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ABSTRACT 

Since the onset of global pandemic, the most focused research currently in progress is the 

development of potential drug candidates and clinical trials of existing FDA approved drugs for 

other relevant diseases, in order to repurpose them for the COVID-19. At the same time, several 

high throughput screenings of drugs have been reported to inhibit the viral components during the 

early course of infection but with little proven efficacies. Here, we investigate the drug repurposing 

strategies to counteract the coronavirus infection which involves several potential targetable host 

proteins involved in viral replication and disease progression. We report the high throughput 

analysis of literature-derived repurposing drug candidates that can be used to target the genetic 

regulators known to interact with viral proteins based on experimental and interactome studies. In 

this work we have performed integrated molecular docking followed by molecular dynamics (MD) 

simulations and free energy calculations through an expedite in silico process where the number 

of screened candidates reduces sequentially at every step based on physicochemical information. 

We elucidate that in addition to the pre-clinical and FDA approved drugs that targets specific 

regulatory proteins, a range of chemical compounds (Nafamostat, Chloramphenicol, Ponatinib) 

binds to the other gene transcription and translation regulatory protein with higher affinity and 

may harbour potential for therapeutic uses. There is a rapid growing interest in the development 

of combination therapy for COVID19 to target multiple enzymes/pathways. Our in-silico approach 

would be useful in generating leads for experimental screening for rapid drug repurposing against 

SARS-CoV-2 interacting host proteins.  
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Introduction 

With currently no specific antiviral drugs available for COVID19 treatment, there is an urgent 

need for rapid repurposing of drugs for direct therapeutic approaches.(Zhou, Wang, Tang, 

Nussinov & Cheng ; Guy, DiPaola, Romanelli & Dutch 2020; Singh et al. 2020) This approach 

takes advantage of existing information for the approved small molecules and biologics and 

enables rapid clinical trials or regulatory review. Since the onset of the global pandemic, high 

throughput screening of drugs has been reported to inhibit the viral components during the early 

course of infection.(Cao et al. 2020; Mandala et al. 2020; Menéndez, Byléhn, Perez-Lemus, 

Alvarado & de Pablo 2020; Sacco et al. 2020; Tharappel, Samrat, Li & Li 2020; Trezza, Iovinelli, 

Santucci, Prischi & Spiga 2020) A large number of drug discovery and repurposing studies are 

based on the pharmacoepidemiological data available from the coronaviruses family members 

such as the Middle East Respiratory Syndrome coronavirus (MERS-CoV), the Severe Acute 

Respiratory Syndrome coronavirus (SARS-CoV-1) and other viruses (Ebola, HIV, 

Influenza).(Ziebuhr 2004; Du et al. 2009; Abdelrahman, Li & Wang 2020; Gordon et al. 2020; 

Pardo, Shukla, Chamarthi & Gupte 2020) However, these potential prophylactic measures have 

certain drawbacks such as strain specific drug resistance and substantial differences in viral protein 

targets.(Gordon et al. 2020; Plante et al. 2020) SARS-CoV-2 possesses an extremely large RNA 

genome and a unique RNA replication mechanism, which makes it very challenging to find 

efficient inhibitors for SARS-CoV-2 in comparison to other viruses. At present, more than 50 

vaccine candidates are under clinical trials, and a few are being administered. However, mutations 

in the genome of SARS-CoV-2 pose a significant challenge in the vaccine development and their 

efficacy. With the emergence of a number of variant strains, the efficacy of vaccines in the long 

term has been a debatable question for scientists around the world. In such a situation, it becomes 
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necessary to identify potential drugs that can inhibit/restrict the viral replications. Interestingly, 

targeting host factors is an important strategy in overcoming these restrictions and designing host-

directed therapies for treating viral infections. With this inception, several in-vivo and in silico 

studies have characterized the virus-host interaction networks to functionally annotate multiple 

host proteins implicated in pathways that promote viral pathogenesis.(Li et al. ; Ahmed et al. 2020; 

Gordon et al. 2020; Zhou et al. 2020) In particular, Gordon et al., in their recent study, identifies 

332 high confidence SARS-CoV-2 human protein-protein interactions that aim to understand the 

hijacking of the host cell during infection.(Gordon et al. 2020) The interactome reveals several 

host proteins involved in biological processes such as host genetic regulation, innate immune 

pathways, vesicle transport and translocation, and provides a comprehensive evaluation of small-

molecule candidates for drug repurposing. 

 

Figure 1. Illustration of therapeutic strategies against COVID-19 through targeting the host and 

viral proteins as a mechanism for the inhibition of viral transmission. SARS-CoV-2 interacts with 

Angiotensin-converting enzyme 2 (ACE2) receptor protein on the cell surface and integrates the 
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virus into the cell. The drug therapy can be targeted at the different host proteins situated in Golgi, 

ER or gene regulatory pathways involved in the viral replication.   

One of the important aspects of viral replication involves the interaction of SARS-CoV-2 with the 

host machinery. These interactions form a potential target to inhibit SARS-CoV-2 replication and 

assembly schematically shown in Figure 1. The binding of SARS-CoV-2 at the cellular membrane 

is mediated by spike (S) glycoprotein of SARS-CoV-2 and the host receptor ACE2. Several 

experimental and computational studies provide remarkable insights into the structural stability 

and dynamics of the interacting domains. Interestingly, recent studies reported that the binding of 

S protein to ACE2 involve distinct conformational changes between open and closed states that 

are governed by hydrophobic contacts in addition to the hydrogen bonds and electrostatic 

interactions. This information provides possible target sites for designing and repurposing 

potential drugs aimed at destabilizing the interactions at the point of virus entry.(Moreira, 

Chwastyk, Baker, Guzman & Poma 2020; Moreira, Guzman, Boopathi, Baker & Poma 2020; Yang 

et al. 2020) In this work, we demonstrated an in silico robust and novel drug repurposing strategy 

to counteract the coronavirus infection that involves several potential targetable host proteins 

involved in viral replication and disease progression. Of all the 66 druggable proteins that are 

targeted by 69 compounds based on previous interactome studies, (Gordon et al. 2020) we cluster 

these proteins into different categories based on the biological and molecular functions. We 

identify 27 proteins based on UniProt annotations that are involved in host gene regulations and 

host-viral interactions. These proteins can be targeted by more than 30 drugs, as suggested by 

Gordon and coworkers through knowledge-based search and data mining. (Gordon et al. 2020) 

Here, we have focused the study on the identification of drugs that can regulate host translation 

and transcription, and sequentially the viral replication. Host genetic regulatory proteins play an 
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important role in the viral transmission cycle. The viral genome is transcribed or directly translated 

to produce structural and non-structural proteins (NSPs) necessary to assemble new viral 

particles.(V’kovski, Kratzel, Steiner, Stalder & Thiel 2020) An extensive work on the host-viral 

interactome reveals interactions between several key host factors with the viral proteins that 

facilitate the control of SARS-CoV-2 over the mRNA processing and translational machinery.(Li 

et al. ; Gordon et al. 2020) Evidently, these viral mediated alterations in the key genetic regulators 

can form the primary targets to regulate the polyprotein expression.(Poduri, Joshi & Jagadeesh 

2020) Based on the interactome data and the Uniprot annotations for the host proteins, we have 

shortlisted 13 proteins that constitute the important host genetic regulators (translation and 

transcription). The proteins were further refined to identify the availability of crystal/cryo-EM 

structure, binding site information, and structural information for any known drug-bound complex. 

Out of 13 proteins that are involved in human gene regulation, structural information was available 

for 9 proteins (Table 1). 

Among this list of proteins, the host transcriptional regulator proteins such as Bromo-domain 

containing proteins (BRD2/BRD4) exhibit antiviral activity upon inhibition through activation of 

innate immunity pathways. (Filippakopoulos et al. 2010; Pierre et al. 2011; Reich et al. 2018) DNA 

methylation by DNMT1 is another important component of gene regulation. Viral infections 

identify these DNA methylation patterns to induce endocytosis development. SARS-CoV-2 

meticulously exploits this epigenetic mechanism for the production of ACE2 enzyme (virus 

receptor on the host’s lung epithelial cells). (Schäfer & Baric 2017; Tutuncuoglu et al. 2020) 

Interestingly, therapeutic targeting of the host translation machinery (initiation and elongation 

factors; EF1A1, IF4E, IF4E2) may also prevent viral protein production and inhibit the viral 

replication. (Soukarieh et al. 2016) 



8 

 

Table 1. Function based classification and selection of host gene regulatory proteins from 332 

high confidence host-pathogen protein-protein interactions (PPIs) between SARS-CoV-2 and 

human proteins based on previous interactome study. (Gordon et al. 2020) The table highlights the 

preclinical or FDA approved drugs that target the host proteins and the structural information for 

these proteins. 

INDEX 
Gene 

regulation 
Uniprot Gene-Name Article Drugs 

Structure 

(PDB ID) 

1 BRD2 P25440 BRD2_HUMAN 
JQ1, RVX-208, ABBV-744, 

CPI-0610, dBET6, MZ1 
3ONI 

2 BRD4 O60885 BRD4_HUMAN 
JQ1, RVX-208, ABBV-744, 

CPI-0610, dBET6, MZ1 
3MXF 

3 CSNK2A2 P19784 CSK22_HUMAN TMCB, Silmitasertib 6HMB 

4 DNMT1 P26358 DNMT1_HUMAN Azacitidine, XL413 4WXX 

5 EEF1A1 P68104 EF1A1_HUMAN Ternatin-4-(DA3) 1SYW 

6 EIF4E P06730 IF4E_HUMAN 4E2RCat 1IPC 

7 EIF4E2 O60573 IF4E2_HUMAN Zotatifin-(eFT226) 2JGB 

8 HDAC2 Q92769 HDAC2_HUMAN Apicidin, Valproic-Acid 4LY1 

9 MNK2 Q9HBH9 MKNK2_HUMAN Tomivosertib-(eFT-508) 6CK6 

10 MRPS27 Q92552 RT27_HUMAN 
Chloramphenicol, Linezolid, 

Tigecycline 
- 

11 EIF4G1 Q04637 IF4G1_HUMAN 4E2RCat - 

12 EIF4H Q15056 IF4H_HUMAN Zotatifin-(eFT226) - 

13 LARP1 Q6PKG0 LARP1_HUMAN Rapamycin, Sapanisertib - 

15 NUP98 P52948 NUP98_HUMAN Verdinexor - 

 

COVID-19 has a triphasic course where the patients undergo a transition from having mild 

respiratory and systemic symptoms (cold, cough and fever) to hyperinflammation of lung tissues, 

also referred to as cytokine storm syndrome resulting in acute respiratory distress syndrome 

(ARDS) or multiorgan failure. (Mehta et al. 2020; Tang et al. 2020) These manifestations namely 
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inflammation, immune dysfunction and coagulopathy, often associated with neoplasia, in patients 

with severe SARS-CoV-2 infections give a rationale for the testing of anticancer drugs, (El Bairi 

et al. 2020; Saini et al. 2020) and in addition use of immunosuppressive drugs to treat the 

hyperinflammatory phase of COVID19 that exhibits a high level of cytokines such as IL-6, IL-7 

and TNF-𝜶.(El Bairi et al. 2020; Liu, Li, Zhou, Guan & Xiang 2020; Saini et al. 2020) Hence, 

several immunosuppressive and anticancer drugs such as tocilizumab, dexamethasone, selinexor, 

imatinib and sirolimus are being investigated under clinical trials for their possible role toward 

effective therapy for COVID19. Interestingly, coagulant abnormalities have been observed in 

patients with severe COVID19 and a range of anticoagulant drugs are being investigated as a part 

of antithrombotic therapy.(Saini et al. 2020) Here, we have performed an extensive in silico drug 

repurposing exercise for these proteins for a list of selective drugs that are anticancer compounds, 

anti-coagulants, antibiotics (bacterial infections) or immunosuppressive in nature. Interestingly, 

we have observed that these drugs are chemically aromatic and heterocyclic nitrogen-containing 

moieties with a significant number of compounds containing halogen atoms. The inclusion of 

electron-rich nitrogen or the halogens (predominant for steric effects) in these heterocyclic ring 

structures favor intermolecular interactions with the proteins such as hydrogen bonds, dipole-

dipole interactions, hydrophobic effects, van der Waals and π-stacking interactions that can 

improve pharmacological features.(Marcelo Zaldini, Suellen Melo, Diogo Rodrigo, Walter 

Filgueira de Azevedo & Ana Cristina Lima 2010; Wilcken, Zimmermann, Lange, Joerger & 

Boeckler 2013; Poma, Chwastyk & Cieplak 2015; Pennington & Moustakas 2017) 

To understand and screen the drugs that could interact and bind with host proteins, we have 

assembled an integrated in silico approach consisting of molecular docking followed by molecular 

dynamics (MD) simulations and enhanced sampling free energy calculations. We followed the 
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protocol designed and applied in our previous work, with some modifications for the identification 

of antiviral drugs targeting the viral proteins.(Sadanandam, Debabrata, Mohd Aamir, Sudip & 

Jayant 2020) Our approach greatly reduces the time and cost of repurposing by in silico 

identification of lead compounds through an expedited automated process where the number of 

screened candidates reduces sequentially at every step based on physicochemical information. The 

drug screening process was performed based on multi-protein against multi-drugs approach with 

very robust free energy calculations from enhanced sampling. Prior studies have attempted to 

repurpose drugs that are implicated in similar diseases such as cancers, rheumatoid disorders and 

blood coagulation disorders. (Saini et al. 2020) We examined the physical nature (polar/non-polar) 

of interactions between the binding site of the proteins and drugs using molecular docking studies. 

Based on the initial findings, several candidate drugs exhibit higher docking binding energy and 

hydrogen bonded interactions as compared to the control protein-drug complex. However, virtual 

screening tools like molecular docking are known to introduce inaccuracies in the binding 

predictions due to the lack of sampling and exclusion of various factors such as protein dynamics 

and solvent electrostatics. Our high throughput analysis that includes free energy barrier 

calculations predicts various compounds (FDA-approved or clinically approved) that 

complements the earlier works in the drug repurposing strategies for COVID19.  

 

Materials and methods 

Rapid Drug repurposing Protocol 

In this work, we have designed an integrated molecular docking and simulation protocol for rapid 

drug repurposing strategy (Figure 2). At first, molecular docking has been used to study the binding 



11 

 

affinities for the drugs and host transcriptional regulator proteins. The molecular docking also 

provides a reasonable well minimized conformation and binding pose for initiating a molecular 

dynamics (MD) simulation. Further, the stability of the obtained docked poses has been evaluated 

using MD simulations. MD simulations provide the interaction energies and the stability of the 

drugs at the binding site of the protein. After MD simulations, the drugs with significant 

interactions based on hydrogen bonding and non-bonded interactions with the binding sites of the 

target proteins have been selected for well-tempered metadynamics (wt-metaD) simulations. The 

binding free energy for each drug with the target proteins calculated from wt-metaD and enhanced 

sampling of drugs at the binding site deterministically indicates the best possible repurposing 

drugs. Further, we have analyzed all the trajectories from MD and wt-metaD to understand specific 

interactions between the drugs and residues at the binding sites. Additionally, we have calculated 

the drugs’ residence time at the binding site using the wt-metaD simulations trajectories. 

 

Figure 2. Illustration of the protocol that performs integrated molecular docking followed by 

molecular dynamics (MD) simulations and free energy calculations through an accelerated in silico 
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process where the number of protein-drug systems is reduced at every step based on protein-ligand 

interactions. 

Molecular modelling and docking 

The Autodock suite (Autodock 4.2.6) was used to perform molecular docking analysis of the 

compounds for different proteins as the docking targets. (Morris et al. 2009) The docking was 

performed onto the available crystal structures for different proteins. The missing loop regions in 

the selective proteins were modelled using Modeller (Modeller 9.24).(Webb & Sali 2016)  The 

docking sites were identified based on either availability of inhibitor-bound crystal structures or 

ligand site prediction using the Autoligand tool in the Autodock suite.(Harris, Olson & Goodsell 

2008) The protein structures and chemical compounds were energy minimised before docking 

analysis. To perform the docking of the compounds onto the identified ligand binding sites, grid-

based ligand docking was performed. Ligand centered grid maps were generated using the 

Autogrid program with a spacing of 0.375Å and grid dimensions of 60×60×60 Å3. The best-

docked structures were identified based on the docking energy and population distribution of the 

lowest-energy clusters from the conformational clustering histogram in Autodock. 

Molecular Dynamics Simulations 

We have performed molecular dynamics simulations for different protein-ligand complexes using 

GROMACS-2018. (Abraham et al. 2015) The best-docked ligand conformations for different 

systems were selected as the starting structure for the simulations. In addition, the simulations 

were also performed for selective protein-ligand crystal structures as control systems, where the 

ligand can differ from the list of screening compounds. The charmm27 force field with cmap 

corrections was used for the proteins.(MacKerell, Banavali & Foloppe 2001) The geometry 
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optimizations of all the ligands (Table S1) were performed using a semi-empirical method at the 

PM6 level, followed by geometry optimization using density functional theory (DFT) with the 

M06 functional and 6-311g (d,p) basis set. To account for the bulk solvent effects, the PCM 

method is used. Further, the partial atomic charges for the ligands are computed by fitting the 

electrostatic potential using the CHELPG method as implemented in the Gaussian09 code. These 

charges are computed for the optimized structures using a single point calculation at the DFT with 

the M06 functional with 6-311g (d,p) basis set and used water as the solvent. The forcefield 

parameters for ligand molecules were obtained using swissparam webservice which performs 

automated assignment of parameters by analogy and is compatible with charmm force field. 

(Zoete, Cuendet, Grosdidier & Michielin 2011) All the structures were solvated using the TIP3P 

water model and simulated with periodic boundary conditions. The systems were neutralized by 

adding counter ions, Na+ in the negatively charged system and Cl- in the positively charged 

system. The structures were energy minimized using steepest descent algorithm. The energy 

minimization was evaluated based on the negative value of the potential energy and the maximum 

force is no greater than 1000 kJ/mol/nm. This was followed by NVT equilibration using modified 

Berendsen thermostat (Bussi, Donadio & Parrinello 2007) for 500 ps and NPT equilibration using 

Parrinello-Rahman barostat for 1 ns. (Parrinello & Rahman 1981) For the production run, the 

temperature was controlled through velocity rescaling at 300K with a time constant of 0.1 ps and 

pressure was kept constant at 1 bar. The cutoff for short-range interactions was 1.0 nm, and the 

long-range electrostatic interactions were calculated using Particle-Mesh Ewald (PME) 

method.(Essmann et al. 1995) The bonds were constrained using the LINCS algorithm.(Hess, 

Bekker, Berendsen & Fraaije 1997) We have performed equilibrium MD simulations of these 

systems for 1ns to obtain energetically favourable protein-ligand conformations post rigid docking 
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protocol. The non-bonded interaction energies and hydrogen bond analysis were performed using 

the in-built GROMACS utilities.  

Metadynamics simulations 

Further, we have performed free energy calculations using enhanced sampling based technique 

metadynamics and its variant well-tempered metadynamics.(Barducci, Bussi & Parrinello 2008) 

We have used software packages PLUMED 2.5.4 combined with GROMACS 2018 as the MD 

engine.(Laio & Parrinello 2002) We have taken the final coordinates from the equilibrium MD 

simulations as the initial starting conformations for metadynamics simulations. Since the 

dissociation event of a ligand from the binding pocket of a protein takes sufficiently long time, and 

this process is separated by high energy barriers, so unbiased brute force MD simulations would 

not be sufficient to observe dissociation events within a short simulation time. Thus, to make the 

dissociation process faster and to study these kind of complex systems, external bias is added to 

the system which accelerates the dissociation processes. Thus, using enhanced biased sampling, 

we study protein-ligand systems using available limited resources and within a short time. To 

address the length and time scale issues for complex biomolecular systems, various methods have 

been developed over the years to calculate free energies for these systems of interest. From these 

huge lists of enhanced sampling techniques, we used metadynamics (metaD) and its variant well-

tempered metadynamics (wt-metaD). The reaction coordinate (s) is a linear or non-linear 

combination of the few selected order parameters of the systems which are functions of the 

coordinates of the system. Here, we choose distance (d) between the center of mass - center of 

mass of the ligand heavy atoms and protein binding pocket as the reaction coordinate for biasing 

in the simulations. We add a gaussian bias and once the system converges, we can extract the 

unbiased Boltzmann probability of the distribution of RC by adding up the deposited hills over the 
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course of the simulation. In the wt-metaD simulations, the Gaussian hills were deposited at every 

500 steps (1ps), with hill height in the range of 1.5-2.0 kJ/mol, width 0.02-0.1 nm, biasfactor 10-

15, and temperature at 300K.  For each ligand-protein system, we performed minimum 10 

independent runs starting from different initial coordinates and velocities for each copy and then 

averaged over probabilities to get the averaged free energy. 

Further to support the discernment of ligand-protein binding nature, ligand residence time is 

estimated using the wt-metaD simulations data. The residence time (RT) of a ligand within a free 

energy basin can be estimated using the equation 1: 

𝑅𝑇𝑐𝑎𝑙𝑐 = 𝛼(𝑡) × 𝑡                                                   (1) 

In the above equation 𝑡 is the wt-metaD simulation time required to observe the transition from 

free energy basin A to basin B and 𝛼(𝑡) is the acceleration factor which is defined using the 

equation 2.  

𝛼(𝑡) =
1

𝑡
∫

𝑡

0

𝑒𝛽𝑉(𝑠(𝑅),𝑡′)𝑑𝑡′                                        (2) 

where the 𝛼(𝑡) is running average of the bias applied over the metadynamics run within in the 

time t, 𝑉(𝑠(𝑅), 𝑡′) is the bias at time t in the metadynamics simulation and 𝛽 is the Boltzmann 

factor. The simulation time necessary for the transition from the energy basin, t, is determined 

from the derivative of 𝛼(𝑡) versus t plot.  

𝑑 ∝

𝑑𝑡
=

1

𝑡
[𝑒𝛽𝑉(𝑠,𝑡) −

1

𝑡
∫

𝑡

0

𝑒𝛽𝑉(𝑠(𝑅),𝑡′)𝑑𝑡′ ]                                       (3) 

The derivative exhibits abrupt change whenever the ligand crosses an energy barrier and goes into 

a new state. The sign change is used to identify the transition time (Figure S1), which is required 
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to calculate the residence using equation 1. This transition time is used to get the drug residence 

time. 

Results and discussion 

Structure selection and binding site determination 

The dependence of virus on the host translational machinery has introduced constraints that are 

central to the viral biology and has led to an alternative and complementary strategy to target the 

host factors essential for viral replication. Translation factors play a critical role in protein 

synthesis, and dysregulation of their activity have been implicated in a broad range of disorders, 

including cancers, cell transformations, etc. Several small-molecule inhibitors have been proposed 

as therapeutic potential, and few are clinically approved that exhibit antitumor activity and 

modulate gene expression. Hence, several crystal structures of gene regulation proteins (eIF, 

kinases, histone deacetylases) with the inhibitors have been reported. The potential ligand-binding 

site in the target protein is the prerequisite and critical information for any drug repurposing 

strategy. Our approach is to computationally screen drugs based on the inhibitor binding site 

information obtained from the existing protein-drug crystal structures. 

We have selected the crystal structures for proteins in the inhibitor bound state from the protein 

data bank. The preferential criterion for the selection was to identify the protein structures co-

crystallised with drugs that are suggested for repurposing through an extensive literature and 

knowledge-based search.(Gordon et al. 2020) Interestingly, we could find structures for Casein 

kinase 2 (CSK22), MAP kinase 2 (MNK2) and bromodomains (BRD2/BRD4) proteins in complex 

with Silmitasertib, Tomivosertib and JQ1 respectively (PDB: 6HMB, 2AC3, 3ONI, 3MXF). The 

ligand binding sites for histone deacetylase (HDAC2), translation initiation factor eIF4E were 
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obtained based on co-crystal structures with inhibitors (PDB: 4LY1, 1IPC2). These inhibitors 

bound structures were used as a control set for further analysis. We have also used the AutoLigand 

tool (Harris et al. 2008) to predict the binding site in the translation factors (EF1A1 and eIF4E2) 

and DNA methyltransferase 1 (DNMT1). Two ligand binding sites were predicted for EF1A1 

(PDB: 1SYW) and one site for eIF4E2 (PDB: 2JGB). Further, two ligand binding sites were 

defined for DNMT1 based on the ligand bound crystal structure (PDB: 3SWR) and zinc finger 

region based on the function annotation from UniProt. These sites were further analysed to 

understand the electrostatic nature of the binding cavity before proceeding with the molecular 

docking protocol (Figure S2). Several of these binding sites in proteins (HDAC2, MNK2, 

DNMT1) exist as deep concave pockets that maximise the protein-ligand interactions. The core of 

the binding cavity consists of hydrophobic residues or polar residues that could positively 

contribute to the binding of organic or charged molecules. Similarly, there are binding sites (eIF4E, 

EF1A1) that are relatively flat protein surfaces consisting of both polar and apolar residues.  

Molecular docking and MD simulation  

Of the several in silico approaches that aim at identifying an existing drug for targeting clinically 

relevant targets, molecular docking has proven to be a powerful tool and could be reliably used for 

starting structure generation for MD. Docking of all the 12 binding sites corresponding to 9 

proteins (Table 1) has been carried out with 28 drugs (Table S1). These drugs were derived from 

the suggested list of drugs using interactome studies for proteins involved in gene regulation. In 

addition, we have also included drugs that target the known protein-viral interactions based on 

UniProt functional annotations. The docking was performed using Autodock software, and the 

docking energy for the most populated cluster of docked structures was determined for more than 

250 protein-drug combinations. Figure 3a shows the heat map representation of these docking 
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energies. We have observed that the docking energy difference between the best-docked 

conformations for different protein-drug complexes is less than 1 kcal/mol. However, the 

molecular docking protocol incorporates only the static interactions excluding the effect of solvent 

and ions in the system, and thus it does not count the entropic effect. It is very well established 

that thermodynamics and conformational dynamics play crucial roles in the interaction and 

stability of the protein-ligand systems. Hence, the docking protocol was followed by MD 

simulations of ligand-docked structures. 

MD simulations were performed for all the best-docked structures of protein-drug complexes to 

equilibrate the systems. These would allow the conformational fluctuations of the drug inside the 

binding cavity and subsequent interactions with the protein residues at the binding site. We have 

analyzed the hydrogen bonding interactions and the non-bonded interaction energies for all the 

complexes. The non-bonded interaction energies for the protein-drug complex have been shown 

in Figure 3b in the form of a heatmap. It can be observed that few drugs have higher interaction 

energy as compared to the other drugs for individual proteins (Table S2). It is evident that the 

interaction energies for the complexes vary from -90 kcal/mol to -10 kcal/mol. The large difference 

in the electrostatic and van der Waals interaction energies between the systems is accounted for 

based on additional favorable polar and nonpolar interactions that vary with the chemical nature 

of the drug itself. To understand these differences in the energies, we have also analyzed the 

hydrogen bonding sites of drugs in each protein. In certain cases, the given set of drugs exhibit 

common hydrogen bonding residues in the binding site of a particular protein. For example, K69, 

H161, D176 in CSK22; Y386, N429 in BRD2; Y97, M105, N140 in BRD4 and so on (See Table 

S2 for list of hydrogen bonding residues for each protein-drug complex). Thus, it is evident from 

our analysis that multiple drugs can target the binding site with varying degrees of interactions. 
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Several of these drugs are FDA approved genetic translation regulators and have favorable 

pharmacological properties. Thus, these drugs can be promising candidates for repurposing for 

treating COVID-19 patients in phase 2-3 of the disease.  

 
Figure 3. Heat map representation of the binding energy from (a) molecular docking and the 

electrostatic interaction energy from (b) MD simulation. The figure provides qualitative and 

quantitative insight into the differential order of interactions between various protein-ligand 

systems. The docking energy (binding energy) was calculated using Autodock software which 
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includes the contribution of the desolvation free energy of the ligand, and an estimate of the loss 

of conformational degrees of freedom of the ligand upon binding, whereas the interaction energy 

between protein and ligand from MD simulation was calculated using Gromacs utility (gmx 

energy) as the sum of coulomb and van der Waals interaction energy components. The values are 

reported in Table S2.  

Further, to quantitatively estimate the binding affinity of these drugs, we calculated the 

dissociation free energy for these protein-drugs from free energy calculations. Interestingly, we 

find that not all drugs show high/similar binding affinity toward a protein in our preliminary 

analysis. Hence, we have reduced the number of calculations through the selection of a set of drugs 

for each protein for free energy calculations. The protein-drugs systems were ranked on the basis 

of docking energy, non-bonded interaction energies and the hydrogen bonds. The cutoff for each 

protein was chosen in such a way that the energetics exhibit the electrostatic or hydrophobic 

complementarity between the binding site of the protein and drugs (Table S2). For example, the 

van der Waals interaction energy dominates the electrostatic interaction energy for the HDAC2 

protein and accounts for the top ranked protein-drugs with respect to docking energy. Similarly, 

the ranking was performed for all the systems, including the control set of drugs. This exercise 

reduces the large number of protein-drug combinations that ranked low and have lower interaction 

energy than the drugs with higher interactions. 

Quantitative binding estimation 

Following the above selection criterion, we have selected a list of protein-drug combinations 

shown in Table S1, and for those corresponding combinations, the instantaneous snapshots from 

the short equilibrium MD simulations are shown in Figure S3. We have calculated the average free 



21 

 

energy barriers for these protein-drug combinations. To calculate the average FESs, we first 

calculated the probability from independent free energy simulations and then calculated the 

averaged probability and average FES. The FES barriers are shown in Figure S4. We extracted the 

FES barriers corresponding to all the drugs for respective proteins and for multiple binding sites 

for a single protein. Table 2 shows the FES barrier heights for all the selected protein-drugs with 

respective errors in the calculations. We calculated the barrier heights by subtracting the maximum 

of the FES value from the global minimum in the FES profile. To understand these quantitative 

values better, we have plotted these barrier heights in Figure 4 in the heatmap representation. 

Figure 4 shows the heat map representation for the free energy barriers and compared our results 

with that obtained from the heat map shown in Figure 3.  

 

Figure 4. Heat map representation of the free energy barrier for different protein-drug 

combinations from metadynamics simulations. The color bar ranges from -15 kcal/mol to 0 
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kcal/mol, as shown on the right-side color bar. The values of free energy barrier and average error 

are reported in Table 2. 

The color bar ranges from -15 kcal/mol to 0 kcal/mol, as shown on the right-side color bar. 

Interestingly, we find that the drugs with higher binding energy barriers for different proteins 

include control (crystal structure bound inhibitor, e.g., Tomivosertib in MNK2, Silmitasertib in 

CSK22) among the top scoring drugs. We must also note that our approach that identifies 

repurposing drugs with higher binding energy corroborates the known experimental findings with 

respect to approved or under clinical trial drugs for specific proteins (Valproic Acid in HDAC2, 

4E2RCat in eIF4E). 

Table 2. FES barrier heights and the estimated residence times for all the protein-drug systems. 

The average error in the free energy barrier is reported in the parenthesis. 

 Ligand 
ΔG 

(kcal/mol) 

Residence 

time (min) 
 Ligand 

ΔG 

(kcal/mol) 

Residence 

time (min) 

 

B

R

D

2 

 

dBET6 (L12) -9.1 (0.50) 2.5E+13 

B

R

D

4 

dBET6 (L12) -6.1 (0.27) 1.2E+04 

ABBV-744 (L11) -10.0 (0.46) 4.0E+07 ABBV-744 (L11) -14.3 (0.40) 2.0E+10 

CPI-0610 (L13) -6.2 (0.45) 2.4E+00 CPI-0610 (L13) -1.9 (0.38) 8.9E+00 

RVX-208 (L2) -5.8 (0.55) 2.1E+04 RVX-208 (L2) -5.7 (0.29) 4.7E+06 

JQ1 (L1) -6.0 (0.42) 1.4E+03 JQ1 (L1) -14.7 (0.54) 1.2E+17 

ZINC95559591 (L10) -5.1 (0.29) 1.7E+06 Pevonedistat (L17) -6.5 (0.37) 1.1E+16 

Tigecycline (L26) -5.6 (0.32) 3.7E+05 Tigecycline (L26) -7.4 (0.53) 2.1E+06 

Linezolid (L27) -4.6 (0.28) 3.8E+02 Nafamostat (L24) -3.6 (0.48) 4.2E+09 

Pevonedistat (L17) -6.0 (0.44) 1.4E+03 Linezolid (L27) -2.5 (0.38) 4.4E+05 

Apicidin (L5) -2.5 (0.42) 4.6E+01 Apicidin (L5) -5.3 (0.37) 4.1E+05 

Nafamostat (L24) -3.2 (0.35) 9.6E+00 Chloramphenicol (L25) -5.2 (0.29) 3.8E+03 

Camostat (L23) -2.9 (0.49) 1.4E+06 Camostat (L23) -7.2 (0.45) 2.4E+07 

4E2RCat (L19) -6.1 (0.34) 2.2E-01 Sapanisertib (L14) -10.9 (0.42) 1.4E+10 

e

I

F

4

E

4E2RCat (L19) -2.2 (0.38) 1.2E+01 e

I

F

4

E

4E2RCat (L19) -1.8 (0.28) 1.2E-03 

4TPW-33R -1.0 (0.29) 1.2E+01 Camostat (L23) -0.84 (0.22) 1.1E-03 

Tigecycline (L26) -2.2 (0.30) 1.7E+00 Tigecycline (L26) -1.4 (0.40) 1.8E+02 

Camostat (L23) -1.9 (0.22) 1.7E-03 Lisinopril (L22) -2.6 (0.28) 5.7E+00 

Lisinopril (L22) -1.7 (0.26) 1.4E-03 JQ1 (L1) -2.1 (0.24) 5.2E+00 
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-

1 

Tomivosertib (L20) -2.4 (0.42) 8.7E+00 -

2 

ABBV-744 (L11) -2.7 (0.29) 3.6E+00 

Nafamostat (L24) -1.8 (0.25) 1.0E+01 ZINC95559591 (L10) -3.0 (0.31) 1.1E-01 

Silmitasertib (L3) -2.2 (0.25) 4.4E-02 Pevonedistat (L17) -2.5 (0.30) 7.9E+01 

RVX-208 (L2) -2.0 (0.22) 1.3E+01 Silmitasertib (L3) -1.4 (0.32) 1.2E-02 

Chloramphenicol (L25) -1.3 (0.26) 3.4E-06    

E

F

1

A

1

-

1 

Ternatin-4 (L18) -2.6 (0.37) 5.1E+04 

E

F

1

A

1

-

2 

Ternatin-4 (L18) -1.8 (0.49) 2.7E-006 

Pevonedistat (L17) -2.7 (0.25) 1.0E+05 Pevonedistat (L17) -2.8 (0.55) 3.9E+04 

4E2RCat (L19) -2.0 (0.37) 5.4E+02 JQ1 (L1) -5.3 (0.34) 1.1E-01 

Ponatinib (L7) -2.3 (0.26) 8.6E+09 ZINC95559591 (L10) -6.1 (0.27) 3.8E+05 

Nafamostat (L24) -5.3 (0.41) 3.8E+13 Chloramphenicol (L25) -5.5 (0.41) 3.9E+02 

Lisinopril (L22) -4.9 (0.35) 9.3E+00 Camostat (L23) -7.2 (0.46) 8.3E+02 

Tigecycline (L26) -1.2 (0.29) 5.4E+01 ABBV-744 (L11) -3.6 (0.23) 3.6E-04 

ZINC95559591 (L10) -4.5 (0.52) 1.4E+08 Nafamostat (L24) -3.4 (0.24) 7.1E+00 

Camostat (L23) -4.0 (0.55) 8.8E+08 4E2RCat (L19) -5.4 (0.34) 1.44E+02 

Tomivosertib (L20) -2.6 (0.35) 1.4E-03 CPI-0610 (L13) -4.0 (0.53) 2.5E+02 

Silmitasertib (L3) -3.7 (0.28) 3.3E-01 Ponatinib (L7) -2.4 (0.33) 6.2E+03 

 RVX-208 (L2) -3.6 (0.28) 9.4E-02 

C

S

K

2

2 

Silmitasertib (L3) -8.6 (0.56) 1.3E+09 

e

I

F

4

E

2 

Zotatifin (L16) -3.5 (0.31) 1.8E-01 

Pevonedistat (L17) -8.9 (0.54) 8.4E+05 ABBV-744 (L11) -5.6 (0.55) 1.1E+12 

ABBV-744 (L11) -7.0 (0.41) 1.7E+06 Pevonedistat (L17) -4.6 (0.37) 1.4E+11 

Verdinexor (L28) -4.6 (0.39) 3.7E+02 Camostat (L23) -3.3 (0.34) 7.91E+01 

Chloramphenicol (L25) -10.4 (0.50) 4.1E+02 Tigecycline (L26) -1.9 (0.46) 4.1E+02 

4E2RCat (L19) -6.2 (0.31) 9.1E+07 4E2RCat (L19) -5.8 (0.28) 1.7E+02 

TMCB (L4) -6.6 (0.55) 1.3E+03 Nafamostat (L24) -4.3 (0.31) 7.5E+03 

Tomivosertib (L20) -9.3 (0.38) 5.1E+06 Ponatinib (L7) -3.7 (0.40) 1.1E+02 

Sapanisertib (L14) -6.3 (0.55) 3.6E+11 Lisinopril (L22) -4.7 (0.20) 2.5E-02 

Camostat (L23) -2.2 (0.28) 3.9E+01 Chloramphenicol (L25) -3.1 (0.33) 8.6E+06 

Nafamostat (L24) -4.0 (0.36) 1.4E+05 ZINC95559591 (L10) -2.4 (0.34) 1.6E+04 

Lisinopril (L22) -1.8 (0.39) 6.0E-02  

H

D

A

C

2 

Valproic Acid (L6) -12.8 (0.34) 1.3E+10 

M

N

K

2 

Tomivosertib (L20) -13.7 (0.27) 5.5E+04 

4LY1-20Y -11.4 (0.38) 5.1E+11 Tigecycline (L26) -7.4 (0.29) 1.8E+04 

6WBZ-TV7 -7.2 (0.52) 2.7E+05 Camostat (L23) -7.1 (0.38) 2.7E+03 

4E2RCat (L19) -12.0 (0.18) 2.6E+13 Lisinopril (L22) -11.5 (0.55) 4.8E+09 

Linezolid (L27) -11.0 (0.44) 5.3E+16 Nafamostat (L24) -7.6 (0.55) 1.9E+12 

Ponatinib (L7) -9.6 (0.54) 1.6E+09 Linezolid (L27) -7.2 (0.37) 1.3E+04 

Pevonedistat (L17) -9.0 (0.37) 1.4E+05 Pevonedistat (L17) -7.5 (0.44) 1.8E+09 

Nafamostat (L24) -13.3 (0.45) 4.3E+08 ZINC95559591 (L10) -7.0 (0.33) 1.1E+06 

XL413 (L8) -7.8 (0.44) 1.3E+05 ABBV-744 (L11) -6.9 (0.55) 1.9E+07 

 Zotatifin (L16) -10.0 (0.40) 1.2E+03 

D

N

M

T

Azacitidine (L9) -4.0 (0.46) 2.4E+09 D

N

M

T

Azacitidine (L9) -6.9 (0.53) 2.6E+12 

XL413 (L8) -6.9 (0.33) 5.8E+01 XL413 (L8) -4.2 (0.39) 1.1E+00 

Tigecycline (L26) -10.9 (0.28) 2.7E+05 ABBV-744 (L11) -4.8 (0.35) 5.8E+07 

Camostat (L23) -6.0 (0.27) 2.9E+06 Tigecycline (L26) -7.1 (0.46) 3.4E+15 
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1

-

1 

Nafamostat (L24) -5.1 (0.36) 6.6E+03 1

-

2 

Nafamostat (L24) -5.2 (0.34) 2.34E+02 

Chloramphenicol (L25) -2.5 (0.28) 9.4E-04 Ponatinib (L7) -6.0 (0.56) 2.4E+07 

ABBV-744 (L11) -2.5 (0.23) 2.20E+06 Lisinopril (L22) -7.3 (0.48) 4.7E+10 

Pevonedistat (L17) -3.3 (0.37) 6.7E+01 ZINC95559591 (L10) -5.3 (0.50) 2.1E+11 

JQ1 (L1) -4.5 (0.30) 4.0E-02 Camostat (L23) -4.6 (0.37) 5.6E+00 

Ponatinib (L7) -3.5 (0.32) 2.2E+09 4E2RCat (L19) -3.1 (0.45) 1.7E+02 

ZINC95559691 -6.0 (0.18) 1.6E+04 Verdinexor (L28) -9.5 (0.49) 4.8E+08 

4E2RCat (L19) -5.2 (0.34) 6.1E+09 Pevonedistat (L17) -6.0 (0.31) 3.5E+05 

CPI-0610 (L13) -2.1 (0.43) 2.6E+01 

 Tomivosertib (L20) -2.0 (0.35) 1.2E-03 

RVX-208 (L2) -8.5 (0.33) 4.3E+06 

 

The identified list of drugs with higher free energy barriers shows chemical similarity in a few of 

the cases. For example, BRD2/BRD4 (PDB: 3ONI/3MXF) domain exhibits a higher binding 

affinity with JQ1, dBET6 and ABBV-744, where JQ1 is a substructure of dBET6 and hence shows 

higher chemical similarity. However, unlike BRD2/BRD4, with respect to HDAC2 (PDB: 4LY1), 

the control drug 20Y and Nafamostat, are found to exhibit higher free energy barriers without 

higher chemical similarity.  
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Figure 5. Residence time versus free energy barrier for all the protein-drug systems. Here, the RT 

data is fitted linear equation ( 𝑦 = 𝑚𝑋 + 𝐶 ). The fitting parameters m and C values are given 

here: 4LY1 (m=1.008 and C= -1.515); 6HMB (m=0.574 and C= 0.542); 1IPC-BS1 (m=1.008 and 

C= -2.310); 1IPC-BS2 (m=1.234 and C= -2.996); 3ONI (m=0.962 and C= -1.605); 3MXF 
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(m=0.849 and C= 2.026); 1SYW-BS1 (m=0.652 and C= 1.224); 1SYW-BS2 (m=1.530 and C= -

5.943); 4WXX-BS1 (m=0.708 and C= 0.152); 4WXX-BS2 (m=2.149 and C=-5.216); 6CK6 (m=-

0.233 and C= 8.738). 

To corroborate the binding nature evident from free energy barriers, we have also estimated the 

residence time for the ligands using equations 1 and 2. The residence time, RT, is calculated for 

all the 10 replicas, and the resultant average values are reported in Table 2. Most of the cases the 

estimated RT values are found to be high for the ligands, which have shown higher energy barriers 

in the FES. Furthermore, the RT values are found to increase linearly with increasing barrier 

height. This linear correlation is clearly shown in the log (RT) vs. FES barrier data plots in Figure 

5. The linear relationship is more clearly shown for the proteins-ligand where the energy barriers 

are not close. We have also observed that the residence time for the control drugs and previously 

literature-suggested drugs are found to exhibit higher residence time and free energy barriers. The 

proteins with inhibitor bound crystal structures, i.e., control drugs (20Y:HDAC2, 4E2RCat:IF4E, 

Tomivosertib: MNK2, Silmitasertib: CSK22, JQ1: MXF) were found to be in the group of drugs 

which exhibit higher residence time. It is evident from the interaction energy calculations from 

docking, MD, and free-energy calculations that these higher residence times correspond to the 

increase in the protein-drug non-bonded interactions and subsequently confirm the drug’s higher 

stability at the binding site (Figure S5). Thus, in contrast to the prevailing focus on virtual 

screening of a large number of drugs through molecular docking followed by MM/PBSA binding 

energy calculations, we propose a multi-target based drug repurposing strategy with robust free 

energy calculations using enhanced sampling.  
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Conclusion 

To date, no FDA approved specific drugs have been found for COVID-19. However, a range of 

antivirals and other drugs have shown inhibitory behavior against SARS-CoV-2 in-vitro and in 

clinical conditions. These drugs either target the viral-related components or the host proteins that 

regulate the viral pathogenesis. Here, we have performed an extensive drug repurposing exercise 

of the host transcription and translation regulatory proteins for a list of selective drugs that are 

anticancer compounds, anti-coagulants, antibiotics (bacterial infections), or immunosuppressive 

in nature. In this study, we report the high throughput analysis of these literature-derived 

repurposing drug candidates that can be used to target the genetic regulators known to interact with 

viral proteins based on experimental and interactome studies. On the basis of the known/predictor 

inhibitor binding sites for these proteins, we extrapolated our multiple protein-multiple ligand 

approach to identify drugs with approved pharmacological properties that can bind favorably and 

show higher binding energy as compared to the existing/proposed inhibitors. The molecular 

docking and simulation analysis revealed that the protein-drug complexes possess stable 

conformations and differential patterns of interaction energies and hydrogen bonds. It is possible 

that multiple drugs can bind the same binding site/cavity in a protein with varying binding affinity 

and interactions. Moreover, we elucidate the difference in the binding energy for these protein-

drug complexes using free energy barrier calculations. From the perspective of the efficiency the 

average computational time per system is reasonably less for metadynamics simulations to acquire 

the binding free energy in comparison to brute force MD. Even in comparison to other enhanced 

sampling methods like umbrella sampling, free energy perturbation which require sufficiently long 

time to get the full free energy profile, metadynamics is comparatively faster and provides quick 

convergence. Thus, our approach is efficient and less costly to get binding free energy for ligand-
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protein systems. We must note that in addition to the pre-clinical and FDA approved drugs that 

target specific regulatory proteins, a range of chemical compounds (Nafamostat, Chloramphenicol, 

Ponatinib) binds to the other gene transcription and translation regulatory protein with higher 

affinity and may harbour the potential for therapeutic uses. There is a rapidly growing interest in 

the development of combination therapy for COVID19 to target multiple enzymes/pathways. Our 

in-silico approach would be envisaged to expedite the process of generating leads for experimental 

screening for rapid drug repurposing against SARS-CoV-2 interacting host proteins.  
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