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1 Introduction

Nonlocal quantum gravity is a perturbative quantum field theory of the gravitational force
where both the classical and quantum dynamics of the graviton are characterized by nonlocal
form factors, operators with infinitely many derivatives [1–5]. Nonlocality is a classical
fundamental feature instead of an emerging one at the quantum level. Matter fields can be
introduced separately with a minimal coupling through the spacetime measure weight

√
|g|,
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where g is the determinant of the metric gµν . This theory has received a lot of attention
in the last decade thanks to its rigor and conceptual simplicity (it is based on traditional
techniques of quantum fields) [6] and its applications to black holes [7] and cosmology [8, 9],
with a promise of more phenomenology.

Recently, a new version of the theory has been proposed where gravity and matter are
nonminimally coupled while keeping intact all the good ultraviolet (UV) properties of the
original formulation [10–14]. The theory unifies matter and gravity in an action principle
strongly constrained according to four consistency requirements: (i) all the classical solutions
of Einstein’s theory coupled to matter are also solutions of the nonlocal theory; (ii) such
solutions have the same stability properties at the linear and nonlinear level; (iii) the tree-
level scattering amplitudes are the same as in Einstein’s gravity; (iv) macrocausality is not
violated. The advantages of this new version of the theory are that, on one hand, it delivers
predictions testable in the very near future [14] and, on the other hand, it accounts for
matter fields in a natural way in contrast with the minimally coupled versions. In fact, while
the nonminimally coupled version implements a property (recovery of covariant Einstein’s
equations as a sub-case of the full equations of motion) that shapes the nonminimal coupling
in a rather rigid way and imposes the same type of form factors in all sectors, in the case
of the minimally coupled versions matter fields are freely added by hand and their form
factors are specified ad hoc, independently of those in the gravitational sector. By unifying
the gravitational and matter sectors in such a manner, one is widening the interesting
but limited realm of quantum gravity to a theory of everything, thus moving towards the
amplitude of scope of supergravity or string theory.

In this paper, we use the power counting of divergences in Feynman diagrams to
show that nonminimally coupled nonlocal gravity is super-renormalizable (i.e., superficially
divergent diagrams are finite in number [15–17])1 or finite (no divergent diagrams), thus
fulfilling the expectations advanced in [10]. After presenting the classical and quantum
theory in section 2, we introduce a simplified model where the only matter field is a real
scalar. The most general scalar-tensor action of this model is discussed in section 3, while
we systematically develop the power counting in section 4. The general renormalizability
properties of the theory for any matter content are stated in section 5. Finiteness is discussed
in section 6, while conclusions are in section 7. Appendices contain some accessory material.

2 Overview of the theory

In this section, we shortly recall the theory proposed in [10, 11, 13] as a UV completion
of the Standard Model of particle physics coupled to gravity. We also elaborate on the
asymptotic limit of the action in the UV limit, and the general structure of vertices. Finally,
we present the explicit form of the UV action in the case of gravity coupled to a scalar

1This definition [15–17] applies also to the case of gravity after noting that, when written in terms of
the graviton hµν , instead of a finite number of divergent diagrams we have a finite number of families of
divergent diagrams [17], which (owing to locality and covariance) result in a finite number of covariant
divergent terms in the effective action.
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field, which is the fundamental element for the renormalizability considerations of the
next sections.

2.1 Classical theory

The classical action S of the theory is constructed as a nonlocal and nonminimal extension
of a subsidiary local action Sloc as follows [10]:

S[Φ] =
∫

dDx
√
|g|
[
Lloc + EiF

ij(∆̂)Ej

]
, (2.1)

Sloc =
∫

dDx
√
|g| Lloc, (2.2)

Lloc =
1
κ2
R+ Lm(gµν , φ, ψ,A

µ), (2.3)

Ei(x) =
δSloc
δΦi(x) , (2.4)

∆ij(x, y) =
δEi(x)
δΦj(y) = δ2Sloc

δΦj(y)δΦi(x) = ∆̂ij δ
D(x, y), (2.5)

2∆̂ik F
k

j(∆̂) =
[
eH(∆̂Λ∗ )

eH(0) − 1
]

ij

, (2.6)

where D is the number of spacetime topological dimensions (D = 4 in the physical case),
κ2 = 16πG, G is Newton’s constant, δD(x, y) = δD(x− y)/

√
|g(x)| is the covariant delta

function, Φi = (gµν , φ, ψ,A
µ) is the set of all fields (metric, scalars, fermions, gauge fields),

F ij is a symmetric tensorial entire function whose argument is the Hessian operator ∆̂ij ,
and H(∆̂Λ∗) is an entire analytic function whose argument is the dimensionless Hessian

(∆̂Λ∗)ij = ∆̂ij

(Λ∗)[∆̂ij ]
. (2.7)

In the above formula, Λ∗ is the nonlocality scale with mass (energy) dimensionality. We
use ℏ = c = 1 units and the notation [X] indicates the dimensionality of the quantity
X in powers of mass units, i.e., X scales as (mass)[X]. In particular, [Λ∗] = 1 and the
dimensionality of the component (i, j) of the Hessian is

[∆̂ij ] = D − [Φi]− [Φj ]. (2.8)

A detailed dimensional analysis of the model is carried out in appendix A.
The form factor F (∆̂) is defined in terms of an entire function expH of the Hessian

operator which does not have any poles or zeros in the whole complex plane at finite distance.
This type of nonlocality is called weak in contrast with strong nonlocality where nonlocal
operators have poles or zeros, such as inverse powers of ∆̂. Note that F vanishes in the
infrared (IR) local limit Λ∗ → ∞, where H(∆̂Λ∗) → H(0) and one recovers the underlying
local theory. In (2.6), H(∆̂Λ∗) is a special function called complementary exponential
integral [18, formula 6.2.3], an entire analytic function with asymptotic logarithmic behavior:

H(z) =
∫ p(z)

0
dw 1− e−w

w
= γE + Γ[0, p(z)] + ln[p(z)] , (2.9)

– 3 –
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where γE is the Euler-Mascheroni constant and p(z) is a generic polynomial of degree n+ 1
in the variable z, namely

p(z) = a0 + a1z + a2z + · · ·+ an+1z
n+1 , ai ∈ R . (2.10)

Notice that the function H(z) is defined both for Re p(z) > 0 and Re p(z) < 0. Moreover,
the following identity is true in the complex z plane:

eH(z) ≡ eγE+Γ[0,p(z)] p(z) , eH(0) = a0 e
γE+Γ(0,a0) . (2.11)

Let us now study the UV limit of expH(z). For large z, the form factor (2.11) simplifies to
a polynomial,

eH(z) ≃ eγEp(z) for z ≫ 1 . (2.12)

More precisely,

eH(z) =
[
eH(z) − eγEp(z)

]
+ eγEp(z)

≃ eγEp(z)
{
e

e−p(z)[p(z)−1]
p(z)2 − 1

}
+ eγEp(z) = eγEp(z) + eγEe−p(z) + . . . , (2.13)

where the second term in the last equality in (2.13) provides the leading correction to the
asymptotic polynomial limit of the form factor expH(z). On the other hand, for small
z the analyticity of the form factor provides an IR expansion of the action in higher-
derivative operators.

To complete this short review on the classical theory, let us also recall that the nonlocal
equations of motion are at least linear in Ei [10],[

eH(∆̂Λ∗ )
]

kj
Ej +O(E2) = 0 , (2.14)

which implies that all the solutions of the local equations of motion Ei = 0 of the associated
local system are also solutions of the nonlocal one. It is then not difficult to show that
these solutions have the same stability properties as in the subsidiary local theory (e.g.,
Einstein’s gravity with matter), so that a stable solution in the local theory is also stable in
the nonlocal one [12].

2.2 Unitarity

Moving on to the quantum theory, the unitarity issue has already been tackled in general
analytic or weakly nonlocal quantum field theories in [12] at tree-level and in [19] at any
perturbative order. Indeed, the tree-level unitarity of the theory is guaranteed by the fact
that its tree-level scattering amplitudes are the same of the associated local system (this is
due to the structure of the nonlocal equations of motion (2.14)), or, equivalently, by the
structure of the propagator [3], which is the same as in the local theory up to analytic
nonlocal functions that do not include extra poles. Indeed, the structure of the equations of
motion (2.14) implies that the tree-level scattering amplitudes are the same of the underling
local theory if the background is an exact solution of the local theory itself [12].

– 4 –
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On the other hand, unitarity at all perturbative orders in the loop expansion can be
checked via the Cutkosky rules adapting the same procedure of [19] to the action (2.1). The
proof provided in [19] is valid for all weakly nonlocal field theories with or without gauge
symmetry. A detailed analysis has been given in [20] for the case of gauge theories. The
generalization to gravity, also discussed in [20], is more tedious but equally straightforward
once the Cutkosky rules are derived.

2.3 Structure of nonlocal vertices

In this section, we show that the nonlocal analytic theory (2.1) has the same divergences of
an asymptotic polynomial higher-derivative theory that will be defined at the end of this
section. The latter statement requires to study the general analytic structure of the vertices
in presence of matter. In other words, we here extend the result in [21].

Let us focus on the nonlocal operator√
|g|EiFijEj , (2.15)

and consider a vertex with N ′+N +N ′′ external legs including the graviton and any matter
field. Here with N ′ we indicate the legs of the vertex coming from the Taylor expansion of
the first operator on the left, i.e.

√
|g|Ei, by N ′′ we mean the legs of the vertex resulting

from the expansion of Ej on the right, and by N the number of legs of the Taylor expansion
of the form factor

Fij(∆̂) =
+∞∑
r=0

cr(∆̂r)ij . (2.16)

Explicitly, the variation with respect to any field Φi, namely

δFij =
∑

r

crδ(∆̂r)ij , (2.17)

contains expressions like

(∆p1
0 )ii1 [I(m1)]i1j2(∆

p2
0 )j2i2 [I(m2)]i2j3(∆

p3
0 )j3i3 . . . (∆

pl
0 )jlil

[I(ml)]iljl+1(∆
pl+1
0 )jl+1j

→
[

l∏
k=1

I(mk)
]

i1j2i2j3...iljl+1

l+1∏
n=1

(j1≡i, il+1≡j)

∆̂pn
0,jnin

(Qn) , (2.18)

where I(mi) is the nondiagonal mi-legged piece of the operator I = ∆̂−∆̂Φ(0)
i

and ∆0 ≡ ∆̂Φ(0)
i

is the Hessian operator evaluated on the backgrounds Φ(0)
i , namely,

g(0)µν = ηµν and the matter fields are zero or constant. (2.19)

The exponents mi sum to the total number N of perturbations coming from the expansion
of (2.16), namely

m1 +m2 + · · ·+ml ≤ N. (2.20)

By the arrow → in (2.18), we mean transformation to momentum space. As we will
see below, each operator ∆̂0 yields a factor Q2

n, where Qn is the sum of all the momenta

– 5 –
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appearing on the right of any given ∆̂pn
0,jnin

(Qn), as evident from the first line of (2.18).
Since the legs of any vertex are finite in number in perturbation theory, so is the number of
momenta in each Qn. In fact, according to (2.20), the number of field-dependent functions
I(mi) is finite and equals ℓ because we expand F to a finite order N in the fields. From
each I(mi), we get mi external legs that collect to N consistently with (2.20) because we
have a total finite number of insertions I(mi). In the last product in (2.18), we defined
j1 = i and il+1 = j. Finally, the operator ∆̂0,jnin(Qn) is diagonal (see [22] where several
examples of Hessians have been computed explicitly for gravity, fermions, scalar fields, and
Abelian gauge fields). However, the eigenvalues depend on the kind of matter with respect
to which we are differentiating. Hence, in short,

∆̂0,jnin(Qn) =
(
C

(2)
in
Q2

n + C
(0)
in

)
δinjn , (2.21)

where C
(2)
in

and C
(0)
in

are constants. As explicit examples, Q1 = k1 + k2 + · · · + kl+1,
Q2 = k2 + · · · + kl+1, . . . , Ql+1 = kl+1, where ki is the sum of the momenta for the mi

legs emanating from I(mi). Given the above expression (2.21), we can implement the same
formula derived in [21] paying attention to replace Q2

i with C
(2)
i Q2

i + C
(0)
i for each fixed

string of indices i1l2i2j3 . . . iljl+1 in (2.18). Therefore, for each in and jn pair, we can focus
on
∞∑

r=l

cr

∑
{pn}

l+1∏
n=1

∆̂pn
0,jnin

(Qn) =
∞∑

r=l

cr

∑
{pn}

l+1∏
n=1

(
C

(2)
in
Q2

n + C
(0)
in

)pn

=
l+1∑
n=1

F (C(2)
in
Q2

n + C
(0)
in

)∏
m ̸=n

[(
C

(2)
in
Q2

n + C
(0)
in

)
−
(
C

(2)
im
Q2

m + C
(0)
im

)] , (2.22)

which depends on i1, . . . , iℓ+1.
Using now the identity

2∆̂ik F
k

j(∆̂) =
[
eH(∆̂Λ∗ )

eH(0) − 1
]

ij

≡
[
eH(∆̂Λ∗ ) − eγEp(∆̂Λ∗)

eH(0) − 1
]

ij︸ ︷︷ ︸
(2∆F conv)ij

+ eγEp(∆̂Λ∗)ij︸ ︷︷ ︸
(2∆F poly)ij

, (2.23)

and applying the general result (2.22) to the first operator in square brackets, one can figure
out that such operator does not contribute to one-loop divergences because the high-energy
scaling of F conv is at most 1/Q2

n or even more decreasing. Notice that, in the vertices, F conv

is evaluated on the background Φ(0)
i and, hence, it is a simple analytic function of Q2

n.
Therefore, in the rest of the paper we will focus on the asymptotic polynomial form

factor F poly.

2.4 Asymptotically polynomial regime

Making use of the property (2.13) of the nonlocal form factor and given the above consider-
ations, one can see that in the UV limit the theory (2.1) reduces to a local higher-derivative
theory whose action reads

SUV =
∫

dDx
√
|g|
[
Lloc + α

n∑
k=0

Ei

(∆̂k
Λ∗
)ij

(Λ∗)[∆̂ij ]
Ej

]
, (2.24)

– 6 –
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where α = eγEe−H(0)/2. In particular, in D = 4 dimensions the action (2.24) can be
regarded as a generalization of Stelle’s gravity [23] in which both gravity and matter obey
higher-derivative equations of motion; Stelle’s gravity is recovered for n = 0. In what
follows, we shall discuss two examples, namely, the cases of pure gravity and, in the next
section, of gravity coupled to a scalar field.

If matter fields are switched off, the UV action (2.24) is equivalent to a polynomial-
derivative gravity model, which is renormalizable in D = 4 dimensions if n = 0 [23], or
super-renormalizable, if n ⩾ 1 [24]. The result on power-counting renormalizability can
be easily sketched in the case of pure gravity. To this end, let us omit coefficients and
tensorial indices. Since we are interested in the UV regime, we focus on the operators with
the maximum number of derivatives. The scaling of the graviton propagator in the large-k2

limit is

Dg(k) ∝
1

k2n+4 . (2.25)

Although we have many different vertices, we concentrate on those with the maximum
number of derivatives, which equals the one present in the propagators. Therefore, we can
estimate the maximum degree of divergence of a general amplitude A(L) with L loops, I
internal lines and V vertices [not to be confused with the potential V (φ) introduced later]
as

A(L) ∝ δ4(K) Λ2n(L−1)
∗

∫
(d4k)L

( 1
k2n+4

)I (
k2n+4

)V

= δ4(K) Λ2n(L−1)
∗

∫
(d4k)L

( 1
k2n+4

)L−1

= δ4(K) Λ2n(L−1)
∗ (Λuv)ω(G) , ω(G) = 4− 2n(L− 1) , (2.26)

where δ4(K) symbolizes the Dirac delta for momentum conservation, we used the topological
relation V = I + 1−L, and Λuv is a UV cutoff. This simple power counting shows that, for
n large enough, we have divergences only at one loop and the maximal divergences have
dimension four.

For pure gravity, in the background-field method, the structure of the counterterms
is fully fixed by the number of derivatives therein, thanks to general covariance and the
uniqueness of the Riemann tensor. Therefore, the theory is renormalizable if all the possible
operators of dimension up to four are present in eq. (2.1), being super-renormalizable if
n ⩾ 1. However, the same does not apply when one also has a scalar or other matter fields,
in which case one needs to consider in detail the structure of the vertices. This will be our
task for the rest of the paper.

3 Scalar-tensor model: action

In order to study the renormalizability of the model (2.24) in the presence of matter, in
what follows we consider in full detail the case of gravity coupled to a scalar field. The

– 7 –
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starting point is the subsidiary local action of a scalar field minimally coupled2 to gravity,

Sloc =
∫

dDx
√
|g|
[ 1
κ2
R− 1

2(∇φ)
2 − V (φ)

]
. (3.1)

The ingredients to construct the UV action (2.24) resulting from the nonlocal model (2.1)
with fields Φi = (gµν , φ) are the extremals Ei (i.e., the left-hand side of the local equations
of motion Ei = 0 of the associated local system),

Eµν := δSloc
δgµν

= 1
κ2

(
−Rµν + 1

2g
µνR

)
+ 1

2(∇
µφ)(∇νφ)− 1

4g
µν(∇φ)2 − 1

2g
µνV (φ) , (3.2)

Eφ := δSloc
δφ

= □φ− V ′(φ) , (3.3)

and the Hessian ∆̂ij , whose explicit expression can be found in appendix C. Since the
action (3.1) describes a two-derivative system, the maximal number of derivatives in the
Hessian components is two. Moreover, the terms containing two derivatives can only depend
on the field φ through its derivatives (see eqs. (C.2)–(C.5)), because the system is minimally
coupled. This is a crucial element in the proof of the power-counting renormalizability of
the general model (2.24), as we discuss in section 4.

Before studying the most general scenario in which the UV action (2.24) contains a
form factor given by an arbitrary power n of the Hessian, let us first present the model
with n = 0. This example is not only the simplest one, but it is also of utmost importance
because, as we show in section 4, this is the part of the UV action (2.24) that renormalizes
in D = 4 dimensions. In this case, since

(
∆̂n

Λ∗

)i

j

∣∣∣∣
n=0

= δi
j , (3.4)

where the identity in the space of fields reads

δi
j =

(
δαβ

µν 0
0 1

)
, δαβ

µν := 1
2
(
δα

µδ
β
ν + δβ

µδ
α
ν

)
, (3.5)

the UV action (2.24) reduces to

Sn=0
UV =

∫
dDx

√
|g|
[
Lloc +

α

ΛD
∗
EµνE

µν + α

Λ2
∗
EφEφ

]
. (3.6)

It is worthwhile mentioning that a generalization of the model can generate more
structures in the UV action. This is achieved if the summation over the repeated field-space

2As discussed in appendix B, if the local subsidiary action Sloc is nonmimally coupled, then the resultant
UV model based on SUV in (2.24) is nonrenormalizable. Notice, however, that this statement is not in
conflict with the well-established results regarding the renormalizability of scalar fields coupled to gravity,
which do require certain nonminimal structures (see, e.g., [17] for an introduction). In our case, the required
nonminimal terms are generated in SUV by the construction of the nonlocal model, even if they are not
present in Sloc (see, e.g., eq. (3.21) below).

– 8 –
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indices i, j in (2.24) is performed with a nontrivial field-space metric Gij , instead of the
identity (3.5). Here we define Gij such that the line element ds in the space of fields is

ds2 ≡
∫

dDx
√
|g|Gij dΨi(x)dΨj(x) , dΨi = (κ dgµν , dφ) . (3.7)

In particular, this means that, in our conventions, the field space metric Gij is dimensionless.
For a metric-scalar theory, Gij has the general form

Gij =
(

G µν,αβ γ̃3 g
µν

γ̃4 g
αβ γ̃5

)
, G µν,αβ = γ̃1δ

µν,αβ + γ̃2g
µνgαβ , (3.8)

where, in general, γ̃i = γ̃i(φ). Here we assume that γ̃i are constants, otherwise the power-
counting renormalization properties of the model would change.3 Moreover, we assume
γ̃1, γ̃5 ̸= 0, so that the propagator of the resultant model (2.24) has a homogeneous behavior
both in the gravitational and the scalar sector.

Accordingly, the contravariant field-space metric G ij is defined as its inverse,

GikG kj = δj
i . (3.9)

Using (3.8) and (3.9), we find

G ij =
(

Gµν,αβ γ3 gµν

γ4 gαβ γ5

)
, Gµν,αβ = γ1δµν,αβ + γ2gµνgαβ , (3.10)

where

γ1 =
1
γ̃1
, γ2 =

γ̃3γ̃4 − γ̃2γ̃5
γ̃1X

, γ3 = − γ̃3
X
, γ4 = − γ̃4

X
, γ5 =

γ̃1 +Dγ̃2
X

(3.11)

and
X = (γ̃1 +Dγ̃2)γ̃5 −Dγ̃3γ̃4. (3.12)

The restrictions on the coefficients γ̃i for the existence of the inverse of the field-space metric
are, therefore, γ̃1 ̸= 0 (which we also assumed as definition) and X ̸= 0. Also, using (3.11)
and (3.12) it is straightforward to verify that

γ1 +Dγ2 =
γ̃5
X

̸= 0 , (3.13)

where we used that γ̃5 ̸= 0 by definition. Notice that, if the field-space metric is diagonal,
i.e., γ̃3 = γ̃4 = 0, then we have γ3 = γ4 = 0, γ5 = 1/γ̃5 and

γ2 = − γ̃2
γ̃1(γ̃1 +Dγ̃2)

,

such that, in this case, Gµν,αβG µν,αβ = δαβ
µν , as expected for a block-diagonal matrix.

3In fact, if the coefficients γ̃i are functions of the scalar field φ, then the field-space metric can generate
vertices similar to the ones described in appendix B.
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In the generalized model which uses the field-space metric (3.10) to contract the indices,
we have

Ei(∆̂n
Λ∗)

i
jE

j
∣∣∣
n=0

= EiE
i = EiG

ijEj

= EµνGµν,αβE
αβ + γ3E

µνgµνEφ + γ4EφgαβE
αβ + γ5EφEφ , (3.14)

and for n = 0 the UV action becomes

Sn=0
UV =

∫
dDx

√
|g|
[
Lloc + α1EµνE

µν + α2E
µ
µE

ν
ν + α3E

µ
µEφ + α4EφEφ

]
, (3.15)

where

α1 =
α

ΛD
∗
γ1, α2 =

α

ΛD
∗
γ2, α3 =

α

Λ
D+2

2∗

(γ3 + γ4), α4 =
α

Λ2
∗
γ5 . (3.16)

Notice that the UV action (3.6) is the particular case of (3.15) for γ1 = γ5 = 1 and
γ2 = 0 = γ3 + γ4. Thus, for the sake of generality, in the following we work with the action
in (3.15).

Performing the explicit calculation of each term in (3.15), we get

EµνE
µν = 1

κ4

[
RµνR

µν +
(
D − 4

4

)
R2
]

− 1
κ2

[(
D − 4

4

)
R (∇φ)2 +Rµν(∇µφ)(∇νφ) +

(
D − 2

2

)
V (φ)R

]
+ D

16 (∇φ)4 +
(
D − 2

4

)
V (φ)(∇φ)2 + D

4 V
2(φ) , (3.17)

Eµ
µE

ν
ν = 1

κ4

(
D − 2

2

)2
R2 − 1

κ2

[(
D − 2

2

)2
R (∇φ)2 + D(D − 2)

2 V (φ)R
]

+
(
D − 2

4

)2
(∇φ)4 + D(D − 2)

4 V (φ)(∇φ)2 + D2

4 V 2(φ) , (3.18)

Eµ
µEφ = 1

κ2

[(
D − 2

2

)
R□φ−

(
D − 2

2

)
V ′(φ)R

]
−
(
D − 2

4

)
(∇φ)2□φ

+
(
D − 2

4

)
V ′(φ)(∇φ)2 − D

2 V (φ)□φ+ D

2 V (φ)V ′(φ) , (3.19)

EφEφ = (□φ)2 − 2V ′(φ)□φ+ V ′2(φ) , (3.20)

where we used the simplified notations (∇φ)2 = (∇µφ)(∇µφ) and (∇φ)4 = [(∇µφ)(∇µφ)]2.
Therefore, by using integration by parts and discarding boundary terms, it is possible

to cast (3.15) in the form

Sn=0
UV =

∫
dDx

√
|g|
[
a1RµναβR

µναβ + a2RµνR
µν + a3R

2 + a4(φ)R

+ b1(□φ)2 + b2(∇φ)2□φ+ b3(∇φ)4 + b4(φ)(∇φ)2 + b5(φ)
+ c1R(∇φ)2 + c2R

µν(∇µφ)(∇νφ) + c3R□φ
]
, (3.21)
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where

a1 = 0 , (3.22a)

a2 =
1
κ4
α1 , (3.22b)

a3 =
1
κ4

[
α1

(
D−4
4

)
+α2

(
D−2
2

)2
]
, (3.22c)

a4(φ) =− 1
κ2

[
α1

(
D−2
2

)
V (φ)+α2

D(D−2)
2 V (φ)+α3

(
D−2
2

)
V ′(φ)−1

]
, (3.22d)

b1 = α4 , (3.22e)

b2 =−α3

(
D−2
4

)
, (3.22f)

b3 = α1
D

16 +α2

(
D−2
4

)2
, (3.22g)

b4(φ) = α1

(
D−2
4

)
V (φ)+α2

D(D−2)
4 V (φ)+α3

(3D−2
4

)
V ′(φ)+2α4V

′′(φ)− 1
2 ,

(3.22h)

b5(φ) = α1
D

4 V
2(φ)+α2

D2

4 V 2(φ)+α3
D

2 V (φ)V ′(φ)+α4V
′2(φ)−V (φ) , (3.22i)

c1 =− 1
κ2

[
α1

(
D−4
4

)
+α2

(
D−2
2

)2
]
, (3.22j)

c2 =− 1
κ2
α1 , (3.22k)

c3 =
1
κ2
α3

(
D−2
2

)
. (3.22l)

It is important to mention that an action of the form (3.21), with coefficients depending
on φ, represents the most general fourth-derivative system of a scalar coupled to gravity.
In fact, as shown in [25], any other structure not explicitly written in (3.21) can differ
from that action only by total derivatives. In our case, however, only the coefficients of
the terms with zero and two derivatives are functions of the scalar field, i.e., a4(φ), b4(φ)
and b5(φ), while all the others are constant. This difference with respect to [25] is simply
due to the fact that, while the goal of [25] was to consider the most general four-derivative
scalar-tensor action, our model is constructed from the recipe above and, in this way, only
some coefficients happen to depend on φ.

A comment regarding the coefficient a1 is also in order. Since the dependence of the
extremals Ei (2.4) on the metric curvature is only via Rµν and R, the term quadratic in the
Riemann tensor appears in (3.21) with a null coefficient. In D = 4, however, the absence of
this term in the action is not so critical, because its renormalization is equivalent to the
one of the Gauss-Bonnet term, LGB = R2

µναβ − 4R2
µν +R2, which is topological and does

not affect the equations of motion, similarly to the omitted superficial terms.
Finally, with the action in the form (3.21), we can discuss one of the main differences

between the models (3.6) and (3.15). In the former, we have α3 = 0, which yields b2 = c3 = 0
in (3.21); this means that the fourth-derivative terms with an odd number of fields φ, namely,
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(∇φ)2□φ and R□φ, are not present in (3.6). As a result, if the scalar potential V (φ) is
an even function, the action (3.6) is also even in φ. This feature is not exclusive to the
action (3.6); indeed, it happens if the field-space metric (3.8) has γ̃3 + γ̃4 = 0 (in particular,
this is true for a diagonal metric).4 Nevertheless, as we discuss in the following section, the
specific form of the field-space metric does not affect the power-counting renormalizability
of the model.

4 Scalar-tensor model: power counting

In this section, we investigate the structure of divergences of the quantum effective action
associated with the general model (2.24) with fields Φi = (gµν , φ), presented in the previous
section. The power-counting analysis based on Feynman diagrams in flat spacetime is
efficient in this case since, in the framework of the background-field method using dimensional
regularization (assumed here), divergences are covariant and, moreover, there are theorems
which guarantee that they are local (see, e.g., [26] and references therein for a detailed
discussion on the gauge-invariant renormalization of quantum gravity, and [27–30] for
explicit calculations). These results, guaranteed to hold here because the UV limit of the
theory is local, significantly constrain the form of the counterterms and, by evaluating
the number of derivatives acting in the external lines of a given diagram, one can start to
classify the possible structure of divergences associated.

The main elements to employ in the power-counting analysis are the scaling of the
propagators and the structure of the interaction vertices. In what concerns the former, we
recall that for the model (2.24) with local subsidiary action (3.1) the propagators of the
gravitational and scalar sectors are homogeneous and scale like 1/k2n+4. The propagators
of the Faddeev-Popov ghosts can have this same behavior by introducing an appropriate
weight operator, in a similar way as done in [3] (see also the discussion in [26]).

Regarding the interaction vertices, the number of scalar legs in a given vertex is limited
by the form of the potential V (φ) and the power n of the Hessian in the UV action (2.24). On
the other hand, the number of gravitational legs is unrestricted, as they are originated from
the expansion of the nonlocal action in terms of the metric fluctuation around Minkowski
spacetime, through gµν = ηµν + hµν . Even though this expansion produces an infinite
number of vertices, the number of derivatives in such vertices is always bounded by 2n+ 4;
in other words, these vertices can have 0, 2, 4, . . . , 2n + 4 derivatives distributed among
matter, gravity and ghost legs, depending on the vertex.

4.1 Case n = 0, D = 4

It is instructive to begin with the simple case n = 0 in D = 4 dimensions, based on
the action (3.15). In the following sections, we generalize the discussion for the case of
arbitrary n and higher spacetime dimensions. When n = 0 and D = 4, the propagators
scale homogeneously as 1/k4 and the number of derivatives in the vertices are either 4,
2 or 0, which can be distributed among matter, gravity and ghost legs. For instance,

4The same property regarding the parity of the UV action on φ is also true for the model with n > 0
based on a diagonal field-space metric; see section 4.3.
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pure-gravity and graviton-scalar vertices with 4 derivatives are originated from the terms
in the action (3.15) with the coefficients a1, a2, a3, b1, b2, b3, c1, c2 and c3, vertices with
2 derivatives come from the terms with a4 and b4 and, finally, vertices without derivative
come from the term with b5.

Taking all these results into consideration, the superficial degree of divergence ω(G)
of a given diagram G with a number L of loops, I internal lines, V2N vertices with 2N
derivatives (N = 2, 1, 0), and d derivatives in the external lines can be expressed in the
simple formula,

ω(G) = 4L− 4I + 4V4 + 2V2 − d , (4.1)

regardless of the exact types of internal lines or vertices in G. The central argument is that
each loop contributes a factor k4, each internal line a factor k−4, while the contribution of
vertices depends on the number of derivatives they have. Using the topological relation

L = I − V4 − V2 − V0 + 1 , (4.2)

we obtain
ω(G) = 4− 2V2 − 4V0 − d . (4.3)

The formula (4.3) means that:

(i) All diagrams with more than 1 vertex without derivative (V0 > 1) are finite.

(ii) All diagrams with more than 2 vertices with 2 derivatives (V2 > 2) are finite.

(iii) The number of vertices with 4 derivatives does not affect the superficial degree of
divergence, since (4.3) does not depend on V4.

(iv) Logarithmically divergent diagrams (ω = 0) can be classified by the number d of
derivatives in the external lines:

(a) If d = 4, the diagrams must have V0 = V2 = 0;

(b) If d = 2, the diagrams must have V0 = 0 and V2 = 1;

(c) If d = 0, the diagrams must have either V0 = 0, V2 = 2 or V0 = 1, V2 = 0.

In all these situations, V4 is arbitrary.

Note that, for diagrams containing only gravity lines, the estimate (4.3) of the superficial
degree of divergence reproduces the well-known result of pure Stelle gravity [23]. In fact,
as mentioned before, the theory (3.15) in D = 4 dimensions can be regarded as Stelle
gravity coupled to a fourth-derivative scalar field; thus, they coincide when the scalar field
is switched off.

Before considering each of the cases in item (iv) separately, an observation concerning
the vertices with four derivatives is in order. Since all the coefficients a1, a2, a3, b1, b2, b3,
c1, c2 and c3 of the terms in the action (3.15) that generate such vertices do not depend on
φ, the only dependence these terms can have on the scalar field is through its derivative,
∇φ. Thus, it is immediate to see that there will always be at least one derivative associated
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to each scalar line in the vertices with four derivatives.5 In particular, an external scalar line
originated from a vertex of this type will always contribute to the number d of derivatives
in the external lines. The situation is analogous to the one considered in [23] in the
context of four-derivative gravity, in which there is a linkage between derivatives and the
lines corresponding to scalar and ghost fields. Therefore, although formula (4.3) does not
explicitly depend on V4, the increase on the number of external scalar lines originated from
these vertices can only reduce ω(G), thus improving the convergence of the loop integrals.

In order to keep track of the powers of φ that can appear in the counterterms, let us
assume that the potential has the form of a monomial,

V (φ) = λφℓ. (4.4)

We can now continue the analysis of the structure of divergences, expanding the cases (a)-(c)
of the above item (iv):

(a) The divergences involve terms with d = 4 derivatives. In what concerns the pure
gravity sector, they correspond to the curvature-squared terms in (3.21). Regarding
the scalar field, notice that since V0 = V2 = 0, all vertices in such diagrams have four
derivatives and, according to the above observation, there will always be at least one
derivative acting upon each scalar line. Therefore, the divergences can be at most
quartic in ∇φ or quadratic in □φ, corresponding to the structures in (3.21) with
coefficients b1,2,3 and c1,2,3 (apart from topological and boundary terms).

Depending on the form of the field-space metric, less diverging structures can occur.
For instance, the divergences with four derivatives and an odd number of φ, namely,
proportional to

√
|g|R□φ and

√
|g|(∇φ)2□φ, can only be generated if the field-space

metric is such that γ̃3 + γ̃4 ̸= 0. To prove this statement, notice that the coefficients
b2 and c3 of these terms in the action (3.21) are proportional to α3 —which, in turn,
vanishes if and only if γ̃3 + γ̃4 = 0 (see eqs. (3.11) and (3.16)). Hence, if α3 = 0 the
model has no four-derivative vertices with an odd number of scalar legs. Now, the
number Eφ of external scalar lines in any diagram is given by

Eφ =
V0+V2+V4∑

k=1
νk − 2Iφ, (4.5)

where νk is the number of scalar legs in the k-th vertex and Iφ is the number of internal
scalar lines in the diagram. Since V0 = V2 = 0 for the case under consideration, it
follows that, if νk is even for all k (as it is if α3 = 0), then Eφ is also even, proving
that divergences with an odd number of φ can only occur if α3 ̸= 0.

(b) In the case of d = 2, the only possible forms for the logarithmic divergences are the
two-derivative operators √

|g|φkR ,
√
|g|φk(∇φ)2, (4.6)

5This result is true even upon integration by parts in the classical action, since vertices are defined as
higher-order functional derivatives and are invariant under this operation.
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with k ∈ N. Moreover, they are originated from diagrams containing an arbitrary
number of vertices with 4 derivatives and only one vertex with 2 derivatives, which is
related to the terms

√
|g|a4(φ)R and

√
|g|b4(φ)(∇φ)2 (see eq. (3.21)), namely, to the

structures

(α1 + 4α2)
√
|g|φℓR, α3

√
|g|φℓ−1R ,

(α1 + 4α2)
√
|g|φℓ(∇φ)2, α3

√
|g|φℓ−1(∇φ)2, α4

√
|g|φℓ−2(∇φ)2,√

|g|(∇φ)2, (4.7)

where we used (4.4) and reintroduced the coefficients αi (see eqs. (3.22d) and (3.22h))
to keep track of how they are originated, depending on the metric on the space of
fields. Since these terms can have up to ℓ + 2 scalar legs —of which at most ℓ are
without derivatives (and since all the scalars attached to four-derivative vertices carry
derivatives), the maximal number of external lines without derivatives is ℓ, whence
k ⩽ ℓ. This result guarantees that the counterterms related to the divergences with
d = 2 are in a finite number. Yet, it is possible to develop a more detailed analysis of
the possible values for k (of course, according to power-counting arguments), as we
show in what follows.

To this end, recall that the action (3.21) generates vertices with four derivatives
and an odd number of scalar fields if, and only if, α3 ̸= 0. In particular, in this
circumstance there are graviton-scalar vertices with only one scalar, and it is possible
to have logarithmically diverging diagrams formed by connecting scalar legs of a
vertex originated from (4.7) to internal graviton or scalar lines in vertices with four
derivatives and only one φ. Since α1+4α2 ̸= 0 (see eq. (3.13)), the term with maximal
power k = ℓ will always be present and the outcome is that, if α3 ̸= 0, the divergences
have the form (4.6) with k ∈ {ℓ, ℓ − 1, ℓ − 2, . . . , 0}. On the other hand, if α3 = 0,
then we have k ∈ {ℓ, ℓ− 2, ℓ− 4, . . . , 0}.

(c) Finally, the divergences with d = 0 can only take the general form

√
|g|φk. (4.8)

There are two classes of diagrams that contribute to this type of divergences, namely,
the ones with V0 = 0, V2 = 2 and the ones with V0 = 1 and V2 = 0; in both cases, V4
is arbitrary. In what follows we show that k ⩽ 2ℓ, ensuring that these counterterms
are in limited number.

First, let us consider the case V2 = 2, which is very similar to the case (b) just
discussed above. Again, each of these two-derivative vertices have up to ℓ+ 2 scalar
legs, of which at most ℓ are without derivatives. Since in these divergent diagrams all
the derivatives must be in the internal lines, the maximal number of external lines
without derivatives is ℓV2 = 2ℓ, whence k ⩽ 2ℓ.
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Second, for the case V0 = 1, the vertices without derivatives are originated from the
terms in the action (see eqs. (3.21) and (3.22h))

(α1 + 4α2)
√
|g|φ2ℓ, α3

√
|g|φ2ℓ−1, α4

√
|g|φ2ℓ−2,

√
|g|φℓ. (4.9)

Since the maximal number of external lines without derivatives is 2ℓ, it follows that
k ⩽ 2ℓ also for this type of diagram.

The exact possible values of k, by power-counting arguments, can be deduced by a
reasoning similar to the one used in item (b). To summarize the results, if α3 ̸= 0
there will be divergences of the type (4.8) with k ∈ {2ℓ, 2ℓ− 1, 2ℓ− 2, . . . , 0}, whereas
k ∈ {2ℓ, 2ℓ− 2, . . . , 0}∪{ℓ, ℓ− 2, ℓ− 4, . . . , 0} if α3 = 0. The former case is immediate;
as for the latter, recall that there is no four-derivative vertex with and odd number of
scalars if α3 = 0. In this case, any logarithmically diverging diagram formed by an
arbitrary number of four-derivative vertices and only one vertex with no derivative
coming from the first and third terms in (4.9) must have an even number of external
scalar legs (apply, e.g., eq. (4.5)). Therefore, the first and third terms in (4.9) generate
divergences of the type (4.8) with k ∈ {2ℓ, 2ℓ− 2, . . . , 0}, while the fourth term (which
comes from Lloc in (2.1)) will generate divergences with k ∈ {ℓ, ℓ− 2, ℓ− 4, . . .}. The
same consideration applies, mutatis mutandis, to the diagrams with two two-derivative
vertices originated from (4.7). In particular, if ℓ is even and α3 = 0, all the divergences
of this type have an even number of scalars —this is indeed expected, since diagrams
with an odd number of external scalar legs can only occur if the model has vertices
with an odd number of scalars; see eq. (4.5).

Note that, in the case of pure gravity, there would still be diagrams falling into the above
three categories, corresponding to the renormalization of the fourth-derivative terms, the
Einstein-Hilbert term, and the cosmological constant.

The conclusion is that the counterterms are in finite number, regardless of the choice
for the field-space metric (3.8), and the model is power-counting renormalizable. Moreover,
powers of φ higher than the ones already present in (3.15) do not occur in the counterterms
and a general model defined by the action (3.21) in D = 4 dimensions with independent
couplings is multiplicatively renormalizable (up to boundary and topological terms) if the
potential has the form V (φ) =

∑ℓ
k=0 λkφ

k for a certain ℓ. In the case of the specific model
considered here, the coefficients a1,2,3,4, b1,2,3,4,5 and c1,2,3 of the UV action (3.21) are not
independent (they depend on only a few free parameters α1,2,3,4; see (3.15)). Therefore,
although the model is power-counting renormalizable, it may not be multiplicatively
renormalizable because the number of divergences is bigger than the one of free parameters
in the action. This problem can be solved in the models with n > 0, which, as we show
in section 4.3, are power-counting super-renormalizable and can be made finite by the
introduction of appropriate killer operators (see the discussion in section 6). Alternatively,
another possible solution might be to apply the technique used for nonlocal theories
in [3, 31, 35], as discussed in section 6.4.

One of the central arguments in the proof of the power-counting renormalizability is
the fact that the terms in the action that generate vertices with four derivatives cannot
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yield external scalar legs without derivatives. This hypothesis is true provided that the local
subsidiary action does not have nonminimal terms. However, if nonminimal terms are present
in Lloc, the hypothesis is violated and the theory is not power-counting renormalizable; see
appendix B. The theory studied in [13, 14] does not have any such nonminimal terms in
Lloc; at the same time, the full nonlocal action of the model generates the nonminimal terms
required for renormalization, as it can be seen from eq. (3.21) and the above discussion.

4.2 General case

We now consider the general theory with UV-limit action (2.24), i.e., the case with n ⩾ 0
and D arbitrary. It is useful to define

N := n+ 2 , (4.10)

such that the operators in the action have either 0, 2, 4, . . . , 2N derivatives, and no term with
more than 2N derivatives. Note that, as in the case of section 4.1, the terms with maximal
number of derivatives 2N can only depend on the scalar field through its derivatives ∇φ.
This happens because6 the terms with maximal number of derivatives in the extremals (3.2)
and (3.3) and in the Hessian (C.1) can depend only on ∇φ, and also because we assumed
that the metric in the space of fields (3.8) does not depend on φ.

In a D-dimensional spacetime, the superficial degree of divergence of a diagram G is
given by

ω(G) = DL− 2NI +
N∑

k=0
2k V2k − d , (4.11)

where V2k is the number of vertices with 2k derivatives. Using the topological relation

L = I −
N∑

k=0
V2k + 1 , (4.12)

we obtain

ω(G) = D − (2N −D)(L− 1)−
N∑

k=1
2k V2(N−k) − d . (4.13)

This means that:

(I) A requirement for power-counting super-renormalizability is

2N > D , =⇒ n >
D − 4

2 . (4.14)

(II) One-loop divergences are always present. Indeed for L = 1, we get

ω(G1-loop) = D −
N∑

k=1
2k V2(N−k) − d . (4.15)

6For a more explicit proof of this statement, see the discussion related to eq. (4.29) below.
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Now, if eq. (4.14) holds true, we can rewrite the above equation as

ω(G1-loop) = D −
⌊D

2 ⌋∑
k=1

2k V2(n−k) −
N∑

k=⌊D
2 ⌋+1

2k V2(N−k) − d , (4.16)

where ⌊x⌋ is the floor function, i.e.,

⌊D
2
⌋
=


D

2 , if D is even,

D − 1
2 , if D is odd.

(4.17)

Thus, every diagram with at least one vertex with k ∈ {⌊D
2 ⌋+ 1, ⌊D

2 ⌋+ 2, . . . , N −
1, N} is already superficially finite (ω < 0). The only diagrams that have logarithmic
divergences are those such that the number of vertices V2N is arbitrary and

d = D −
⌊D

2 ⌋∑
k=1

2k V2(N−k) . (4.18)

Therefore, the one-loop logarithmic divergences have up to D derivatives and they are
in a finite number because, as before, all scalar legs in the vertices with 2N derivatives
carry at least one derivative.

(III) Since higher loops improve the convergence of the diagram when 2N > D, in this
case, the set of possible vertices in divergent diagrams is smaller at each order of
the loop expansion. For instance, diagrams with L = 2 with any number of vertices
V2(N−⌊D

2 ⌋) are already superficially finite (there may be still divergent subdiagrams).
Moreover, if N > D, then only the one-loop divergences remain.

(IV) Finally, if 2N = D, the term (2N −D)(L− 1) in (4.13) vanishes and the model can
be strictly renormalizable by power counting, generalizing the n = 0 and D = 4 result
of section 4.1. In this case, we have

ω(G) = D −
⌊D

2 ⌋∑
k=1

2k V2(N−k) − d , (4.19)

even for multi-loop diagrams (compare with eq. (4.18)). Hence, the number of
counterterms at any loop order is finite also in this case, and the logarithmic divergences
must have a total number of derivatives given by

d = D −
⌊D

2 ⌋∑
k=1

2k V2(N−k) . (4.20)
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4.3 Case n > 0, D = 4

Particularizing the above discussion for D = 4 and n > 0, we notice that only the diagrams
containing vertices with 2N , 2N − 2 and 2N − 4 derivatives can generate logarithmic
divergences. Power-counting super-renormalizability can be achieved if

N > 2 . (4.21)

In this case, the relation (4.18) satisfied by the one-loop logarithmically divergent diagrams
reads

d = 4− 2V2N−2 − 4V2N−4 , (4.22)

with V2N arbitrary. As mentioned in item (III), if N > 2, diagrams with higher loops cannot
generate other types of divergences, thus making it sufficient to perform the analysis of
these one-loop diagrams. Therefore, once more, one can classify the possible forms of the
counterterms by their number of derivatives d:

A) d = 4 with an arbitrary number V2N of 2N -derivative vertices and V2N−2 = V2N−4 = 0.
In this case, the counterterms have four derivatives and all the dependence on the scalar
field is through ∇φ or □φ. They have the same structure as the terms proportional
to a2,3, b1,2,3 and c1,2,3 in (3.21), namely,√

|g|RµνR
µν ,

√
|g|R2,

√
|g|(□φ)2,

√
|g|(∇φ)2□φ ,√

|g|(∇φ)4,
√
|g|R(∇φ)2,

√
|g|Rµν(∇µφ)(∇νφ),

√
|g|R□φ . (4.23)

The term proportional to a1, i.e., the Riemann-squared term, might also be present.
However, in D = 4, the renormalization of R2

µναβ is equivalent to the renormalization
of the topological Gauss-Bonnet term [27]; which can be included in the action (2.1)
without changing its equations of motion (2.14) (the same applies to the superficial
terms with four derivatives, such as □R and others).

B) d = 2, with V2N arbitrary, V2N−2 = 1 and V2N−4 = 0. The general structure of the
divergences are √

|g|A4(φ)R and
√
|g|B4(φ)(∇φ)2. (4.24)

C) d = 0; again, in this case we have two possibilities: V2N−2 = 2, V2N−4 = 0 or
V2N−2 = 0, V2N−4 = 1. In both cases V2N is arbitrary. The counterterms have the
form √

|g|B5(φ) . (4.25)

The structure of the counterterms (4.24) and (4.25) is similar to eqs. (4.6) and (4.8)
of the case n = 0, as the former are the generalization of the latter ones. Like we did in
section 4.1, in order to identify the bounds on the form of A4(φ) and B4,5(φ) it is necessary
to check the exact structure of the higher-derivative sector of the action (2.24), namely,

N−2∑
k=0

Ej(∆̂k)ijE
j . (4.26)
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After inspecting the structure of the Hessian (see appendix C), a moment’s reflection shows
that (∆̂N−2)ij can be written as a combination of terms of the type (in schematic form
omitting the indices)

∇2ℓ1 [(∇φ)∇]ℓ2
(
∇2φ

)ℓ3 [(∇φ) (∇φ)]ℓ4 Rℓ5 V ℓ6(φ)V ′ℓ7(φ)V ′′ℓ8(φ) , (4.27)

constrained by
8∑

i=1
ℓi = N − 2 . (4.28)

We use the notation Rℓ for a product of a number ℓ of curvature tensors.
The terms in (4.26) with the highest number of derivatives 2N are originated from

the terms (4.27) with ℓ6 = ℓ7 = ℓ8 = 0 and the two-derivative terms coming from the
extremals (3.2) and (3.3). They have the form

√
|g|(∇pRq)

2N−2∏
k=1

(∇kφ)rk , p+ 2q +
2N−2∑
k=1

k rk = 2N . (4.29)

Hence, φ in such terms always occurs with at least one derivative, which means that each
external scalar leg originated from these vertices contributes at least one derivative to the
number d of derivatives in the external lines.

On the other hand, the terms in eq. (4.26) with 2N − 2 derivatives may contain
structures without derivatives acting on φ. Let us assume, again, a potential of the form
V (φ) ∝ φℓ. Then, the terms of this type with maximal number of scalars without derivative
have the form√

|g|V (φ)(∇pRq)
2N−2∏
k=1

(∇kφ)rk , p+ 2q +
2N−2∑
k=1

k rk = 2N − 2 . (4.30)

Likewise, the terms with 2N − 4 derivatives and maximal number of scalars without
derivative are of the type

√
|g|V 2(φ)(∇pRq)

2N−4∏
k=1

(∇kφ)rk , p+ 2q +
2N−4∑
k=1

k rk = 2N − 4 . (4.31)

As discussed above, the analysis of these three types of terms (4.29)–(4.31) is sufficient
for studying the possible counterterms in (4.24) and (4.25). Let us start with the latter.
Since diagrams formed exclusively by vertices with 2N derivatives always carry at least
one derivative in each external scalar leg, these diagrams do not contribute to B5(φ). The
logarithmically diverging diagrams with V2N arbitrary and V2N−2 = 2, on the other hand,
can have at most 2ℓ external scalar legs without derivatives (since each vertex contributes
with at most ℓ external scalar legs of this type; see (4.30)). The same happens with the
logarithmically diverging diagrams with V2N arbitrary and V2N−4 = 1. Therefore, B5(φ)
has the general form

B5(φ) =
2ℓ∑

k=0
λkφ

k. (4.32)
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Similarly, A4(φ) and B4(φ) in (4.24) are bounded by the terms in the action with
2N − 2 derivatives. So, for V (φ) ∝ φℓ we have

A4(φ) =
ℓ∑

k=0
λ̄k φ

k, B4(φ) =
ℓ∑

k=0
λ̃k φ

k. (4.33)

This means that there are no counterterms of these forms with powers of φ higher than
those present in the classical action.

Last but not least, we remark that if the metric (3.8) in the space of fields is diagonal,
i.e., γ̃3 = γ̃4 = 0, then the action (2.24) does not contain terms with maximal number
of derivatives and an odd number of φ. This can be proved by noticing that only the
off-diagonal components (∆̂12 and ∆̂21) of the Hessian (C.1) contain such terms, whereas
the terms in Eµν with derivatives are even in φ, and those in Eφ are odd; see eqs. (3.2)
and (3.3). Therefore, if γ̃3 = γ̃4 = 0, the quantity Ei(∆̂k)ijE

j (for any k) cannot contain
terms with maximal number of derivatives and an odd number of φ. If, in addition, the
potential V (φ) is even, all the terms in the UV action are even in φ, which means that all
the diagrams have an even number of external scalar lines. In particular, if γ̃3 = γ̃4 = 0,
then the divergences of the type

√
|g|(∇φ)2□φ and

√
|g|R□φ cannot be generated, which

generalizes a similar statement made in section 4.1 regarding the case n = 0.

5 General renormalizability statements

Based on the above outcomes, in this section we state general renormalizability properties
that apply to the theory (2.1) with any content of matter. In particular, we can make two
statements providing necessary conditions for super-renormalizability, namely, to have a
finite number of divergences (excluding possible divergent subdiagrams and taking on board
the caveat for gravity mentioned in footnote 1).

Statement 1. In order to have only a finite number of superficially divergent diagrams, in
all operators having the higher number of derivatives (the same number as in the kinetic
operator), any matter field must carry at least one derivative.

Also, in the power-counting analysis we had to assume that the potential be polynomial,
and it turned out that, in general, all its monomial were renormalized. Therefore, one might
be tempted to state a second necessary condition:

Statement 2 (too strong). In order to have only a finite number of superficially divergent
diagrams, all operators must contain a finite number of matter fields. In particular, the
potential for the scalar field has to be polynomial, it cannot be an analytic nonpolynomial
function (like the Starobinsky potential) because it will produce an infinite number of
counter-terms.

However, this statement turns out to be too strong and can be relaxed. Although the
analysis reported in the previous sections about the number of divergences is correct, it
provides an overestimation of their number. As we will show with several explicit examples,

– 21 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
4

Statement 3. Once (i) the requirement 1 is secured, (ii) the number of derivatives in the
vertices is less than in the propagator, and (iii) the theory has divergences only at one loop,
then the number of divergent one-loop diagrams is finite, regardless of the type of potential.

In other words, theories satisfying the condition 1 and having a sufficiently high number
of derivatives in the kinetic term are super-renormalizable, independently of whether the
scalar potential is a polynomial or a nontrivial analytic function with infinitely many terms.

In sections 5.1–5.3, we illustrate these features in three examples of scalar fields living
on Minkowski spacetime.

5.1 Two-derivative scalar field theory with polynomial potential

As a first simple example, one can consider a two-derivative scalar field theory in D = 4
dimensions with the polynomial potential

V (φ) =
N∑

n=3
cnV

(n)(φ) , (5.1)

in which any term in the above sum is a monomial V (n) ∝ φn. The complete action reads:

S∂2 =
∫
d4x

[
−1
2∂µφ∂

µφ−
N∑

n=3
cnV

(n)(φ)
]
. (5.2)

At first, one could be induced to claim that the number of one-loop divergent diagrams
is larger than N and infinite if N = +∞, thus confirming statement 2. Indeed, if we focus
on the bubble diagram, each term of the sum (5.1) gives the following divergent diagram:∫

d4k ⟨V (n)(φ)V (n)(φ)⟩ ∝ 1
ε
V (n−2)(φ)V (n−2)(φ) , (5.3)

where ⟨·⟩r denote the Feynman contraction of two fields in a vertex with two fields in the
other, and we used dimensional regularization and ε = (D − 4)/2. Moreover, for n ̸= m, we
can have other divergences involving different terms in the sum (5.1),∫

d4k ⟨V (n)(φ)V (m)(φ)⟩ ∝ 1
ε
V (n−2)(φ)V (m−2)(φ) , n ̸= m. (5.4)

For each term n in the sum (5.1), there are no other bubble divergences in D = 4
dimensions. In fact, the diagrams with three external legs are convergent because we have
three propagators and no derivatives in the vertices,∫
d4k ⟨V (n)(φ)V (n)(φ)V (n)(φ)⟩ ∝

∫
d4k V (n−2)(φ)V (n−2)(φ)V (n−2)(φ)

( 1
k2

)3
<∞ . (5.5)

Finally, the tadpole divergence reads∫
d4k ⟨V (n)(φ)⟩ ∝ 1

ε
□V (n−2)(φ) . (5.6)

Therefore, if we increase the number N of monomials V (n), we get more and more divergences
at one loop. In particular, if we consider N = ∞, which is the case of an analytic potential
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such as, for example, the one in Starobinsky’s theory [32–34], then one is led to conclude
that the theory has an infinite number of divergences.

However, the last statement is not correct. We show this by evaluating the one-loop
quantum effective action built on the Hessian of the theory in the background-field method.
We introduce the background field Φ and the perturbation ϕ,

φ = Φ+ ϕ . (5.7)

The Hessian of the theory is

∆̂∂2 =
δ2S

δϕ δϕ

∣∣∣∣∣
ϕ=0

= □+ V ′′(Φ) , (5.8)

so that the one-loop quantum effective action is (notice that we here consider the whole
potential, not each of its constituent monomials)

Γ(1)
∂2 = i

2 Tr ln ∆̂∂2 =
i

2 Tr ln
[
□
(
1 + V ′′ 1

□

)]
= i

2 Tr ln□+ i

2 Tr ln
(
1 + V ′′ 1

□

)
(5.9)

= i

2 Tr ln□+ i

2 TrV ′′ 1
□

− i

2
1
2Tr

(
V ′′ 1

□
V ′′ 1

□

)
+ i

2
1
3Tr

(
V ′′ 1

□
V ′′ 1

□
V ′′ 1

□

)
+ . . . ,

where the dots stand for higher-order terms in the Taylor expansion of the logarithm. Since
this example is in the absence of gravity, the first trace is just a constant. Then, only
the second and third terms in (5.9) are divergent, while the forth is convergent because
proportional to

∫
d4k k−6. Hence, we do not have an infinite number of divergences but

only the following two divergent contributions to the quantum effective action:

Γ(1)div
φ = 1

ε
β1

∫
d4x□V ′′ + 1

ε
β2

∫
d4xV ′′ V ′′ . (5.10)

Therefore, contrary to what claimed in statement 2, a more careful analysis shows that
we do not have an infinite number of divergences at one-loop. The explicit computation of
the effective action based on the Hessian of the theory provides only the two divergences
in (5.10).

Notice that the model (5.2) is nonrenormalizable because (V ′′)2 is not present in the
classical action unless N ⩽ 4. In fact, for general n, (V ′′)2 ∝ (V n−2)2 is a polynomial in φ

of degree higher than the potential present in the classical action. The higher monomial in
(V ′′)2 and in the potential V are φ2n−4 and φn respectively. Only if N ⩽ 4 is the theory
renormalizable, since all the monomials of (V ′′)2 are already present in the classical action
(we do not consider the boundary term). Nevertheless, the main concern in this section was
not about the renormalizability problem, but on the number of divergences at one loop.
Therefore, according to the above example, we realize that, in general, statement 2 is too
strong and model-dependent.

5.2 Toy model for Stelle gravity

Let us now go to four derivatives and consider a scalar toy model for Stelle’s theory of
gravity [23]. The action is defined following the recipe (2.1) with form factor F = 1
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and reads7

S∂4 =
∫

d4x
{1
2φ□φ− V (φ) + λ

[
□φ− V ′(φ)

] [
□φ− V ′(φ)

]}
, (5.11)

where we can take the potential to be again (5.1). The coupling λ has dimensionality
[λ] = −2, while [V ] = 4, [V ′] = 3, [V ′′] = 2, [V ′′′] = 2, and [φ] = 1. In order to isolate the
vertices form the kinetic term, we rewrite the action as

S∂4 =
∫

d4x
[1
2φ□φ+ λφ□2φ− V (φ)− 2λ(□φ)V ′(φ) + λV ′(φ)V ′(φ)

]
. (5.12)

If we Taylor expand at the second order in the perturbation ϕ defined in (5.7), we get

S
(2)
∂4 = 1

2

∫
d4xϕ

 δ2S∂4
δϕδϕ

∣∣∣∣∣
ϕ=0

ϕ = 1
2

∫
d4xϕ ∆̂∂4 ϕ , (5.13)

where the Hessian is

∆̂∂4 = □− V ′′(Φ) + 2λ□2 − 4λ
[
V ′′(Φ)□+ 1

2V
′′′(Φ)(□Φ)

]
+ 2λV ′(Φ)V ′′′(Φ) + 2λV ′′(Φ)V ′′(Φ) . (5.14)

The quantum effective action is

Γ(1)
∂4 = i

2 Tr ln ∆̂∂4 =
i

2 Tr ln (□+ 2λ□2)

+ i

2Tr ln
{
1 +

[
V ′′(Φ)− 4λ

(
V ′′(Φ)□+ 1

2V
′′′(Φ)(□Φ)

)
+ 2λV ′(Φ)V ′′′(Φ)

+2λV ′′(Φ)V ′′(Φ)
] 1
□+ 2λ□2

}
= i

2 Tr ln (□+ 2λ□2)

+ i

2Tr ln
{
1 +

[
V ′′(Φ) 1

□+ 2λ□2 − 4λV ′′(Φ)□ 1
□+ 2λ□2

− 4λ12V
′′′(Φ)(□Φ) 1

□+ 2λ□2 + 2λV ′(Φ)V ′′′(Φ) 1
□+ 2λ□2

+2λV ′′(Φ)V ′′(Φ) 1
□+ 2λ□2

]}
. (5.15)

The first trace is a constant, so that we can focus on the second and expand the logarithm
in Taylor’s series,

Γ(1)
∂4 = i

2Tr
[
V ′′(Φ) 1

□+ 2λ□2 − 4λV ′′(Φ)□ 1
□+ 2λ□2

− 4λ12V
′′′(Φ)(□Φ) 1

□+ 2λ□2 + 2λV ′(Φ)V ′′′(Φ) 1
□+ 2λ□2

+2λV ′′(Φ)V ′′(Φ) 1
□+ 2λ□2

]
− 1

2
i

2Tr
[
16λ2V ′′(Φ)□ 1

□+ 2λ□2 V
′′(Φ)□ 1

□+ 2λ□2

]
+ . . . , (5.16)

7According to the recipe (2.1) with F = 1, the toy model in this section is inspired by Stelle’s gravitational
theory for a particular choice of the front coefficients for the operators R2 and Ric2, namely, the quadratic
part of the action is GµνGµν .
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where the ellipsis stand for convergent contributions. Since the theory is only four derivatives,
in order to figure out the kind of UV divergent contributions to the quantum effective action
it is sufficient to expand the propagator for large □ and retain only the leading term:

1
2λ□2

(
1 + 1

2λ□

) = 1
2λ□2

(
1− 1

2λ□

)
+O

( 1
□4

)
. (5.17)

Replacing the above expansion in (5.16), we get

Γ(1)
∂4 = i

2Tr

V ′′(Φ) 1
□+ 2λ□2︸ ︷︷ ︸

1
ε

1
λ

V ′′(Φ)

− 4λV ′′(Φ)��□
1

2λ□✁2

(
1− 1

2λ□

)
︸ ︷︷ ︸

1
ε
□V ′′(Φ)+ 1

ε
1
λ

V ′′(Φ)

− 4λ12V
′′′(Φ)(□Φ) 1

□+ 2λ□2︸ ︷︷ ︸
1
ε

V ′′′(Φ)(□Φ)

+2λV ′(Φ)V ′′′(Φ) 1
□+ 2λ□2︸ ︷︷ ︸

1
ε

V ′(Φ)V ′′′(Φ)

+2λV ′′(Φ)V ′′(Φ) 1
□+ 2λ□2︸ ︷︷ ︸

1
ε

V ′′(Φ)V ′′(Φ)



− 1
2
i

2Tr

16λ2V ′′(Φ)□ 1
□+ 2λ□2 V

′′(Φ)□ 1
□+ 2λ□2︸ ︷︷ ︸

1
ε

V ′′(Φ)V ′′(Φ)

+ . . . . (5.18)

Denoting as ci the coefficients, the above explicit computation provides the following result
for the divergent part of the effective action:

Γ(1)
∂4 = 1

ε

∫
d4x

[ 1
λ
c1V

′′ + c2□V
′′ + c3V

′′′□Φ+ c4V
′ V ′′′ + c5V

′′ V ′′
]
. (5.19)

Again, we have a finite number of divergences. Moreover, if the potential is a polynomial
all the above terms (5.19) are already present in the action (5.12) and the theory is
renormalizable. On the other hand, if the potential is a nonlinear analytic function such as
Starobinsky’s potential, the theory is not renormalizable because we have to redefine an
infinite number of coefficients. This issue can be avoided in super-renormalizable theories,
as we will show in the next subsection.

5.3 Higher derivatives toy model

Let us now consider a model that includes derivatives in the vertices:

S∂γ =
∫

d4x
{1
2φ□φ−V (φ)+λ

[
□φ−V ′(φ)

] □γ

Λ2γ

[
□φ−V ′(φ)

]}
=
∫

d4x
[
1
2φ□φ+λφ

□γ+2

Λ2γ
φ−V (φ)−2λ(□φ) □

γ

Λ2γ
V ′(φ)+λV ′(φ) □

γ

Λ2γ
V ′(φ)

]
, (5.20)
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where γ ∈ N. The first two operators in (5.20) define the higher derivative free theory, while
the others are interaction vertices. With the decomposition (5.7), the Hessian is

S
(2)
∂γ = 1

2

∫
d4xϕ

δ2S∂γ

δϕδϕ

∣∣∣∣∣
ϕ=0

ϕ = 1
2

∫
d4xϕ ∆̂∂γ ϕ ,

∆̂∂γ =
[
□+ 2λ □γ+2

Λ2γ
− V ′′(Φ)− 4λV ′′(Φ) □

γ+1

Λ2γ
− 2λV ′′′

(
□γ+1

Λ2γ
Φ
)

−2λV ′′′
(
□γ

Λ2γ
V ′(Φ)

)]
δ4(x− y)

+ 2λV ′′(Φ)□
γ

2γ
[
V ′′(Φ)δ4(x− y)

]
. (5.21)

The quantum effective action for the model (5.20) is

Γ(1)
∂γ = i

2 Tr ln ∆̂∂γ = i

2 Tr ln
(
□+ 2λ□

γ+2

Λ2γ

)

+ i

2Tr ln
(
1 +

[
−V ′′(Φ)− 4λV ′′(Φ) □

γ+1

Λ2γ
− 2λV ′′′

(
□γ+1

Λ2γ
Φ
)

−2λV ′′′
(
□γ

Λ2γ
V ′(Φ)

)] 1
□+ 2λ□γ+2

Λ2γ

+
{
2λV ′′(Φ)V ′′(Φ) □

γ

Λ2γ
+ 2λV ′′(Φ)

[
∂V ′′(Φ)

] □γ−1∂

Λ2γ

+2λV ′′(Φ)
[
□V ′′(Φ)

] □γ−1

Λ2γ
+ . . .

}
1

□+ 2λ□γ+2

Λ2γ

)
, (5.22)

where the dots are other derivative terms of the product V ′′(Φ)δ4(x − y) in (5.21) that
do not contribute to the divergent part of the quantum effective action. Expanding the
logarithm at second order and omitting convergent terms, we end up with

Γ(1)
∂γ = i

2 Tr ln
(
□+ 2λ□

γ+2

Λ2γ

)

+ i

2Tr
{[

−V ′′(Φ)− 4λV ′′(Φ) □
γ+1

Λ2γ
− 2λV ′′′

(
□γ+1

Λ2γ
Φ
)
− 2λV ′′′

(
□γ

Λ2γ
V ′(Φ)

)

+2λV ′′(Φ)V ′′(Φ) □
γ

Λ2γ
+ 2λV ′′(Φ)

(
∂V ′′(Φ)

) □γ−1∂

Λ2γ

+ 2λV ′′(Φ)
(
□V ′′(Φ)

) □γ−1

Λ2γ

]
1

□+ 2λ□γ+2

Λ2γ

}

− 1
2
i

2Tr
[
16λ2 V ′′(Φ) □

γ+1

Λ2γ

1
□+ 2λ□γ+2

Λ2γ

V ′′(Φ) □
γ+1

Λ2γ

1
□+ 2λ□γ+2

Λ2γ

]
+ . . . . (5.23)

Distributing the propagator at the right side of each vertex, the only divergent contributions
are the second in the second line of (5.23), the first in the third line, and the one in the
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last line:

Γ(1)
∂γ = i

2Tr
[
−4λV ′′(Φ) □

γ+1

Λ2γ

1
□+ 2λ□γ+2

Λ2γ

+ 2λV ′′(Φ)V ′′(Φ) □
γ

Λ2γ

1
□+ 2λ□γ+2

Λ2γ

]

− 1
2
i

2Tr
[
16λ2 V ′′(Φ) □

γ+1

Λ2γ

1
□+ 2λ□γ+2

Λ2γ

V ′′(Φ) □
γ+1

Λ2γ

1
□+ 2λ□γ+2

Λ2γ

]

= 1
ε

∫
d4x

[
b1□V

′′(Φ) + b2V
′′(Φ)V ′′(Φ)

]
, (5.24)

where b1 and b2 are two dimensionless constants. Contrary to the toy model (5.11) for
Stelle’s theory, the two operators (5.24) are not present in the classical action. However, the
model (5.20) can be made super-renormalizable if we add the operators (5.24) into (5.20).
Indeed, such operators do not change the above derivation because they cannot give rise to
extra divergences.

Moreover, the potential does not need to be polynomial, but can also be a generic
analytic function of the scalar field. In fact, for this toy example the renormalization
procedure involves only a finite number of functional derivatives of the potential and not
all the Taylor’s coefficients of V (φ). In other words, one has to renormalize a function or
the finite number of functions in (5.24). This is neither new nor unconventional, since it
is what we actually have in gravity where we do not renormalize each coefficient in the
Taylor’s expansion of R2 or Ric2 in powers of the graviton hµν , but we simply renormalize
multiplicatively such operators as single quantities when seen as functions of hµν . Hence,
there is not conceptual difference among R2 or Ric2 and V ′′, V ′′ V ′′ or V ′ V ′′′, . . . , in the
multiplicative renormalization, as evident from the comparison

(ZV ′′−1)V ′′ , [Z(V ′′)2 −1]V ′′ V ′′ , . . . similar to (ZR−1)R , (ZRic−1)Ric2 . (5.25)

6 Finite quantum gravity

Having established under which conditions the theory is super-renormalizable and thus has
only a finite number of divergent diagrams (excluding divergent subdiagrams, if any), we
are now ready to investigate the possibility of removing all divergences at all loop orders
and ending up with a finite quantum theory. In the following, we consider the versions of
the theory which are one-loop super-renormalizable, i.e., that have divergences only at the
one-loop level.

6.1 Finiteness in odd dimensions

If the topological dimension D is odd, then the theory is not just one-loop super-
renormalizable but actually finite. In fact, since the form factor is asymptotically polynomial,
the UV behavior of one-loop integrals has the general structure

∫ dDk

(2π)D

(k2)r

(k2 +C)s
= − i

2Dπ
D
2

Γ
(
r + D

2

)
Γ
(
s− r − D

2

)
Γ
(

D
2

)
Γ(s)

C
D
2 +r−s , (6.1)
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where C depends on the external momenta. The integral (6.1) is convergent in odd
dimensions because the gamma function

Γ
(
s− r − D

2︸ ︷︷ ︸
semi-integer

)
(6.2)

has no poles if r and s are both integer, which is the present case. As a consequence, we do
not have one-loop divergences and, due to the absence of divergences also at L > 1, the
theory is finite.

6.2 Killers

When D is even, one-loop divergences persist and we have to remove them modifying
the theory. For this purpose, we have to include in the bare action other operators that
do not get renormalized (i.e., we do not get quantum divergences proportional to such
operators) and do not contribute to the propagator on Minkowski background. Such
operators, introduced for the first time in [35, 36] (see also [37]), are named killers because
they “kill” all the quantum divergences, i.e., they make all β-functions zero. Killers must
be at least cubic in the extremals Ei (this request ensures the stability properties reviewed
in section 2; see also the next subsection) and have the same number of derivatives of the
quadratic operators in Ei present in (2.24). Examples of killers quartic in the extremals are

b1EiE
i □n−2EjE

j , b2EiEj □
n−2EiEj , b3EiE

i □n−3∇µEj∇µEj ,

b4EiEj□
n−2∇µE

i∇µEj , b5EiE
i □n−4∇µEj□∇µEj ,

b6EiEj□
n−4∇µE

i□∇µEj , . . . , (6.3)

where □ must respect all the symmetries of the theory. The operators in (6.3) are quartic
in the extremals in order to contribute linearly in the front coefficients bi to the quadratic
(in Ei) divergent part of the action, that is to say, to the β-functions. Notice that increasing
the integer n makes the number of potential killers increase, although it does not necessarily
imply that the number of independent divergent terms also increases.

6.3 Mimetic killers

The operators introduced in the previous subsection are sufficient to make the purely
gravitational theory finite, but they are not enough if we also have matter field. Indeed, at
the classical level we would like to preserve the nonlocal equations of motion (2.14), which
ensures the perturbative stability of the solutions of Einstein’s theory and the Standard
Model of particle physics. However, to achieve finiteness, we will need not only operators
at least cubic in the extremals preserving (2.14), but also, as we will see below, operators
quadratic in the extremals that spoil such classical property. In order to solve this problem,
we generalize the argument of the entire function H, replacing the polynomial (2.10) inside
the Hessian operator with a more general one including other curvature invariants, namely
(in D dimensions)

p(∆̂Λ∗) = ∆̂
[
ãn+1∆̂n + ãn∆̂n−1 + · · ·+ ã1 +

(∑
r

crOr

)
□n−2

]
, n ⩾ 2 , (6.4)
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where ãn = an/Λ[∆̂]n
∗ and we set a0 = 0. In dimension D, n must be greater than two

because of super-renormalizability. Notice that, in order to safeguard (2.14) and the stability
properties of the theory, only the first operator ∆̂ in the polynomial (6.4) needs to be
the Hessian of the local underlying theory. All the others can simply be gauge-invariant
d’Alembertian operators in curved spacetime. To achieve finiteness, the operators Or must
include at least all possible one-loop counterterms (at most four-derivative) that are listed
in (4.23), (4.24), and (4.25) for the D = 4 case. We name these operators Or mimetic killers
since, contrary to the killers (6.3) that appear explicitly in the Lagrangian, they mimetize
inside the form factor.

When we replace the polynomial (6.4) in the leading contributions to the La-
grangian (2.1) in the UV regime [large z in (2.13)], we get

LUV = Ei e
γE(∆̂−1 p)ijEj

= eγE Ei

[
ãn+1∆̂n + ãn∆̂n−1 + · · ·+ ã11+

(∑
r

crOr

)
1□n−2

]
ij

Ej , (6.5)

where in the last two terms the indices ij are attached to 1ij = δij and the □ operator
should preserve all the symmetries of the theory and be compatible with any chosen metric
background. Let us now focus on the last operators in (6.5). For the sake of simplicity, we
can assume the sum on the indices i, j to be proportional to the identity in the space of
fields (in general, we can introduce a field-dependent and nondiagonal metric such as (3.10)).
Then, we get

Ei

(∑
r

crOr

)
δij□

n−2Ej =
(∑

r

crOr

)
Ei□

n−2Ei

∼
(∑

r

cr

[
(∇2Φ)2, (∇Φ)4, (∇Φ)2, . . .

]
r

)
×
[
(□Φ+ . . . )□n−2(□Φ+ . . . )

]
, (6.6)

where Φ can be any field including the graviton and in the first square brackets we
schematically indicate a linear combination of different operators for each of the Or terms. In
order to prove finiteness, we have to consider the second-order variation of the operator (6.6).
The other leading operator in the UV regime is the first term in (6.5), that we can compactly
write as

ãn+1Ei(∆̂n)ijEj ∼ ãn+1[(∂2Φ) + . . . ]□n[(∂2Φ) + . . . ] , (6.7)

where we omitted terms without derivatives and ∂2Φ means fields with two derivatives,
regardless of how these are contracted. Notice that, contrary to matter, only the graviton
field hµν can appear in any self-interaction power and without derivatives attached to its
legs. The latter is a property of our theory, in agreement with the general renormalizability
statement 1.

If we Taylor expand the second operator Ei□n−2Ei in (6.6) with respect to Φi, the
one-loop integrals can produce divergences proportional to crOr. Consider a generic diagram
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with only one vertex. In D = 4 dimensions and in dimensional regularization, schematically
(see [38] for a similar notation)

crOr

∫
d4k ⟨δEi k

2n−4 δEi⟩ = crOr

∫
d4k k2 k2n−4 k2⟨ΦiΦi⟩r

∼ crOr

∫
d4k k2 k2k2n−4 1

k2n+4

= crOr

∫ d4k
k4

= crOr
1
ε
, (6.8)

where, like in section 5.1, the angular brackets ⟨·⟩r denote the Feynman contraction (i.e.,
the propagator) of two fields, in this case coming form the expansion of the two operators
δE and with an r-dependence signalled with the subscript r:

⟨ΦiΦj⟩r = br
δij

k2n+4 ∼ 1
k2n+4 , (6.9)

where br is an r-dependent coefficient. Here and in the following formulæ, the symbol
∼ means omission of this coefficient br and of the Kronecker delta δij (here δii = 1 but
it is nontrivial in the case of mixed field products with i ̸= j). Notice that, in order to
be logarithmically divergent, in the above integral each of the two expansions δEi should
contain at least two derivatives acting on the contracted field, otherwise the integral is
convergent. Other divergences can be originated by the contraction of a field in δEi with
another field in Or,

crEi

∫
d4k ⟨δO(2,2)

r k2n−4 δEi⟩ = crEi

(
∂2Φi . . .Φj

)∫
d4k k2 k2n−4 k2⟨ΦiΦi⟩r

∼ crEi

(
∂2Φi . . .Φj

)∫
d4k k2 k2n−4 k2

1
k2n+4

= crEi

(
∂2Φi . . .Φj

)∫
d4k 1

k4

= crEi

(
∂2Φi . . .Φj

) 1
ε
, (6.10)

where we assumed that Or contains four derivatives, but at most two can act on a single
field. This is a characteristic of the counterterms in (4.23)–(4.25) with (4.32) and (4.33).
However, if Or happens to have, for example, four derivatives on a field and zero on the
others, we can get up to two more counterterms in the action (proportional to 1/ε),

cr

(
∂2Ei

)
Φi , cr (∂Ei) (∂Φi) , (6.11)

which are equivalent to (6.10) up to total derivatives. Indeed, we also get the following
extra divergences besides (6.10):

crEi

∫
d4k ⟨δO(4,0)

r k2n−4 δEi⟩ = crEi

(
∂0Φi . . .Φj

)∫
d4k k4 k2n−4 k2⟨ΦiΦi⟩

= crEi

(
∂0Φi . . .Φj

)∫
d4k k4 k2n−4 k2

1
k2n+4

= crEi

(
∂0Φi . . .Φj

)∫
d4k k2 1

k4

∼ cr

(
∂2Ei

)
Φi

1
ε
+ cr (∂Ei) (∂Φi)

1
ε
, (6.12)
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where by
(
∂0Φi . . .Φj

)
we mean no derivatives on any field (which can be more than one),

but the operator Or studied in (6.12) has in total four derivatives, namely it is one of the
operators in (4.23) after integration by parts and discarding boundary terms. The boundary
terms will be consider later in this section.

On the other hand, if Or has a total number of two derivatives (see the second operator
in (4.24)), then the most divergent integral reads

crEi

∫
d4k ⟨δOr k

2n−4 δEi⟩ = crEi

(
∂0Φi . . .Φj

)∫
d4k 1

k4
= crEi

(
∂0Φi . . .Φj

) 1
ε
. (6.13)

Conversely, no divergences result from the contraction of two fields in the operator
Or, because Or contains at most four derivatives, while the denominator contains 2n+ 4
derivatives. Indeed,

cr Ei□
n−2Ei

∫
d4k ⟨δOr⟩ = crEi□

n−2Ei

∫
d4k k2 k2⟨ΦjΦj⟩r

∼ cr Ei□
n−2Ei

∫
d4k k2 k2 1

k2n+4

= cr Ei□
n−2Ei

∫
d4k 1

k2n
< +∞ . (6.14)

Moreover, divergences can only be linearly proportional to the coefficients cr because one-
loop integrals with a number of vertices ⩾ 2 are convergent if no more than two derivatives
act on any single field in the operator Or. For two vertices,

cr cs Or Ej

∫
d4k ⟨δOs k

2n−4 δEi⟩ ⟨δEi k
2n−4 δEj⟩r

= cr cs Or Ej O′
s,k

∫
d4k k2 k2 ⟨Φk k

2n−4Φi⟩s k
2 k2 ⟨Φi k

2n−4Φj⟩r

∼ cr cs Or Ej O′
s,k

∫
d4k k2 k2 k2n−4 1

k2n+4 k
2 k2 k2n−4 1

k2n+4

= cr cs Or Ej O′
s,k

∫ d4k
k8

< +∞ . (6.15)

The above integral is convergent also if, in the operator Or, four derivatives act on a single
field, since

∫
d4k/k6 < +∞. Similarly, performing contractions only between the tensors Ei

in the two vertices, we obtain

cr cs Or Os

∫
d4k ⟨δEi k

2n−4 δEj⟩r ⟨δEj k
2n−4 δEi⟩s

= cr cs Or Os

∫
d4k k2 k2 ⟨Φi k

2n−4Φj⟩r k
2 k2 ⟨Φj k

2n−4Φi⟩s

∼ cr cs Or Os

∫
d4k k2 k2 k2n−4 1

k2n+4 k
2 k2 k2n−4 1

k2n+4

= cr cs Or Os

∫ d4k
k8

< +∞ . (6.16)

– 31 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
4

Finally, we consider the contraction of a mimetic killer with the operator Ei□nEi

in (6.7). For the case of two vertices, the divergent one-loop integral is

cr Or

∫
d4k ⟨δEi k

2n−4 δEj⟩r ⟨δEj k
2n δEi⟩

∼ cr Or

∫
d4k k2 1

k2n+4 k
2n−4 k2 k2

1
k2n+4 k

2n k2

= cr Or

∫ d4k
k4

= cr Or
1
ε
, (6.17)

which is the same kind of divergence of (6.8). Notice that, in order to be divergent,
the variation δEi must provide a k2 contribution in the internal loop momentum to the
integral (6.17). Therefore, only □φ and Rµν can give a divergent contribution (see the
equations of motion for the scalar field as an example, but the result is general because
Ei are the equations of motion of a local two-derivative subsidiary theory). In both cases,
the resummation of all the divergences for an arbitrary large number of external legs will
reconstruct the measure weight

√
|g|. This resummation of divergences is more evident

when the background-field method is properly implemented. Let us expand on this issue.
The path integral for the full theory, including gravity and matter, the gauge-fixing

operators, and the BRST-ghosts action reads

Z[Φi] =
∫ ∏

i

DΦi

∏
j

Dcj e
i(S+Sgf+Sgh) , (6.18)

where i labels all the fields in the theory and j all the BRST ghost fields.
As we saw above in this section, in the background-field method one splits the fields in

a background plus a fluctuation,
Φi → Φi + ϕi. (6.19)

Hence, at one loop we can evaluate the functional integral explicitly and express the partition
function as a product of functional determinants:

Z[Φk] = eiS[Φk]

Det
[
δ2(S[Φk + ϕk] + Sgf [Φk + ϕk])

δϕi δϕj

∣∣∣∣∣
ϕl=0


− 1

2

× (DetM) (DetC)
1
2
∏
q

(DetMYM
q ) , (6.20)

where M and C are the quadratic operators for the BRST ghosts of the gravitational sector,
while MYM

q is the quadratic operator for the BRST ghosts of the gauge fields. Moreover,
by S[Φk] we mean the classical action of the theory for the background fields Φk.

Therefore, in order to get the one-loop effective action, we need to expand the action
including the gauge-fixing term to the second order in the quantum fluctuation ϕi. The
result in D = 4 dimensions is

δ2S = 1
2

∫
d4x

√
|g|ϕi ∆ij ϕj , ∆ij = δ2(S + Sgf)

δϕi δϕj

∣∣∣∣∣
ϕl=0

. (6.21)
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Following [24], we can recast the minimal Hessian in (6.21) in the compact and general form

∆ij = δij□n+2 + V i,j,i1...i2n+2︸ ︷︷ ︸
∂2Φi

∇i1 · · · ∇i2n+2

+W ij,i1...i2n+1︸ ︷︷ ︸
∂(∂2Φi)

∇i1 · · · ∇i2n+1 + U i,j,i1...i2n︸ ︷︷ ︸
(∂2Φi)(∂2Φj)

∇i1 · · · ∇i2n +O(∇2n−1)

= □n+2

δij + V i,j,i1...i2n+2︸ ︷︷ ︸
∂2Φi

∇i1 · · · ∇i2n+2
1

□n+2 +W ij,i1...i2n+1︸ ︷︷ ︸
∂(∂2Φi)

∇i1 · · · ∇i2n+1
1

□n+2

+ U i,j,i1...i2n︸ ︷︷ ︸
(∂2Φi)(∂2Φj)

∇i1 · · · ∇i2n

1
□n+2 +O(∇2n−1) 1

□n+2

. (6.22)

When the background-field method is implemented and the second functional derivative
taken, the mimetic killers contribute only to the operator U , if in the mimetic killers at
most 2n− 2 derivatives act on the quantum field ϕ and 2 on any other field. Mimetic killers
can also contribute to the matrix V if we include boundary terms or, equivalently, operators
in which three or four derivatives act on a single field in some Or. These operators will be
studied later in more detail.

Therefore, the contribution of the operator Ei□n−2Ei in the Taylor expansion of (6.6)
to the second-order variation giving rise to a divergence is proportional to[

(∇2Φ)2 + . . .
]
ϕ∇2nϕ , (6.23)

which gives a contribution to U according to the definition (6.22) (fourth term after the
first equality). If a boundary term among the Or is added to the list of mimetic killers (6.6),
the variation (6.23) turns into (

∇4Φ+ . . .
)
ϕ∇2nϕ . (6.24)

In addition, we can vary the boundary operator Or, which can now provide also terms with
three or four derivatives on a single field after explicit evaluation of the total derivative.
Therefore, we get contributions also to the matrix V ,[

(∇0Φ)(∇4ϕ) + . . .
]
(∇2Φ)∇2n−2ϕ . (6.25)

After integration by parts, we get[
(∇0Φ)ϕ+ . . .

]
(∇2Φ)∇4∇2n−2ϕ =

[
(∇0Φ)(∇2Φ) + . . .

]
ϕ∇2n+2ϕ . (6.26)

The latter operator can contribute linearly in its front coefficient to any divergence with
four derivatives, but it will contribute quadratically in the front coefficient only to operators
having up two derivatives on a single field and two fields with two derivatives each, namely,

1
ε
c2r(∇2Φ)(∇2Φ) . (6.27)
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However, the above divergences have two derivatives on a single field and, thus, they
contribute to the β-functions that can be made to vanish by a proper choice of other
constants cr, according to (6.8).

Coming back to the term ⟨δEj k
2n δEi⟩ in the first line of (6.17), it can only be originated

by a nonminimal term in the Hessian in (6.22), so that

∆ij = δij□n+2 + V (0)i,j,i1...i2n+4︸ ︷︷ ︸
∂0Φi

∇i1 · · · ∇i2n+4 + V i,j,i1...i2n+2︸ ︷︷ ︸
∂2Φi

∇i1 · · · ∇i2n+2

+W ij,i1...i2n+1︸ ︷︷ ︸
∂(∂2Φi)

∇i1 · · · ∇i2n+1 + U i,j,i1...i2n︸ ︷︷ ︸
(∂2Φi)(∂2Φj)

∇i1 · · · ∇i2n +O(∇2n−1) . (6.28)

Indeed, the term proportional to V (0) has 2n+ 4 derivatives like the inverse propagator
and, when we take the trace of the Hessian, among all the divergences we also find one
proportional to

Tr
[
V i,j,i1...i2n+2∇i1 · · · ∇i2n+2

1
□n+2 V

(0)i,j,i1...i2n+4∇i1 · · · ∇i2n+4
1

□n+2

]
, (6.29)

which is exactly (6.17). However, by a proper gauge choice we can always turn V (0) = 0
even in the presence of matter and, a posteriori, we see that we can avoid (6.17) and such
an infinite number of divergent contributions to the quantum effective action.

Finally, for completeness the one-loop effective action reads:

Γ(1)[Φi] = −i lnZ[Φi]

= S[Φi] +
i

2 lnDet(∆̂)− i lnDet(M)− i

2 lnDet(C)− i
∑

q

lnDet(MYM
q ) , (6.30)

which can be obtained employing the universal trace formulæ of Barvinsky and Vilko-
visky [39].

Therefore, if we introduce a sufficient number of mimetic killers (6.6) in the theory
in order to get extra divergences proportional to the operators in (4.23) and (4.24), but
linearly proportional to the front coefficients cr, then we can always solve the vanishing
equations for all the β-functions. Such solutions for real coefficients cr always exist and are
real since the system of equations is linear. In this way, all β-functions are zero and we
achieve UV finiteness.

Finally, we comment about boundary terms. In order to achieve conformal invariance
at the quantum level, we need to cancel all divergences that can potentially contribute
to the trace anomaly (see section 6.5 for more details). This issue can be addressed by
including other operators Or to the sum in (6.4) that display fields with also three or four
derivatives acting on them. Indeed, any four-derivative boundary term can be expanded
into several operators having from one to four derivatives on a single field. Hence, we have
mimetic killers with three or four derivatives on a single field in Or, but still a total number
of four derivatives, i.e.,

Or : (∇3Φ)(∇Φ)(. . . ) , (∇4Φ)(. . . ) (6.31)
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where by dots we mean other fields (if any) without derivatives. This in turn will be
equivalent to remove divergences proportional to total derivatives after integration by parts.
In other words, we can extend the list in (4.23) to all possible operators having also three
or four derivatives on a single field. According to the simplified analysis in (6.8), we get
divergent contributions proportional to (6.31) and linear in the front coefficient cr.

Following the example (6.12), other divergences can be originated by the contraction of
a field in δEi with another field in Or,

crEi

∫
d4k ⟨δOr k

2n−4 δEi⟩ = crEi

(
∂0Φi

)∫
d4k k4 k2n−4 k2⟨ΦiΦi⟩

= crEi

(
∂0Φi

)∫
d4k k4 k2n−4 k2

1
k2n+4

= crEi

(
∂0Φi

)∫
d4k k2 1

k4

∼ cr

(
∂2Ei

)
Φi

1
ε
+ cr (∂Ei) (∂Φi)

1
ε
+ crEi

(
∂2Φi

) 1
ε
. (6.32)

The first two operators in (6.32) also contribute to counterterms with three and four
derivatives on a single field, but still linearly in the front coefficient cr. Hence, they are not
a problem to achieve full finiteness.

However, divergences resulting from the mimetic killers that include (6.31) can also
contribute quadratically in cr to one-loop integrals. For two vertices,

cr csEiEj

∫
d4k ⟨δOr k

2n−4 δEi⟩ ⟨δOr k
2n−4 δEj⟩

= cr csEiEj

∫
d4k k4 k2 ⟨Φr k

2n−4Φi⟩ k4 k2 ⟨Φs k
2n−4Φj⟩

= cr cs EiEj

∫
d4k��k4 k2 k✚✚2n−4 1

k✚✚2n+✁4
��k
4 k2 k✚✚2n−4 1

k✚✚2n+✁4

= cr cs EiEj

∫ d4k
k4

= cr cs EiEj
1
ε
. (6.33)

The above divergences will contribute to the β-functions of the counterterms having only at
most two derivatives on a single field. Such β-functions can be made to vanish thanks to
other contributions that are certainly linear in the front coefficients according to (6.8). Hence,
the divergences (6.33) do not spoil the finiteness. On the other hand, if three derivatives
act on a single field, integrals similar to (6.33) and quadratic in cr are convergent.

Let us also remark that, as long as it is finite, the number N of divergences in the theory
does not modify the killing procedure. Given N operators Xi associated with quantum
divergences (e.g., X1 = RµνR

µν , X2 = R2, X3 = (□φ)2, X4 = R□φ, and so on), one can
construct N killers of the form siXi□n−2R2, where si are coupling constants. All these
operators contribute linearly to the respective beta functions, so that one must solve a
system of N linear equations in the N variables si. For the above operators, one can show
that such a system always admits a nontrivial set of solutions.

6.4 Multiplicative renormalizability in even dimensions

Power counting does just what its name says: it counts the number of divergences in a
given theory. However, it does not establish whether these divergences can actually be
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reabsorbed in counterterms reflecting the original structure of the bare action. If this
happens, the theory is said to be multiplicatively renormalizable [17]. In other words, given
a bare Lagrangian made of n operators Oi,

L =
n∑

i=1
Oi , (6.34)

the theory is multiplicatively renormalizable if the counterterms are of the form

Lct =
n∑

i=1
ciOi , (6.35)

for some coefficients ci. In previous sections, we have seen that nonminimally coupled
nonlocal quantum gravity is at least power-counting super-renormalizable, so that the
number of superficial divergences is finite. However, due to the very rigid structure of
the action as the sum of the square of the extremals Ei, the coefficients in front of O(R2)
operators in the bare action are not mutually independent, which may lead to the conclusion
that the theory has fewer free parameters in the classical action than divergences and,
therefore, is not multiplicatively renormalizable.

Let us illustrate the above issue in a higher-derivative nonunitary gravitational model
with curvature square sector GµνG

µν , which mimicks the theory EµνF (∆)Eµν for F = 1
and in the absence of matter. The GG model is special in the same sense of EFE because
the operators RµνR

µν and R2 do not have arbitrary coefficients like in Stelle gravity. The
full Lagrangian in D = 4 dimensions is

L = 1
16πG(R+ 2Λ) + αGµνG

µν = 1
16πG(R+ 2Λ) + αRµνR

µν . (6.36)

This model is a sort of overconstrained Stelle gravity with only one independent coefficient α
in the quadratic sector and, thus, the masses of the ghost and the scalar are not independent.
In order to better understand this, recall that Stelle’s Lagrangian is [23]

LStelle =
1

16πG(R+ 2Λ) + αRµνR
µν + σR2, (6.37)

and the graviton propagator for Stelle gravity (6.37) and the model (6.36) (when σ = 0) on
Minkowski spacetime (Λ = 0) and with the minimal gauge choice is

O−1(k) = − P (2)

k2[(16πG)−1 − αk2] +
P (0)

2k2[(16πG)−1 + k2(3σ + 2α)]

∣∣∣
σ=0

= − P (2)

k2[(16πG)−1 − αk2] +
P (0)

2k2[(16πG)−1 + 2αk2] . (6.38)

Moreover, the theory (6.36) has the same power-counting divergences of Stelle gravity
because vertices and kinetic terms have the same number of derivatives, if α ̸= 0.

At the quantum level, Stelle theory (6.37) is renormalizable and we get divergences
proportional to the operators already present in the classical action (up to topological and

– 36 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
4

superficial terms that we do not discuss here). Focusing on the higher-derivative part only,
a power-counting analysis shows that the counterterms have the following form:

Lct = −Ldiv = 1
32π2ε

(
βαRµνR

µν + βσR
2
)
= (Zα − 1)αRµνR

µν + (Zσ − 1)σR2, (6.39)

where Zα,σ are the renormalization constants for the coupling parameters and βα,σ are
the beta functions for the two operators we are investigating. Note that the last equality
holds only if the theory is multiplicatively renormalizable. The renormalized Lagrangian is
given by

Lren = L(µ) + Lct , (6.40)

where the classical Lagrangian L(µ) = LStelle(µ) depends on the renormalization scale
µ because the coupling constants α and σ both depend on the energy scale µ. Now we
introduce the bare parameters αB and σB in order to show that the quadratic part Lquad

ren of
the Lagrangian Lren takes on the appearance of the classical Lagrangian (6.37), namely

Lquad
B = αBRµνR

µν + σBR
2 . (6.41)

Indeed, comparing (6.40) with (6.41) and ignoring the running of the Newton’s and
cosmological constants because it does not affect the issue considered here [40], we get

αZα = αB , σZσ = σB , (6.42)

where the last equation is absent for the model (6.36). However, for the model (6.36) we
meet a problem. At one loop, we get a divergent contribution ∝ R2 because βσ ̸= 0 [17, 23],
while in the classical action this operator is absent. Therefore, we cannot redefine any
coupling to absorb such a divergence without avoiding the contradiction

0 = σB := (Zσ − 1)σ = βσ

32π2ε ̸= 0 . (6.43)

Therefore, the last equality in (6.39) does not hold for the local GµνG
µν model (6.36)

and the latter is not multiplicatively renormalizable; this is exactly what happens also for
the nonlocal model (3.6) and its more general version (3.21). In the latter case, since the
coefficients α1 and α2 in (3.16) are independent when the general internal-space metric (3.8)
is adopted, the two structures EµνE

µν and Eµ
µE

ν
ν are able to reabsorb the two covariant

divergences proportional to RµνR
µν and R2 (in D = 4 dimensions) in a pure-gravity

scenario with no matter fields. Therefore, in pure gravity the general metric (3.8) fixes
the problem since we have as many operators with independent coefficients as the number
of counterterms.

However, as soon as we switch on matter fields, we have fewer free parameters in the
classical action than divergences and the model is not multiplicatively (super-)renormalizable.
In particular, in D = 4 dimensions the divergences repeat the form of the action (3.21);
we have in this case 11 types of divergences (not considering topological and superficial
terms) and only 4 free parameters given in (3.16), so that it is not possible to satisfy all the
renormalization group equations. In D > 4 dimensions, the situation is even worse because
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new divergences pop up and their number increases with the dimension; in particular, the
purely gravitational divergences with the maximum number of derivatives are not in the
quadratic form RµνR

µν and R2 (e.g., in D = 6 dimensions, they are cubic in the curvatures).
There are three ways to solve this problem. The first and most intuitive way is to

consider the finite version of the theory, discussed above in this section 6. Indeed, if the
theory is finite (D odd, or D even plus killer operators), there are no divergences at any
loop order and we do not need to invoke any multiplicative renormalizability.

The second option is a partial application of what is spelled out above: One cancels
only a subset of divergences by means of killers in order to make the number of free
couplings equal to the number of divergences. Afterwards, one applies the multiplicative
renormalization scheme.

The third way, first discussed in [3, 31, 35], is to take advantage of renormalization-
group (RG) invariance and impose a particular initial condition on the RG flow. In fact,
the definition of multiplicative renormalizability is somehow incomplete because, in the first
place, it does not consider the quantum effective action, which is the actual physical quantity
we have to use to compute the quantum equations of motion and the quantum tree-level
scattering amplitudes; and, second, it does not take into account the initial conditions of
the RG equations. About the former point, it deserves to be stressed that, in general, the
running of the coupling constants is only an indication of how the quantum action looks like,
but it is not fully reliable. This problem is already evident in the case of the cosmological
constant, where the running does not correspond to any logarithmic contribution to the
quantum effective action [41].

The definition of renormalizability is not simply based on introducing all possible
operators consistent with the power counting, but on having a theory in which divergences
correspond to the introduction of a finite number of counterterms at the quantum level
and, therefore, of a finite number of parameters to be measured experimentally. What
is crucial for renormalizability is that the number of divergences be finite. Only in this
case is the quantum effective action uniquely specified by a finite number of new extra
parameters (with respect to the classical theory), although it might not contain all possible
operators as required by the definition of multiplicative renormalizability. On the other
hand, if the number of counterterms is infinite, then we have to make an infinite number of
measurements and the theory is nonpredictive. Consider, for instance, the extreme case of
a finite theory devoid of divergences. In this case, the quantum effective action in some
models may contain an infinite number of parameters, but they are all referable to the
parameters present in the classical theory.

To extend the discussion in [35] and fully illustrate the RG-based procedure avoiding
the problem posed by multiplicative renormalizability, let us go back to Stelle gravity. Here
we limit the discussion to D = 4 dimensions, but we expect the scheme below to work also
in higher dimensions. The theory (6.37) is power-counting renormalizable and the one-loop
RG equations for α and σ at high energies are approximately [40, 42]

dα
dt ≃ βα ,

dσ
dt ≃ βσ , t := 1

(4π)2 ln
µ

µ0
, (6.44)
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equivalent to

α(µ) ≃ α(µ0) +
βα

(4π)2 ln
µ

µ0
, σ(µ) ≃ σ(µ0) +

βσ

(4π)2 ln
µ

µ0
, (6.45)

where µ0 is an initial condition for the RG evolution. These equations also hold for the
model (6.36) as soon as we recognize that we can select a renormalization scale µ such
that σ = 0 (but with different beta functions, since vertices and propagator are affected by
the absence of the R2 contribution). Such a value can be seen as a particular choice of
the initial condition for the second equation in (6.45) made in order to keep the classical
spectrum unchanged at the quantum level, independently of whether it contains ghosts or
not. In fact, while perturbative unitarity (or its lack) is proved via the Cutkosky cutting
rules derived at this particular scale [19], RG invariance ensures that the spectrum is not
affected by the running of the couplings. RG invariance states that the quantum effective
action Γ has the same form at any RG scale µ, at any loop order:

Γ(µ) = Γ(µ0) . (6.46)

Using (6.45), it is easy to check (6.46) at one loop in Stelle gravity, focusing on the quadratic
part of the one-loop effective Lagrangian:

L(1) quad(µ) = Lquad(µ) + Lct + Ldiv + Lfinite(µ) = Lquad(µ) + Lfinite(µ)
= α(µ)RµνR

µν + σ(µ)R2

+ βα

32π2Rµν ln
−□
µ2

Rµν + βσ

32π2R ln −□
µ2

R

=
[
α(µ0) +

βα

16π2 ln
µ

µ0

]
RµνR

µν +
[
σ(µ0) +

βσ

16π2 ln
µ

µ0

]
R2

+ βα

32π2Rµν ln
−□
µ2

Rµν + βσ

32π2R ln −□
µ2

R

= α(µ0)RµνR
µν + σ(µ0)R2

+ βα

32π2Rµν ln
−□
µ20

Rµν + βσ(µ0)
32π2 R ln −□

µ20
R

= L(1) quad(µ0) . (6.47)

Hence, if one derives the spectrum (or checks perturbative unitarity) at a scale µ, its
properties are preserved at any energy scale. From here, it follows that the case of the
GG model (6.36) is obtained simply by a choice of initial RG scale. In fact, consider the
RG-invariant scale

µ̄ := µ e
− 16π2

βσ
σ(µ) (6.45)= µ0 e

− 16π2
βσ

σ(µ0). (6.48)

The invariance is manifest on the right-hand side since µ0 is a constant. If one assumes the
initial condition σ(µ0) = 0 in the RG flow, then

µ̄ = µ0 . (6.49)

In other words, the choice σ(µ0) = 0 is equivalent to a particular selection of the RG-invariant
scale.

– 39 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
4

As a double-check of our findings, we now show that the very same quantum effective
action (6.47) with σ(µ0) = 0 can be directly obtained starting from the GµνG

µν model (6.36).
Again, we concentrate on the quadratic part. Let us first generalize (6.40) as

Lreg = L(µ) + Lct . (6.50)

This definition of a regularized one-loop Lagrangian is valid for any theory but only for
renormalizable ones we can say that this Lagrangian is renormalized, Lreg = Lren. The one-
loop quantum effective action coming from (6.50) is augmented by the divergent operators
(which cancel the counterterms by construction) and a finite part. The quadratic part of
the Lagrangian reads

L(1) quad
reg (µ0) = Lquad

reg + Ldiv + Lfinite(µ0) = Lquad(µ0) + Lfinite(µ0)

= α(µ0)RµνR
µν + βα

32π2Rµν ln
−□
µ20

Rµν + βR2

32π2R ln −□
µ20

R

= L(1) quad(µ0)
∣∣
σ(µ0)=0 , (6.51)

identical with the last equality in (6.47) with σ(µ0) = 0, where βR2 = βσ|σ=0.
To summarize, the model (6.36) is singular in the space of parameters because the

coefficient of the local operator R2 vanishes. On the other hand, if the coefficients α and σ
are both nonzero, it is clear that the theory is renormalizable in a conventional manner. In
the classical theory, α and σ must have a fixed value corresponding to what is measured
experimentally at a specific energy scale. The only theoretical assumption is that the theory
must have a particular spectrum (or to be unitary, if this is the case). Hence, if the action
is nonsingular in the space of parameters and α ̸= 0 ̸= σ, then their classical values can
only be the initial conditions of the RG equations that define the quantum effective action.
In other words, the statement that the parameters in the classical action must be general
in order to renormalize the theory should be replaced by the fact that they must have a
specific value, which is the observed one. The spectrum (or perturbative unitarity, in the
case of the nonlocal theory) and the Cutkosky rules are calculated at the specific scale
µ0 in which we define the classical theory [19], but they are secured at any scale by RG
invariance. Indeed, the spectrum (perturbative unitarity) cannot be affected by perturbative
quantum corrections.

Let us move to super-renormalizable local higher-derivative and nonlocal theories,
in which only a finite number of counterterms must be added. Following the previous
example, we can reintroduce all such terms into the classical action simply assuming that
the initial condition of the RG equations are the ones in which the coupling constants take
specific constant values including zero. Exactly like for local quadratic gravity, the class
of theories (2.1) has singular points in the modular space of couplings because some of
them are zero in the classical action on which unitarity and other properties are based on.
The case where some of the coupling constants are nonzero but have specific values (for
instance, a fixed value for the ratio of two or more couplings) is nothing new. Indeed, in
any quantum field theory (including standard QED and QCD) the classical value for the
couplings corresponds to the asymptotic value of the RG equations (in QED, for example,
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the asymptotic value for the fine structure constant e2/4π is 1/137). The fact that this
value in the IR is nonzero can be explained by electron mass threshold phenomena, not by
initial RG conditions (there is no non-Gaussian IR fixed point in QED) [43]. However, the
asymptotic conditions to be used to get the IR values of couplings are not very different
from initial conditions. Aside from this analogy, the main difference with respect to higher-
derivative and nonlocal gravitational or gauge theories is the crucial role played by the
coupling constants in the unitarity issue. One can appreciate this in as simple an example as
the six-derivative kinetic operator □(1 + τ□2), where the relative coefficient τ is important
to determine the presence or absence of real ghosts (ghosts with real mass square) versus
complex ghosts (ghosts with complex mass square).

Similarly, in nonlocal theories the structure of the nonlocal terms is crucial to avoid
extra degrees of freedom including ghosts. For instance, in the case of the minimal purely
gravitational theory

L = 1
κ2

[R+GµνF(□)Rµν ] , (6.52)

the coefficients in front of R2
µν and R2 are 1 and −1/2, consistently with ghost freedom

for one suitable form factor F common for both terms. Such coefficients define the initial
condition of the RG equations and they are exactly the analog of 1/137 in QED. Also in
QED the coupling is relevant for unitarity: by a proper redefinition of the photon field, the
kinetic operator turns into −F 2/(4e2) and an opposite choice of the initial condition for
e2, namely e2 ∝ −1/137 would change the photon into a ghost. Notice that the nature of
the photon would not change in perturbative quantum field theory, consistently with the
Cutkosky rules.

We do not have to repeat the same calculation above in pure nonlocal gravity, since the
counterterms are still the same, ∝ RµνR

µν and R2 (up to topological and superficial terms).
Since these terms do not appear with nonzero coefficients in the original classical Lagrangian
L, in order to compensate the one-loop divergences with two independent counterterms it
is sufficient to add to the classical Lagrangian the quadratic terms

Lquad = (α− α̃)RµνR
µν + (σ − σ̃)R2 , (6.53)

which are subject to quantum renormalization. At the classical level, we choose α = α̃ and
σ = σ̃ and then the Lagrangian L+ Lquad reduces to the original unitary theory. At the
quantum level, we face two possibilities. If the theory is finite and all the beta functions
vanish (odd spacetime dimensions or even spacetime dimensions with killers), we have
scale invariance and the above classical identification is valid also at the quantum level.
Instead, if the theory has one-loop divergences (even spacetime dimensions without killers),
then the parameters α̃ and σ̃ are just the initial conditions for the RG equations of the
running coupling constants. At the quantum level, the couplings α(µ) and σ(µ) run with
the renormalization energy scale µ, and so does Lquad. However, these contributions can be
absorbed in the finite part of the one-loop quantum effective action, which involves the same
operators as in Lquad with insertions of ln(−□/µ2) in between. This is a simple consequence
of RG invariance, as shown above. A notable difference with respect to Stelle gravity is
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that the running equations (6.44) and (6.45) are exact in nonlocal quantum gravity, so that
the RG equations

α(µ) = α(µ0) +
βα

(4π)2 ln
µ

µ0
, σ(µ) = σ(µ0) +

βσ

(4π)2 ln
µ

µ0
, (6.54)

are valid at all scales, not just in the UV.
Since the RG flow and its initial conditions can be formulated in a very general way

on curved spacetimes and for almost any quantum field theory with any matter content,
the same mechanism applies, mutatis mutandi, to nonminimally coupled nonlocal quantum
gravity with matter.

The ultimate message of this “third solution” to the multiplicative renormalizability
problem is that what really matters is the number of counterterms rather than the number
of operators in the classical action. If two theories have the same divergences, the same
power counting, and a sufficiently high number of derivatives so that the beta functions do
not depend on the running couplings, but one of them has less operators in the classical
action, then their quantum behavior is the same. Hence, it is sufficient to select the classical
couplings as initial conditions for the RG equations.

6.5 Finiteness and conformal invariance

It is well-known that any classical gravitational theory, local or nonlocal, can be made
conformally invariant [44, 45]. Indeed, in a purely gravitational theory (no matter) one can
make the following replacement of the metric gµν ,

gµν = gµν(ϕ, ĝµν) = ϕ
4

D−2 ĝµν , (6.55)

in which ϕ is a real scalar field called dilaton, and the action

S[ĝ, ϕ] ≡ S[g]
∣∣
g=g(ϕ,ĝ) (6.56)

turns out to be trivially invariant under the conformal transformation

ĝ′µν = Ω2 ĝµν , ϕ′ = Ω−D−2
2 ϕ , (6.57)

where Ω(x) is an arbitrary function of spacetime coordinates. Hence the tensor gµν is
conformally invariant, g′µν = gµν . The above replacement (6.55) is sufficient for a purely
gravitational theory, while in the presence of matter we must also introduce a proper power
of the dilaton for each field in the action. Calling, as before, Φi the collection of all fields
including the spacetime metric,

Φi ∈ {gµν ,Φ,Ψ, Aµ} , (6.58)

in order to make explicit the hidden conformal symmetry of the theory (2.1) we can make
the replacement

Φi = ϕ∆i Φ̂i , (6.59)
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where ∆i is the conformal weight of the field. For example, in D = 4 dimensions,

gµν = ϕ2 ĝµν , Φ = Φ̂
ϕ
, Ψ = Ψ̂

ϕ
3
2
, Aµ = Âµ . (6.60)

All the fields ĝµν , Φ̂, Ψ̂, Âµ are rescaled by ϕ in such a way that the combined terms take
invariant forms under Weyl transformations when ϕ is treated like a scalar, as in (6.57).
Once the fields (6.59) are replaced in the action (2.1), all the mass scales disappear upon a
redefinition of ϕ, which acquires canonical dimension [ϕ] = (D − 2)/2.

In many quantum field theories, conformal invariance is a symmetry valid at the tree
level, but broken at the quantum level, since the coefficients of the operators appearing in
the conformal anomaly are proportional to the nonzero β-functions of the theory. However,
in finite theories where the β-functions all vanish, conformal symmetry is preserved at the
quantum level.

Let us elaborate this feature for super-renormalizable or finite theories in general and,
in particular, for those studied in this paper. For the sake of simplicity, we here consider a
purely gravitational theory. In the presence of divergences, the quantum effective action
consists of the classical (bare) action Scl, a divergent part, and a finite contribution Γfinite.
Since the dimensional regularization scheme breaks conformal invariance, we have to split
the divergent from the finite part in the quantum effective action. For this purpose, we
evaluate all the operators in D = 4− 2ε and, afterwards, take the limit ε→ 0. Therefore,
the one-loop quantum effective action reads

Γ(1) = Scl +
1
ε

∑
i

βi

∫
d4−2εxOi(g) + Γfinite ,

1
ε
= 2

4−D
≡ ln

(Λuv
µ

)2
, (6.61)

Oi(g) ∈
{√

|g|□R ,
√
|g|RµνρσR

µνρσ,
√
|g|R2 ,

√
|g|RµνR

µν ,
√
|g|R ,

√
|g|
} ∣∣∣g=g(ϕ,ĝ)

D=4−2ε

,

(6.62)

where Λuv is the UV cutoff in the cutoff regularization scheme and µ is the renormalization
scale. Each operator has a different β-function βi in front. Clearly, the replacement (6.55)
in (6.62) produce several terms proportional to ε that contribute to the finite part of the
quantum effective action when replaced in the second term of Γ(1) in (6.61). Such terms are
independent of ε. The extra 1/ε terms define the divergent part of the quantum effective
action. As a particular example, let us consider the metric density

√
|g|, i.e., the last

operator in (6.62), which is also present in all the others. Call βΛ the coefficient associated
to it in the divergent part of (6.61). When the metric (6.55) with D = 4− 2ε is plugged
into

√
|g|, the determinant of the metric produces a factor ϕ2ε:(√

|g|
)

D=4−2ε
≃ ϕ4+2ε

√
|ĝ| = ϕ2ε ϕ4

√
|ĝ|︸ ︷︷ ︸

conf. inv.

= ϕ2ε
√
|g| , (6.63)

where we approximated for small ε. On the other hand, the above operator contributes
to (6.61) linearly as ∝ βΛε, since
1
ε
βΛϕ

2ε
√
|g| = 1

ε
βΛ[1 + 2ε lnϕ+O(ε2)]

√
|g| = 1

ε
βΛ

√
|g|+ 2βΛ lnϕ

√
|g|+O(ε) . (6.64)
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Hence, the divergent contribution is βΛ
√
|g|/ε, while the second term is finite and vio-

lates conformal invariance. In general, one gets the following anomalous contributions to
the action:

lim
ε→0

βi

ε
ϕ2εOi(ϕ2ĝ; ε) = lim

ε→0

βi

ε
(1 + 2ε lnϕ)Oi(ϕ2ĝ; ε)

= lim
ε→0

βi

ε
Oi(ϕ2ĝ) + βiÕi(ϕ2ĝ) + 2βi lnϕOi(ϕ2ĝ), (6.65)

where Õi(ϕ2ĝ) is the finite contribution to limε→0Oi(ϕ2ĝ; ε)/ε. The first term can be
eliminated by adding a counterterm with opposite sign, while the last two contributions
in (6.65) are finite (independent of ε) and explicitly violate conformal invariance. Therefore,
a nonfinite gravitational theory can be conformally invariant at the classical level but not
at the quantum level.

However, conformal invariance is preserved if the theory is finite, as is the case of
minimally coupled nonlocal quantum gravity [46] and of the nonlocal theory presented
here with killer operators, as explicitly shown in section 6. All the operators in eqs. (6.62)
and (6.65) have vanishing coefficients βi = 0 from the start and we can take the limit ε→ 0
consistently with conformal invariance. This result is not a fine tuning but, actually, is
one-loop exact because the theory has no divergences for L > 1. The physical consequences
of conformal invariance for the theory (2.1) with the unit field-space metric (3.5) are explored
in [13, 14].

7 Conclusions

In this paper, we have studied the power-counting renormalizability of the nonlocal field
theory (2.1)–(2.6) where gravity and matter are nonminimally coupled. We found that
the theory may be super-renormalizable in D = 4 dimensions and that it can easily be
rendered finite. More precisely, for the theory (2.1) with local action (3.1) the number
of UV divergences is infinite but the theory is strictly renormalizable if n = (D − 4)/2
(eq. (4.19)), while it is finite and the theory is super-renormalizable if n > (D − 4)/2
(eq. (4.14)), where n+ 1 is the degree of the polynomial p(z) in the nonlocal form factor H.
Therefore, in four-dimensional spacetime, the model is power-counting renormalizable if
n = 0 and super-renormalizable if n > 0. Finally, if the summation over the field indices is
performed with the delta (3.10), the UV action does not possess terms with an odd number
of fields φ provided that the potential V (φ) is an even function. In this case, divergences
with an odd number of φ are not generated.

We conclude that the nonlocal proposal (2.1), which is also unitary, could serve not just
as a quantum gravity, but also as a “theory of everything” where all fields are quantized in
the same way. Although there is no unification in the sense of supersymmetric multiplets
or of particle modes arising from the vibrations of a string, and despite the fact that the
choice of nonlocal form factors is restricted but not quite unique, the attractiveness of this
proposal might lie in its simplicity: it is just a perturbative QFT of point particles, with no
extra symmetries or extra dimensions.

– 44 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
4

In its finite version, however, conformal invariance does appear as an added symmetry
and this has momentous consequences for cosmology. Indeed, the theory is conformally
invariant thanks to finiteness and, because of that, one can dispense with inflation to solve
the problems of the hot-big-bang scenario and to subsequently generate the primordial
tensor and scalar spectra in a natural way [13]. In particular, the primordial tensor spectrum
is blue-tilted and there is a relatively large lower bound on its amplitude. This prediction
can be tested within the next five years, thus allowing us to either detect a signature of
quantum gravity or to rule out the theory in the very near future [14]. The results of the
present work put this phenomenology on a firm theoretical ground.
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A Dimensional analysis of the theory

Let us consider the general model (2.1) with fields Φi with dimensionality [Φi]. Since the
functional derivative is defined by

S[Φ + δΦ]− S[Φ] =
∫

dDx
√
|g(x)| δS

δΦi(x) δΦ
i(x)

+ 1
2

∫∫
dDxdDy

√
|g(x)g(y)|δΦi(x) δ2S

δΦj(y)δΦi(x)δΦ
j(y) + . . . , (A.1)

the extremals Ei (see (2.4)) of the underlying local model have the dimension

[Ei] = D − [Φi] , (A.2)

while for the components of the Hessian (2.5) we have

[∆ij(x, y)] = 2D − [Φi]− [Φj ] . (A.3)

Notice that the components of the Hessian have different dimensions if the dimensions of
the fields Φi are not the same.

It is useful to define the operator ∆̂ij through

∆ij(x, y) =: ∆̂ij δ
D(x, y). (A.4)

Therefore,
[∆̂ij ] = D − [Φi]− [Φj ] (A.5)

and we can factorize the dimension of the covariant delta ([δD(x, y)] = D). The main reason
for doing this is because the dimension of the delta is always compensated by an integration,
when the operator is applied on a field.
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Hence, from (2.1) and (A.2), we have

[F ij(∆̂)] = [Φi] + [Φj ]−D = −[∆̂ij ] , (A.6)

in agreement with formula (2.6). In the definition of the form factor, we introduce the scale
of nonlocality Λ∗ with [Λ∗] = 1 and define (2.7), so that

[(∆̂Λ∗)ij ] = 0 . (A.7)

In the generalized model with the contravariant field space metric G ij (defined in
eq. (3.10)), one can define the Hessian with mixed position of the indices i and j:

(∆̂Λ⋆)i
j = G ik(∆̂Λ⋆)kj . (A.8)

Since G ij is dimensionless in our convention, [G ij ] = 0, it follows that

[(∆̂Λ⋆)i
j ] = 0 . (A.9)

Then, it is natural to consider arbitrary powers of this operator, given explicitly by (with
standard matrix multiplication and contraction of dummy indices)

(∆̂0
Λ⋆
)i

j = δi
j , (∆̂1

Λ⋆
)i

j = (∆̂Λ⋆)i
j , (A.10)

(∆̂n
Λ⋆
)i

j = (∆̂Λ⋆)i
k1(∆̂Λ⋆)k1

k2 · . . . · (∆̂Λ⋆)kn−1
j , n ⩾ 2 . (A.11)

Thus,
[(∆̂n

Λ∗)
i
j ] = 0 . (A.12)

In the UV, according to eq. (2.12), the function eH(z) tends to a polynomial p(z) of
degree n+ 1 (with n ⩾ 0). Therefore,

F i
j(∆̂) ≃ α

n∑
ℓ=0

(∆̂ℓ
Λ∗
)i
j

(Λ∗)[∆̂ij ]
, (A.13)

where α = eγEe−H(0)/2 and [α] = 0. Using the above formula, we obtain the UV action (2.24).
Notice that∫ dDx

√
|g|Ei

(∆̂ℓ
Λ∗
)ij

(Λ∗)[∆̂ij ]
Ej

 = −D + [Ei] + [Ej ] + [(∆̂ℓ
Λ∗)ij ]− [∆̂ij ]

= −D + 2D − [Φi]− [Φj ] + 0− (D − [Φi]− [Φj ])
= 0 , (A.14)

as it should be.
In the explicit example of section 3, i.e., in the model based in the local action (3.1)

with fields Φi = (gµν , φ), the dimensions of the fields are8

[gµν ] = 0 , [φ] = D − 2
2 , (A.15)

8The metric gµν can be kept dimensionless in arbitrary D dimensions by changing the dimension of κ.
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and for n = 0 we get

Sn=0
UV =

∫
dDx

√
|g|
[
Lloc +

η1
ΛD
∗
EµνE

µν + η2
ΛD
∗
Eµ

µE
ν
ν + η3

ΛD−[φ]
∗

Eµ
µEφ + η4

ΛD−2[φ]
∗

EφEφ

]
,

(A.16)
where the coefficients ηk depend on the contravariant field-space metric G ij , i.e., ηk = ηk(γi)
with [ηk] = 0; see eq. (3.15). In particular, for D = 4 the above formula gives the result

Sn=0
UV =

∫
d4x

√
|g|
[
Lloc +

η1
Λ4
∗
E2

µν + η2
Λ4
∗
Eµ

µE
ν
ν + η3

Λ3
∗
Eµ

µEφ + η4
Λ2
∗
EφEφ

]
. (A.17)

B Effect of a nonminimal term in Lloc

In section 4.1, we showed that even with a minimally coupled local subsidiary Lagrangian
Lloc, the resultant UV action (2.24) of the nonlocal model can contain the nonminimal
terms necessary for renormalization. Here we show that, on the other hand, if the local
Lagrangian Lloc possesses a nonminimal (NM) term, additional structures are generated in
the nonlocal action, which may cause the model to become nonrenormalizable. To this end,
let us consider the nonminimal extension of the local action (3.1)

S
(NM)
loc = Sloc −

ξ

2

∫
dDx

√
|g|φ2R , (B.1)

where Sloc is given by (3.1). The presence of the term Rφ2 modifies the extremals (3.2)
and (3.3) as

Eµν
(NM) = Eµν + ξφ2

2

(
Rµν − 1

2g
µνR

)
+ ξgµν

[
φ□φ+ (∇φ)2

]
− ξ [φ(∇µ∇νφ) + (∇µφ)(∇νφ)] , (B.2)

E(NM)
φ = Eφ − ξφR . (B.3)

Notice that, because of the nonminimal term, now the extremals have terms with maximal
number of derivatives that depend on φ, instead of ∇φ only. Therefore, the extension of
the action (3.15) will also contain this type of terms. In fact, the action still has the form
of (3.21), but instead of the coefficients (3.22a)–(3.22l), more coefficients become functions
of φ. For example, instead of (3.22b) and (3.22c) we now have

a2(φ) = α1

(
1
κ2

− ξφ2

2

)2

, (B.4)

a3(φ) =
1
4
[
α1(D − 4) + α2(D − 2)2

]( 1
κ2

− ξφ2

2

)2

− α3

(
D − 2

2

)( 1
κ2

− ξφ2

2

)
ξφ+ α4ξ

2φ2. (B.5)

The nontrivial dependence of the above coefficients in φ introduces in the model new
vertices with the maximal number of derivatives. Indeed, because of (B.4) and (B.5), the
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list of terms that generate vertices with four derivatives is now augmented by9√
|g|φ2R2

µν ,
√
|g|φ4R2

µν ,
√
|g|φR2,

√
|g|φ2R2,

√
|g|φ3R2,

√
|g|φ4R2. (B.6)

All these new vertices can yield an external scalar leg without derivative. Thus, the model
based on a nonminimal local action has new diagrams formed by the substitution of an
arbitrary number of the “old” four-derivative vertices originated from (3.21) by the “new”
vertices associated with (B.6) —with up to four external scalar legs without derivatives,
per vertex. These diagrams will have the same superficial degree of divergence of the
original ones. Since there are logarithmically diverging diagrams with V4 arbitrary, we can
use the vertices from (B.6) to construct divergent diagrams with internal graviton lines
and an arbitrary number of scalar external legs without derivatives, which would call for
counterterms in the form of eq. (3.21) with the coefficients being of the type

∑∞
k=0 λkφ

k.
Note that this result is independent of the potential V (φ) and of the choice of the metric in
the space of fields.

The considerations above can be easily extended to the more general case in which
n > 0 and D > 4 in eq. (2.24), with a similar conclusion: The nonminimal term in Lloc
will generate terms with maximal number of derivatives which depend not only on ∇φ,
but also on φ. Since vertices originated from these terms can occur in arbitrary number
in logarithmically diverging diagrams (see the general discussion in section 4.2, and in
section 4.3 for the particular case D = 4), the number of counterterms are infinite and the
nonlocal theory with the nonminimal term in (B.1) is not power-counting renormalizable in
the usual sense.

C Hessian

For the two-derivative local action (3.1), the Hessian is given by

∆ij =

 δ2S
δgαβδgµν

δ2S
δφδgµν

δ2S
δgαβδφ

δ2S
δφδφ

 =
(
∆̂µν,αβ

11 ∆̂µν
12

∆̂αβ
21 ∆̂22

)
δD(x, y) , (C.1)

where

∆̂µν,αβ
11 = 1

κ2

[
1
2δ

µν,αβ□− 1
2g

µνgαβ□+ 1
2(g

µν∇α∇β + gαβ∇µ∇ν)

− 1
4(g

µα∇ν∇β + gνα∇µ∇β + gµβ∇ν∇α + gνβ∇µ∇α)
]
+Πµν,αβ , (C.2)

∆̂µν
12 = 2G µν,λτ

0 (∇λφ)∇τ − 1
2g

µνV ′(φ) , (C.3)

∆̂αβ
21 = −2G αβ,λτ

0 [(∇λφ)∇τ + (∇λ∇τφ)]−
1
2g

αβV ′(φ) , (C.4)

∆̂22 = □− V ′′(φ) , (C.5)
9Beside these, there might be other terms with four derivatives that can contribute external scalar legs

without derivatives, such as
√

|g|φ2R(∇φ)2,
√

|g|φ2Rµν(∇µφ)(∇νφ),
√

|g|φ2R□φ, and
√

|g|φ2(□φ)2.

– 48 –



J
H
E
P
0
9
(
2
0
2
3
)
0
3
4

where we defined the tensorial objects

G µν,αβ
0 := 1

2(δ
µν,αβ − 1

2g
µνgαβ), (C.6)

and

Πµν,αβ := 1
κ2

[1
4
(
Rµανβ +Rναµβ +Rµβνα +Rνβµα

)
− 1

2
(
gµνRαβ + gαβRµν

)
+ 1

4
(
gµαRνβ + gναRµβ + gµβRνα + gνβRµα

)
− G µν,αβ

0 R

]
+ 1

2G µν,αβ
0 (∇φ)2 + G µν,αβ

0 V (φ) + 1
4
[
gµν(∇αφ)(∇βφ) + gαβ(∇µφ)(∇νφ)

]
− 1

4
[
gµα(∇νφ)(∇βφ) + gνα(∇µφ)(∇βφ) + gµβ(∇νφ)(∇αφ) + gνβ(∇µφ)(∇αφ)

]
.

(C.7)

Note that the Hessian is self-adjoint, i.e., given a generic field Φi = (hµν , φ), where hµν

and φ are, respectively, an arbitrary symmetric rank-2 tensor and a scalar field, the inner
product

(Φ, ∆̂Φ) :=
∫

Φi∆̂ijΦj , (C.8)

satisfies
(Φ, ∆̂Φ) = (∆̂Φ,Φ). (C.9)

Or, explicitly, ∫
Φi∆̂ijΦj =

∫
Φj∆̂jiΦi, (C.10)

where in the above formulæ we omitted the integration measure and there is no summation
on repeated indices. Indeed, using (C.3) and (C.4), after integrating by parts, one can
directly verify that, e.g.,∫

dDx
√
|g|hµν∆̂µν

12φ =
∫

dDx
√
|g|φ∆̂µν

21hµν . (C.11)
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