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Abstract
Synthesis of silver nanoparticles (Ag NPs) using microalgae is gaining recognition for its environmentally friendly and cost-
effective nature while maintaining high activity of NPs. In the present study, Ag NPs were synthesized using a methanolic 
extract of Chlorella vulgaris and subjected to calcination. The X-ray diffraction (XRD) analysis showed a crystalline nature of 
the products with  Ag2O and Ag phases with an average crystalline size of 16.07 nm before calcination and an Ag phase with 
24.61 nm crystalline size after calcination. Fourier transform infrared spectroscopy (FTIR) revealed the capping functional 
groups on Ag NPs, while scanning electron microscopy (SEM) displayed their irregular morphology and agglomeration after 
calcination. The organic coating was examined by energy-dispersive X-ray spectroscopy (EDX) and thermogravimetric (TGA) 
analyses, confirming the involvement of the metabolites. The UV–Vis analysis showed a difference in optical properties 
due to calcination. Synthesized Ag NPs were applied for the photodegradation of hazardous dye Brilliant Blue R in visible 
light. Different values of light intensity, catalyst dose, initial dye concentration, and pH were tested to identify the optimal 
set of operating conditions. The highest degradation efficiency of 90.6% with an apparent rate constant of 0.04402  min−1 
was achieved after 90 min of irradiation in the highest tested catalyst dosage.
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Introduction

The discharge of dyes from various industries into water 
bodies is a major source of environmental pollution, which 
can affect aquatic biota as well as humans. It is estimated 

that more than 700,000 tons of synthetic dyes are produced 
annually, with about 15% released to the environment after 
processing (Fito et al. 2023). Once released into a water 
body, dyes can block solar light penetration, which reduces 
photosynthetic activity and inhibits the growth of aquatic 
biota (Faizal et al. 2023). In addition, due to their recalci-
trant nature, they are resistant to degradation, resulting in 
prolonged exposure and accumulation in living organisms 
(Emmanuel et al. 2023). As a result, they can cause aller-
gies, skin irritation, respiratory disorders, mutagenicity, and 
carcinogenicity (He et al. 2022). Therefore, it is crucial to 
apply the proper wastewater treatment method before their 
discharge.

One of the dyes commonly used in the laboratory is Bril-
liant Blue R (BBR), known for its intense blue color, often 
utilized for protein gel staining to visualize and analyze pro-
tein bands. BBR is also largely used in textile industries. It 
belongs to the class of triphenylmethane dyes, which contain 
three phenyl rings linked to a central carbon atom (Zhao 
et al. 2021). In its structure, conjugated double bonds in the 
aromatic rings enable electron delocalization with resonance 
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stabilization, which allows electronic charge distribution and 
prevents the formation of reactive sites (Duxbury 1993). 
Combined with a lack of highly labile functional groups, 
the removal of BBR requires specialized techniques for its 
degradation (Khataee and Kasiri 2010).

In an attempt to discover economical and environmentally 
friendly treatments, several biological methods have been 
researched (Dutta and Bhattacharjee 2022). The mechanism 
behind them involves the use of enzymes found in the cell 
structures of microorganisms (Shabir et al. 2022). However, 
the treatment requires a longer time in a controlled, opti-
mally favorable environment. Another common method is 
adsorption, which involves the adhesion of dye molecules 
into adsorbent through physical or chemical interactions 
(Shabir et al. 2022). While short reaction time is the advan-
tage of using materials such as activated carbon or zeolites, 
the pollutants are collected and transferred, but not elimi-
nated from the environment (Shabir et al. 2022). A different 
method, combining both high efficiency and short time, is 
the use of advanced oxidation processes (AOPs) based on 
the production of hydroxyl free radicals with high oxidizing 
ability.

Photocatalysis has emerged as a promising method 
utilizing light energy to generate reactive oxygen species 
(ROS) that can degrade the dye into less toxic substances 
(Peramune et al. 2022). Among various photocatalysts, silver 
nanoparticles (Ag NPs) have attracted attention due to their 
strong light absorption in the visible region and prominent 
activity (Liu et al. 2023). Moreover, their synthesis process 
can be sustainable and environmentally friendly when the 
metabolites from organisms are used as reducing and sta-
bilizing agents (Sidorowicz et al. 2023). Among the organ-
isms investigated for the synthesis of nanoparticles, there 
are microalgae, owing to their rapid biomass increase and 
abundance of valuable metabolites (Sidorowicz et al. 2022). 
Microalgae offer several advantages in cultivation, making 
them an attractive option for various applications. Their 
rapid growth rates, often surpassing terrestrial plants, enable 
efficient biomass production, and they can thrive in diverse 
environments, including non-arable land and wastewater, 
reducing competition for valuable agricultural resources. 
Furthermore, microalgae can utilize various carbon sources, 
including carbon dioxide, contributing to carbon sequestra-
tion and potentially mitigating greenhouse gas emissions. 
Microalgae can be also grown in different wastewater with 
a consequent reduction of the need of synthetic fertilizers 
and the positive side effect of remediating the wastewaters 
(Concas et al. 2021a). The high lipid content in certain 
microalgae species makes them valuable for biofuel produc-
tion (Concas et al. 2021b). Overall, the versatile cultivation 
characteristics of microalgae make them a promising and 
environmentally friendly resource for diverse applications. 
The study by Rajkumar et al. showed the potential of Ag 

NPs from Chlorella vulgaris to photocatalyze methylene 
blue dye degradation under sunlight irradiation (Rajkumar 
et al. 2021); however, to the best of our knowledge, the activ-
ity of Ag NPs from C. vulgaris extract against BBR dye has 
not been assessed so far.

From the perspective of the significance of biological 
synthesis, the C. vulgaris methanolic extract was utilized 
to synthesize Ag NPs. The material was also calcined to 
determine the influence of its organic content on the struc-
ture and activity. The product was tested for the first time for 
photocatalytic degradation of BBR dye in visible light, con-
sidering the influence of various parameters, such as light 
intensity, dye concentration, catalyst concentration, pH, and 
the presence of organic content on the photocatalytic action. 
Herein, the material characteristics-to-photocatalytic perfor-
mance was evaluated, and the degradation mechanisms were 
explored for the optimization of the removal of hazardous 
BBR dye from the environment.

Materials and methods

Synthesis of nanoparticles

The Chlorella vulgaris (CCALA 902) culture was grown 
in Bold’s basal medium (BBM) supplemented with 60 mM 
 NaHCO3 with 300 RPM stirring and irradiation of 58 W 
fluorescent lamps (Osram®) with 60 μmol/m2/s photon flux. 
The culture was kept for 30 days to acquire an adequate 
quantity of biomass. Then, it was centrifuged at 1500 RPM 
at 4 °C (Heraeus® Megafuge® 1.0R) to remove the medium, 
and the algal biomass was dried at room temperature.

In the next step, 0.9 g of dried residue was mixed with 
54 mL of methanol (Merck® LiChrosolv® hypergrade). The 
flask was sonicated for 30 min (Soltec® Sonica® 2400 ETH 
S3) followed by stirring at 250 RPM (IKA® RH Digital 
Magnetic Stirrer) for the next 30 min to break down the cell 
walls and release the metabolites into the solvent. The lefto-
ver biomass was removed by filtration using 11 µm standard 
filtration paper (Whatman®), and then, the liquid was evapo-
rated using a rotary evaporator (BUCHI Rotavapor™ R-210 
Rotary Evaporator System) to discard about 70% of metha-
nol. The concentrated extract was diluted with Milli-Q  H2O 
(Millipore®, Milan, Italy) to the final volume of 180 mL, 
and it was used for the Ag NP synthesis process.

For Ag NP synthesis procedure, the prepared extract was 
heated to 85 °C and stirred at 250 RPM (IKA® RH Digital 
Magnetic Stirrer). When the temperature of the extract had 
reached 85 °C, 0.1 M of silver nitrate (Carlo Erba®) was 
added and, after 15 min, pH of the solution was increased 
up to 8 using 1.25 M NaOH. Starting from the moment of 
silver nitrate addition, the reaction continued for 1.5 h, and 
then, the solution was removed from the hot plate stirrer for 
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maturation at room temperature. Then, the liquid was cen-
trifuged at 4000 RPM at 8 °C (Heraeus® Megafuge® 1.0R), 
followed by the repeated washing of the residue in the two 
washing cycles with Milli-Q  H2O (Millipore®, Milan, Italy). 
Next, Ag NPs were dried at 80 °C for 24 h, ground using 
mortar and pestle, and divided into two parts. One part was 
stored in an Eppendorf tube in the absence of light (before 
calcination — Ag NPs BC), and the other was calcined in 
a muffle furnace (Gelman Instrument®) for 2 h at 600 °C 
(after calcination — Ag NPs AC). After this, all samples 
were stored in the same conditions.

Characterization

The structure of Ag NPs was studied by X-ray diffraction 
(XRD) using X-ray diffractometer (D8 Advance, Bruker 
AXS®). The scanning was performed with a diffraction 
angle between 12 and 90° at 0.1° per 10 s, at 40 kV and 
30 mA using CuKα (λ = 1.54 Å) radiation. The existing 
phases in obtained Ag NPs were identified by using Dif-
frac.Eva software v.6.1.0.4 according to the COD database. 
The crystallite size was calculated from Debye–Scherrer’s 
formula after baseline correction.

Functional groups and important bonds existing in the Ag 
NPs were determined by Fourier transform infrared spec-
troscopy (FTIR) using FT/IR-6700 (Jasco, Tokyo, Japan) in 
the range of 500–4000  cm−1.

The surface morphology of prepared Ag NPs was stud-
ied by scanning electron microscopy (SEM) using Hitachi 
S4000 FEG HRSEM (Hitachi Ltd., Tokyo, Japan) operated 
at 20 kV. The image acquisition was performed with Quartz 
PCI software (Quartz Imaging Corporation, Vancouver, 
Canada). Prior SEM analysis, the samples were coated with 
2 nm of platinum to enhance the contrast. The composition 
assessment of Ag NPs was examined through EDX analysis 
using UltraDry EDX Detector (Thermo Fisher Scientific®, 
Madison, WI, USA) and NSS3 software (Thermo Fisher 
Scientific®, Madison, WI, USA).

Thermal properties of Ag NPs were studied with ther-
mogravimetric analysis (TGA) using differential thermal 
analyzer (TG/DSC) (NETZSCH® STA 409 PC) in air with 
airflow 100 mL/min and in a heating range 25–1000 °C at 
10 °C/min.

The optical properties were examined by UV–Vis absorp-
tion measurements using CARY 50 spectrophotometer 
(Varian Inc., Australia) with a cell path length of 10 mm in 
the wavelength range of 200–750 nm. The direct bandgap 
energy was calculated from the Tauc relation (Eq. 1):

where α is the molar extinction coefficient, h is the Plank’s 
constant, ν is the light frequency, and Eg is the band gap 
energy. The bandgap energy was calculated by linear fit 
extrapolation of the plot of (αhν)2 against energy.

In situ photocatalysis

The scheme of the in situ photocatalytic setup is shown in 
Fig. 1A. First, calibration line was obtained by assessing the 
correlation between absorbance and concentration of the dye 
(Fig. S1). Before testing Ag NPs photocatalytic abilities, 
they were combined with 50 mL of  ddH2O and sonicated 
for 15 min in a sonication bath (Soltec® Sonica® 2400 ETH 
S3) to ensure even dispersion. First, the baseline of the dis-
persed Ag NP solution was created. Next, the solution was 
mixed with different concentrations of BBR dye (Sigma-
Aldrich®) in ethanol (500 mg/L). The flask was slowly 
stirred for 30 min without any exposure to light to achieve 
reaction equilibrium. Then, the light was switched on and 
the irradiation by a warm white 10.5 W LED bulb (Phil-
lips) was measured with a luxmeter (HD2302.0 Delta-Ohm, 
Padua, Italy). The emission spectrum of the radiation source 
as supplied by the manufacturer is shown in Fig. 1B. The 
liquid was flowing continuously from the flask to a 10-mm 
flow-through cuvette attached to the UV–Vis Spectropho-
tometer (Cary 50, Varian®) and then back to the flask. The 

(1)(�h�)2 = (h� − Eg)

Fig. 1  Scheme of the experimental setup for the photocatalytic degradation experiments. A In situ catalytic setup. B Emission spectrum of the 
light source provided by manufacturer
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measurements were conducted in the range of 400–750 nm 
every 10 min. The experiments with the highest degradation 
efficiency were performed in triplicate to accurately evaluate 
the photocatalytic potential of the material.

The efficiency of the BBR dye degradation by Ag NPs 
was calculated as shown in Eq. (2):

where � is the degradation efficiency, C0 is the initial BBR 
dye concentration, and C is the final concentration of the dye 
at the end of the degradation period.

According to the literature (Jiang et al. 2020), the data 
obtained were interpreted through the pseudo-first-order 
reaction model according to Eq. (3):

which, once solved, provides the following time evolution 
law for the dye concentration:

where t(min) is time and kapp(min−1) is the apparent first-
order rate constant. It should be noted that such model 
englobes the effects of both adsorption and photocatalysis 
in the same constant kapp. Equation (4) was used to fit experi-
mental data by tuning the value of kapp . The software Orig-
inPro 2021© 9.8 was used for this purpose.

(2)�(%) =
(

1 − C
/

C
0

)

⋅ 100

(3)
dC

dt
= −kappC

(4)C = C0exp(−kappt)

Results and discussion

Characterization

The XRD analysis was performed to determine the purity 
and crystallinity of the synthesized Ag NPs (Fig. 2A). The 
results of the analysis confirmed the presence of a highly 
pure and crystalline material, indicating a successful syn-
thesis process. The identified phases in Ag NPs BC belong 
mostly to  Ag2O (COD 1010486) and Ag (COD 1100136) 
with low intensity peaks at 2θ = 19–20° corresponding to 
 Ag2CO3 (COD 4318190 and COD 4318187). After calci-
nation, Ag NPs AC show the presence of only Ag phase 
(COD 9012961), which suggests the important role of 
organic content in stabilizing Ag NPs structure. Based on 
the XRD results, full width at half maximum (FWHM) 
values were calculated and used for Debye–Scherrer’s 
formula (Tab. S1–S2). The crystalline size for Ag NPs 
BC was determined as 16.44 nm for  Ag2O and 15.70 nm 
for Ag with the average size of 16.07 nm. Calcination 
increased the crystalline size of Ag NPs AC to 24.61 nm.

The reported Ag NPs, synthesized using C. vulgaris and 
water as a solvent to extract metabolites, which resulted in 
the formation of only Ag phase in their structure (Soleim-
ani and Habibi-Pirkoohi 2017; Mahajan et al. 2019; Rajku-
mar et al. 2021). The methanolic extract of C. vulgaris was 
studied previously for its high antioxidant activity owning 

Fig. 2  Crystallographic and spectroscopic analyses. A XRD. B FTIR. BC, before calcination; AC, after calcination
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to the presence of phenolic and flavonoids constituents 
as compared to the standard ascorbic acid (Pradhan et al. 
2021). Moreover, the extraction technique is usually easier 
than applied to plants. Plant tissues typically have complex 
cell walls and organelles, necessitating methods such as 
homogenization and solvent extraction to release intracel-
lular metabolites. In contrast, microalgae possess a simpler 
cell structure, often surrounded by a lipid-rich membrane, 
making them amenable to techniques like direct solvent 
extraction or mechanical disruption. The current results 
show the potential of C. vulgaris to obtain a variety of 
materials depending on composition of the solution to 
which the metal precursor is added. The organic content 
was further examined by FTIR analysis (Fig. 2B).

The FTIR technique was applied to study the behavior 
of the capping agents on Ag NPs before and after photoca-
talysis as well as before and after calcination. The results 
revealed an abundance of functional groups originating from 
the C. vulgaris extract such as OH, NH, C = C, C≡C, C = O, 
C-N, P-O,  CH2,  CH3, and C-O, with the highest intensity 
before calcination (Dilek (Yalcin) Duygu 2012; Mecozzi 
et al. 2012; Agazzi et al. 2020). After catalysis, the wave-
number values of the peaks shifted, which might be cor-
related with changes in the structure or organic molecules 
due to the interaction with radicals generated upon light 

irradiation. Moreover, the intensity of the peaks increased 
which further proves the active participation of the capping 
compounds in the photocatalytic process. The calcination 
process significantly increased the intensity of the peaks to 
around 95% which proves the efficient removal of organic 
content from the Ag NP surface.

The morphology of the obtained Ag NPs was observed 
using SEM–EDX analyses (Fig. 3). The Ag NPs BC exhibit 
irregular shapes with oval and ellipsoidal shapes. The ele-
mental analysis revealed the presence of silver, oxygen, car-
bon, phosphorous, and sulfur in the structure with homog-
enic distribution. The Ag NPs AC showed the tendency to 
agglomeration or coalescence with more oval shape. The 
calcination resulted in the removal of sulfur from the Ag 
NPs while phosphorus remained as a part of their struc-
ture. Similarly, all detected elements showed homogeneous 
distribution. Partial removal of organic content from Ag 
NPs changed the morphology of the material which further 
proves the important role of organic content in stabilizing 
the structure and preventing agglomeration.

Thermal properties of the Ag NPs were assessed by 
TGA analysis (Fig. 4A–C). For Ag NPs BC, two major 
weight losses can be observed: in the ranges 25–300 °C and 
300–600 °C. The first weight loss with DTG peak at 161 °C, 
resulting in the loss of 28.5% weight, can be attributed to the 

Fig. 3  Microscopy analysis. A SEM of Ag NPs BC, B EDX spectrum of Ag NPs BC, C EDX mappings of Ag NPs BC, D SEM of Ag NPs AC, 
E EDX spectrum of Ag NPs AC, F EDX mappings of Ag NPs AC
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water loss and decomposition of the temperature-sensitive 
organic compounds. The second weight loss with DTG peak 
at 403 °C led to decrease of 7.3% of the weight, which is 
probably due to the decomposition of the phenolic com-
pounds present on Ag NPs BC surface (David and Moldovan 
2020). Further increase in temperature did not change the 
weight significantly, with final weight at around 65%. In 
addition, DTA analysis proved the exothermic nature of the 
decomposition of the organic compounds described previ-
ously, with an endothermic peak at 960 °C, indicating the 
melting point of silver (Kis et al. 2022).

The Ag NPs AC subjected to the same analysis showed 
much smaller weight loss. In the 25—200 °C range, the 
weight decreased by 0.5% with DTG peak at 67 °C, which 
can be attributed to the physically adsorbed water molecules 
or oxidation of the remaining organic content on the Ag NPs 
AC surface (David and Moldovan 2020). The next weight 
loss occurred at around 700—900 °C, with the decrease 
of 0.5% and DTG peak at 790 °C, which is probably due 
to the decarbonization (Zin et al. 2023). At the end of the 
measurements, the final weight was recorded at around 99%. 
Similarly, to Ag NPs BC, the reactions were exothermic 
with endothermic melting silver point at 960 °C. Overall, 
the results show the high organic content of Ag NPs BC in 
comparison with Ag NPs AC, which supports the FTIR and 
EDX findings.

The optical properties of Ag NPs were studied by apply-
ing UV–Vis spectroscopy (Fig. 4D, E). Upon light excita-
tion at specific wavelength, electrons in the conduction band 
undergo a collective oscillation known as a surface plasmon 

resonance. The effect results in strong scattering and absorp-
tion of light and can be an indicator of the potential pho-
tocatalytic activity. The UV–Vis spectrum of Ag NPs BC 
shows a broad absorbance band which, after deconvolution, 
reveals the presence of three separate peaks. The peaks at 
278 nm and 385 nm probably belong to the metabolites pre-
sent on the surface. The presence of additional peaks in the 
UV–Vis spectrum, due to the activity of organic molecules, 
has been observed before (Shankar et al. 2017). The charac-
teristic surface plasmon resonance of Ag NPs was detected 
at 415 nm, and it is consistent with the literature, with values 
recorded in the 400–500-nm range (Ma et al. 2021). Further-
more, the Ag NPs BC can be photoactivated in the visible 
light spectrum.

After calcination, the absorbance values significantly 
decreased, which might be the effect of the structural defects 
and changes in the electronic structure induced by high tem-
perature. The peak at 254 nm of Ag NPs AC is attributed 
to the electronic transition to metallic Ag (Baia and Simon 
2007) which is consistent with the phase transition observed 
in XRD analysis. Thus, high-temperature treatment impaired 
the photocatalytic activity of Ag NPs.

Based on the UV–Vis spectrum, the band gap energy 
of Ag NPs BC was calculated (Fig. 4F). The parameter is 
defined as an energy difference between the highest occupied 
energy state of electrons in the valence band and the lowest 
unoccupied state of the conduction band. It determines the 
ability of the material to absorb light, generate electron–hole 
pairs, and initiate a photocatalytic reaction. The band gap 
energy of Ag NPs BC was calculated at 2.17 eV, and similar 

Fig. 4  Thermal and optical properties of Ag NPs. A TG and DTG of Ag NPs BC, B TG and DTG of Ag NPs AC, C DTA of Ag NPs BC and Ag 
NPs AC, D UV–Vis spectrum of Ag NPs BC, E UV–Vis spectrum of Ag NPs AC, F Tauc plot of Ag NPs BC



57771Environmental Science and Pollution Research (2024) 31:57765–57777 

band gap values were reported previously (Mistry et al. 
2022).

Photocatalytic activity

The correlation between absorbance and dye concentration 
is shown in Fig. S1. The dye degradation activity of Ag NPs 
BC was first assessed in the dark conditions (Fig. 5A–C; 
Fig. S2). The results showed a slight decrease in the dye 
concentration; however, after an initial period of 30 min, 
the concentration stabilized and started to reach equilib-
rium. The interactions between dye and Ag NPs BC are of 
physisorption nature, mainly due to weak van der Waals 
forces (Munagapati et al. 2023). At the end of the experi-
ment, around 10% of the dye was degraded and kapp value 
was calculated as kapp = 0.00118  min−1 (Fig. S2). Based on 
the results obtained, the next experiments were performed 
after 30 min in dark conditions to allow the reaction to reach 

equilibrium and more precisely assess the effect of various 
factors on the photocatalytic performance of Ag NPs.

Influence of light

The first factor tested for photocatalytic activity was light 
intensity. In photocatalyst, the generation of electron and 
hole pairs is dependent upon the intensity or strength of 
the light that is directed onto it. When the intensity of light 
increases, there is a corresponding increase in the transfer 
of electrons from the valence band to the conduction band 
(Roy et al. 2023). This leads to an amplified generation of 
hydroxyl or oxygen radicals, playing a crucial role in the 
degradation of organic molecules (Roy et al. 2023). The 
concentration of BBR dye was measured in three different 
light intensities: 75, 150, and 300 µmol/m2/s (Fig. 5D–H; 
Fig. S3).

The lowest tested light intensity (75 µmol/m2/s) resulted 
in the lowest decrease in the concentration of the dye, with 

Fig. 5  Influence of light on the photocatalytic activity. A UV–Vis 
spectral changes for the degradation of dye in the dark, B changes in 
dye concentration in the dark, C percentage degradation efficiency 
in the dark, D–F UV–Vis spectral changes in the varying light irra-

diation, G changes in dye concentration changes in the varying 
light irradiation, H percentage degradation efficiency changes in the 
varying light irradiation. Reaction conditions: dye concentration: 
18–20 mg/L, Ag NPs BC concentration: 125 mg/L, pH 7
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final degradation efficiency of around 40% and kapp value of 
0.00402  min−1. The most significant increase of the degrada-
tion efficiency was recorded with increasing twice the light 
intensity, which resulted in the remarkable degradation effi-
ciency of around 76.7%, with kapp equal to 0.01642  min−1. 
Further increase in light intensity showed a rapid change 
during the first 10 min of illumination, which could relate 
to the production of intermediates of BBR degradation 
products. At the end of the experiment, the degradation effi-
ciency was recorded at around 66.5%, with kapp value of 
0.01041  min−1. The decrease of the degradation efficiency 
in the highest light intensity might be due to the influence of 
heat provided to the system (Shabir et al. 2022). The results 
proved the important role of light intensity for BBR dye deg-
radation using Ag NPs BC with higher number of absorbed 
light photons leading to the high likelihood of the BBR dye 
degradation taking place.

Influence of dye concentration

The light availability can also be influenced by changing the 
concentration of the BBR dye in the solution. The dye mol-
ecules can absorb light which results in fewer photons reach-
ing the catalyst surface, leading to the decreased production 
of radicals. The effect of changing BBR dye concentration 
within range 4–34 mg/L is shown in the Fig. 6 and Fig. S4. 
As expected, the highest decrease in the BBR concentration 
was observed for the lowest tested BBR dye concentration 

of 4 mg/L with degradation efficiency around 80% and kapp 
value of 0.01983  min−1. The increase of the BBR dye con-
centration to 19 mg/L decreased the degradation efficiency 
to around 76.7% and kapp value 0.01642  min−1. The highest 
tested BBR dye concentration showed a degradation effi-
ciency around 31.6% with kapp value 0.00314  min−1. Other 
than the easier light availability, the low degradation of the 
dye allows easier access of the molecules to the active sites 
on the catalyst surface and prevents agglomeration (Roy 
et al. 2023). Considering that the BBR dye is present in 
the wastewater due to many washing cycles (Chiarello et al. 
2020), it shows the potential of Ag NPs BC for its efficient 
removal.

Influence of catalyst dosage

The influence of the availability of active sites on the cata-
lyst surface has been tested by varying the catalyst dosage 
in the range 62.5–250 mg/L (Fig. 7; Fig. S5). The lowest 
tested concentration of Ag NPs BC resulted in only a slight 
decrease in BBR dye concentration with degradation effi-
ciency of 18.8% and kapp value of 0.00144  min−1. Increas-
ing twice the catalyst dosage significantly improved the 
photocatalytic performance with recorded degradation effi-
ciency of around 76.7% and kapp value of 0.01642  min−1. 
The highest tested catalyst dosage of 250 mg/L revealed a 
rapid decrease in the BBR concentration after switching on 
the light with a peak shift which can be attributed to the 

Fig. 6  Influence of dye concentration on the photocatalytic activity. 
A–C UV–Vis spectral changes in the varying dye concentration, D 
changes in dye concentration, E percentage degradation efficiency. 

Reaction conditions: Ag NPs BC concentration: 125  mg/L, light 
intensity: 150 µmol/m2/s, pH 7
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formation of intermediates. The degradation efficiency of 
the reaction was observed at around 90.6% with kapp value 
of 0.04402  min−1. Based on the obtained results, the avail-
ability of the active sites on the Ag NPs BC surface plays 
a crucial role in the photocatalytic degradation of the BBR 
dye. However, it has been reported that the increase can be 
observed up to a certain limit as the excess of the catalyst 
might turn the solution more turbid, thus hindering the light 
penetration (Nawaz et al. 2023).

Influence of pH

Another tested factor for the photocatalytic performance 
of Ag NPs BC was pH of the solution in the range 3–11 
(Fig. 8A–E; Fig. S6). At pH 3, the photocatalytic degra-
dation efficiency was recorded at 21.3% with kapp value of 
0.00142  min−1, while pH 7 and 11 showed a degradation 
efficiency of around 76.7% and 71.4%, with kapp values of 
0.01642  min−1 and 0.01311  min−1, respectively. The inter-
pretation of pH effect is challenging due to its multiple 
roles, such as changing electrostatic interactions between 
the catalyst surface, solvent molecules, substrate, and formed 
radicals (Javanbakht and Mohammadian 2021). The alkaline 
medium might have facilitated the formation of hydroxyl 
radicals which improved the BBR dye removal process (Lin 
et al. 2022). The effect can continue up to a specific pH value 
when the negatively charged catalyst demonstrates Coulomb 
repulsion between the catalyst surface and present hydroxyl 

anions, diminishing the formation of radicals (Uma et al. 
2019).

Influence of calcination

In the final set of experiments, the influence of the removal 
of the organic content by calcination was tested on pho-
tocatalytic activity (Fig. 8F–J; Fig. S7). The Ag NPs AC 
exhibited only a slight change in the BBR dye concentration 
with degradation efficiency around 10.7% and kapp value of 
0.00245  min−1. In comparison, Ag NPs BC in the same con-
ditions showed the degradation efficiency of 76.7% and kapp 
value of 0.01642  min−1. Without any catalyst, around 6.5% 
of the dye was degraded and kapp value was calculated at 
0.00049  min−1. The effect of calcination was usually tested 
before on  TiO2-Ag catalysts with the temperature affect-
ing the morphology of  TiO2 to improve its photocatalytic 
activity (Desiati et al. 2019; Nutescu Duduman et al. 2022). 
However, Khandan Nasab et al. reported the activity of Ag/
Ag2O NPs in the UVA spectrum which might suggest that, 
after the calcination, the material requires higher energy 
wavelengths for photoactivation, increasing the cost of the 
degradation process (Khandan Nasab et al. 2020).

Mechanism of dye degradation

Based on the obtained results, the mechanism of BBR dye 
degradation is proposed as shown in the equations below 

Fig. 7  Influence of catalyst concentration on the photocatalytic activ-
ity. A–C UV–Vis spectral changes in the varying catalyst concentra-
tion, D changes in dye concentration, E percentage degradation effi-

ciency. Reaction conditions: dye concentration: 17–20  mg/L, light 
intensity: 150 µmol/m2/s, pH 7
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(5–11) (Ahmed et al. 2020; Lin et al. 2022; Groeneveld 
et al. 2023). The mechanism of the dye degradation pro-
cess is associated with the excitation of electrons  (e−) 

from the valence band to the conduction band upon light 
irradiation (Eq. 5). After their transfer, positively charged 
holes  (h+) react with water molecules producing  H+ and 

Fig. 8  Influence of pH and calcination on the photocatalytic activ-
ity. A–C UV–Vis spectral changes in the varying pH, D changes 
in dye concentration in the varying pH, E percentage degradation 
efficiency in the varying pH. Reaction conditions: dye concentra-
tion: 18–19 mg/L, Ag NPs BC concentration: 125 mg/L, light inten-
sity: 150  µmol/m2/s. F UV–Vis spectral changes before calcination, 

G UV–Vis spectral changes after calcination, H UV–Vis spectral 
changes without catalyst, I changes in dye concentration, J percent-
age degradation efficiency. Reaction conditions: dye concentration 
19–21  mg/L, Ag NPs BC concentration 125  mg/L, light intensity 
150 µmol/m2/s, pH 7
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⋅OH radical (6). The free electrons convert molecular oxygen 
into ⋅O

2

− (7), which reacts with water molecules generating 
⋅OOH (8) rearranged into  H2O2 (9). After the reaction of 
 H2O2 with ⋅O

2

− , ⋅OH is produced (10), which can also be 
generated as a result of interactions between hydroxyl ions 
and holes (11). The process generates ⋅OH , which plays an 
important role in the degradation of BBR dye.

The degradation of BBR dye was previously studied 
based on sonochemical process, which also involves gen-
eration of hydroxyl radicals (Rayaroth et al. 2015). There 
are two major pathways that were identified, using LC-Q-
TOF–MS analysis, as a result of either  OH− addition or 
hydrogen abstraction and disproportionation/hydroxylation 
reaction. Then, the intermediates undergo many reactions, 
including oxidative cleavage, de-ethylation, or demethyla-
tion. There were 13 identified intermediates which can be 
subjected to further ring opening and other oxidative cleav-
ages resulting in the mineralization reaction (Rayaroth et al. 
2015). Moreover, the degradation pathway was also studied 
in the river water and yielded similar intermediate profile, 
which shows that the process is independent from presence 
of other ions or substances in river water (Rayaroth et al. 
2017).

This study introduces a novel approach to dye degrada-
tion by leveraging Ag NPs that exhibit enhanced photocata-
lytic activity under visible light irradiation, making them 
more applicable to real-world environmental remediation. 
Although a previous study on utilizing methanolic extract of 
C. vulgaris revealed its potential to synthesize catalytically 
active NPs (Sidorowicz et al. 2024), the dye degradation 
performance of Ag NPs from C. vulgaris methanolic extract 
has not been described before. Unlike conventional NPs used 
in similar studies, the synthesis method using microalgal 
extract provides superior control over particle size, mor-
phology, and surface properties, leading to unprecedented 
efficiency in the degradation of BBR dye at lower concen-
trations and shorter reaction times (Rajkumar et al. 2021). 

(5)
Photocatalyst surface + hv → electron (e−) + hole (h+)

(6)h+ + H2O → H+ + ⋅OH

(7)e− + O2 → ⋅O2
−

(8)⋅O2
− + H2O → ⋅OOH + OH−

(9)2⋅OOH → H
2
O

2
+ O

2

(10)H2O2 + ⋅O2
−
→ ⋅OH + O2 + OH−

(11)OH− + h+ → ⋅OH

Furthermore, this research addresses a significant gap in the 
current literature by addressing the practical aspects of the 
operating conditions on the degradation mechanism and the 
fundamental understanding of nanoparticle-mediated dye 
degradation while also paving the way for developing more 
sustainable and efficient photocatalytic systems.

Conclusions

The development of efficient and stable photocatalysts is of 
paramount importance in the pursuit of high-efficiency reac-
tion systems for addressing polluted water environments. 
Indeed, the search for effective photoactive materials, capa-
ble of promoting photocatalytic reactions, has been the focus 
of extensive research efforts. In the present study, C. vulgaris 
methanolic extract was used to successfully synthesize Ag 
NPs, which were also subjected to calcination. The XRD 
findings showed the presence of Ag and  Ag2O phase in NPs 
before calcination (Ag NPs BC), while NPs after calcina-
tion (Ag NPs AC) contained only Ag phase. The calculated 
crystalline size was 16.07 nm and 24.61 nm for Ag NPs BC 
and Ag NPs AC, respectively. The involvement of extract 
in the synthesis was confirmed by FTIR analysis, revealing 
the abundance of chemical groups on the Ag NPs BC sur-
face. The SEM analysis showed the irregular morphology 
and the presence of elements from the extract was examined 
by EDX. The TGA findings showed the difference in the 
organic content of the prepared Ag NPs, and their optical 
properties were studied by UV–Vis analysis, revealing vis-
ible light activation of Ag NPs BC, with band gap energy 
of 2.17 eV.

The photocatalytic activity of Ag NPs BC against BBR 
dye was analyzed in the visible light wavelengths testing 
various factors such as light intensity, dye concentration, 
catalyst dosage, pH, and calcination of the catalyst. The 
highest degradation efficiency of 90.6% with kapp value 
of 0.04402  min−1 was archived by increasing the catalyst 
dosage. Finally, the BBR dye degradation mechanism was 
proposed. Thus, Ag NPs showed great potential as a photo-
catalyst against BBR dye, and they could also be explored 
for the degradation of other organic compounds.
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