions for which the system does not provide any 

alarm; 

• Tardy Detections (TDs): disruptive discharges where the detection is less 

than 10 ms before the disruption time; 

• False alarms (FAs): regularly terminated discharges for which the system 

provides an alarm  

Since disruption prediction systems are being developed especially for 

avoidance purposes, metrics such as premature alarms, defined as the alarms 

triggered at a prefixed time before the disruption, have become less significant in 

the definition of the system performance. Nowadays, the goal of an avoidance system 

is to associate the alarm to the presence of a destabilizing mechanism in the plasma, 

regardless of the distance of such event to the ending time tend. Instead, the 
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prediction capability within the scope of avoidance and/or disruption control can be 

evaluated in terms of warning time, which represents the distance of the model 

alarm from tend. A well-timed warning time allows the control system to react to the 

presence of an instability, while with a short warning time the disruption is 

generally mitigated by MGI. Thus, the premature alarm rate is replaced by the 

cumulative warning time distribution.  

Figure 5.14 reports the cumulative warning time, that is the difference 

between the disruption time and the manual pre-disruptive time 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁  (in 

black) and automatic 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 (in magenta). As can be noted, they follow quite the 

same trend confirming the validity of the proposed algorithm. Note that, in the 

construction of the algorithm, the pre-disruptive times 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁  have not been 

used. They were considered only as benchmarks values to evaluate the performance 

of the algorithm. 

The same Figure 5.14 reports the cumulative warning time provided by the 

two GTMs in Figure 5.13 when used as disruption predictors on the entire C28-C30 

data set adopting the same multiple condition alarm scheme in [15], shown in Figure 

5.3. The cumulative warning time distribution reports the fraction of the shots that 

has an alarm time larger than a selected value. In particular, Figure 5.14 reports, in 

blue, the cumulative warning time provided by the GTM trained with the manually 

detected pre-disruptive times 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁  and, in orange (dashed), the alarms 

obtained using 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 . The cumulative warning times are almost overlapping 

with comparable prediction performance: the GTM trained with 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇  presents 

one missed alarm (0,7%), one tardy detection, and 3 false alarms (2,6%) on the 

datasets I and II, whereas the GTM trained with 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝑀𝐴𝑁 has one missed alarm, 

one tardy detection and 6 false alarms (6%) on the same dataset.  

Figure 5.14 reports also the cumulative Locked Mode time, evaluated as the 

difference between disruption time and Locked mode onset time (in green). Note 

that, the alarm time is well in advance with respect to the time needed by the 

disruption mitigation valve (DMV, highlighted with a red vertical dashed line in 

Figure 5.14) to intervene, with more than 55% of the discharges predicted more than 

1 second before the disruption time. Furthermore, very often, the proposed predictor 

is able to activate an alarm well in advance with respect to the Locked Mode trigger. 
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Figure 5.14: Cumulative warning time distributions for all the disrupted discharges in the 

training and test set of C28-C30 data set (the red vertical dashed line points out the DMV 

time, which allows to identify tardy detections). 

The generalization capability of GTMC28−C30−AUT as disruption predictor has been 

evaluated on the C36 data set by projecting the 29 disrupted and 41 regular 

terminated discharges on the map. As expected, the prediction performance 

deteriorates with about 86% correct disruption predictions (1 missed alarm and 2 

tardy detections) and 12% false alarms. Note that, 3 of the 5 false alarms are 

triggered by an abnormal increase of Pfrac due to interruption of the additional 

heating system and could be avoided by inhibiting GTM response when this event 

occurs. On the other hand, we did not observe any premature detection of disrupted 

discharges generated by this issue. For the two tardy detections, it is observed a very 

late locked mode as disruption cause.  

The deterioration is commonly observed in whatever data-based model, and 

even more so in the present case, due to the variation of the operational scenarios 

performed in the more recent campaigns. Figure 5.15 reports the probability density 

functions of the selected plasma parameters of the regularly terminated discharges 

in C28-C30 (blue) versus those in C36 (green) data sets, which show the variation of 

the plasma state especially for what concern Radpf_XDIV. This evidence confirms the 

need to regularly update the GTM model with data from more recent campaigns. To 

this purpose, the pre-disruptive times can be evaluated using the proposed algorithm 

avoiding the complex and time-consuming manual analysis.  
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Figure 5.15: Probability density functions of the parameters of the regularly 

terminated discharges in C28-C30 (blue) versus those in C36 (green) data sets for (from top 

left to bottom right): electron temperature peaking factor, electron density peaking factor, 

internal inductance, radiation at the core peaking factor, radiation at the edge peaking factor, 

fraction of radiated power. 

To confirm the robustness of the algorithm for automatically determining the 

pre-disruptive times, a statistical analysis of the selected plasma parameters has 

been performed on the discharges in the dataset II. Figure 5.16 reports the pdf of the 

selected parameters for the safe pulses (blue) versus the non-disrupted phase of the 

disruptive pulses (red), whereas Figure 5.17 reports the pdf of non-disruptive pulses 

(blue) versus the pre-disruptive phase of the disrupted pulses (red). Looking at 

Figure 5.17, it can be seen that, similarly to what observed in Figure 5.5, the pdfs of 

the pre-disruptive phases of the disrupted discharges shift with respect to the non-

disrupted phases. The orange arrows in Figure 5.17 highlight the shifts. Hence, the 

proposed algorithm has been used to evaluate the pre-disruptive times, 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇, 

in the disrupted discharges of the dataset II. 
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Figure 5.16: C36 data set: Probability density functions of the parameters of the safe pulses 

(blue) versus the non-disrupted phase (selected with the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇) of the disruptive pulses 

(red) for (from top left to bottom right): electron temperature peaking factor, electron density 

peaking factor, internal inductance, radiation at the core peaking factor, radiation at the 

edge peaking factor, fraction of radiated power.  

 
Figure 5.17. C36 data set: Probability density functions of the parameters of the safe pulses 

(blue) versus the pre-disruptive phase (selected with the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇) of the disrupted pulses 

(red) for (from top left to bottom right): electron temperature peaking factor, electron density 

peaking factor, internal inductance, radiation at the core peaking factor, radiation at the 

edge peaking factor, fraction of radiated power. The shift of the distributions is marked with 

an orange arrow. 
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To validate the obtained 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇, a new GTM (GTMC36−AUT) has been trained 

using all the pulses in the C36 data set, except two disruptions where the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇  

was not detected by the proposed algorithm.  

Note that, being the GTM an unsupervised algorithm, the data are mapped 

only exploiting their intrinsic properties. The optimal GTM hyperparameters are the 

following: 

• Number of latent points = 1024; 

• Number of radial basis functions = 784;  

• Variance 𝜎 = 1.2. 

Figure 5.18a) reports the U-matrix representation of the GTM of the dataset II 

where a clear dark boundary between two lighter macro-clusters can be identified 

(highlighted with a black dashed line). Using the automatically evaluated pre-

disruptive times, the GTM has been colored on the basis of the node composition and 

shown in Figure 5.18b). From Figure 5.18, it can be noted that the boundary in the 

U-matrix is very similar to the boundary between the green (safe) and the red 

(disrupted) regions. Moreover, the map performs a clear separation of the safe and 

disrupted regions with very high discrimination capability as reported in Table 5.3.  

 
Figure 5.18: a) U-matrix of the 𝐺𝑇𝑀𝐶36−𝐴𝑈𝑇. Lighter colors indicate smaller distance between 

clusters, while darker colors indicate higher distances. b) 𝐺𝑇𝑀𝐶36−𝐴𝑈𝑇 obtained coloring the 

clusters using the automatically evaluated warning times 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇. 
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Table 5.3: GTM composition (using tpre−disr,AUT) 

GTM 

% safe samples 

belonging to safe 

(green) clusters  

% disr. samples 

belonging to disr. 

(red) clusters 

% samples in 

the grey 

clusters 

% empty 

clusters 

𝐆𝐓𝐌𝐂𝟑𝟔−𝐀𝐔𝐓 96.45 86.34 8.06 5.08 

𝐆𝐓𝐌𝐂𝟐𝟖−𝐂𝟑𝟔−𝐀𝐔𝐓 73.99 80.87 16.79 5.71 

 

As an example, Figure 5.19 reports the temporal evolution of the disrupted 

discharge #90346, not used to train the GTMC36−AUT: a) red (green) disrupted (non-

disrupted) class membership function, which represents the percentage of samples 

of the disrupted and non-disrupted class respectively, in the cluster to which the 

sample is associated, with respect to the total number of samples in the cluster itself; 

b) trajectory of the discharge on the map. The circles depicting the evolution in time 

of the operating point are colored depending on the evolution time. The starting point 

is green, then the point becomes darker and darker as the discharge is approaching 

to the final point in red; c) Time evolution of the 6 plasma dimensionless parameters, 

together with the plasma current and the locked mode; the GTMC36-AUT alarm is 

marked with a vertical purple dashed line, the blue dashed line marks the mode lock 

time, and the red dashed line marks the disruption time tD. The disruptive discharge 

starts in a non-disruptive cluster, firstly evolving in the non-disrupted (green) 

region, enters the disruptive (red) region, returns in the green region and enters, at 

the very end, in a disruptive cluster, which corresponds to the disruption time. For 

the considered discharge, the GTM identifies, according to what observed during the 

experimental session, an impurity accumulation pattern well in advance to the 

disruption time and triggers the alarm. Moreover, the trajectory on the map 

highlights the observed subsequent stable phase followed by a very fast disruption 

due to a mode lock. All the presented results confirm the validity of the algorithm 

proposed for the evaluation of the pre-disruptive times, mandatory for the updating 

of the model.  
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Figure 5.19. Disrupted discharge #90346: a) Disruptive likelihood of the of non-disrupted 

(green) and disrupted (red) classes; b) Projection on the map; the lighter points correspond to 

the beginning of the discharge, whereas the darker one corresponds to the end, at the 

disruption time tD; c) Time evolution of the 6 plasma dimensionless parameters, together 

with the plasma current and the locked mode: the 𝐺𝑇𝑀𝐶36−𝐴𝑈𝑇 alarm, corresponding to an 

impurity influx, is marked with a vertical magenta dashed line, the blue dashed line marks 

the mode lock time and the red dashed line marks the disruption time tD. 

5.7 Update of the GTM with C36 campaign data 

As every machine learning algorithm, the GTM performance degrades as the 

operational space of the machine changes. This change can be highlighted by the 

statistical analysis reported in Table 5.4, which compares some plasma parameters 

of the regularly terminated discharges in the experimental campaigns performed at 

JET from 2011 to 2013 (C28-C30), those in 2016 (C36), and those in the more recent 

2019-2020 campaigns (C38). As the JET operating scenario is continuously 

changing, an option to improve the performances is to upgrade the disruption 

predictor, and the automatic identification of the pre-disruptive phase becomes very 

useful to accelerate the labelling process and retraining the GTM. A new 

GTMC28−C36−AUT was developed using the C28-C30 and the C36 datasets, and it was 
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tested on the C38 campaign. Figure 5.20 shows the GTM map and Table 5.3: GTM 

composition (using  tpre−disr,  AUT) its composition. It is possible to see that the green 

area of the 𝐺𝑇𝑀𝐶28−𝐶36−𝐴𝑈𝑇 covers a portion of the space which was grey in the lower 

central part of the 𝐺𝑇𝑀𝐶28−𝐶30−𝐴𝑈𝑇 . Moreover, the grey area is slightly extended 

towards the red region and more grey clusters cover the center of the map. Regarding 

the performance, Figure 5.21 shows the accumulated fraction of detected disruptions 

against the warning time and Table 5.5 shows the rate of MAs, FAs and TDs of the 

2 GTMs with the same alarm scheme shown in Figure 5.3. 

Table 5.4: Ranges of the plasma parameters over the three considered sets of regularly 

terminated discharges 

 

 

Figure 5.20: upgrade of the GTM with the pulses from the dataset II 
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Table 5.5: Performances of the GTM in the Dataset III  

GTM TD MA FA 

GTMC28−C30−AUT 0% 0% 49.20% 

GTMC28−C36−AUT 2.7% 0% 11.11% 

 

 

Figure 5.21: Cumulative warning time distributions for all the disrupted discharges in the 

Dataset III (the red vertical dashed line points out the DMV time, which allows to identify 

tardy detections). 

5.8 Conclusions 

In this Chapter the disruption prediction model based on the GTM Machine 

Learning method has been presented and an algorithm for the automatic 

identification of the pre-disruptive phase of tokamak discharges has been proposed. 

Presently, a general physical model for clearly recognizing disruptive behavior does 

not exist, and this sometimes produces ambiguity on the manual classification task 

as well. Hence, the interest is not only towards the classification task (as a plethora 

of different models exist, and many of them provide satisfying performances) but also 

in the properties of the parameter space where the relevant disruption physics takes 

place, its visualization and interpretative analysis. The encouraging results led to 

the use of the automatic pre-disruptive times as the new inputs of the GTM 

algorithm, in place of the manually detected ones. The shape and the composition of 

the GTMs trained with the manual and the automatic ones were comparable, as well 

as the data distribution obtained with the mapping and univariate analysis of the 

signals.  
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The results obtained with the GTM confirm the efficacy of the method and 

validate the proposed algorithm. The general principle of the algorithm seemed to 

work quite well, leading to a coherent discrimination of the non-disrupted and pre-

disruptive phases of discharges, also referring to more recent experimental 

campaigns. Machine Learning models generally suffer from ageing whether the 

operational space of the machine changes, and this is also valid for different 

experimental campaigns, as the machine is reconfigured for new experiments. The 

presented results, together with the map composition, confirms the possibility to 

avoid the cumbersome and time-consuming identification of the pre-disruptive times 

and to implement a continuous learning system. The algorithm for the automatic 

identification of the precursors times, together with a set of data analysis and 

clustering algorithms, has also be used for retraining the GTM model extending the 

training space to the C36 data, improving the performance on a later campaign (C38, 

Dataset III).  

 

 

 



 

 



 

 

6 Chapter 6 

Disruption prediction with Fully Connected Neural 

Networks 

6.1 Introduction 

This Chapter discusses the development of Fully Connected Neural Networks 

(FC-NN) models for the disruption prediction task. The model reaches very high 

performance in the task and is a widely adopted one in disruption prediction [92], 

[96], [98]–[100].  

6.2 Data preparation 

The list of signals provided as input to the FC-NN is presented in Table 6.1. 

The peaking factors of the electron temperature, density and radiation are obtained 

as described in Chapter 1. Moreover, the plasma internal inductance provides 

information on the current profile, the fraction of radiated power is a dimensionless 

indicator of the power balance, and the normalized locked mode allows to detect the 

insurgence of mode locking. 

Table 6.1 Diagnostic signals, acronyms and units 

Plasma signal Acronym Diagnostics 

Electron Temperature Peaking Factor 𝑇𝑒𝑝𝑓 HRTS 

Electron Density Peaking Factor 𝑁𝑒𝑝𝑓 HRTS 

Peaking Factor of the Radiation  

(excluding the contribution of the X-point/divertor region) 
𝑅𝐴𝐷𝑝𝑓−𝐶𝑉𝐴 Bolometer 

Peaking Factor of the Radiation  

(excluding the contribution of the core region) 
𝑅𝐴𝐷𝑝𝑓−𝑋𝐷𝐼𝑉 Bolometer 

Plasma Internal Inductance 𝑙𝑖 BetaLi 

Fraction of radiated power 
𝑃𝐹𝑅𝐴𝐶  

Bolometer, 

BetaLi 

Normalized Locked Mode 𝐿𝑀𝑛𝑜𝑟𝑚 Saddle Coils 

6.3 Training of the model 

To train a FC-NN model, examples of both disrupted and non-disrupted plasma 

states (discharge time samples) have be collected, as for the previously presented 

models, using the algorithm presented in Chapter 5 determining a consistent value 

of 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟 (𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟−𝐴𝑈𝑇) for the different disruptions [74].  

Referring to the binary classification of disrupted or non-disrupted samples, 

the FC-NN can model the non-linear relationship among the input feature vector 𝒙 

and the corresponding output 𝑦, which encodes the classification of the discharge 

sample. The training set is obtained starting from almost the same discharges (85 

disrupted shots and 70 regular discharges) of the JET-ILW campaign used to train 

the GTM, but 22 disrupted and 16 non-disrupted discharges are removed from the 
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training set to build a validation set. The inputs provided to the FC-NN are the same 

as the one provided to the GTM but including the 𝑀𝐿𝑛𝑜𝑟𝑚 in the set of input features. 

The output of the FC-NN is the disruptive likelihood. A threshold on the likelihood 

is optimized by analyzing the FC-NN performances in the training and validation 

sets. In Table 6.2, the training parameters of the FC-NN model are reported, where 

the parameter 𝑠  determines the change in the weight for the second derivative 

approximation, and the parameter 𝑙 regulates the indefiniteness of the Hessian 

[134]. The architecture of the FC-NN has an input layer, one hidden layer with 

sigmoid activation function and an output layer with 2 neurons and a SoftMax 

activation function. The hidden layer size has been optimized by scanning the 

number of neurons and optimizing the validation performance. The threshold of the 

FC-NN model is also set to 0.995 by optimizing the performance on the validation 

and training sets. 

Table 6.2 FC-NN training parameters. 

Parameters Value 

Optimizer 
Back Propagation and Scaled Conjugate 

Gradient algorithm [134] 

Number of input neurons 7 

Number of hidden neurons 10 

Number of output neurons 1 

Weights Initialization Random 

Learning rate (𝑠, 𝑙) (5·10-5, 5·10-7) 

Best epoch 23 

Validation stop (consecutive evaluations) 75 

6.4 Model performance 

In Figure 6.1a the input features are shown for a test disrupted discharge 

(#94775) belonging to a recent JET campaign, temporally far from those used in the 

model training. The disruptive likelihood is reported in the same Figure 6.1b. An 

alarm is triggered when the disruptive likelihood overcomes the threshold. The FC-

NN has no Assertion Time, which can be introduced to avoid wrong alarms due to 

spikes in the disruptive likelihood. This means that optimizing the threshold of the 

model is sufficient to make the MLP response robust, in terms of detecting the 

presence of disruption precursors, while keeping the number of false alarms low. The 

vertical dashed line in Figure 6.1 identifies the alarm time 𝑡𝑎𝑙𝑎𝑟𝑚, resulting in a 

warning time Δ𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔= 408 ms. The overall performance of the model, computed in 

terms of Missed Alarms, False Alarms and Tardy Alarms, is reported in Table 6.3. 
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Figure 6.1. JET disrupted discharge #94775: a) Time evolution of the seven plasma 

dimensionless parameters: temperature (𝑇𝑒𝑝𝑓), plasma density (𝑛𝑒𝑝𝑓), and radiated power 

(𝑅𝑎𝑑𝑝𝑓−𝐶𝑉𝐴) , and  𝑅𝑎𝑑𝑝𝑓−𝑋𝐷𝐼𝑉  peaking factors, internal inductance 𝑙𝑖 , fraction of radiated 

power 𝑃𝑓𝑟𝑎𝑐, normalized Locked Mode amplitude 𝐿𝑀𝑛𝑜𝑟𝑚 signal; b) Disruptive likelihood of 

the disrupted discharge #94218 supplied by MLP. The dashed black line identifies the alarm 

time. 

Table 6.3: Performance of FC-NN in the Training and Test sets 

Set SP [%] MA[%] FA [%] 

Train 99.15 0 1.85 

Test 96.11 2.78 3.36 



 

 



 

 

7 Chapter 7 

Disruption prediction with Convolutional Neural 

Networks 

7.1 Introduction 

As discussed in Chapter 6, FC-NN allow to reach very good performance in the 

disruption prediction task in a database spanning several years of JET operation. 

However, the inputs of the FC-NN are synthetic features extracted from the plasma 

profiles, whose definition may vary depending on the device. In recent years, the use 

of deep learning in research has increased significantly, due to the improved 

capability of computers in processing massive amounts of data and to the ability of 

deep neural networks in producing high accuracy performances even without a 

feature extraction procedure. Among the architectures in deep learning able to 

process images, CNNs are the most used [35], [135]. For this reason, the PhD activity 

also addressed the development of Convolutional Neural Networks (CNNs), which 

can process the full information from the plasma profiles. Since the neural networks 

are supervised algorithm, the training data has to be classified before the training 

of the model. A label has to be explicitly assigned to each sample in the dataset. All 

the segments belonging to the regularly terminated discharges have been labelled 

as “stable”. For each disruptive discharge, the labelling of the “unstable” has been 

carried out by automatically identifying the pre-disruptive phase by means the 

algorithm discussed in Chapter 5. 

7.2 CNN data generation-processing subsampling 

In order to reduce the unbalance between the stable and unstable classes, 

caused by the different duration of the two phases, the overlap times of the sliding 

window for the regularly terminated and disrupted discharges have been differently 

chosen. Due to the low time resolution of the HRTS, only one segment every 24 ms 

has been extracted from the pre-disrupted phase of the disrupted discharges, 

whereas one segment every 150 ms has been retained from the regularly terminated 

discharges. Note that, during testing, a sliding window of 200ms with a stride of 

2ms, for all discharges (regularly terminated and disrupted), has been used.  
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Table 7.1 reports the total number of pulses and time slices sampled for the 

train, validation and test sets. The validation set was used to monitor the training 

performance during the training and to perform an early stop if the performance on 

the validation data would not improve. The validation set discharges were randomly 

sampled among the 85 disrupted discharges and the 70 regularly terminated ones 

from Dataset I. 
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Table 7.1: number of pulses and time slices in the training, validation and test sets 

 Set Disruptions Regular pulses 

 Pulses Time slices       Pulses Time slices 

Training 63 3698          54 4239 

Validation 22 1191          16 1381 

Test 108 313392         149 588143 

7.3 Early Fusion Architecture 

As previously cited, the deep architecture of a CNN normally consists of a 

cascade of blocks of different layers which performs a filtering of an input image to 

extract significant features from it [34]. The features are produced by a cascade of 

filtering blocks, interconnected through nonlinear activation functions (typically a 

Rectified Linear Unit), and a multi-layer perceptron combines them to produce the 

output of the network. A dropout layer is usually inserted before the multi-layer 

perceptron in order to reduce overfitting on the training set and improve 

generalization. The architecture of the proposed CNN is shown in Figure 7.1.  

 

 
Figure 7.1: CNN architecture, where: I is the image input; CUk is the kth convolutional unit, 

composed by the cascade of a convolutional layer (Ck), a batch-normalization layer (Nk) and 

a nonlinear activation layer with ReLU functions (Ak); Pmax and Pavg are the max-pooling and 

average-pooling layers, respectively; D is a dropout layer; FC is a fully-connected layer; S and 

CO are the SoftMax and classification output layers, respectively. 

A first convolutional unit (CU1) followed by a max pooling layer (Pmax), with pool 

size and stride 8×1, filters out vertically (along the “spatial” dimension) the input 

image by reducing the size from 132x101 to 16x101. A second convolutional unit 

(CU2) followed by an average pooling layer (Pavg), with pool size and stride 1×12, 

filters out horizontally (along the “time” dimension) the resulting image by reducing 

the image size to 16x20. The two convolutional units (CU1 and CU2) are made out of 

three layers: a convolutional layer (Ck ), a batch normalization layer (Nk ) and a 

rectified linear unit (ReLU) activation layer (Ak). The two convolutional layers have 

one single filter (1-channel kernel) of size 5x1 and 1x11, respectively. The output of 

the 2nd convolutional layer is then a 16x20 image, which is flattened and provided as 

input to a fully connected layer (FC). Finally, the FC layer processes the 320 features 

and feeds a SoftMax layer (S) for classification (CO). A dropout layer with dropout 

probability of 20% has been included before the fully connected layer in order to 

reduce overfitting on the training set and improve generalization. 
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In order to include also the information given by the two 0-D signals, i.e., li 

and MLnorm, two segments of size 1x101 have been added as input to the second 

convolutional unit and concatenated with the output image produced by the max 

pooling layer (see Figure 7.2). As a result, the output of the average pooling layer 

has size 18x20 and 40 additional features coming from the two signals are processed 

by the fully connected layer, combined with the remaining 320 features and used for 

the classification. 

 

Figure 7.2: Modified CNN architecture, where the internal inductance (li) and the normalized 

locked mode (MLnorm) are added as input to the second convolutional unit and concatenated 

with the output image produced by the max pooling layer. 

The Soft Max (S) layer produces the likelihood of the input segment to belong 

to a regularly terminated or a disrupted discharge, and the disruptive likelihood is 

used to trigger a disruption alarm. As an example, Figure 7.3 shows the disruptive 

likelihood output for a JET disrupted pulse, which starts to rise in correspondence 

of the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟  (dashed magenta line) and then it straightforwardly reaches the 

value 1. The last classification layer (CO) implements a threshold on the disruptive 

likelihood to perform the final classification. Such alarm threshold has been 

optimized by means of a heuristic procedure, maximizing the number of correct 

predictions on the training and validation discharges. The optimal threshold is found 

to be 0.89 and the alarm time is triggered when the disrupted likelihood overcomes 

such threshold. In Figure 7.3 the alarm time is identified by the black vertical dashed 

line.  

 

Figure 7.3: CNN likelihood curves for a disrupted pulse, where the red line is the disruptive 

likelihood. The dashed black line indicates the CNN alarm time, whereas the dashed 

magenta line indicates 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟. 
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To limit the complexity of the training procedure a first training step has been 

performed using only the 1-D diagnostics. Then, the CU1 and the Pmax blocks were 

frozen. In a second training procedure, only the second convolutional block and the 

fully connected layer were trained, using both the 1-D and 0-D diagnostics. This 

approach greatly reduces the computation time of the training procedure because it 

reduces the number of parameter updates being made without having a major 

impact on the network’s accuracy [136]. Table 7.2 shows the hyperparameters of the 

two training procedures. 

Table 7.2: Training parameters of the CNN model 

Parameters 1st Training (Images only) 2nd Training (Images + signals) 

Optimizer 
Stochastic gradient descent 

with momentum 

Stochastic gradient descent 

with momentum 

Initial learning rate 2.5e-4 1e-4 

Learning rate drop factor 0.1 0.15 

Learning rate drop period 

(epochs) 
20 10 

Momentum 0.9 0.9 

MiniBatch size 16 16 

Validation frequency 

(iterations) 
50 50 

Validation stop (consecutive 

evaluations) 
100 100 

Weight decay (L2 

regularization) 
1e-4 1e-4 

Note that, the network architecture allows us to independently process the two 

dimensions, spatial and temporal: in fact, the first two blocks (CU1 and Pmax) filter 

only across the spatial direction, while the second two (CU2 and Pavg) filter only 

across time. This allows to easily concatenate the signals (li and MLnorm) to the image 

features processed by the first convolutional and pooling blocks, so that the temporal 

synchronization is preserved. The vertical kernel size for the convolutional and 

pooling blocks was designed considering a few constraints: a kernel size equal or 

larger than 24 would have been larger than the bolometer number of lines of sight, 

and a small size kernel would reduce the effect of the discontinuity between the 

stacked diagnostic images. The small kernel size (5x1) allows the network to still 

identify changes in the spatial dimension of the HRTS scattering profile. Regarding 

the time filtering, a similar operation was performed: due to the different time 

resolution of the diagnostics employed, the filter size has been chosen to mainly 

process the higher frequency signals, such as the bolometer data. The pooling type 
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was optimized: a network with only average pooling was trained, as well as one with 

only the max-pooling. Analysing the performances on the training and the validation 

set, the average pooling had lower performance than the max-pooling, but the max-

pooling response was too sensitive to transient changes in the data time traces. 

Hence, the max-pooling layer was left in the spatial processing block (vertical 

pooling), while the average pooling was selected for the temporal pooling. 

7.4 Predictor performance  

In this section, the potentialities of the CNN model to detect a disruptive 

behavior early enough to enable avoidance actions are presented. The performance 

in terms of SPs, MAs, and FAs rate of the proposed predictor is reported in Table 

7.3, for a training set composed by 63 disruptive and 54 regularly terminated pulses 

and a test set of 108 disruptive and 149 regularly terminated pulses. 

Table 7.3: CNN predictor performance 

Dataset SP MA FA 

Train 98% 0% 4.28% 

Test 93% 3.7% 9.40% 

 

Table 7.3 highlights that the CNN has very good predictive performance with 

a successful prediction rate of 93% and a FA rate below 10% on the test set. An 

example of the CNN capability in predicting disruptions can be seen in Figure 7.4, 

which refers to the test pulse #92226 (outside the training range). The CNN output 

in Figure 7.4a identifies a rising of the disruptive likelihood at about 11.20 s, 

accordingly with the visible change of the plasma behavior across the input profiles 

shown in Figure 7.4d-f. It can be noted that, at the plasma core, the electron 

temperature collapses (Figure 7.4e) while the electron density peaks (Figure 7.4f). 

This phenomenon is accompanied by strong radiation (Figure 7.4d). This pattern is 

well-known as the impurity accumulation disruptive mechanism [72], [137], and it 

is typical of the JET ILW disruptions due to the penetration of high-Z impurities 

(such as the Tungsten of the JET divertor) into the plasma core [12].  
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Figure 7.4: JET disrupted discharge #92226 a) CNN disruptive likelihood. The dashed black 

line indicates the CNN alarm time, while the dashed magenta line indicates the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟; b) 

Internal inductance, in green, and plasma current in blue; c) mode lock normalized by the 

plasma current, in blue; d) Radiated power from the Bolometer; e) Electron temperature from 

the HRTS; f) Electron Density from the HRTS.  

A typical regularly terminated discharge, as the one shown in Figure 7.5, is 

usually characterized by very regular radiated power profiles with low radiation 

from the central chords of the bolometer horizontal camera as visible in Figure 7.5d. 

At the plasma core, the electron temperature profile peaks (Figure 7.5e), while the 

electron density, distributed across the profile, presents slightly higher values 

(Figure 7.5e). In addition, li and MLnorm do not reveal any approaching disruption. In 

agreement, the disrupted likelihood never reaches 0.5.  

The cumulative warning time distribution is shown in Figure 7.6. The blue and 

black lines in Figure 7.6 show the CNN warning times in the training set and test 

set respectively. Moreover, to evaluate the suitability of the alarm triggered by the 

CNN predictor, the predicted warning time is compared with respect to the one 

defined by tpre−disr,AUT. In this regard, in the same Figure 7.6, the dark red and yellow 

dashed lines report the tpre−disr,AUT warning time distribution for the training and test 

pulses, respectively. The vertical red dashed line indicates the minimum warning 

time (10 ms) necessary at JET to adopt mitigation actions. Detections made after 

this line can be considered as tardy alarms. 

From Figure 7.6, it is possible to see that the CNN warning times and 

tpre−disr,AUT ones are quite close, both for the training and the test set. This means 

that, in most of the cases, the CNN detections are coherent with the instability 

mechanisms automatically detected with the tpre−disr,AUT. 
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Figure 7.5: CNN output of the JET regularly terminated discharge #90259. a) CNN 

disruptive likelihood; b) Internal inductance, in green and plasma current in blue; c) mode 

lock normalized by the plasma current, in blue; d) Radiated power from the Bolometer; e) 

Electron temperature from the HRTS; f) Electron Density from the HRTS.  

 

Figure 7.6: Cumulative fraction of detected disruptions by the CNN model versus the 

warning time in the training and in the test set. The vertical red dashed line allows us to 

identify tardy detections. 

As described in Chapter 4, the database employed in this work includes 

discharges from several experimental campaigns and different experimental 

conditions. This motivated an in-depth analysis of the results, to investigate a 

possible degradation of the CNN performances with the changing of the operating 

conditions. Table 7.4 reports the SPs, MAs and FAs rate for the test discharges, 

among the three datasets. As expected, the best performances are reached on the 

Dataset I, which covers the same pulse range of the training data. Note that, the 

CNN predictor tested on Dataset II still performs quite well, with a FA rate lower 
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than 7%, whereas an increase in the MA is observed. The degradation of the MA rate 

is due to the presence of some discharges which disrupt very abruptly because of a 

sudden locking mode, as already observed in [115] for the same data set. Conversely, 

in the Dataset III the errors on the disrupted pulses are extremely low, whereas the 

false alarm rate is the highest. An explanation for this difference should be sought 

in the new region of the operational space covered by the regularly terminated pulses 

belonging to this dataset, which are characterized by higher input power and 

electron density (as highlighted in Figure 7.7c). Indeed, by comparing the 

distributions of the features provided to the model in the three datasets, the 

regularly terminated pulses in the Dataset III are characterized by higher 𝑛𝑒 and 

radiated power values and lower 𝑙𝑖 values. In Figure 7.8 a-c, Figure 7.9a-c and Figure 

7.10a-c, the probability density functions of the average density across the plasma 

radius, li and the average radiated power are reported for the three considered 

datasets, for regularly terminated (green) and disruptive (red) pulses, respectively. 

In addition, for the Dataset III, the related distributions of the false alarms are 

added to the regularly terminated and disruptive ones (see Figure 7.8c-Figure 7.10c) 

and identified by a magenta dashed line. It can be noted that the distribution values 

of the three features for the regularly terminated pulses in Dataset III are shifted 

with respect to the ones of the previous datasets. Considering that the full training 

set of the model is contained in Dataset I, the distribution of the values in the 

Dataset III is then covering ranges poorly represented by the non-disruptive 

behavior of the training set. This trend is confirmed or accentuated by the 

distribution of the feature values related to FAs. Moreover, during high power 

experiments the presence of localized radiation in the outer half of the plasma, not 

necessarily correlated to the onset of a disruptive mechanism, has been observed 

[39]. This phenomenon can play a crucial role in the erroneously detection of a 

disruptive behavior in a regularly terminated pulse, as in the pulse #94785 reported 

in Figure 7.11. Indeed, at around 11.5 s, despite a non-disruptive behavior shown by 

the HRTS profiles and the 0-D signals, a high radiation seen from the central lines 

of sight of the bolometer horizontal camera triggers a FA (see Figure 7.11d). From 

the radiation profile recorded by the bolometer vertical camera (not provided as 

input to the CNN) it is possible to localize the radiation blob in the outer half of the 

plasma, thus not related to any impurity accumulation. 
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Table 7.4: Performance of the CNN on the test discharges across the three datasets 

Dataset I  Dataset II  Dataset III 

SP%  MA%  FA%  SP% MA% FA%  SP% MA% FA% 

96.55 2.38 4.44  91.42 10.34 7.31  91 0 14.28 

  

Figure 7.7: a-c) Comparison of the probability density functions of the electron density 

computed as the mean value across the lines of sight of the HRTS diagnostic for the regularly 

terminated (green) and the disrupted discharges (red) in the three datasets: a) Dataset I, b) 

Dataset II, and c) Dataset III. For the Dataset III, the distribution of false alarm values is 

identified by a magenta dashed line. 

 

Figure 7.8: a-c) Comparison of the probability density functions of the internal inductance for 

the regularly terminated (green) and the disrupted discharges (red) in the three datasets: a) 
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Dataset I, b) Dataset II, and c) Dataset III. For the Dataset III, the distribution of false 

alarms values is identified by a magenta dashed line. 

 

Figure 7.9: Comparison of the probability density functions of the radiated power computed 

as the mean value across the lines of sight of the HRTS diagnostic for the regularly 

terminated (green) and the disrupted discharges (red) in the three datasets (from a to c). For 

Dataset III, the distribution of false alarms values is identified by a magenta dashed line. 

 

Figure 7.10: CNN output on the regularly terminated discharge #94785. a) CNN disruptive 

likelihood; b) Internal inductance in green and mode lock normalized by the plasma current 

in blue; c) Radiated power from the bolometer vertical camera; d) Radiated power from the 

bolometer horizontal camera; e) Electron temperature from the HRTS; f) Electron Density 

from the HRTS. The dashed black line indicates the CNN alarm time. 

Figure 7.11 reports the response of the CNN to the regularly terminated pulse 

#95293 from Dataset III. As it can be seen, the CNN triggers a FA nearby a high 
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radiation from the central lines of sight of the bolometer horizontal camera, together 

with the decrease of both the electron temperature and the peaking of the electron 

density at the core. On the other hand, this pattern causes a high number of the false 

alarms observed in this dataset; in fact, it is very similar to the disruptive 

mechanism represented in Figure 7.4. It has to be highlighted how, at about 12.5 s, 

following the temperature and the density flattening over the plasma profile, the 

CNN predictor reports a gradual reduction of disruption likelihood. 

 

Figure 7.11: CNN output on the regularly terminated discharge #95293. a) CNN disruptive 

likelihood; b) Internal inductance in green and plasma current in blue; c) mode lock 

normalized by the plasma current, in blue. d) Radiated power from the bolometer horizontal 

camera; e) Electron temperature from the HRTS; f) Electron Density from the HRTS. The 

dashed black line indicates the CNN alarm time. 

Instead, Figure 7.12 shows a disrupted pulse belonging to the Dataset III 

where a disruption due to an edge collapse is detected (#94775). Differently from the 

impurity accumulation, the edge collapse is characterized by the presence of a blob 

of radiation in the outer part of the plasma. The radiation causes a localized cooling 

of the plasma temperature which in turns induces the peaking of the plasma current 

profiles [137]. This mechanism, visible in Figure 7.12, triggers the alarm at around 

9s (black vertical dashed line). In Figure 7.12e it is possible to see the cooling of the 

plasma between the HRTS lines of sight 12 and 30 (which corresponds to a radial 

position from 3.13m to 3.46m), together with a high plasma radiation at the central 

lines of sight of the bolometer horizontal camera (Figure 7.12d) and the rise of the 

plasma internal inductance (Figure 7.12b). The further analysis of the bolometer 

vertical camera data allows to localize the radiation blob in the outboard of the 

plasma (between chords 1-5, see Figure 7.12c). Despite it is not possible to 

distinguish between the core radiation and the outer low field radiation only from 
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the bolometer horizontal camera lines of sight, by combining the spatiotemporal 

information of the HRTS and the bolometer horizontal camera with the 𝑙𝑖 signal, the 

network is able to detect two different “off-normal” patterns: one characterized by a 

strong radiation due to an impurity accumulation process (see Figure 7.4) and 

another one where the radiation leads to a cooling at the edge (see Figure 7.12). 

   

Figure 7.12: JET disrupted discharge #94775. a) CNN disruptive likelihood; b) Internal 

inductance, in green, and mode lock normalized by the plasma current in blue; c) Radiated 

power from the bolometer vertical camera; d) Radiated power from the bolometer horizontal 

camera e) Electron temperature from the HRTS; f) Electron Density from the HRTS. The 

dashed black line indicates the CNN alarm time, while the dashed magenta line indicates 

the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟. 

7.5 Late fusion architecture and vertical bolometer camera 

The input image of the CNN concatenates the 1-D data coming from three 

diagnostics and the 0-D signals. Note that, in this case, convolutions involving the 

boundaries are not really senseful and the network discards the corresponding 

features. On the contrary, the model can learn the associations across the 

informative regions of the multiple images. Moreover, the idea to train only one 

CNN, instead of several, allowed a simpler implementation of the model. Following 

Baltrusaitis et al. [139], the proposed approach can be classified as a joint 

multimodal representation (also named early fusion as opposed to late fusion). Joint 

representations combine the unimodal signals into the same representation space. 

Mathematically, it is expressed as: 𝑥𝑚  =  𝑓(𝑥1, . . . , 𝑥𝑛) , where the multimodal 

representation 𝑥𝑚  is computed using the CNN that relies on unimodal 

representations 𝑥1, . . . , 𝑥𝑛. 

Conversely, the late fusion representation processes unimodal signals 

separately and then the results are merged. Early fusion has the advantage of 

merging data sources in the beginning of the processing (sometimes after a first 
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convolution). If the data is properly aligned, cross-correlations between data items 

may be exploited, thereby providing an opportunity to increase the performance of 

the system. In [140], the authors argue that those fused low-level features might be 

irrelevant for the task, thus decreasing the fusion power. When signals from 

different modalities do not complement each other, i.e., input modalities separately 

inform the final prediction and do not have any inherent interdependency, then 

trying an another fusion approach is preferred [141]. Moreover, late fusion retains 

the ability to make predictions in case of missing or incomplete data, because it 

employs separate models for separate modalities, and aggregation functions can be 

applied even when predictions from a modality is missing. The major drawback is 

the limited potential for the exploitation of cross correlations between the different 

unimodal data. The optimum fusion strategies for many applications have yet to be 

determined [142]. In a recent review on fusion techniques for deep learning 

applications in medicine [141], the authors report that in most applications early 

fusion is used as the first attempt, a straightforward approach that does not 

necessarily require training multiple models.  

Following to the development of an early fusion disruption predictor, and to 

the detection of outboard radiation in the most recent non-disrupted deuterium 

discharges [39], a new late fusion model has been trained to take advantage of the 

different timescales of disruptive events detected by the 1-D and 0-D data. In fact, 

the internal inductance and the locked mode signals tend to vary closer to the 

disruption. Figure 7.13 shows the architecture of the predictor. It consists of two 

branches, each one being a separate CNN. The top branch, which processes the 

images of the 1-D profiles, has two convolutional units (CU1, CU2) followed by a max 

pooling layer (𝑃𝑚𝑎𝑥  ) and an average pooling layer (Pavg) respectively. The CU1 and 

Pmax blocks, filter out vertically (spatial dimension) the input image by reducing its 

size from 154 × 101 to 18 × 101. The other blocks (CU2, 𝑃𝑎𝑣𝑔) filter out horizontally 

(time dimension) the resulting image by reducing the image size to 18 × 20. The first 

convolutional layer has a single filter (1-channel kernel) of size 5 × 1, while the 

second one has one of size 1 × 11. The output of the 2nd convolutional unit is then a 

18 × 20  image. The lower branch processes the stacked signals of the internal 

inductance 𝑙𝑖   and the normalized Locked Mode 𝑀𝐿𝑛𝑜𝑟𝑚  signals. It consists of a 

separate Convolutional Unit (CU3) with 4 filters (4-channel kernel) of size 1 × 5 with 

dilation 1 × 5 and stride 1 × 1, which process the 0-D dimensional data along the 

horizontal (time) direction. The block is followed by a max pooling layer with size 

and stride 1 × 5 , which also down samples the features along the horizontal 

direction. The extracted features have a size of 2 × 16 × 4. On both branches, the 

features are flattened and fed into a Fully Connected (FC) block, which combines 

them before a SoftMax layer (S). Before the two fully connected layers, a dropout 

layer with dropout probability of 20% reduces the overfitting on the training set and 

improves the model generalization. 
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Figure 7.13: CNN architecture, where: I is the image input; CUk is the kth convolutional unit, 

composed by the cascade of a convolutional layer (Ck), a batch-normalization layer (Nk) and 

a nonlinear activation layer with ReLU functions (Ak); Pmax and Pavg are the max-pooling and 

average-pooling layers, respectively; D is a dropout layer; FC is a fully-connected layer; S and 

CO are the SoftMax and classification output layers, respectively. Finally, an OR logic block 

activates the predictor whether one of the two branches output is 1. 

The SoftMax layer produces the disruptive likelihood of the input segment to 

belong to a disrupted discharge. As an example, Figure 7.14a shows the SoftMax 

outputs for the JET disrupted pulse #96998, where the blue line refers to the 

disruptive likelihood from the top branch and the magenta line that one from the 

bottom branch. Finally, for each branch, a final classification layer (CO) simply 

thresholds the disruptive likelihood to perform the image classification. For each 

branch, a threshold on the likelihood is optimized by minimising the errors of the 

entire predictor on the training set. Figure 7.14b shows the branch binary outputs, 

which are obtained by setting to 1 the likelihood values greater than or equal to their 

own optimized threshold, and by setting to 0 the remaining ones. A disruptive 

behaviour is detected by a branch when its binary output equals 1 (blue curve for top 

branch and magenta curve for the bottom branch in Figure 7.14b). The logic OR 

function produces the final disruption trigger.  

 
Figure 7.14: Disrupted pulse #96998 a) Disruptive likelihoods for each predictor branch, 

where the blue line is the top branch one, and the magenta line is the bottom branch 

membership; b) Logic output for each branch (blue for the top branch, magenta for the bottom 

one) for the same pulse. The dashed purple line indicates the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇, the dashed black 

line indicates the mode-locking time. 
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Since the two CNNs were trained independently from each other, two different 

criteria have been adopted for defining the disruptive phase. The reason for adopting 

a different definition is the training of two specialized CNN branches, where each of 

them is focusing on events with different timings. In particular, the destabilization 

of the profiles at JET is usually due to the process of impurity accumulation or to the 

edge cooling [137], revealable by the plasma radiated power and density profiles, and 

it is exhibited at longer timescales than the insurgence of the locked mode. Hence, 

the two branches aim to increase the performance of the entire model exploiting the 

different information carried out by the profiles and the 0-D signals. For the 1-D 

profile images, the onset of disrupted phase is defined by the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟, whereas, for 

the 0-D signal images, the onset of disrupted phase is defined by the mode locking 

time (𝑡𝑀𝐿 ). To this purpose, a threshold has been optimized, resulting in 2 · 10-4 

mT/MA, on the Locked Mode signal normalized by the plasma current. The time 

interval [𝑡𝑀𝐿, min(𝑡𝑀𝐿+0.3s, 𝑡𝑒𝑛𝑑)] has been labelled as disruptive phase.  

Due to the unbalance between the number of non-disrupted and disrupted 

samples, caused by the different duration of the two pre-disrupted phases, different 

subsampling strategies for the 200 ms sliding window have been adopted for the 

training. For the CNN top branch, the number of training, validation and test images 

is indicated in Table 7.1 and is the same as the early fusion model. Instead, for the 

0-D signals every segment of pre-disrupted phase (i.e., one every 2ms) is considered 

for the training, whereas one segment every 200 ms is sampled from the regularly 

terminated discharges. In the test instead, the sliding window has a stride of 2ms, 

so that every sample of all the test discharges (regularly terminated and disrupted) 

has been classified. The alarm thresholds of the CO layers have been chosen by 

optimizing the full predictor performances on the training data. The single branch 

thresholds have been selected by minimizing the sum of the full predictor MAs and 

FAs, and then the distance between the alarm times and the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟 on the training 

discharges. In fact, firstly a scan of the different thresholds identifies the 

combinations where the sum of the FAs and MAs is minimized. In this subset, the 

thresholds which minimize the mean distance between alarm times and 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟 are 

selected. The optimized thresholds result in 0.99 for the top branch and 0.925 for the 

bottom one. 

7.6 Performance of the late fusion predictor 

The results of the predictor are reported and compared with [143] in Table 7.5. 

The new model performs better both in the training and in the test sets. In 

particular, the predictor allows to greatly reduce the number of false alarms in the 

test set (from 14 to 1). 
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Table 7.5: Predictor performance 

Dataset SP% MA% FA% 

Train 98.71 0 2.85 

Test 98.83 1.87 0.67 

Figure 7.15 reports the warning times of the top branch (blue line), bottom 

branch (green line), and full predictor (black line) in the test dataset. If both branches 

are triggered in the same discharge, only the first alarm is plotted. Note that the top 

branch CNN, which processes the 1-D profile data, can provide larger warning times 

than the bottom one, which instead detects the mode-locking phase. The separation 

of the two different mechanisms makes the predictor alarm more interpretable, in 

view of the development of avoidance schemes. Finally, the vertical red dashed line 

highlights that disruptions should be identified at least 10 ms in advance to adopt 

mitigation actions at JET. Detections with a warning time shorter than 10 ms are 

late or tardy alarms. The predictor can detect different disruptive patterns, as visible 

in Figure 7.16 which refers to the disrupted test pulse #96998 (outside the training 

range). 

 

Figure 7.15: CNN model warning time distributions in the test set for the top branch (blue 

line), the bottom one (green line) and full predictor (black line). Only the first alarm is 

reported. The vertical red dashed line allows to identify tardive detections. 

The top branch of the predictor in Figure 7.16a (blue line) triggers an alarm at 

around 14.10 s, coherently with the change of the plasma profiles shown in Figure 

7.16c-f and in correspondence of the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟, identified by a dashed line. In fact, the 

electron temperature flattens (Figure 7.16e) and the electron density peaks (Figure 

7.16f). This phenomenon is synchronous with strong radiation from the central 

channels of the horizontal and vertical bolometer (Figure 7.16c-d). On the other 

hand, the bottom branch of the predictor in Figure 7.16a (magenta line) triggers an 

alarm at around 15.7s close to the end of the discharge, in correspondence with the 

rise of 𝑙𝑖   and 𝑀𝐿𝑛𝑜𝑟𝑚  signals. Hence, the top-branch is trained to detect 
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destabilizations in the 1-D profiles distributions, while the bottom branch on 

detecting the onset of a locked-mode and a late disruption pattern. Figure 7.17 shows 

the regularly terminated pulse #96893, which was detected as disruptive in [143]. In 

this case, the predictor does not trigger an alarm, because the high radiation pattern 

at chords #13-16 of the horizontal bolometer is not coincident with a high radiation 

from the central lines of sight of the vertical bolometer camera. 

 
Figure 7.16: JET disrupted discharge #96998. (a) CNN logic output curves, where the blue 

line is the top branch logic output, and the magenta line is the bottom branch logic output.; 

(b) internal inductance, in green, and mode lock normalized by the plasma current, in blue; 

c) radiated power from the bolometer vertical camera; (d) radiated power from the bolometer 

horizontal camera; (e) electron temperature from the HRTS; (f) electron density from the 

HRTS. The dashed purple line indicates the 𝑇𝑝𝑟𝑒−𝑑𝑖𝑠𝑟
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Figure 7.17: JET regularly terminated discharge #96893. (a) CNN logic output curves, where 

the blue line is the top branch logic output, and the magenta line is the bottom branch logic 

output.; (b) internal inductance, in green, and mode lock normalized by the plasma current, 

in blue; c) radiated power from the bolometer vertical camera; (d) radiated power from the 

bolometer horizontal camera; (e) electron temperature from the HRTS; (f) electron density 

from the HRTS. 

7.7 CNN Architecture with Mirnov signals  

To improve the detection of late MHD events, a late fusion CNN architecture 

has been trained using the information from the Mirnov coil spectrogram. In fact, in 

[123], the authors have shown that the spectrogram data can be converted in an 

image and processed with CNNs, providing a disruptive likelihood as an output. For 

this reason, the spectrogram of the H302 and H305 Mirnov coils at JET were 

processed to produce input images for the CNN as described in Chapter 4 and 

starting from the same database. Unfortunately, due to the unavailability of the coil 

signals for some shots, the database size is changed both on training and test sets. 

The labelling of the pre-disruptive phase has been made using the automatically 

computed 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟, but in this case, the non-disrupted samples have been retained 

from both the non-disrupted discharges and the part of the disruptions before 

𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟. This procedure has been carried out after observing that, for the training 

dataset, the MHD activity in the non-disrupted pulses was usually negligible, while 

later experiments showed higher level of MHD activity. Finally, for creating the 

training dataset, one segment every 24 ms has been extracted from the pre-disrupted 

phase of the disrupted discharges, whereas one segment every 200 ms has been 

retained from the regularly terminated discharges. During the test instead, the 

sliding window of 200ms has a stride of 2ms, so that it simulates a real-time 

implementation of the algorithm. The database adopted for the study is described in 

Table 7.6.  
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Table 7.6: number of pulses and time slices in the training, validation and test sets 

Set Disruptions Regular pulses 

 Pulses Time slices       Pulses Time slices 

Training 57 3518          50 3690 

Validation 18 1147          15 1175 

Test 92 226866         131 461595 

Then, the CNN architecture in Figure 7.18 has been trained as a disruption 

predictor. The CNN used in this case is deeper and is based on the use of several 

squared convolutional blocks, similarly to the one proposed in [123]. The 

hyperparameters of the training are summarised in Table 7.7. The CNN architecture 

consists of four convolutional units (CU1, CU2, CU3) followed by a max pooling layer 

(𝑃𝑚𝑎𝑥) and a last one (CU4) followed by an average pooling layer (𝑃𝑎𝑣𝑔). The CUk blocks 

all have 3x3 filters and they have an increasing number of filters (CU1 has 4 filters, 

then CU2, CU3, and CU4 have 8,16 and 32 filters respectively. The Pmax blocks are 3x3 

and reduce the input image size 81 × 101x1 to 1x1x32. The CNN alone adopted as a 

disruption predictor has the performances shown in Table 7.8. The performance of 

this model was quite poor, especially in terms of the number of triggered false 

alarms. Several techniques to process the spectrogram images were tested but the 

overall results did not improve significantly. 

An improvement in the performance of the predictor was achieved by 

combining the features extracted from this model with the ones extracted by another 

CNN from 1D profile data contained in the Te, Ne and Horizontal Bolometer camera 

profiles. For the same training dataset, an architecture with the same structure as 

the one in Figure 7.1 was trained. Moreover, an alarm scheme with a threshold on 

the locked mode was adopted, similarly to [15], [115]. This second architecture is 

described in Figure 7.19, while the alarm scheme is shown in Figure 7.20. The 

performances of this model are also shown in Table 7.8. 

 
Figure 7.18: CNN architecture, where: I is the image input; CUk is the kth convolutional unit, 

composed by the cascade of a convolutional layer (Ck), a batch-normalization layer (Nk) and 

a nonlinear activation layer with ReLU functions (Ak); Pmax and Pavg are the max-pooling and 

average-pooling layers, respectively; D is a dropout layer; FC is a fully-connected layer; S and 

CO are the SoftMax and classification output layers, respectively. 
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Table 7.7: Training parameters of the CNN model for processing MHD data 

Parameters Values 

Optimizer 
Stochastic gradient descent with 

momentum 

Initial learning rate 2.5e-4 

Learning rate drop factor 0.25 

Learning rate drop period (epochs) 20 

Momentum 0.9 

MiniBatch size 512 

Validation frequency (iterations) 50 

Validation stop (consecutive evaluations) 100 

Weight decay (L2 regularization) 1e-4 

 

 

Figure 7.19: CNN architecture, where: IMHD is the image input from the spectrogram of the 

mirnov coil and Iprof is the image input from the 1D plasma profiles; CUk is the kth 

convolutional unit, composed by the cascade of a convolutional layer (Ck), a batch-

normalization layer (Nk) and a nonlinear activation layer with ReLU functions (Ak); Pmax and 

Pavg are the max-pooling and average-pooling layers, respectively; D is a dropout layer; FC is 

a fully-connected layer; S and CO are the SoftMax and classification output layers, 

respectively. 

 

Figure 7.20 Multiple conditions alarm scheme of the CNN disruption predictor 
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Table 7.8: Test performances of the Mirnov CNN configurations 

CNN architecture TD MA FA 

CNNMHD 0% 23.91% 55.73% 

CNNMHD+1Dprofiles without 𝐿𝑀𝑛𝑜𝑟𝑚 1.09% 34.78% 2.29% 

CNNMHD+1Dprofiles with 𝐿𝑀𝑛𝑜𝑟𝑚 1.09% 1.09% 2.29% 

The investigation on the use of spectrogram data for disruption prediction is 

still in progress, and more advanced processing schemes could improve the 

performance of this model. 



 

 



 

 

8 Chapter 8 

Comparison of the models with common metrics 

8.1 Common evaluation metrics 

As discussed in Chapter 2, a plethora of physics-based and data-driven 

algorithms have been developed for disruption prediction in tokamaks. However, 

comparing the different models is not straightforward, due to the lack of common 

standards: 

1) Common sets of input features 

2) Common benchmarks and test data sets 

3) Common evaluation metrics and definitions 

In this thesis, three different machine learning models have been developed for 

disruption prediction: one based on fully connected neural networks, one based on 

GTM, and finally a CNN based predictor. These predictors have been developed 

starting from the set of diagnostics described in Chapter 4, and some specific pre-

processing steps are adopted to adapt the input to each model. Hence, the first two 

conditions for a fair comparison of the approaches are respected. Regarding the 

metrics, the definitions in the literature differ depending on the research group, and 

the same term is adopted with different meanings.  

The models presented in this thesis all provide a disruptive likelihood as 

output, such as the one in Figure 8.1. A threshold on the likelihood is applied to 

binary classify the samples, so that each instance can be assigned to the disrupted 

or non-disrupted class.  

 
Figure 8.1. Disruptive likelihood evolutions in a disrupted discharge. 

The most adopted [15], [72], [76], [79], [81], [82], [85], [92], [93], [99], [144] 

metrics in the disruption prediction literature are the percentages of successfully 

predicted discharges (SPs), missed alarms (MAs), tardy detections (TDs), and false 

alarms (FAs).  MAs are the disruptions for which no alarm is triggered before the 

𝑡𝑒𝑛𝑑, and the FAs are the non-disrupted pulses where the model raises an alarm. The 

tpre-disr talarm

Threshold
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definition of TDs is instead machine dependent since it includes the predicted 

disruptions for which the alarm time is too late to adopt mitigation actions. At JET, 

the necessary time to activate the mitigation system is 10ms [15]. Successfully 

predicted discharges are the sum of correctly predicted disruptions and non-

disrupted discharges, divided by the total number of pulses. Moreover, since the 

disruption prediction task can be described as a binary classification one, also the 

reference metrics from this field are often considered when reporting the results [71], 

[77], [104], [145], [146]. In this case, disruptive pulses are counted as true positives 

(TP) if the model raises an alarm before the 𝑡𝑒𝑛𝑑 , while it is counted as a false 

negative (FN) if no alarm or a tardy alarm is triggered (𝑡𝑒𝑛𝑑 -10 ms is still the 

criterion for defining a tardy alarm). On the other hand, a non-disruptive pulse 

without an alarm is a true negative (TN) and if the model detects a disruptive 

behaviour is a false positive (FP). Figure 8.2 summarizes the adopted metrics in this 

thesis and compares the two definitions. Given the number of TP and TN, the 

successfully predicted shots can be defined as: 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Figure 8.2: A sample non-disrupted discharge (green) and a sample disruption (red) together 

with the main metrics adopted for evaluating the performances of the disruption predictors: 

missed alarms, tardy detections and false alarms and compared to true positives, false 

positives and false negatives.  

Moreover, recent disruption prediction systems are being developed especially 

for avoidance purposes; for a disruption, the goal of an avoidance system is to 

associate the alarm to the presence of a destabilizing mechanism in the plasma, 

regardless of the distance of such event to the ending time tend. A well-timed warning 

time allows the control system to react to the presence of an instability, while with 

a short warning time the disruption is generally mitigated by the mitigation system. 

Thus, the premature alarm rate is replaced by the cumulative warning time 

distribution. 
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8.2 Common Data Base 

The comparison of the three ML DP models has been done referring to the same 

diagnostic signals in Table 8.1 and the same training, validation and test sets in 

Table 8.2. 

Table 8.1 Diagnostic signals, acronyms and units. 

Plasma signal Acronym Diagnostics Dimension 

Electron Temperature 𝑇𝑒 HRTS 1-D 

Electron Density 𝑛𝑒 HRTS 1-D 

Radiated Power 𝑃𝑟𝑎𝑑  Bolometer 1-D 

Total Radiated Power 𝑃𝑟𝑎𝑑−𝑇𝑂𝑇 Bolometer 0-D 

Total Input Power 𝑃𝑇𝑂𝑇 BetaLi 0-D 

Internal Inductance 𝑙𝑖 BetaLi 0-D 

Normalized locked mode LMnorm LMS 0-D 

Table 8.2: Training, Validation and Test set discharges 

Sets Disrupted Non-disrupted JET campaigns 

Training set 63 54 2011-2013 

Validation set 22 16 2011-2013 

Test set 108 149 2011-2020 

8.3 Performance metrics 

In binary classification, a true positive (TP) is counted if a positive instance is 

predicted as positive, whereas it is counted as false negative (FN) if it is predicted as 

negative. A negative instance predicted as negative is defined as true negative (TN), 

whereas it is counted as false positive (FP) when predicted as positive. These four 

values can be summarized in a 2 × 2 confusion matrix, where each row contains the 

instances in the actual class whereas each column contains the instances in the 

predicted class. 

Note that, such definitions do not take into account the warning time Δ𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔 

provided by the predictor to act on the plasma. However, they can be adapted to the 

disruption prediction definitions, introduced in 5.5. including tardy detections (TD) 

and missed alarms (MA) in the counting of FN, and premature detections (PRD) in 

FP. Thus, a direct correspondence between the two definitions for the performance 

evaluation can be found, when the instance is the discharge. Note that, TN are 

evaluated as the difference between negative instances N (number of non-disrupted 

discharges in the test set) and those counted as FA. The positive instances are 

indicated as P (number of disrupted discharges in the test set). 
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Therefore, some performance indices can be used, valid to both the previous 

definitions:  

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝐸𝐶𝐴𝐿𝐿 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

𝑇𝑃

𝑃
 

𝑆𝑃𝐸𝐶𝐼𝐹𝐼𝐶𝐼𝑇𝑌 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

𝑇𝑁

𝑁
 

𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

Using these definitions, the accuracy is equal to the SP metric. In addition, the 

F-score indicators, that encompasses the information of 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 and 𝑅𝐸𝐶𝐴𝐿𝐿, can 

be defined: 

𝐹𝛼 = (1 + 𝛼2) ∙
𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 ∙ 𝑅𝐸𝐶𝐴𝐿𝐿

𝛼2 ∙ 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 + 𝑅𝐸𝐶𝐴𝐿𝐿
 

𝐹1 score is the harmonic mean between 𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 and 𝑅𝐸𝐶𝐴𝐿𝐿, whereas 𝐹2 

assigns a higher cost to the disrupted misclassifications.  

For a binary classifier parametrized by a threshold, as our case, the relative 

trade-off between benefits and costs can be displayed by the receiver operating 

characteristics (ROC), which draws the true positive rate 𝑇𝑃𝑅 = 𝑇𝑃
𝑃⁄  as a function 

of the false negative rate 𝐹𝑁𝑅 = 𝐹𝑁
𝑃⁄  by varying the threshold. Moreover, the area 

under the ROC curve (AUC) can also be used to assess the ability of the model to 

distinguish between the two classes. 

However, as previously cited, in the disruption prediction literature, a most 

informative figure of merit is defined by the cumulative fraction of detected 

disruptions as a function of Δ𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔. It allows to read, in a unique graph, besides 

the successful prediction and the tardy detections, also a general overview of the 

premature detections and the alarm anticipation times. 

All these metrics will be presented in the following to compare the performance 

of the three DP models. 

8.4 FC-NN Results 

The training and the tuning of the FC-NN parameters (threshold, Assertion 

Time) were discussed in Chapter 6 and reported in Table 6.2. As an example, the 

vertical dashed line in Figure 8.3b) identifies the alarm time 𝑡𝑎𝑙𝑎𝑟𝑚, resulting in a 

warning time Δ𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔= 408 ms. 
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Figure 8.3: JET disrupted discharge #94218: a)Time evolution of the seven plasma 

dimensionless parameters: temperature (𝑇𝑒𝑝𝑓), plasma density (𝑛𝑒𝑝𝑓), and radiated power 

(𝑅𝑎𝑑𝑝𝑓−𝐶𝑉𝐴) , and  𝑅𝑎𝑑𝑝𝑓−𝑋𝐷𝐼𝑉  peaking factors, internal inductance 𝑙𝑖 , fraction of radiated 

power 𝑃𝑓𝑟𝑎𝑐, normalized Locked Mode amplitude 𝐿𝑀𝑛𝑜𝑟𝑚 signal; b) Disruptive likelihood of 

the disrupted discharge #94218 supplied by MLP. The dashed black line identifies the alarm 

time. 

In Table 8.3, the confusion matrix of the FC-NN DP model is reported together 

with the prediction performance indices. All the indices have very good values with 

an excellent balance between correct predictions of the disrupted pulses and a very 

limited number of false alarms in regularly terminated pulses. All these numbers 

overcome the results in literature, e.g., [92], where a MLP was trained with only 0-D 

signals without the introduction of information, even if synthesized, from plasma 

profiles. The use of this information really introduces a big benefit on the predictor 

performance. 

Despite these very high-performance index values, and despite the extreme 

simplicity of the model architecture, the FC-NNs suffer to be ‘black boxes’ models, 

which provide a good prediction but are very difficult to interpret. For this reason, 

other ML predictor architectures have been nominated in recent years to be those 

selected for future fusion devices. 
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Table 8.3 Confusion matrix and performance indices of the FC-NN prediction model 

evaluated on the test set. 

  Predicted 

 P+N=257 P=108 N=149 
A

ct
u

a
l P=108 TP=103 FN=5 

N=149 FP=5 TN=144 

 PRECISION=0.954 RECALL=0.954 SPECIFICITY=0.966 

 ACCURACY=0.961 F1=0.954 F2=0.954 

Train SP%=99.15% MA%=0% FA%=1.85% 

Test SP%=96.11% MA%=2.78% FA%=3.36% 

8.5 GTM disruption prediction model results 

All the synthesized features except 𝐿𝑀𝑛𝑜𝑟𝑚  used to train the FC-NN model 

have been used also to train the GTM model. The free parameters of the GTM model, 

reported in Table 8.4, have been optimized with a Tabu Search procedure [147]. In 

Table 8.4, also the resulting GTM map composition is reported. The obtained GTM 

map of the JET operational space is reported in Figure 8.4a), where same disrupted 

pulse #94218 reported in the previous section is tracked. The trajectory of the 

discharge firstly evolves within the green “safe” region and then enter in the red 

disruptive region. The lighter points of the trajectory correspond to the beginning of 

the discharge, whereas the darker one corresponds to the end, at the disruption time 

𝑡𝐷. The corresponding disruptive likelihood is reported in Figure 8.4b). The vertical 

dashed line identifies the alarm time 𝑡𝑎𝑙𝑎𝑟𝑚.  

 
Figure 8.4: a) GTM map of JET operational space with trajectory of the disrupted discharge 

#94218; b) Disruptive likelihood of the disrupted discharge #94218. The dashed black line 

identifies the alarm time. 

The disruptive likelihood has usually a discontinuous trend with numerous 

peaks that could trigger incorrect alarms if an adequate threshold and assertion time 

were not optimized. Moreover, the normalized locked mode signal, not used to train 

the GTM model, is used in the multiple condition alarm scheme shown in Figure 8.5, 

as proposed in [15]. Note that, the number 𝑑  dynamically varies during the 

discharge. As the sampling time is assumed equal to 2 ms, a mean assertion time of 
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10 samples can be easily derived from 𝑑. For the disrupted discharge #94218 in 

Figure 8.4, the GTM correctly predicts the disruption with a resulting warning time 

Δ𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔= 410ms. 

Table 8.4 GTM training parameters 

Parameters Value 

Optimizer Expectation Maximization 

Map dimension 50x50 grid 

Type of RBF Radially symmetric 

Number of RBF 400 

Width σ of the RBF 0.8 

Alarm threshold 100% 

Log Likelihood 9.85 × 105 

Disrupted units 50.48% 

Non-disrupted units 28.16% 

Mixed units 18.52% 

Empty clusters 5.48% 

 

Figure 8.5: Multiple conditions alarm scheme of the GTM disruption predictor (𝑇0 is the 

starting time of the flat-top). 

Table 8.5 reports the confusion matrix and the values of the same prediction 

performance indices reported in Table 8.4. The Recall is very high, which means a 

very high percentage of successful disruption predictions (97.22% in the test), but 

the specificity degrades compared to MLP due to the greater number of false alarms.  

Despite this lower performance, the GTM model has had a considerable 

appreciation for its remarkable capabilities of visualizing the plasma operational 

space and the trajectories of the discharges on the map. This allows one to perform 

disruption prevention actions by monitoring the proximity of the discharge to the 

safe operational boundary. 

Table 8.5: Confusion matrix and performance indices of the GTM prediction model 

evaluated on the test set. 

  Predicted 
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P=108 TP=105 FN=3 

N=149 FP=28 TN=121 

 PRECISION=0.789 RECALL=0.972 SPECIFICITY=0.812 

 ACCURACY=0.879 F1=0.871 F2=0.929 

Train SP%=100% MA%=0% FA%=0% 

Test SP%=87.9% MA%=1.85% FA%=18.79% 

8.6 CNN disruption prediction model 

The architecture of the CNN disruption predictor selected for the comparison 

is reported in Figure 8.6. Due to the ability of the CNN to process images, the plasma 

profiles, which are 1-D signals, have been treated as a single Image, as previously 

described. The other 0-D signals are fed in the CNN downstream of the first filter 

block and after this block has been trained and frozen. The optimized free 

parameters of the training process are reported inTable 8.6. Figure 8.7a) reports the 

Image of the plasma profiles of the disrupted discharge #94218. By feeding the CNN 

with a sliding window of 200 ms on the test discharge, the corresponding disruptive 

likelihood outcomes, as reported in Figure 8.7b). The vertical dashed line identifies 

the alarm time 𝑡𝑎𝑙𝑎𝑟𝑚. Also, the CNN is able to correctly predict the disruption with 

a warning time Δ𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔= 372ms. 

 

Figure 8.6: Architecture of the CNN disruption predictor. 

Table 8.6: CNN training parameters 

Parameters Value 

Optimizer 
Stochastic gradient descent with 

momentum 

Initial learning rate 1x10-4 

Learning rate drop factor 0.1 

Learning rate drop period (epochs) 20 

Momentum 0.9 

MiniBatch size 16 

Validation frequency (iterations) 50 

Validation stop (consecutive evaluations) 100 

Weight decay (L2 regularization) 1x10-4 

Assertion time (samples) 0 
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Figure 8.7: a) Input image of the disrupted discharge #94218; b) Disruptive likelihood of the 

disrupted discharge #94218. The dashed black line identifies the alarm time. 
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Table 8.7 reports the confusion matrix and the values of the prediction 

performance indices of the CNN model. As in the case of the MLP model, all the 

indices have high values getting a tradeoff between successful predictions and false 

alarms. Note that, the plasma profiles have been directly used to feed the CNN model 

without the feature engineering processing implemented for the MLP and GTM. 
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Table 8.7: Confusion matrix and performance indices of the CNN prediction model evaluated 

on the test set. 

  Predicted 

 P+N=257 P=110 N=147 
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ct
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N=149 FP=8 TN=141 

 PRECISION=0.927 RECALL=0.944 SPECIFICITY=0.946 

 ACCURACY=0.946 F1=0.936 F2=0.941 

Train SP%=99.15% MA%=0% FA%=1.852% 

Test SP%=94.6% MA%=2.778 FA%=5.369% 

8.7 Discussion and Conclusions 

An indicator of performance of more immediate reading in the prediction of 

disruptions is the accumulated fraction of detected disruption as a function of the 

warning time Δ𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔. It provides, for each value of the desired warning time (in 

x-axis), the percentage (or per-unit) of predicted disruptions, and allows to read, in 

a unique graph, besides the predicted disruptions and the tardy detections, also a 

general overview of the premature detections and the alarm anticipation times. This 

is also a powerful means for comparing different models. Figure 8.8 reports such 

comparison for the three proposed ML DP models. It is possible to see that the GTM 

(red line) has the earliest warning times, and its cumulative distribution of alarms 

is often to the right of the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 one. These early alarms can be associated to 

the high number of false alarms of the GTM, which has a less smooth disruptive 

likelihood and needs an assertion time to trigger the alarm. Then, the CNN and MLP 

have similar cumulative distributions, with the MLP which triggers one alarm more 

just before the red dashed vertical line, and the CNN which triggers some tardy 

alarms after it. The CNN follows the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 distribution until 300 before the 

disruption, while the MLP tends to be stay to the left of the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 curve.  

Despite the better results in terms of performances, the MLP and the CNN are 

mostly employed as black box algorithms and do not allow to extract significant 

information on the disruption type and possible recovery strategies, while the GTM 

allows to track the position of the discharge and to associate the instability 

mechanism with the position of the point in the map. Among the MLP and the CNN, 

the latter provides an overall higher number of alarms and a generally higher 

warning time keeping a low number of false alarms. 
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Figure 8.8. Accumulated fraction of detected disruptions by the MLP-NN (blue line), the GTM 

(red line) and the CNN (green line) models versus the warning time in the test set. The 

vertical red dashed line allows us to identify tardy detections.  

Figure 8.9 reports, for the three predictors, the ROC curve. It is possible to see 

how the CNN and the MLP have the best compromise between detection of 

disruptions and number of false positives (false alarms), as also visible in the Area 

Under the Curve (AUC) reported in Table 8.8. Moreover, looking at the points of the 

ROC, it is possible to verify that the CNN performance on the test is slightly more 

robust than the MLP one. In fact, both models have an optimal threshold above 0.9, 

but the CNN has an overall accuracy of 89% even with lower thresholds, up to 0.7. 

It is possible to confirm this remark also by comparing the three disruptive 

likelihoods in Figure 8.3b, Figure 8.4b and Figure 8.7b. The CNN has a lower 

disruptive likelihood in the stable phase of the disruption, and then rises abruptly 

in the last part of the discharge, where it is possible to see also a clear variation in 

the images of the profiles. 

 
Figure 8.9: Receiver Operating Curve (ROC) of the MLP-NN (blue line), the GTM (red line) 

and the CNN (green line) models. 
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Table 8.8 AUC and Assertion Time for MLP-NN, GTM, and CNN models. 

DP model AUC Assertion Time (# of samples) 

MLP-NN 0.98 0 

GTM 0.89 10 

CNN 0.98 0 

In the recent years, a plethora of different machine learning models, metrics 

and features has been proposed for the development of disruption predictors. This 

section aims to provide a systematic comparison of some of the most adopted models 

and to select common metrics for the results evaluation. Using the same training 

and test set, an MLP, a GTM and a CNN have been trained as disruption prediction 

starting from the same set of diagnostics: the electron temperature, density and 

radiation profiles, the locked mode signal, the radiated fraction and the internal 

inductance. The GTM and the MLP have been trained using a set of processed 

signals developed from the plasma profiles, the peaking factors, while the CNN is 

able to directly process the spatiotemporal images of the diagnostics. All the 

evaluated methods demonstrated the capability of producing early warning times 

and, in the case of the MLP and of the CNN, with a reduced number of false alarms. 

Despite the GTM performances being a bit below the other two, its advantage is the 

interpretability of the model and the possibility to quantify the distance of the 

tracked discharge from the non-disrupted area of the map. On the other hand, the 

CNN has the advantage of being able to process the input images without the need 

of manually extracting physics-based feature from them, due its capability to process 

image data. The lower interpretability of neural network models could be addressed 

by exploiting analysis algorithms such as Class Activation Mapping [123] and by 

developing predictors which identify specific events. 

Nevertheless, the use of appropriate diagnostic signals, of a physics-based 

feature extraction and of automatic training times specific for each disruption 

allowed to train the models on a reduced number of discharges, to enable the 

detection of destabilization with larger warning times and to maintain the 

performance on more recent discharges up to the 2020 campaign.  

Several metrics were adopted in evaluating the predictors, from the confusion 

matrix to the typical metrics adopted in the machine learning community, such as 

recall, precision. etc. However, among all the proposed methods, the accumulated 

fraction of detected disruptions against the warning time, together with the 

respective false alarms rate allowed to provide a clear and immediate overview of 

the performances of the model, confirming the use of these metrics in the evaluation 

of the predictors. 



 

   

 



 

 

Part 2 Conclusions 

In this Part 2, disruption prediction algorithms based on the GTM (Generative 

Topographic Mapping), FC-NN (Fully Connected Neural Network) and CNN 

(Convolutional Neural Network) have been introduced, as well as an algorithm for 

automatically identifying the pre-disruptive phase of tokamak discharges. This work 

is framed in the complex and broad field of disruption prediction and classification; 

the field addresses the issues related to the integrity preservation of the tokamaks 

and to the better understanding of the physical mechanisms which destabilize the 

plasma. Researchers are interested not only in the classification task, but also in the 

properties of the parameter space where relevant disruption physics occurs, in the 

visualization and interpretation of this data. The use of automatic pre-disruptive 

times as inputs to the three models, rather than manually detected times, resulted 

in encouraging results.  

A performance indicator for predicting disruptions is the accumulated fraction 

of detected disruptions as a function of the warning time (𝛥𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔). This provides, 

for each value of the desired warning time (on the x-axis), the percentage of 

successful predictions and allows for a general overview of successful predictions, 

tardy detections, premature detections, and alarm anticipation times. Figure 8.8 

compares the performance of the three proposed ML DP models using this indicator. 

The GTM (red line) has the earliest warning times, but also has a high number of 

false alarms, as its disruptive likelihood is not smooth and requires an assertion time 

to trigger the alarm. The CNN and MLP have similar cumulative distributions, with 

the MLP triggering one more alarm just before the red dashed vertical line and the 

CNN triggering some tardy alarms after it. The CNN follows the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 

distribution until 300 before the disruption, while the MLP tends to stay to the left 

of the 𝑡𝑝𝑟𝑒−𝑑𝑖𝑠𝑟,𝐴𝑈𝑇 curve. While the MLP and CNN have better performance, they are 

mostly used as black box algorithms and do not provide significant information on 

disruption type or potential recovery strategies. In contrast, the GTM allows for 

tracking the position of the discharge and for associating instability mechanisms 

with the position on the map. Of the MLP and CNN, the CNN has a higher overall 

number of alarms and generally longer warning times, while maintaining a low 

number of false alarms.



 

 



 

 

 

Part 3: Heat-flux computation at W7-X



 

 

9 Chapter 9 

First wall monitoring and state of the art 

9.1 Overview of the wall protection activities 

The monitoring of the first wall components is a very important task in view of 

ITER and next generation power plants, since ITER will have up to 850 MW of power 

transferred to the cooling system through the wall [148]. Infrared cameras are used 

in stellarator and tokamaks to monitor the power loads in the first wall [149]–[152]. 

Infrared thermography is based on the conversion of the light emitted by the 

observed surface into temperature, according to Planck’s law. The light is typically 

in the wavelength ranges of 3-5 µm or 8-14 µm. In the nuclear fusion devices, the 

temperature measurements are used to spot and classify thermal events with 

manual and automatic approaches [150], [151], [153]–[155]. Nevertheless, during 

steady state operation, the temperature of the wall will progressively increase, 

making the detection of hot spots and events from the temperature alone complex. 

In this regard, the heat fluxes provide an estimate of the available time before 

overloading the component, and the material limits are expressed in terms of 

maximum tolerable steady state heat fluxes. For this reason, the real-time 

estimation of heat fluxes is a pivotal activity in view of the future Wendelstein 7-X 

experiments, which aim to demonstrate the feasibility of a steady state operation of 

the device.  

In the coming experimental campaigns, W7-X will sustain the plasmas for up to 

30 minutes [156]. However, the first wall of the machine is exposed to elevated 

temperature and heat loads. In particular, the divertor tiles are subject to the risk 

of erosion and melting if localised heat loads overcome the material limits. For this 

reason, to prevent damages to the wall tiles while keeping high performances during 

the discharges, a real-time monitoring and control of the heat loads in the first wall 

is necessary. 

9.2 First wall of Wendelstein 7-X 

In W7-X, the different parts which constitute the first wall are jointly called 

Plasma Facing Components (PFCs) [157]. Each of them has a specific function:  

• Divertor Targets: this part must sustain the highest heat loads since it is 

where the last closed flux surface of the plasma is formed. There are 10 island 

divertors, each one with a Horizontal target and a Vertical target.  

The Horizontal target is constituted by the Low, Middle and the High Iota 

part. The Low Iota part is made by four CFC modules, TM1H to TM4H, the 

Middle part has two low load modules in fine graphite, TM5H and TM6H, 

and the High Iota part includes CFC modules TM7H-TM9H. The vertical part 

is instead made by three modules, TM1V-TM3V [21]. Figure 9.1 shows the 

different modules and the OP2 divertor geometry.  
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• Inner Wall Shield parts of the main wall. They are made of CuCrZr cooling 

structures, to which graphite tiles are clamped [158].  

• Outer Wall Panels: The wall panels are made of two stainless steel sheets 

welded together to enable the heat transfer [158]. 

• Baffles: the baffles drive the neutral flux particles into the pumping gap. They 

are made of a similar technology to the wall shield, with CFC tiles fixed to a 

copper cooling structure. 

• Pumping gap: this part removes impurities in the plasma from the device. It 

is connected to the Cryo-Vacuum Pump (CVP) which causes a pressure 

gradient and captures the exhaust particles. It is made in steel. 

• Closures: the closures in the poloidal and toroidal directions enclose the 

divertor island, to achieve an increased pressure in this region and improve 

the CVP efficiency. It has a similar composition as the wall shield and the 

baffles. 

 

Figure 9.1: The divertor units are 5 m long and 1 m wide with several target modules: vertical 

targets (TM1V-TM3V), low-iota targets (TM1H-TM4H), low-load target modules (TM5H-

TM6H) and high-iota targets (TM7H-TM9H). The divertor water-cooled tiles are made of 

CFC (Carbon Fibre Composite) except the two low-load central target modules, which are 

made of fine-grain graphite. [21] 

Figure 9.2 shows an example of an image where the measurement of an 

infrared camera is overlaid to the CAD model of the first wall and the different parts 

are highlighted. It is also possible to see how the divertor (horizontal and vertical 

targets in particular) has the highest temperature, due to the close interaction with 

the plasma.  

The materials of these parts are different, depending on the temperatures 

that they must withstand. For instance, the divertor tiles are made of a Carbon Fibre 

Composite (CFC) layer joined to a CuCrZr heat sink structure. The Cu interlayer, 

which should not exceed a sustained temperature of 475 °C, limits the maximum 

temperature of the tiles. This temperature is reached at 10 𝑀𝑊/𝑚2 when the surface 

temperature is 1200 °C [158], [159]. Figure 9.3 shows the maximum tolerable 
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temperature for each PFC. The different materials require an accurate 

reconstruction of the position of each thermal event. 

In OP 1.2, nine immersion tubes and 1 endoscope were used to monitor the 

island divertors [152]. Both the endoscope and the immersion tube are equipped with 

a visible detector to analyse the plasma behaviour and identify events in the visible 

spectrum, and an infrared detector to measure the temperature of the first wall 

components.  

At the beginning of OP2, the diagnostic comprises 8 water-cooled immersion 

tubes and 2 steady-state endoscopes. Moreover, two additional high-resolution 

cameras monitor the two vertical targets observed by the endoscopes, due to the 

reduced field of view of the latter.  The immersion tubes, however, are not suitable 

for the steady-state operation and the endoscopes equipped for steady-state 

operation, will replace them in the later phase of OP2, when the plasma energy will 

progressively increase up to 18  GJ.[21] 

A scene model has been built to provide the mapping between the field of view 

of the cameras and the Computer Aided Design (CAD) geometry of the PFCs [152], 

[157]. The mapping can be built automatically after an automatic spatial calibration 

procedure, providing a camera model which takes into account the lens distortion 

parameters, and provides, for each camera, pixelwise information regarding: the 

observed PFC; the distance of the target material from the camera eye and the angle 

of the line of sight with respect to the surface normal; the 3-D coordinates of the 

observed target. 

 

Figure 9.2 Temperature measurements from the IR camera overlaid to the CAD model of the 

island divertor. Image adapted from [23] 
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Figure 9.3: Infrared image overlaid on the CAD of the different plasma-facing components 

with their maximum operational temperatures [21] 

For the early limiter configuration of W7-X, the IR cameras were calibrated 

and their images were projected in a 2D grid where the curvilinear distances were 

preserved despite the shape of the W7-X vessel [160]. Regarding the divertor 

configuration, in [23] a 2D projection of the divertor surface from the 3D CAD model 

is produced. Each divertor component is made of consecutive thermally insulated 

target elements or the so called divertor fingers. The mapping of the divertor in a 2D 

space eases the adoption of the THEODOR code, which uses finite differences along 

2 dimensions, for the postprocessing of the IR camera images and the analysis of the 

heat fluxes.  

9.3 Thermal protection activities at W7-X and WEST 

Using the temperature data, researchers at W7-X developed an overload 

detection algorithm [21], which analyses the calibrated images and evaluates the 

risk of overload for each PFC by estimating the heat flux with a transient 1D heat 

diffusion assumption [161]. This model is valid for uncooled as well as cooled 

components before reaching the steady-state temperature or during fast transient 

heat loads when the heat propagates into the material down to the actively cooled 

heat sink. Close to the steady state, however, this model overestimates the increase 

in the surface temperature, resulting in a conservative assessment. Furthermore, 

since the estimation involves the approximation of the temperature time derivative 
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with the temperature difference between consecutive IR images, the heat flux 

measurement is very noisy, resulting in a prediction with high uncertainty [21]. 

When the PFCs surface temperature becomes too high, the overload risk rises, 

and the interlock system stops the experiment.  

Unfortunately, this approach can protect the reactor only by prematurely 

terminating the experiment when the integrity of the wall tiles is at risk. For this 

reason, the research activity for the protection of nuclear fusion reactors is focusing 

on the development of automatic routines for thermal events classification and 

characterization, with the final goal of implementing control schemes to allow the 

continuous operation of the device avoiding overloads. 

9.3.1 Classification of thermal events 

The main events detectable at W7-X are hot-spots (both overload and shine-

through ones), surface layers, strike lines, leading edges and reflections. These 

events are present in Figure 9.4, where labelled thermal events are overlayed on the 

CAD of W7-X divertor. From the same Figure 9.4, it is possible to observe that these 

events have different shapes, and they are present in distinct parts of the wall: 

- Hot-spots: The hot-spots are localized areas where the temperature is higher 

than the surroundings. They can be due to overloads or to shine-through effects 

of the plasma heating system. They have generally a rounded shape and it is 

important to identify them before their temperature overcomes the critical 

threshold for compromising the wall integrity. Hence, the same hot-spot may 

cause an alarm or not also depending on the divertor part where it is identified. 

- Surface layers: Because of the tile erosion, thin surface layers can develop on 

the PFCs when the material is re-deposited. The surface layers have low 

thermal capacity and heat transfer properties. For this reason, surface layers 

appear in certain specific parts of the wall where the plasma-surface interaction 

caused the redeposition of the material. They may be misclassified as hot-spots 

and trigger false alarms [161], [162]. In [162] a method for automatically 

detecting surface layers has been developed to avoid the triggering of false 

alarms by the hot spot detection system. To identify surface layers, dedicated 

discharges with special modulated heat are periodically run and analysed. 

- Strike lines: Strike lines are elevated temperature areas which are determined 

by the interaction of the plasma with the divertor. Their shape is usually long 

and narrow, and they are oriented along the divertor targets. They must be 

localized on the divertor to avoid damages to the first wall, and they must be 

tracked to avoid erosion and melting. Strike line characterization, modelling 

and tracking algorithms are under development for the real-time operation of 

W7-X. 

- Leading edges: The leading-edge patterns are due to the misalignments and 

gaps between the divertor tiles. As well as surface layers, since the leading 

edges are due to misalignments in the tile positioning, they can be detected by 
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their position on the divertor. Moreover, they are oriented along the separation 

between tiles [163]. 

- Reflections: Due to the disposition of the divertor islands, a thermal event 

present in one divertor could be reflected and captured in the orthogonally 

placed one. Reflections are not consistent in time, and they are mirroring a 

phenomenon seen on the corresponding tile with lower intensity. 

This allows the possibility to manually classify them by analysing the IR 

images and cross checking with other input data (such as the input power from 

heating systems). Unfortunately, the IR diagnostics measure the first wall 

temperature with a frame rate of 100 Hz, making it difficult for the operator to 

monitor the videos and act on the system in real-time. For this reason, a fully 

automatic routine is necessary to detect specific thermal events and their properties, 

enabling the implementation of feedback control schemes. In [164], [165] authors 

discuss the real-time system for the development of the thermal event classification 

at W7-X and in [166] their implementation on the GPU for the real-time system is 

discussed.  

At WEST instead, researchers implemented an R-CNN approach for the 

automatic classification of the events from the temperature data of the IR cameras 

[155], after a thorough manual labelling of several IR camera videos. The events 

detected include hot-spots, strike points and reflections among the seven classes 

[155]. 

 

Figure 9.4: Thermal events overlayed on the CAD of the W7-X divertor [166] 
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9.3.2 Control of thermal events and real-time heat flux estimation 

Presently, the termination of the experiment is the only possible action in the 

existing concept of the monitoring system at W7-X. Instead, researchers are 

investigating the possibility to implement active control schemes to move strike-lines 

away from a specific undesired position, i.e. a leading edge or the edge of the divertor 

target plates, by changing the currents of the control coils. For this purpose, the 

relationship between the control coil currents and the strike-line patterns has been 

studied during OP 1.2b [167]. Moreover, the electron cyclotron current drive (ECCD) 

was also tested in the first divertor campaign for an active control of the divertor 

power distribution, for which heat flux computation is essential. Similarly, [168], 

[169] evaluated the relationship between the magnetic configuration parameters, 

due to the planar and non-planar coils currents, and the heat distribution patterns 

with simulations and measured data for OP 1.1. 

 

 



 

 

 

 



 

 

 

10 Chapter 10 

Heat Flux computation at Wendelstein 7-X 

10.1 Introduction 

Wendelstein 7-X, the world largest superconducting advanced stellarator, aims 

to demonstrate high-performance steady-state experiments lasting up to 30 minutes. 

To this purpose, high heat flux (HHF) divertors capable of withstanding steady-state 

heat fluxes up to 10 MW/m2 have been installed on the machine, in preparation for 

the next experimental campaign (OP2.1). The real-time heat flux estimation is 

pivotal for monitoring the divertor heat loads during the experiments. To measure 

the heat fluxes, an estimation of the temperature distribution in the bulk of the tile 

is necessary, which is provided by modelling the diffusion process inside the tile. For 

this goal, the temperature data has been processed with the THEODOR code [23], 

[151], [170] which estimates the heat flux on the surface of the tiles. In fact, strike-

line patterns are identified starting from the heat flux images. Hence, the 

computation of heat fluxes is a necessary step for implementing a feedback control 

to ensure the safety of the first wall. In fact, for the implementation of real-time heat 

load control strategies, it is necessary to be able to estimate the divertor heat loads 

in real-time. Currently, THEODOR cannot be run in the real-time GPU at 

Wendelstein 7-X. Hence, part of the work of this thesis focused on the refactoring of 

the THEODOR code and on the development of alternative approaches for the real-

time estimation of heat fluxes at W7-X. 

This Chapter describes the study of the code, its optimization and 

parallelization in order to reduce the computation time. 

10.2 Heat Flux calculation and THEODOR 

The infrared cameras installed at W7-X monitor the surface temperature of 

each divertor. Then, since the THEODOR code is a Finite Difference Method (FDM) 

algorithm, it processes the temperature data in a 2D grid, which makes the 

projection of the measurements from 3D to 2D necessary [23]. The projection is made 

for each separate finger, which are separate thermally insulated divertor parts, to 

preserve the geometry of the divertor. In fact, the fingers are designed and 

manufactured to be flat. Moreover, the mapping also eases the visualization of the 

temperature or heat flux patterns on the different divertor modules.  

At the beginning of the experiment the tile is at thermal equilibrium and there 

are not significant variations between the surface and the bottom temperature. 

However, as the experiment starts, the increase of the surface temperature 

determines a diffusion process in the bulk. Hence, the code should estimate the 

evolution of the temperature distribution in the target. To obtain the temperature 

distribution, the heat diffusion equation is solved consecutively:  
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 𝜌𝑐𝑝 =
𝜕𝑇

𝜕𝑡
= 𝛻(𝑘(𝑇)𝛻𝑇) (10-1) 

where, ρ is the density of the target material and 𝑐𝑝 is the specific heat capacity 

of the target material. The equation is a nonlinear partial differential equation 

(PDE) and solving it directly is computationally demanding. The THEODOR code is 

based on the definition of the heat potential 𝑢: 

 𝑢 = ∫ 𝑘(𝑡)𝑑𝑡
𝑇

0

 (10-2) 

Using this definition, the derivatives of 𝑢 can be rewritten as: 
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∇u = 

𝑢

𝑇
∇𝑇 = 𝑘(𝑇)∇𝑇 (10-4) 

 
∇2𝑢 = ∇(𝑘(𝑇)∇𝑇) (10-5) 

Now, the heat diffusion equation can be represented as a quasilinear partial 

differential equation: 

 𝜕𝑢

𝜕𝑡
=  𝐷(𝑢) (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2) (10-6) 

Here, 𝐷(𝑢) is the heat diffusion coefficient, x is the direction along the depth of 

the tile, y is the poloidal direction and z is the toroidal direction, as depicted in the 

sketch of the tile of Figure 10.1. Finally, 𝑢 is the heat-potential, defined as: 

𝑢(𝑇) = ∫ 𝑘(𝑇)𝑑𝑇
𝑇

0

 (10-7) 

 

Figure 10.1: sketch of the divertor tile. 𝑥 is the direction along the depth of the tile, 𝑦 is the 

direction along the length of the tile (poloidal direction) and 𝑧  is the toroidal direction. 

Dashed lines segment a profile, the computation domain of the PDE 

In this formulation, the toroidal heat diffusion is neglected due to the presence 

of a homogeneous distribution of the strike line in finite toroidal range, as also 

reported in [23]. To solve a PDE (i.e., to make the solution unique), initial and 

boundary conditions must be specified. The surface temperature is sampled from the 

infrared cameras and acts as a boundary condition at the surface of the profile, while 
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the lateral edges are considered adiabatic. The mapping from the camera pixels to 

the real coordinates of the divertor points is provided by the spatial calibration 

techniques presented in [160].  

When estimating the evolution of the temperature in the tile, the initial condition 

can be either assumed as a uniform constant temperature (at the beginning of the 

experiment) or reconstructed from the previous frames (during the experiment). The 

same conditions are assumed in the THEODOR code.  

However, the code initially present only allowed for "offline" use, that is, for data 

processing at the end of the experiment, whereas real-time monitoring would 

obviously require real-time computation. In real-time use, the code should be used 

as follows:  

1) The first temperature measurement made using the thermal imaging camera 

allows us to assume the temperature distribution in the tile. Since the first 

measurement is taken before any plasma is present, and the experiments are 

interspersed, the tile has a substantially uniform temperature.  

2) Every 10 ms, the temperature of the divertor is measured using a thermal 

camera, and this becomes the boundary condition of the numerical problem 

to be solved. The initial condition is given by the assumption made in the 

previous iteration or step 1 (it is necessary to know the initial temperature 

throughout the tile). 

3) Diffusion is simulated for the required time and the heat fluxes are estimated, 

i.e.: 

 𝑞 = −
∂𝑢

𝜕𝑥
 (10-8) 

Surface heat fluxes are the ones of interest for the application. The 𝑥 is the 

depth of the tile (vertical dimension) and 𝑦 its length (horizontal). 

10.3 Single step version of the code and optimization 

To implement a real-time version, it was necessary to allow the diffusion 

calculation for only one time instant at a time, as shown in Figure 10.2. Figure 10.3, 

on the other hand, shows a comparison of the heat flux calculation performed with 

the two codes. 
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Figure 10.2: Left, the code in its offline version, used to process the data at the end of the 

experiment; right, the code that can be used for real-time use, one time step at a time  

 

Figure 10.3: a) calculation of heat fluxes on the divertor using the version of the code for real-

time use; b) calculation of heat fluxes on the divertor performed using the offline code. c) 

difference between the two results 

Then, the performance of the code was measured: it was found that compared 

with the timing required for real-time use, which would require a maximum 

computation time of about 80 ms, the performance was insufficient (about 600 ms). 

Therefore, the code was optimized, and parallelization attempts were made using 

multi-processor computation. To do this, the code was loaded on a computer with 50 

processors available so that the feasibility of parallelization of the code could be 

studied. The result of the parallelization is shown in Figure 10.4. In summary, it was 

shown that although the code numerically solves the equation on many mutually 

independent components (as can be seen from the almost 1/n reduction for the first 

values of the computation time), the scalability of the computation is possible only 

up to about 6 processes. This fact is due both to the creation of new processes 

necessary for parallelization and to the fact that the most onerous part of the code 

(the numerical resolution of the equation) is actually implemented efficiently via a 
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C++ executable. However, the time required to calculate thermal fluxes with 6 

processes was substantially reduced to 1/6 the value with one processor. 

 

Figure 10.4: parallelization of heat flow calculation. In abscissa is represented the number of 

independent processors used, in the y-axis the computation time 

In addition, further optimization was performed using the Numba library [171], 

for transforming python code into pseudo-compiled (or "just in time" compiled) code. 

This allowed, on the same machine used for parallelization, to achieve computation 

times around 80 ms. This time is ideally compatible with that of a real-time 

implementation; however, to confirm the results obtained, the code should be tested 

on the machine used for real-time control of the experiments. It was not possible to 

implement parallelization using GPUs with the version of the code available, as it 

would be necessary to rewrite the code entirely to allow data processing using GPU 

kernels. 

 



 

 



 

 

11 Chapter 11 

Physics Informed Neural Networks for heat flux 

estimation 

11.1 Introduction 

For porting the THEODOR code in the real-time system at W7-X, a GPU 

parallel implementation of the code should be developed. Hence, a Physics Informed 

Neural Network (PINN) model is proposed to speed up the heat-flux computation 

towards the real-time implementation. PINNs have several advantages with respect 

to the other numerical PDE solvers: they can be used to regress nonlinear PDE 

operators; they are mesh-free and can handle irregular domains; they are able to 

exploit the parallel computing capabilities of Graphical Processing Units (GPUs) 

[42], [43], [54]. Physics informed models can be trained to numerically solve partial 

differential equations by including physics-based criteria in the NN loss function. 

The "physics informed" models exploit the possibility of calculating the gradient of 

the output with respect to the input. In this case, the model is trained using as input 

the spatial position and time instant at which the solution is to be calculated, while 

the function to be minimized is based on the heat diffusion PDE described in 10.  

11.2 Example with 𝜶 = 𝟏 

A first physics-informed neural network model was developed to solve heat 

diffusion in an arbitrary two-dimensional tile with 1m x 1m sides, time domain up 

to 0.1 seconds and constant diffusion coefficient 𝐷 = 1
𝑚2

𝑠
. A sketch of the proposed 

model is reported in Figure 11.1. The architecture of the neural network is that of a 

FC-NN with two hidden layers. Specifically, the developed neural network has an 

input layer with 3 scalar inputs, which indicate where the function should be 

calculated, 2 hidden layers with 32 neurons each and a hyperbolic tangent activation 

function, and a linear output layer where the function 𝑢 is reconstructed. The model 

was developed and trained using the DeepXDE library for PINN [45]. 
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Figure 11.1: Scheme of a Physics Informed NN: the inputs are the scalar values of the time 

and spatial position where solution of the PDE should be computed. The network output can 

be automatically derived with respect to the inputs using automatic differentiation, enabling 

the satisfaction of the PDE. The other components of the loss are the boundary and initial 

conditions of the PDE. Adapted from [45] 

Since 𝛼 is constant and equal to 1, the value of 𝑢 and 𝑇 coincide. The output of 

the network is normalized between 0 and 1. In this first example, the initial condition 

of the problem is a uniform value equal to 0, while the boundary condition is a 

Gaussian on the upper surface ( 𝑥 = 0 ), with mean equal to 0.5 and standard 

deviation equal to 0.1. The boundary condition on the side walls (𝑦 = 0 and 𝑦 = 1) is 

an adiabatic condition, so the normal derivative of 𝑢 must be 0. There is no boundary 

condition on the bottom of the tile (the 𝑥 = 1 wall) in the THEODOR code, so it has 

not been implemented in this model either. 

Figure 11.2 shows the training of the network for 500000 iterations, with a 

learning rate of 3 ⋅ 10−4. For training, 10000 points are randomly sampled from the 

domain of the function, i.e. the parallelepiped of sides (𝑥, 𝑦, 𝑡)  =  (1,1,0.1), while 100 

points are sampled on each boundary surface. In order to maintain a proportion 

between the point density along surfaces t=0 (initial condition, space x space 

dimensions) and surfaces 𝑥 = 0 , 𝑦 = 0,  𝑦 = 1  (boundary conditions, space x time 

dimensions), a link must be established between the linear and volumetric point 

density. To maintain the same linear point density, the average sampling steps along 

𝑥 and 𝑦 (𝑑𝑥, 𝑑𝑦) will have to be equal, while the average sampling step along 𝑡 (𝑑𝑡) 

will be calculated by scaling the spatial dimension through 𝛼:  𝑑𝑡 =
𝑑𝑥2

𝛼
. This 

relationship comes from the normalization operation of the PDE.  

At this point, the proportionality between the points on the surface and those 

in the volume can be maintained if the number of points on the volume will be 𝑁𝑉 =

𝑁𝑥𝑁𝑦𝑁𝑡 , while each surface will have 𝑁𝑆𝑥 = 𝑁𝑦𝑁𝑡 ,  𝑁𝑆𝑦 = 𝑁𝑥𝑁𝑡 , 𝑁𝑆𝑡 = 𝑁𝑥𝑁𝑦   points, 

where 𝑁𝑥 , 𝑁𝑦, 𝑁𝑡 are the number of points along 𝑥, 𝑦, 𝑡. The training points are re-

sampled every 10000 iterations. A sum of several contributions is used as the error 

function: the error on the PDE approximation, the error with respect to the value of 

the initial condition, the error with respect to the value of each boundary condition. 

In this case, the network is said to weakly satisfy the boundary conditions and the 
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initial condition, in contrast to the case in which the output of the network is 

multiplied by a distance function with respect to the edge of the domain and summed 

by a function that constrains the output to the values of the boundary conditions (in 

this case we speak of strong imposition of the boundary conditions). The error 

function can therefore be written as: 

𝐿(𝑢, 𝑥, 𝑦, 𝑡) = 〈(
𝜕𝑢

𝜕𝑡
− 𝐷 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2))

2

〉  + 〈(𝑢(𝑥, 𝑦, 0) −  𝑢0)2〉 + 〈(
𝜕𝑢

𝜕𝑦
(𝑥, 𝑦𝑏 , 𝑡) − 𝑔𝐸)

2

〉 + 〈(𝑢(0, 𝑦, 𝑡) −  𝑢𝑏)2〉 (11-1) 

Where 𝑢0 is the initial condition of the PDE, 𝑢𝑏 is the boundary condition on 

the surface of the tile, expressed as the value of the function at the edge of the tile 

(or Dirichlet condition) and 𝑔𝐸  is the boundary condition on the sides of the tile, 

which imposes a condition on the value of the derivative (Neumann condition). 

Finally, 𝑁𝐷 , 𝑁0, 𝑁𝑏,𝑦. and 𝑁𝑏,𝑥  are the number of points of in the domain, initial 

condition y and x boundary conditions respectively. The error function used is the 

mean square error (MSE). Together with the training error, the error on test points, 

which the network does not use for training, is evaluated. For the test, 10000 points 

were chosen randomly. Figure 11.2 shows that the network achieves convergence for 

an error of approximately 2 ⋅ 10−3  and has no overfitting effects. In general, 

overfitting is the phenomenon whereby the data-driven model loses the ability to 

generalize to new data because it has approximated the training set data too 

specifically (hence the name overfitting). In general, it is not possible to provide the 

data-driven model with enough data to cover the entire variation space of the input 

variables. In the case of physics-informed networks, however, the boundaries of the 

domain are delimited and the points within it are randomly sampled, allowing the 

entire domain of the function to be explored. 

 
Figure 11.2: Network training loss: in blue training loss, in orange test loss 

Figures 11.3-11.4 show the results of the reconstruction using the neural 

network for two different simulation time instants, compared with the 

reconstruction performed by the THEODOR code. Note that the temperature output 

from the network is dimensionless as the range can simply be rescaled to represent 
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the scale of variation of the real case. In Figure 11.3c, the error at the top of the tile 

is small and its values tend to concentrate towards the middle of the tile. 

Furthermore, Figure 11.4c shows the shift of the error towards the bottom of the tile, 

which is however the surface for which no boundary condition has been defined. In 

contrast, the approximation of the function at the top of the tile tends to improve 

over time, as can be seen in the comparison of Figure 11.3c and Figure 11.4c. 

The network can then calculate heat fluxes by determining the gradient of the 

output with respect to the input. In particular, if we are interested in the heat fluxes 

at the surface, we have to calculate the derivative with respect to the normal:  𝑞 =

−
𝜕𝑢

𝜕𝑥
  i.e. the derivative in the direction normal to the surface. Figure 11.5-11.6 show 

the thermal fluxes reconstructed in this way, compared with those of THEODOR. 

Again, the error on the surface decreases over time, as can be seen by comparing 

Figures 11.5c-11-6c. In general, the method of 'physics-informed' neural networks 

seems promising in view of its application for the calculation of heat fluxes in the 

real problem.  

 
Figure 11.3: Temperature reconstruction at time 𝑡 = 0.036𝑠 a) Temperature reconstructed 

using the PINN; b) Temperature reconstructed using THEODOR; c) Absolute error 

 
Figure 11.4: Temperature reconstruction at time 𝑡 = 0.095𝑠 a) Temperature reconstructed 

using the PINN; b) Temperature reconstructed using THEODOR; c) Absolute error 
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Figure 11.5: Heat flux reconstruction at time 𝑡 = 0.034𝑠 a) Heat flux reconstructed using the 

PINN; b) Heat flux reconstructed using THEODOR; c) Absolute error 

 
Figure 11.6: Heat flux reconstruction at time 𝑡 = 0.095𝑠 a) Heat flux reconstructed using the 

PINN; b) Heat flux reconstructed using THEODOR; c) Absolute error 

11.3 Application in a real size domain 

In the following sub-sections, the results of two simulations of the heat 

diffusion in the divertor tile are discussed. For both examples, the computational 

domain is consistent with the typical tile profile size, with (𝑥𝑚𝑎𝑥 ,𝑦𝑚𝑎𝑥 ) = (28 mm, 

560mm) sides, and PDE evolution time up to 𝑡𝑒𝑛𝑑 = 0.1s. The network spatial inputs 

are rescaled by dividing them with respect to 𝑦𝑚𝑎𝑥 , and the time is divided by 𝑡𝑒𝑛𝑑 . 

Finally, the diffusion coefficient 𝐷 is then rescaled accordingly. The computational 

domain for the NN becomes: 

{

𝑥𝑁 ∈ [0,0.05]
𝑦𝑁 ∈ [0,1]

𝑡𝑁 ∈ [0,1]
, 𝐷𝑁 = 𝐷 ⋅

𝑡𝑒𝑛𝑑

𝑦𝑚𝑎𝑥 
2
 (11-2) 

where 𝐷𝑁 is the dimensionless diffusion coefficient for the normalized equation 

and (𝑥𝑁 , 𝑦𝑁 , 𝑡𝑁) the normalized inputs to the PINN. In the first example, the PINN 

learns the equation with a constant 𝐷 = 70 ⋅ 10−6mm2/s, while in the second one 

material properties are introduced and 𝐷(𝑇) depends on the temperature (hence on 

the heat potential 𝑢). In both examples the initial and boundary conditions are fixed. 
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11.3.1 Architecture optimization 

Following to the application of the model in the toy model, the parameters of 

the problem were The number of layers, the number of neurons per layer and the 

learning rate were optimized with a Bayesian optimization scheme, an automatic 

optimization scheme where the network performance is modelled as a sample from 

a Gaussian Process [172]. The optimized network is a Fully Connected Neural 

Network (FC-NN) with 10 hidden layers, each of them with 97 neurons, and with a 

hyperbolic tangent (tanh) activation function. 

11.3.2 Diffusion with constant D 

The initial condition of this example is a profile with a uniform heat potential 

of 0, while the top boundary condition (in the normalized domain) is a gaussian heat 

potential on the upper surface (x=0), with amplitude 1, centered in 0.5 and with a 

standard deviation of 0.1. The amplitude of the gaussian is normalized between 0 

and 1, but a simple rescaling of the output would allow to adapt the range to the real 

case. Figure 11.7a compares the heat flux estimated with the PINN model to the 

ones computed with a 2D version of THEODOR, with a relative error below 2% on 

the heat flux values. 
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Figure 11.7: a) - constant D case: Heat flux on the surface of a tile by THEODOR (blue line), 

PINN (orange line) and Error (green line) in the absolute and percentage scale, respectively 

at the left and right side of the plot. Red dashed lines delimit the error range in [-2,2]% (right 

y-axis). b) – 𝐷(𝑇) case: Heat flux on the surface of a tile with THEODOR (blue line), PINN 

(orange line) and Error (green line) in the absolute and percentage scale, respectively at the 

left and right side of the plot. Red dashed lines delimit the error range in [-3,8]% (right y-

axis) 

 

Figure 11.8:  a): PINN reconstruction of the temperature distribution in the profile at t=0.1s. 

b): THEODOR reconstruction of the temperature distribution in the profile at t=0.1s c): Error 

computed as the absolute difference value between the two reconstructions 

11.3.3 Diffusion with material properties 

In this second example, the temperature dependency has been implemented by 

using the following nonlinear interpolation for 𝐷: 

 
𝐷(𝑇) = 𝑎𝑑0 + 𝑏𝑑0/ (1 +

𝑇

𝑇𝑑0
)

2

  (11-3) 

which is the same applied in THEODOR [23], [151]. This formula has been 

implemented by modifying the PDE loss: the 𝑇 is computed from the heat potential 

𝑢 by inverting equation (2) and then 𝐷(𝑢) is computed and used in the 𝐿𝑃𝐷𝐸. Since 

there is a nonlinear dependency between 𝐷 and T, the boundary condition was not 

normalized as in the previous case, but it was considered as a gaussian of 

temperature between 25°C and 2000°C. In this case, at the end of the simulation it 

was possible to achieve an error smaller than 8% on the temperature and heat-flux 
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reconstructions. The results of the heat flux reconstruction are reported in Figure 

11.7b, while the temperature reconstruction for 𝑡 =  0.1𝑠 is shown in Figure 11.8. 

11.4 Comparison of the computation time 

To verify that the PINN can easily be ported on a GPU and benefit from the 

parallel computation of the values in the domain, the computation times of 

THEODOR and of the PINN model were compared on a tile with an increasing 

number of points. The PINN model was run on a GPU while THEODOR was run on 

a CPU on the same laptop. The results are shown in Figure 11.9. It is possible to see 

that, while the THEODOR computation time (red line) increases with the number of 

points that must be evaluated, the PINN computation time (blue line) is generally 

lower and stay constant despite the increasing number of points.  

 

Figure 11.9: Elapsed computation time of the heat equation PDE for the PINN running on a 

GPU in blue and the THEODOR code running on a CPU in red 

11.5 Further developments   

In this Chapter, the development of a PINN model for the solution of the heat 

equation PDE has been addressed. However, the conditions of this problem still 

differ from the real application. In a real-time framework, the initial conditions will 

change, and the model must be able to solve the PDE starting from any initial 

condition. Hence, an improvement of the model is under development, exploiting the 

possibility to enter the parameters of the PDE, such as the boundary and initial 

conditions, as input to the network. This is a current problem under study in the 

physics informed machine learning community. This is currently a problem under 

study in the physics informed machine learning community [42], [43], [54], [56].  

11.5.1 Generalization of the initial condition and next steps 

A first step towards the development of the model has been the extraction or 

generation of a set of initial conditions, which should be representative of the variety 

of the possible experimental conditions, to train the physics informed model. For this 

purpose, the heat-flux profiles from a set of W7-X experiments were analyzed. The 
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set includes six experiments in standard configuration performed during OP1.2b 

campaign for strike line control studies [167]. For each profile in the divertor, the 

profile length was normalized, and the profile shape was compared to the other ones, 

in order to select a reduced set of relevant profiles. A metric based on the Root 

Normalised Mean Squared Error (RNMSE) was introduced to compare two different 

profiles 𝑦1 and 𝑦2: 

 
𝑅𝑁𝑀𝑆𝐸 = √

∑ (𝑦1 − 𝑦2)2
𝑖

∑ (𝑦1)2
𝑖

 (11-4) 

 

 

Figure 11.10: a) Plot of all the profiles from the selected experiments. b) Plot of the 185 

extracted profiles 

A profile was selected from the list of profiles, if the RNMSE was higher than 

a threshold for all the previously extracted profiles. With a threshold of 0.15, a total 

of 185 profiles was extracted from the 80000 starting ones. Figure 11.10a shows all 

the profiles, while Figure 11.10b shows the extracted profiles. It is possible to see 

that the main different shapes of profiles are preserved. The goal is the extraction of 

a sufficient number of example profiles to develop a generative approach. In 

particular, by parametrizing the example profiles it is possible to model the variation 

of their parameters to enable the generation of synthetic profiles for the training of 

the PINN. 

The profiles have been then parametrized with a gaussian fitting. Three 

gaussians and a bias was used to fit every profile, for a total of 10 fitting parameters. 

Since there is a correlation among the different parameters, to generate new profiles 

the parameter matrix has been decomposed in principal components by means of 

Principal Component Analysis [167]. Finally, a new set of gaussian parameters can 

be generated by shuffling each principal component [173], so that the same 

statistical distributions of and correlation among principal components is preserved, 

and reconstructing the parameters by PCA inversion. 

The Pearson Correlation Coefficient of the original matrix is compared with 

the one reconstructed with the shuffling in Figure 11.11a-c, while the distribution of 

the parameters of one gaussian is shown in Figure 11.12. Among all the parameters, 
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the standard deviation parameter was slightly more impacted from the 

reconstruction than the other ones. 

 

Figure 11.11: a) Pearson Correlation Coefficients of the original fitting parameters data. b) 

Pearson Correlation Coefficients of the fitting parameters data reconstructed with the 

shuffled PC. c) Difference between the two matrices (absolute value) 

 

Figure 11.12: Cumulative distributions of the parameters of one of the gaussians, in the 

original matrix and in the reconstructed one. From top to bottom, cumulative distribution of 

the amplitude, of the mean and of the standard deviation of the gaussian. 

In Figure 11.13, an example of an extracted profile, together with the fitting 

and the generated profile is shown. It is possible to notice the good quality of the fit 

and that the generated profile retains the properties of the extracted one. 
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Figure 11.13: The yellow line shows the original profile extracted from the experimental data, 

the red one the gaussian fitting and the blue one is a profile generated with the shuffling of 

the PC loadings. 

11.5.2 Training of a parametrized model   

The technique presented in this report can be used to generate an arbitrary 

number of profiles by simply fitting the distribution of the PC loadings and by 

sampling randomly from their distribution to create new profiles. Then a 

parametrized model, such as the ones in [43], [54], [55], will be trained by sampling 

the initial condition in a fixed set of points and a training procedure will be 

performed. 

During the new training procedure, the model will learn the solution of a 

certain PDE (i.e. for a specific initial condition) for a given number of epochs, and 

then the initial condition value will be randomly resampled so that the model will 

need to learn the solution operator of the PDE to reduce the loss.  

Since the new divertor will have a boundary condition on the bottom of the tile, 

i.e., the temperature of the cooling water, another boundary condition of the problem 

will be introduced to take into account the effect of active cooling.



 

 



 

 

Part 3 Conclusions 

In view of ITER and of the development of nuclear fusion power plants, the 

handling of the high heat fluxes due to the plasma during the continuous operation 

of the reactor is a critical task. At the moment, infrared cameras are used in 

stellarator and tokamaks to monitor the temperature and the power loads 

transferred to the first wall, but usually the power loads are analysed in post 

processing after each pulse, as it is currently done at W7-X. 

However, in the coming experimental campaigns, W7-X will sustain the plasmas 

for up to 30 minutes, and the first wall of the machine will be exposed to hot 

temperature and heat loads for long times. In particular, the divertor tiles are 

subject to the risk of erosion and melting if localised heat loads overcome the 

material limits. For this reason, to prevent damages to the wall tiles while keeping 

high performances during the discharges, researchers are investigating approaches 

for the real-time monitoring and control of the heat loads in the first wall.  

A system for the protection of the first wall is currently under development at 

W7-X, and it monitors the IR camera data to find overloads in the different wall 

parts. Moreover, it estimates heat fluxes with a 1D transient model to preventively 

stop the operation or the heating system before the maximum operational surface 

temperature of a component is reached.  

On the other hand, the real-time control of heat loads requires a better 

measurement of the heat flux patterns. The relationship between the magnetic 

configuration parameters and the heat load patterns non-linear and complex, 

researchers adopted machine learning approaches for modelling it in specific OP 1.2b 

experiments, with promising results. In these studies, heat fluxes were 

reconstructed using THEODOR, which is a FDM code for the offline post-processing 

of IR measurement data. For the application of a feedback control scheme, the heat 

fluxes should be available in real-time ideally after each frame (the IR camera 

samples at 100 Hz), which requires the speed up of the code. 

This Part described the activity in the refactoring of the THEODOR code 

exploiting the parallel computation of the heat fluxes of each finger across different 

CPUs and a compilation with Numba to achieve computation times around 80 ms. 

This time is ideally compatible with that of a real-time implementation; however, 

the real-time control system could only run the code on a GPU, since the CPU is used 

for handling other critical codes. It was not possible to implement parallelization 

using GPUs with the version of the code available, as it would be necessary to rewrite 

the code entirely to allow data processing using GPU kernels.  

For this reason, a Physics-Informed Neural Network approach is adopted to port 

the computation of the heat partial differential equation on a GPU. The PINN 

method is based on recent advances in the automatic differentiation and machine 

learning and provides a very flexible model to solve a PDE in a mesh-free domain. 
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Moreover, the PINN can be straightforwardly run on a GPU, hence allowing the real-

time use of the method. In the simulations shown in this work, the PINN allows to 

compute the PDE solution and the heat flux computation error with respect to 

THEODOR is lower than 8%. Future work on the PINN model will focus on providing 

initial and boundary conditions as inputs, hence solving a parametrized PDE and 

enabling the real-time evaluation of the heat flux. 
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Conclusions and future work 

Problems addressed 

Nuclear fusion research has the ambitious goal of providing an almost 

unlimited amount of energy with a very low impact for the environment. However, 

the research faces great technological challenges for the development of a fusion 

power plant. The next generation devices, such as the International Thermonuclear 

Experimental Reactor (ITER), the Smallest Private-Funded Affordable Robust 

Compact (SPARC) are being built with the aim of demonstrating the feasibility of 

the magnetic confinement fusion approach for energy production, since they should 

reach a net energy gain from the fusion reaction (Q>1). Moreover, stellarator reactor 

design is being investigated. 

In view of the next generation devices, one of the main challenges regards the 

protection of the reactor components from the interaction with the plasma. The first 

challenge is posed by disruptions in Tokamaks; the huge electromechanical stresses 

may compromise the integrity of the magnetic coils and of the first wall. The second 

challenge is the handling of high heat fluxes during the operation of nuclear fusion 

devices, especially in view of continuous operation of a nuclear fusion power plant. 

Both these challenges undermine the economic viability of the power plants. In fact, 

for the plant to be viable, a very high capacity factor must be guaranteed, which 

means that the machine should be in operation most of the time and that the 

maintenance time should be minimized. At the moment, devices are operated in a 

pulsed manner and the longest discharge lasted around 17 minutes, and it was 

achieved at the Experimental Advanced Superconducting Tokamak (EAST). 

Disruption prediction with data-driven methods 

In the case of tokamak devices, the field of disruption prediction aims to 

understand the physical mechanisms which destabilize the plasma and to their 

automatic detection. Unfortunately, despite the presence of very comprehensive 

simulation codes, the real-time adoption of simulators for the safe operation of the 

device is not yet possible, and most of disruption predictors are data-driven models 

developed using the data from previous experiments.  

 This thesis is framed in this context and contributed with the development of 

an algorithm for automatically identifying the pre-disruptive phase of tokamak 

discharges, with the aim of automating the retraining of data-driven models, which 

are typically subject to the problem of ageing. Moreover, disruption prediction 

models based on the GTM, FC-NN and CNN Machine and Deep Learning methods 

have been introduced, exploiting early and late fusion techniques for the extraction 

of the relevant information. Finally, the models have been compared on the same 

database of discharges, with the same set of diagnostics and using common metrics. 

The purpose of this work is the determination of criteria to systematically compare 

different predictors, in view of the adoption by EUROfusion of common databases for 
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the testing of data-driven disruption predictors. It was observed that the 

accumulated fraction of detected disruption as a function of the warning time 

Δ𝑡𝑤𝑎𝑟𝑛𝑖𝑛𝑔, together with the false alarm rate, provide a compact yet comprehensive 

overview of the predictor performance.  

The results are promising, and the future work will focus on the porting of these 

models to different devices and to the investigation of cross-machine approaches.  

Fast heat flux computation  

Since the operation time of the future nuclear fusion devices will be in the order 

of hours, the handling of the high heat fluxes coming from plasma-wall interaction 

during the continuous operation of the reactor is a critical task. Infrared cameras in 

Stellarator and Tokamaks measure the surface temperature and their data is 

processed to compute the power loads transferred to the first wall. In most cases, the 

power loads are only reconstructed after each pulse, as currently done at W7-X.  

In view of the coming experimental campaigns at W7-X, which will test the 

possibility to sustain the operation at high performance for up to 30 minutes, the 

monitoring of the first wall of the device will be pivotal. The divertor tiles may 

undergo local erosion and melting due to high heat loads during the experiment and 

researchers are investigating approaches for the real-time monitoring and control of 

heat loads. 

A real-time system for the protection of the wall is under development at W7-X; 

it is based on the analysis of the IR camera data to detect overloads in the different 

components of the wall. This system also estimates heat loads using a 1D model to 

enable the preventive interruption of the operation or of the auxiliary heating before 

reaching a critical temperature. However, for the real-time control of heat loads 

during the experiment, the impact of the different magnetic configuration 

parameters of the device on the heat loads patterns should be understood. A 

preliminary study developed a model to learn the non-linear relationship between 

the magnetic configuration parameters and the heat load patterns with machine 

learning approaches in specific OP 1.2b experiments, with promising results. In 

these studies, heat fluxes were reconstructed offline using THEODOR, which is a 

FDM code for the post-processing of IR measurement data. For the development of 

a feedback control scheme which exploits this model, the heat fluxes should be 

available in real-time, and a speed up of the heat flux reconstruction becomes 

mandatory. 

The work of the thesis focused first on the refactoring of the THEODOR code 

exploiting the parallel computing and the development of compiled code with the 

Numba library. However, since the real-time control system could only run the code 

on a GPU, and the development of a GPU version of the code would have required a 

significant refactoring, a Physics-Informed Neural Network (PINN) approach has 

been investigated to natively port the computation on a GPU. 
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The PINN method is based on recent advances in the automatic differentiation 

and machine learning and provides a very flexible model to solve a PDE in a mesh-

free domain. The PINN can be straightforwardly run on a GPU, hence allowing the 

real-time use of the method. In the simulations shown in this work, the PINN allows 

to compute the PDE solution and the heat flux computation error with respect to 

THEODOR is lower than 8%. Future work on the PINN model will focus on providing 

initial and boundary conditions as inputs, hence solving a parametrized PDE and 

enabling the real-time evaluation of the heat flux. The development of a 

parametrized model is pivotal for the real-time application, since the tile condition 

will vary during the discharge.  
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