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• Modeling of the non-perfect osmometer behavior of animal cells for cryopreservation. 

• Comparison with the two-parameter formalism: differences and analogies. 

• Validity of the equilibrium equations for non-perfect osmometer cells. 

• Parametric sweep analysis.  
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Abstract 

Recently, a mathematical model able to describe the non-perfect osmotic behavior of cells during 

cryopreservation was proposed. The model improves the two-parameter formalism typically adopted in 

cryopreservation literature by allowing the transmembrane permeation of ions/salt, through the temporary 

opening of mechanosensitive channels whenever membrane stretching occurs: cells can reach an equilibrium 

volume different from the initial one, when isotonic conditions are re-established after contacting with 

impermeant or permeant solutes, such as sucrose or a cryoprotectant agent like dimethyl sulfoxide, 

respectively.  

Although the model was conceived as a conservative development of the two-parameter formalism to avoid 

over-parameterization, a complex picture of the system emerges. To describe this, first an appropriate non-

dimensional version of the model equations is derived. Then, a parametric sweep analysis is performed and 

discussed to highlight the features of the novel model in comparison with the two-parameter formalism: the 

conditions by which the first reduces to the second are identified. Only equilibrium equations with 

impermeant sucrose may be analytically derived from the model: their validity is here extended much more 

than originally assumed. When permeant dimethyl sulfoxide comes into play, the temporary opening of 

mechanosensitive channels is difficult to predict and prevents the derivation of the equilibrium equations: in 

this case, a numerical integration of system dynamics up to steady state is required to determine the cell 

volume at equilibrium. In conclusion, cell volume at equilibrium depends on the position of the temporal 

window of mechanosensitive channels opening, which, in general, is a complex function of model 

parameters and operating conditions. 
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Introduction 

Nowadays, cells are mainly conserved by means of cryopreservation, that is by maintaining at sub-zero 

temperatures. Usually, this process consists of a sequence of different steps sometimes in combination: 

osmotic addition of a permeant cryoprotectant agent (CPA) like dimethyl sulfoxide (DMSO), cooling, 

storage, thawing, and CPA removal. Several phenomena are involved, including cell osmotic response to the 

contact with CPAs and their possible cytotoxicity, and intracellular ice or glass formation and disappearance. 

Often an unacceptable decrease in cell viability and functionality results [16,24], due to the physico-chemical 

and biological changes cells are subjected to. Thus, optimization of the operating conditions adapted to the 

osmotic behavior of the specific cell lineage under investigation is crucial for cryopreservation. However, the 

number of experimental variables and parameters is prohibitively large to permit a rigorous optimization of 

cryopreservation procedures [5,17]. On the other hand, best practices may be defined through mathematical 

modelling and numerical simulations [7-11,16]. At least, this allows to identify the most influential factors 

and reduce the experimental efforts, provided that the adopted mathematical model is valid and capable to 

describe the behavior of the system. 

In the field of cryopreservation, the two-parameter formalism [20] is the mathematical model typically 

adopted to interpret the osmotic behaviour of cells during CPA addition and removal. One of its basic 

assumptions is that the content of intracellular solutes responsible for the isotonic osmolality remains 

constant with time, i.e. they are impermeant through the cell membrane. On the contrary, water and permeant 

CPAs may passively diffuse through the cell membrane, exchanged between ideal liquid solutions. This is 

the perfect osmometer behaviour, the main consequence of which is that, at isotonic conditions, cells 

necessarily return to their original isotonic volume, regardless of the followed osmotic path and volume 

excursion. The locus of equilibrium cell volume is the so-called Boyle Van’t Hoff plot, whose linearity is a 

reflection of the perfect osmometer behaviour. 

Recently, our experiments demonstrated that human mesenchymal stem cells (hMSCs) from umbilical cord 

blood (UCB) do not behave as perfect osmometers [3-4]: positive cell volume excursions are limited during 

DMSO addition and removal (from here on called the osmotic cycle with DMSO), and the restoration of 

isotonic conditions after the contact with hypertonic solutions of impermeant solutes (from here on called the 
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osmotic cycle with sucrose). In particular, when restoring the isotonic conditions, the cell volume attains a 

final, equilibrium value that is different from the initial, isotonic one, and depends on system temperature.  

To follow this osmotic behavior with the classic two-parameter model, an iterative fitting of data would be 

required, with model parameters left free to vary depending on operating conditions, while they are expected 

to remain constant [3-4]. Besides, removing the assumption of ideal, dilute solutions thus following the 

approach developed by Elliott and co-workers [25-26], would not solve the problem: with the 

thermodynamics of non-ideal solutions embedded into the two-parameter formalism, cells would keep 

returning to isotonic osmolality and to their original isotonic volume when isotonic conditions are re-

established after an osmotic cycle with sucrose or DMSO, albeit not in a completely linear fashion in the 

Boyle Van’t Hoff plot. Similarly, by accounting for the concentration dependence of the cell permeability to 

cryoprotectant and water in the framework of the two-parameter model, only the kinetics followed in the 

osmotic excursion would be affected. In fact, a slower osmotic response was observed for red blood cells 

when working at higher concentrations [1,2,12,28,29,31] so that both water and CPA permeability were 

simulated as decreasing when solution osmolality increases [22,23]; other authors working on mouse oocytes 

found that water and CPA permeability increase with solution osmolality [6,13], whereas in the porcine 

oocyte system the dependence of cell membrane permeability was extended to include also the hydration 

level and absence or presence of ice [32]. However, regardless of the specific functional dependence 

adopted, with this kind of model improvement of the two-parameter formalism the cell volume reached at 

equilibrium when isotonic conditions are re-established after an osmotic cycle with DMSO or sucrose would 

not change, and the return to the initial, isotonic cell volume would be simulated anyway.  

On the other hand, a much more complex picture than the one depicted by the two-parameter model typically 

used in cryopreservation emerges from the biophysics and physiology literature addressing the control of cell 

volume and shape [21,30]: the osmotic response of a cell population, and the regulation of its surface area 

with membrane folds and blebs by means of exo- and endo-cytosis is the result of the combined effect of 

mechanics, electrical and chemical potentials. Unfortunately, a quantitative understanding of the whole 

picture is still lacking, and a general model embedding all these phenomena is not yet available. On the other 

hand, a comprehensive mechanistic model may prove to be over-parameterized, which may preclude its 

validation and a reliable determination of all its parameters.  
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For these reasons, we recently proposed a novel mathematical model [5] from here on named the SAR 

model, where osmosis is coupled with cell mechanics and cell membrane surface area regulation: now solute 

(ions/salt) permeation through the temporary opening of mechanosensitive (MS) channels is allowed, when 

the cell membrane is stretched. This way cells can reach an equilibrium volume different from the initial 

isotonic one, when isotonic conditions are re-established after an osmotic cycle with sucrose or DMSO. The 

choice to address the trans-membrane exchange of electro-neutral chemical species as ions/salt was made on 

purpose in order to avoid the description of the coupling between electro-magnetic field and mass diffusion 

used in the well-known pump and leak physiological model (PLM) [18-19]. On the other hand, the PLM 

involves active mechanisms such as ion pumps which consume energy. For this reason, these mechanisms 

are considered only for long-term regulation of cell volume but are typically neglected in cryopreservation 

where only relatively short-term responses are taken into account. By means of the SAR model, a successful 

description of the non-perfect osmotic behaviour measured for hMSCs from UCB was possible: unknown 

model parameters were determined through a best fit procedure, and full predictions of non-fitted data were 

provided to validate the model [5].  

The SAR model was conceived as a conservative development of the two-parameter formalism explicitly to 

avoid over-parameterization: the simplifying assumption of ideal liquid solutions is maintained, but the 

description of transport mechanisms is enriched by accounting for three additional phenomena (namely 

ion/salt conditional permeation, membrane surface area regulation, and counter-gradient of hydrostatic 

pressure to osmosis), thus introducing five additional parameters (i.e. membrane resting tension, thickness 

and elastic modulus, ion/salt permeability, and membrane relaxation rate constant). Nonetheless, a complex 

picture of the system results as it will be shown in this work: depending on the relative values of the model 

parameters and operating conditions, when isotonic conditions are re-established after any osmotic excursion 

where the cell membrane is stretched, cell volume at equilibrium depends on the position of the temporal 

window of mechano-sensitive channels opening.  

In this work, first an appropriate non-dimensional version of the equations for the SAR model is derived, in 

order to minimize the number of model parameters. Then, a parametric sweep analysis is discussed to 

highlight model features in comparison with the two-parameter model, that basically represents a special 

case of the SAR model. Regarding this, the conditions in terms of the values of the adjustable parameters by 
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which the SAR model reduces to the two-parameter model are identified. Besides, only equilibrium 

equations after an osmotic cycle with impermeant sucrose may be analytically derived for the SAR model, 

albeit without the advantageous linearity of the Boyle Van’t Hoff equation. It is shown that, the validity of 

these equilibrium conditions with respect to the values of the adjustable parameters may be generalized and 

extended much more than originally assumed in [5]. On the contrary, when a permeant CPA comes into play 

the difficulty to predict the temporary opening of MS channels prevents the derivation of the corresponding 

equilibrium equations: in this case, a numerical integration of system dynamics (prolonged until steady state 

is eventually reached) is required to determine cell volume at equilibrium. 

 

Model Equations 

Dynamics 

Starting from the model equations in dimensional form reported in our previous paper [5], in this work the 

corresponding non-dimensional equations are derived by defining a reference, constant value to scale all the 

variables. The resulting equations in non-dimensional form are collectively reported in Tables 1-2, with 

Ordinary Differential Equations (ODEs) conveniently separated by auxiliary Algebraic Equations (AEs). The 

procedure of non-dimensionalization is detailed in the appendix section. It is worth noting that the non-

dimensional time (τ =
𝑡

𝑡∗
) is defined with respect to a reference value based on water permeability and 

depends on temperature (𝑡∗ =
( 
3

4𝜋
𝑉Cell
0 )

1
3

3 𝐿P(𝑇) 𝑅 𝑇  M
0). As a consequence, in this work system temperature is 

assumed constant during any simulation. Moreover, in the adopted non-dimensionalization each dimensional 

variable or parameter uniquely corresponds to a non-dimensional one. Thus, from here on every variable or 

parameter is called with its generic name without specifying to refer to dimensional or the non-dimensional 

one, unless necessary.  

A thorough discussion of the equations of the SAR model with its development is available in the literature 

[5] and it is not repeated in this work, where only the following brief description is provided. 

In contrast with the classic two-parameter model, the SAR model allows the trans-membrane exchange of 

the solutes responsible of the initial isotonic osmolality, identified as ions as schematically depicted in Figure 
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1. Here the inactive (𝜐B), water (𝜁W), CPA (𝜁CPA) and ion (𝜁Ions) volume fractions contribute to form the cell 

volume (𝜁Cell), as defined by Equation 5 in Table 2. Except for the inactive volume and any impermeant 

solutes like sucrose, in the SAR model water and CPA as well as ion may be exchanged between intra- and 

extra-cellular compartments as expressed by Equations 1-3 in Table 1, respectively. Here the non-

dimensional kinetic parameters like ion and CPA permeability (𝜆Ions and 𝜆CPA) are defined with respect to 

water permeability (𝐿P). In particular, a conditional ion exchange represented by Equation 3 is considered as 

expressed by Equation 17, depending on the opening of MS channels. These are assumed to be distributed all 

over the cell membrane, the spherical surface area (ΦSph) of which varies in time as cells shrink or swell (see 

Equation 9); MS channels open when the cell membrane is mechanically stretched above its resting tension 

(i.e. Ω > ΩR or ∆Ω > 0). This stretching of the cell membrane surface area (ΦSph) is measured by the 

surface strain from its reference value (ΦRef) as defined by Equations 7-8, and is only temporary: membrane 

relaxation through the exchange of surface area with membrane reservoirs is able to bring cell back to the 

resting condition by following Equation 4, where the non-dimensional kinetic parameter (𝜆S) is also defined 

with respect to water permeability (𝐿P). 

Basically, in the SAR model a cell under isotonic conditions is seen as an inflatable balloon whose surface 

ΦSph is initially stretched from ΦRef at a resting tension ΩR representing homeostatic condition, as expressed 

by the initial condition of Equation 4. In response to an osmotic gradient 𝛥ω between intra- and extra-

cellular compartments expressed by Equations 10-16, the cell inflates or deflates (through the exchange of 

water, CPA, and ions) by changing its spherical volume 𝜁Cell and its membrane surface area ΦSph. As a 

consequence, the ratio 
ΦSph

ΦRef
 varies from its value at resting condition (1 +

ΩR

𝐾′
) in a proportional fashion with 

cell membrane tension Ω, i.e. an elastic response from a mechanical perspective, with 𝐾′ representing the 

non-dimensional elastic modulus defined in Equation 8. This variation has two consequences: according to 

the Laplace law (i.e. Equation 6) a counter-gradient of hydrostatic pressure ∆p always opposing the osmotic 

driving force ∆ω in the water exchange rate emerges (note the opposite signs of the two driving forces in 

Equation 1), while MS channels open allowing ion exchange (inward or outward depending on their 

gradient) if the membrane is stretched, i.e. if Ω > ΩR or (
ΦSph

ΦRef
) > (1 +

ΩR

𝐾′
). On the other hand, the variation 

of membrane tension with respect to the resting condition is only temporary due to membrane relaxation 
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governed by Equation 4: it eventually vanishes through the exchange of surface area with membrane 

reservoirs, which brings the membrane tension back to its resting value in order to maintain cell homeostasis.  

The exchange rates reported in Table 1 are all determined as proportional to the product of a flux represented 

by a driving force and the corresponding cross-sectional area, with non-dimensional ions and CPA 

permeability (𝜆Ions, 𝜆CPA) as well as 𝜆S being the constants of proportionality. For water, CPA and ion 

exchange rates the cross-sectional area is represented by the spherical cell membrane area ΦSph in Equations 

1-3, while in the membrane generation/relaxation rate expressed by Equation 4 ΦRef is multiplied with the 

driving force ∆Ω for the exchange flux of lipid bilayer with membrane reservoirs.  

The two-parameter model in non-dimensional form consists of a subset of the equations reported in Tables 1-

2 for the SAR model, namely Equation 1 (with ∆p = 0) and Equation 2 for the ODE system shown in Table 

1 where the content of intracellular ions is kept constant at its initial value (i.e. initial condition of Equation 

3), along with Equations 5, 9-15 for the auxiliary AEs system reported in Table 2. Basically, with respect to 

the two-parameter formalism the SAR model introduces three additional phenomena (ion permeation, 

membrane surface area regulation, and counter-gradient of hydrostatic pressure to osmosis) along with five 

adjustable non-dimensional parameters (cell membrane resting tension ΩR, thickness 𝛽 and elastic modulus 

𝐾′, ion/salt permeability 𝜆Ions, and membrane relaxation rate constant 𝜆S). Since in the SAR model ion 

permeation depends on the opening of MS channels whose duration is governed by the rate of membrane 

relaxation which, in turn, is triggered by osmosis, a much more complex picture than in the two-parameter 

model is depicted, where all phenomena are strictly interrelated and affect each other.  

 

Equilibrium with impermeant solutes 

Cell volume 𝜁Cell at osmotic equilibrium can be determined by solving model equations in Tables 1-2 at 

steady state. If a permeant CPA is absent, in the osmotic cycle with impermeant sucrose steady state is 

reached when the driving forces appearing in Equations 1, 3 and 4 for the exchange rate of water, ions and 

membrane reference surface are equal to zero. Assuming ∆p ≪ ∆ω and 𝜆S is small (so that membrane 

relaxation is relatively slow and MS channels remain open during swelling), it was possible to derive the 

equations reported in Table 3 for the cell volume at equilibrium. More specifically, in Equations 18-19 the 
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equilibrium value of cell volume after an osmotic cycle with impermeant sucrose in the absence of CPA and 

with ωEXT, II ≤ ωEXT, I is reported: during phase I, cells first shrink due to the contact with hypertonic 

solutions of sucrose and ions (ωEXT, I = ωSucrose
EXT, I +ωIons

EXT, I
), then swell back when removing sucrose in phase 

II by contacting with relatively hypotonic solutions made only of ions, without sucrose (ωEXT, II = ωIons
EXT, II). 

It is worth noting that a complete mechanical relaxation of membrane tension is assumed to be reached at the 

end of phase I, before phase II starts. The detailed derivation of these equations may be found in [5]. In Table 

3 the contributions of water and ions to cell volume are highlighted. Note that 𝜇Ions =
𝜐̃Ions 𝑀

0

𝜑
 represents the 

ratio between the intracellular ion and water volumes at isotonic conditions: it is a very small number which 

is typically neglected in the two-parameter model. 

During phase I, isotonic cells shrink, no ion exchange takes place since membrane tension is always lower 

than the resting value and MS channels remain closed. Thus, the classic Boyle Van’t Hoff equation (i.e. 

Equation 18) resulting from the two-parameter model is derived also from the SAR model: a linear 

dependence between the cell volume at equilibrium (𝜁Cell
I ) and the inverse of the external osmolality (

1

ωEXT, I
) 

allows the inactive volume fraction, 𝜐𝐵, to be determined through a simple linear regression. Besides, this 

Boyle Van’t Hoff equation does not depend on temperature, and predicts a perfect osmometer behavior, that 

is 𝜁Cell
II = 1 when the isotonic conditions are re-established in phase II by setting ωEXT, II = 1.  

On the contrary, during the swelling in phase II in the SAR model cell membrane is stretched and reaches 

tensions above ΩR which leads to MS channels opening and leakage of intracellular ions: now the cell 

volume at equilibrium is given by Equation 19. More specifically, the deviation from the Boyle Van’t Hoff 

equation is represented by the term (
𝜇Ions+

𝜆Ions
ωEXT, I

𝜇Ions+ 
𝜆Ions
ωEXT, II

) (cf. with Equation 18), and it clearly depends on 𝜆Ions: 

now the linear profile of cell volume (𝜁Cell
II ) vs the reciprocal of external osmolality (

1

ωEXT, II
) is lost, that is a 

non-perfect osmometer behavior results. It should be noted that, Equation 19 reduces to the Boyle Van’t 

Hoff equation when 𝜆Ions = 0: in such a case no leakage of ions may actually take place since ion 

permeability is zero, and the new model reduces to the two-parameter model at equilibrium. Moreover, since 

𝜆Ions(T) shows an Arrhenius-like dependence, Equation 19 predicts a partial recovery of the isotonic cell 

volume that depends on system temperature.  
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Model Parameters 

Through a sequential best fit procedure involving equilibrium as well as dynamic runs of hMSCs from UCB 

with DMSO or sucrose at varying osmolalities and temperatures, all the unknown model parameters were 

determined [5]. More specifically, the values of the dimensional parameters were determined through a 

series of regression steps characterised by a progressive increase of model complexity: first, determine only 

the inactive volume fraction 𝜐B from equilibrium runs in hypertonic solutions with sucrose at different 

osmolalities, but at constant temperature (see Figure 4 in [5]); then, with 𝜐B kept constant at the value just 

estimated, determine water and ion permeability with their Arrhenius-like temperature dependence (𝐿P(𝑇) 

and 𝑃Ions(𝑇)), and membrane relaxation rate constant (𝑘S) from the dynamic runs of the osmotic cycle with 

sucrose at constant osmolality, but at three different temperatures (see Figure 5 in [5]); finally, keeping all 

the previous parameters constant, determine CPA permeability and its Arrhenius-like temperature 

dependence (𝑃CPA(T)) from the dynamic runs of the osmotic cycle with DMSO at constant osmolality, but 

three different temperatures (see Figure 6 in [5]). At last, the predictive capability of the proposed model was 

validated using test data from experimental runs performed under transient conditions when contacting cells 

with hypertonic solutions of DMSO at two different osmolalities but at constant temperature (see Figure 7 in 

[5]), and data from two consecutive osmotic cycles with sucrose at constant osmolality and temperature (see 

Figure 8 in [5]).  

The corresponding values of the model parameters in non-dimensional form at room temperature are 

reported in Table 4. This represents the base case of the one factor at time parametric sweep analysis 

performed in this work, where every non-dimensional parameter is varied individually except for 𝜇CPA, 𝜇Ions 

and 𝜐B that are kept constant. At first glance, based on the values of the kinetic parameters (cf. 𝜆S, 𝜆CPA, and 

𝜆Ions) shown in Table 1, in the base case membrane relaxation should be the fastest phenomenon with 

respect to water permeation, while ion exchange should represent the slowest one.  

 

Results and discussion 
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To the best of our knowledge, the SAR model is the first and only mathematical model available in the 

literature of cryopreservation addressing the behavior of non-perfect osmometer cells that do not return back 

to their initial volume when isotonic conditions are re-established after an osmotic excursion. In this work, a 

parametric sweep analysis is used to discuss model features in comparison with the two-parameter model. 

For the sake of clarity, this analysis is carried out by simulating the osmotic cycle with impermeant sucrose 

in the absence of permeant DMSO and vice versa.  

 

Osmotic cycle with impermeant sucrose in the absence of permeant DMSO  

The case of cells put in contact with sucrose is examined first. More specifically, isotonic cells are suspended 

in a hypertonic solution of sucrose added to isotonic ions (like PBS) in the shrinking phase I (i.e. ωSucrose
EXT,I =

1, ωIons
EXT,I = 1), before returning back to isotonic conditions when removing sucrose in the swelling phase II 

(i.e. ωSucrose
EXT,II = 0, ωIons

EXT,II = 1). The duration of phases I and II is the same and is kept constant equal to 10 in 

non-dimensional time τ, i.e. about ten times longer than the characteristic time of water permeation. This 

choice is to ensure that the trans-membrane exchange of water and solutes may reach equilibrium as well as 

membrane relaxation may be completed within any single phase composing the osmotic cycle, at least in the 

base case of the parametric sweep analysis.  

For the base case value of model parameters given in Table 4, the resulting temporal profiles of cell volume 

(𝜁Cell) with its water (𝜁W) and ion (𝜁Ions) contributions are reported in Figure 2 (top panels). Here the 

numerical solution of the SAR model (black lines) is compared with that of the two-parameter model (red 

lines) as obtained through the COMSOL Multiphysics® software run with a numerical tolerance of 10−6. 

During phase I, cells shrink due to water exit and no difference in cell volume and its composition between 

the two models is shown, with a content of intracellular ions (𝜁Ions) remaining constant in time for both 

models. For the SAR model the temporal profiles of osmotic (𝛥ω) and hydraulic pressure (∆p) gradients 

along with the ratio 
ΦSph

ΦRef
 are also shown in Figure 2 (bottom panels). The osmotic driving force between the 

intra- and extra-cellular compartments (𝛥ω) starts from a negative value and progressively increases as water 

exits the cell until vanishing at the end of phase I, when the osmotic equilibrium is reached. On the other 

hand, the hydraulic pressure counter-gradient (∆p) first decreases (starting from zero and becoming negative 
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counteracting water exit), then reverses the direction and starts increasing (remaining negative to keep on to 

counteract water exit), thus showing a minimum before vanishing at the end of phase I. This behaviour is due 

to membrane relaxation represented by the temporal profile of the ratio 
ΦSph

ΦRef
 reported in Figure 2: an initial 

decrease of ΦSph triggered by water exosmosis with membrane tension becoming slack (see Equations 7-8), 

followed by a returning back to its resting condition as ΦRef catches up with ΦSph according to Equation 4 by 

removing excess membrane into membrane reservoirs. Accordingly, during the shrinking phase I MS 

channels remain closed and ions are not exchanged; the two-parameter and the SAR models show the same 

profiles for 𝜁Cell, 𝜁W and 𝜁Ions and their simulations cannot be distinguished.  

On the contrary, during phase II swelling occurs so that cell volume and water content increase as shown in 

Figure 2. Now, in the SAR model the cell membrane is stretched from the beginning of phase II but 

membrane relaxation is eventually completed once again as represented by the value of 
ΦSph

ΦRef
: it promptly 

increases due to the increase of ΦSph triggered by osmosis, then reaches a maximum before returning back 

towards its initial value as ΦRef catches up with ΦSph through the recruitment of extra lipid bilayer from 

accessible membrane reservoirs. Accordingly, during the swelling phase II MS channels are always open and 

ions are exchanged in the SAR model, while they are impermeant in the two-parameter model. Now the 

simulations with the two models are different: since at the start of phase II the extracellular compartment is 

hypotonic with respect to cytoplasm (i.e. 𝛥ω = ∆ωIons > 0), ion content inside the cell decreases in the SAR 

model. For this reason the amount of water entering the cells before equilibrium is eventually reached is 

lower with respect to the two-parameter model, and a cell volume smaller than the initial isotonic one is 

finally attained (i.e. 𝜁Cell = 0.859  @ 𝜏 = 20).  

A closer look to Figure 2 reveals that in the SAR model the hydrostatic pressure gradient ∆p (~10−4) may 

be safely neglected with respect to ∆ω (~1) when determining the driving force of water exchange rate 

represented by Equation 1. Together with the MS channels remaining closed these are the reasons why the 

temporal profiles of cell volume (𝜁Cell), water and ion content (𝜁W and 𝜁Ions) from the SAR and the two-

parameter models cannot be distinguished in phase I, while their difference in phase II may be ascribed only 

to ion exchange. Moreover by looking at the temporal profiles of 
ΦSph

ΦRef
, membrane relaxation is the slowest 

phenomenon among those accounted for in the SAR model both in phase I and II, even though its constant is 
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about 100 times larger than water permeability (i.e. 𝜆S~10
2 in Table 4). This behaviour is due to ΦRef 

which, regardless of the specific value assigned to 𝜆S, always follows water osmosis with some delay and 

tries to keep up with the variations of ΦSph, both slowing down when approaching the steady state.  

The equilibrium conditions given by Equations 18-19 are plotted in Figure 3 for the base case (bold lines). 

Here, a perfect agreement is shown with the values (circles) reached by 𝜁Cell at the end of phase I and II taken 

from the corresponding dynamic simulation of the SAR model reported in Figure 2 (i.e. 𝜁Cell @ 𝜏 = 10 and 

𝜁Cell @ 𝜏 = 20 for phase I and II, respectively). Actually, as shown in Figure 3 this agreement may be 

extended to the cases when ion permeability is varied with respect to its base case value in the parametric 

sweep analysis, by using a smaller (1.07 ∙ 10−3) and larger (1.07 ∙ 10−2) 𝜆Ions (the corresponding dynamic 

simulations of the SAR model are reported in Figures S1-S2 in the supplementary material section, for the 

sake of brevity). The reason of this agreement is that the equilibrium equations were derived under the 

assumptions of a negligible hydrostatic pressure gradient and a relatively slow but complete membrane 

relaxation within every single phase of the osmotic cycle; as seen above, these are two conditions that result 

and are also met by dynamic simulations.  

As clearly shown in Figure 3, only the swelling phase II is affected by the change of ion permeability, given 

that in the shrinking phase I membrane tension is slack, MS channels remain closed, and ions are not 

exchanged. More specifically, at the end of the osmotic cycle the recovery of the initial, isotonic cell volume 

in phase II is lower if 𝜆Ions increases, since a higher ion leakage from cells takes place during the swelling. 

Clearly when 𝜆Ions is equal to zero, the SAR model reduces to the two-parameter model and a perfect 

osmometer behaviour is obtained, with a complete recovery of the isotonic volume at the end of the osmotic 

cycle. On the other hand, when increasing ion permeability, the recovery of the isotonic cell volume 

achieved during phase II is progressively hindered, and the cells remain shrunk at the volume reached at the 

end of phase I.  

To proceed with the parametric sweep analysis, the variation of the membrane relaxation rate constant 𝜆S is 

now investigated. The case of an infinitely slow membrane relaxation (i.e. 𝜆S = 0) for the SAR model is 

considered in Figure 4, where the temporal profiles of the same variables reported in Figure 2 are shown. 

Now ΦRef does not change with time and remain constant at its initial value according to Equation 4, while 

ΦSph follows the osmotic shrinkage and swelling during phase I and II, respectively. For this reason, in 
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Figure 4 the ratio 
ΦSph

ΦRef
 is always smaller than its initial value, i.e. the cell membrane is always slack during 

the entire osmotic cycle and the initial resting condition is eventually reached only at the end of phase II. 

Thus, MS channels are always closed and no ion exchange takes place, i.e. a complete recovery of the 

isotonic cell volume is reached at the end of phase II (𝜁Cell = 1  @ 𝜏 = 20), just like in the two-parameter 

model. Actually, in this case not only the final value at equilibrium but the full temporal profiles of cell 

volume (𝜁Cell) with its water (𝜁W) and ion (𝜁Ions) contributions simulated by the two models are the same 

during the whole osmotic cycle. However, this equivalence between the two models is only apparent and 

depends on the specific osmotic cycle investigated in this work: for instance, if the isotonic cells were 

contacted with a hypotonic instead of a hypertonic solution before returning to isotonic conditions (a 

simulation not shown for brevity), a stretched membrane with MS channels always open and the exchange of 

ions would be obtained in the SAR model even when 𝜆S = 0. This would lead to an equilibrium cell volume 

at the end of the osmotic cycle different from the initial, isotonic one in the SAR model, while a complete 

recovery would be simulated by the two-parameter model as always. Therefore when an infinitely slow 

membrane relaxation is considered the SAR model does not reduce to the two-parameter model. 

The case of 𝜆S = 8.42 (i.e. about ten times smaller than its base case value) is reported in Figure 5 for the 

SAR model. In comparison with Figure 4, now ions are exchanged during phase II as it was for the base case 

shown in Figure 2: in particular, ion leakage starts when MS channels open since the membrane is stretched 

above its resting value, as highlighted by the vertical green line. However, the opening time of the MS 

channels does not coincide with the start of phase II as it was in Figure 2, but is delayed in time depending 

on 𝜆S: the lower 𝜆S the later the opening of MS channels with respect to the beginning of phase II. As a 

consequence, when gradually reducing the constant of membrane relaxation rate 𝜆S, a progressively shorter 

temporal window of MS channels opening during phase II is obtained so that no opening at all occurs when 

𝜆S reaches its minimum value as shown in Figure 4. This narrowing down of the temporal window for MS 

channels opening in phase II as 𝜆S decreases causes a smaller ion leakage from the cells which in turn leads 

to a larger water swelling, and a more complete recovery of the isotonic cell volume at the end of the osmotic 

cycle (cf. Figure 2 with Figure 5 and then Figure 4, where 𝜁Cell @ 𝜏 = 20 changes from 0.859 to 0.908 and 

then 1, respectively). 
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Besides, in Figures 4-5 ∆p (~10−3) is still negligible with respect to ∆ω (~1) for the determination of the 

driving force of water exchange in Equation 1, whereas it is expected to increase much more when the 

membrane relaxation constant is reduced so significantly from the base case shown in Figure 2. 

The low sensitivity of the SAR model to 𝜆S is highlighted in Figure 6, where the cell volume reached at the 

end of phase II when the dynamic simulation of the osmotic cycle is completed (i.e. 𝜁Cell @ 𝜏 = 20) is 

reported in a semi-log plot to account for a wide variation of this parameter. It is shown that, starting from 

the base case (red symbol) an increase of 20 orders of magnitude for 𝜆S does not affect the cell volume 

attained at the end of phase II which remains constantly equal to 0.859, i.e. the same value given by the 

equilibrium condition plotted in Figure 3 for the base case. On the other hand, when 𝜆S is decreased from its 

base case value the final cell volume increases until reaching a complete recovery of the initial, isotonic cell 

volume. This is caused by a too slow membrane relaxation rate with respect to the other phenomena taken 

into account in the SAR model: in this region of the parametric space the relaxation of cell membrane is not 

completed within the shrinking phase I when lowering 𝜆S below a critical value and keeping constant the 

duration of the phase. Thus, when the swelling phase II starts membrane is still slack as in Figure 5, and MS 

channels do not open and ion leakage does not begin until enough water has entered the expanding cell and 

membrane stretching may begin. The determination of this precise moment is not easy unless by the 

numerical integration of the full set of ODEs and AEs in Tables 1-2, and the equilibrium conditions given by 

Equations 18-19 are not valid in this region of the parametric space. On the contrary, when membrane 

relaxation is relatively fast the equilibrium Equations 18-19 are capable to predict the system behaviour in a 

very wide range of 𝜆S as shown in Figure 6. Therefore, the validity of the derived equilibrium conditions 

may be extended not only to any value assigned to ion permeability 𝜆Ions but also to any value used for the 

constant of the membrane relaxation rate 𝜆S, provided that the phase duration is long enough that membrane 

relaxation is completed.  

Besides, it is apparent that the two-parameter model represents the special subcase of the SAR model with an 

infinitely fast membrane relaxation, i.e. 𝜆S = +∞. In fact, in such a limiting case ΦRef instantaneously 

follows the osmotic variations of ΦSph, so that the membrane is neither slack (in phase I) nor stretched (in 

phase II) but constantly kept at its resting tension, MS channels are always closed, and ions are never 

exchanged. Unfortunately, this cannot be shown through a numerical integration, since it is not possible to 
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set an infinite value for 𝜆S. Moreover, regardless of the specific numerical algorithm adopted to solve the 

equations of the model, a limitation on the use of very large numbers always emerges from the need to 

respect a numerical tolerance, depending on the accuracy of the computing machine.  

A very similar behaviour shown by the SAR model when varying 𝜆S is obtained in the parametric sweep of 

the elastic modulus 𝐾′ of cell membrane tension. For this reason, it is reported only in Figure S3 in the 

supplementary material section. In fact when reducing 𝐾′ from its base case value a cell with a more elastic 

membrane is considered. This corresponds from one side to a reduced hydrostatic pressure difference ∆p 

(becoming even more negligible with respect to the osmotic driving force ∆ω in the water exchange rate), 

from the other to a slower membrane relaxation rate that is not completed within phase I. Therefore, when 𝐾′ 

is gradually reduced the opening of MS channels during phase II is delayed and ion exchange begins 

progressively later than the start of phase II. Thus a reduced leakage of ions is obtained and the cell volume 

reached at the end of the osmotic cycle increases towards the complete recovery of the initial, isotonic cell 

volume. On the contrary, if 𝐾′ increases above its base case value, membrane relaxation is fast enough to be 

concluded within phase I; now ion leakage starts at the very beginning of phase II, and cell volume at the end 

of any phase composing the osmotic cycle reaches the same values determined by the equilibrium conditions 

represented by Equations 18-19. Moreover, the hydrostatic pressure difference remains negligible in 

comparison with the osmotic driving force. Therefore, the validity of the equilibrium Equations 18-19 for the 

osmotic cycle with impermeant sucrose in the absence of a permeant CPA may be extended to any value 

assigned to the elastic modulus 𝐾′, provided that the phase duration is long enough that cell membrane 

relaxation is completed. Besides, it is apparent that the SAR model reduces to the two-parameter model 

when considering an infinitely large elastic modulus, i.e. 𝐾′ = +∞. In this case, an infinitively rigid 

membrane that is kept always at resting condition is obtained. Again, this result cannot be shown through a 

numerical integration of model equations since an infinite value for 𝐾′ cannot be set nor can very large 

numbers be used at a pre-set numerical tolerance. 

Proceeding further with the parametric sweep analysis, a negligible sensitivity of the SAR model is found 

with respect to the resting tension ΩR: wide variations of this parameter are capable to affect very slightly 

only the hydrostatic pressure difference ∆p that remains negligible in comparison to ∆ω anyway. For this 

reason, no further comments are reported in this work on this parameter, and the equilibrium conditions of 
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Equations 18-19 are always valid. On the contrary, the effect of 𝛽 is shown in Figure 7 where the cell 

volume reached at the end of phase II when the dynamic simulation of the osmotic cycle is completed (i.e. 

𝜁Cell @ 𝜏 = 20) is reported in a semi-log plot to account for a wide variation of this parameter. It is shown 

that by decreasing 𝛽 from its base case value (red symbol) the numerical solution of the SAR model does not 

change and remains equal to 0.859, i.e. the same value given by the equilibrium conditions plotted in Figure 

3. On the contrary, when this parameter increases the cell volume at the end of phase II shows a minimum, 

i.e. it first decreases then grows up to its maximum possible value in this simulation that corresponds to a 

complete recovery of the initial, isotonic cell volume. To understand this behavior it is worth noting that 𝛽 

represents the ratio between membrane thickness and isotonic cell radius. As such it greatly affects the 

hydrostatic pressure difference ∆p determined through the Laplace law expressed by Equation 6. This is 

shown in detail in Figure 8 where the results of the simulations with the SAR and the two-parameter models 

are compared for the case of a three orders of magnitude increase with respect to the base case value, i.e. 𝛽 =

 1.32 ∙ 102: during the shrinking phase I the exosmosis of water driven by the osmotic driving force ∆ω (~1) 

is now visibly hindered by the counter-gradient of hydrostatic pressure ∆p (~0.3), and a slower osmosis 

results (cf. Figures 2 and 8). Despite this a complete membrane relaxation is still achieved in phase I since 

the ratio 
ΦSph

ΦRef
 returns to its initial value. Moreover, the SAR and the two-parameter models share the same 

extension of the shrinkage of cell volume and water content albeit following different dynamic paths, given 

that MS channels are closed and no ion-exchange takes place. On the contrary, during phase II the stretching 

of cell membrane begins immediately when the phase starts: MS channels promptly open and ion leakage 

may occur from the beginning of the phase. In comparison with the base case reported in Figure 2, due to the 

large counter-gradient of hydrostatic pressure ∆p that significantly limits the swelling of water driven by the 

osmotic driving force ∆ω, a more pronounced ion leakage is now obtained in phase II (cf. 𝜁Ions @ 𝜏 = 20). 

As a consequence, less water swells back during phase II and a smaller cell volume is eventually reached at 

the end of the osmotic cycle (i.e. 𝜁Cell = 0.762 @ 𝜏 = 20). If parameter 𝛽 increases even further (i.e. 𝛽 =

1.32 ∙ 104, five orders of magnitude larger than its base case value, see Figure S4 in the supplementary 

material) the duration of phase I is not long enough for a complete membrane relaxation due to a very high 
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counter-gradient of hydrostatic pressure ∆p (~1.2): in this case osmosis and cell volume excursions are 

basically stopped during the entire osmotic cycle, and a limited ion leakage takes place in phase II.  

Basically these results confirm that the validity of the equilibrium conditions represented by Equations 18-19 

is strictly confined to a negligible counter-gradient of the hydrostatic pressure ∆p with respect to the osmotic 

driving force ∆ω, as it was originally assumed during the derivation [5]. However, it is worth noting that 

values of 𝛽 ≥ 1 are not really possible, given that membrane thickness is always smaller than cell radius. 

Thus, when limiting the results of the parametric sweep analysis to realistic values assigned to the model 

parameters, the derived equilibrium Equations 18-19 can be considered generally valid, and the hydrostatic 

pressure difference may be safely neglected to determine the driving force of water exchange in Equation 1. 

This conclusion represents a relevant simplification of the SAR model for future use but it is also a very 

reassuring result, given that a negligible hydrostatic pressure difference across the membrane of any animal 

cell is a reiterated assumption in the literature of cryopreservation, physiology and bio-physics addressing the 

modelling of cell osmosis and the control of cell volume and shape. 

 

Osmotic cycle with permeant DMSO in the absence of impermeant sucrose 

The case of cells in contact with permeant DMSO in the absence of sucrose is examined to highlight the 

effect of CPA permeability 𝜆CPA. More specifically, the investigated osmotic cycle consists of isotonic cells 

first suspended in a hypertonic solution of DMSO added to isotonic ions (like PBS) in phase I (ωCPA
EXT,I =

5.67, ωIons
EXT,I = 1), followed by CPA removal in phase II by returning back to isotonic ions (ωCPA

EXT,II = 0, 

ωIons
EXT,II = 1). For the base case parameter values given in Table 4, the resulting temporal profiles of cell 

volume with its water, ion and CPA contributions are reported in Figure 9 (top panels) for the two-parameter 

and the SAR models.  

During phase I DMSO is loaded into cell cytoplasm (𝜁CPA) and the well-known shrink-swell dynamics 

followed by the cell volume (𝜁Cell) is obtained with both models: isotonic cells suspended in a hypertonic 

solution initially shrink by losing water and accumulating CPA to increase internal osmolality, until the 

external osmolality is first reached and then overcome when cells start swelling back, thus showing a 

minimum in volume excursion. The two-parameter and SAR models show the same temporal profiles 
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exclusively up to a point indicated by the first green line shown in Figure 9, when stretching of cell 

membrane begins after the swelling has already started. At this point, MS channels open and ion leakage 

from the now hypertonic cells begins in the SAR model, while a constant ion content inside the cells is 

simulated by the two-parameter model. As a consequence, in the two-parameter model the cell volume 

reached at the end of phase I is larger than both its initial, isotonic value (due to CPA addition to cytoplasm) 

and the corresponding cell volume simulated by the SAR model, where a simultaneous ion leakage took 

place. Generally speaking, the cell volume reached at the end of phase I in the SAR model may result above, 

equal to, or below, the initial, isotonic cell volume: it depends on the extent of ion leakage during CPA 

addition which varies with the parameter values and operating conditions. In Figure 9, in particular, the cell 

volume reached at the end of phase I in the SAR model is lower than the initial, isotonic cell volume since a 

relatively extended ion leakage with respect to CPA addition is obtained with the adopted parameter values 

and operating conditions. As shown in the middle panel of Figure 9, the CPA quantity loaded into the cells at 

the end of phase I is larger in the two- parameter model than in the SAR model. Moreover, cell membrane 

relaxation in the SAR model is completed within the duration of phase I, and the hydrostatic pressure 

difference is always negligible with respect to the osmotic gradient, as shown in the bottom panels of Figure 

9.  

During phase II, when removing DMSO the well-known swell-shrink dynamics is simulated by the two 

models. The cells initially swell by accumulating water and releasing CPA to reduce the internal osmolality 

even if in the SAR model intracellular ions increase, driven by the negative ∆ωIons in Equation 16 resulting 

from the water uptake. This process continues until the external osmolality is first reached and then 

overcome so that cells shrink back, thus showing a maximum in volume excursion. In contrast with phase I, 

now the temporal profiles simulated by the two models are different for the whole duration of phase II: in the 

SAR model cells start to accumulate ions at the beginning of phase II when the membrane is promptly 

stretched and MS channels open, while a constant ion content is obtained with the two-parameter model. The 

ion exchange simulated by the SAR model continues until membrane relaxation is eventually reached as 

indicated by the second vertical green line shown in Figure 9. The late opening of MS channels with respect 

to the start of phase I is responsible of the different extent of the ion exchange in the SAR model between the 

two phases composing the osmotic cycle: more ions enter the cells in phase II than exit in phase I as clearly 
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shown in Figure 9. As a consequence, at the end of the osmotic cycle the water content and cell volume are 

larger than their initial isotonic values in the SAR model (i.e. 𝜁Cell = 1.197 @ 𝜏 = 20), while a complete 

recovery is obtained according to the two-parameter model.  

The temporary opening of MS channels in the SAR model is represented by the temporal window contained 

between the two vertical green lines shown in Figure 9, whose position depends on the values of the model 

parameters as well as on the operating conditions (such as external osmolality and its composition, system 

temperature, and phase duration). Cell volume and its components reached at the end of the osmotic cycle 

depend on the position of this temporal window which cannot be determined easily for any possible run 

unless by a numerical integration of system dynamics represented by the entire set of ODEs and AEs of the 

SAR model. This is what prevents the derivation from the SAR model of the equilibrium conditions for the 

osmotic cycle with a permeant CPA. On the contrary, for the osmotic cycle with impermeant sucrose in the 

absence of CPA the position of this temporal window may be easily predicted: if phases I and II are 

sufficiently long, MS channels remain closed or open respectively, without any switching during the whole 

duration of any single phase, and the equilibrium conditions represented by Equations 18-19 in Table 3 can 

be derived. 

To demonstrate the relevant role played by the position of the temporary opening of MS channels and the 

irregularities of the simulations with the SAR model, the osmotic cycle when the adopted CPA permeability 

𝜆CPA is one order of magnitude smaller than its base case value is shown in Figure 10. As expected, the 

system response is generally slower for both the two-parameter and the SAR models when compared with 

the base case (cf. Figures 9 and 10). In particular, the shrink-swell dynamics of phase I is still simulated by 

both models with a more pronounced initial cell shrinkage before swelling starts, as expected. Accordingly 

the opening of MS channels in the SAR model is delayed with respect to the base case. Despite this, a larger 

ion leakage is obtained (cf. 𝜁Ions @ τ = 10 in Figures 9 and 10). This unexpected behavior is due to a faster 

ion exchange as determined by Equation 3: when a lower 𝜆CPA is used an increased driving force ∆ωIons 

results from the more pronounced initial shrinkage of cell volume and water exosmosis. Regarding this 

aspect it is worth noting that when further decreasing 𝜆CPA to critical values the case of an impermeant CPA 

is eventually simulated: if phase duration is maintained constant, the shrink-swell dynamics of phase I 

progressively disappears being replaced by only shrinkage. In such a limiting case, since no opening of MS 
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channels occurs during phase I, the corresponding simulations with the SAR and the two-parameter models 

cannot be distinguished anymore for the whole phase I, and a constant ion content inside the cells is obtained 

with both models. Therefore, in the SAR model the extent of ion leakage during phase I shows a maximum 

when 𝜆CPA is reduced starting from the base case value while keeping constant the duration of the phase; this 

corresponds to a minimum in water and CPA content (𝜁W, 𝜁CPA  @ τ = 10) as well as in cell volume 

(𝜁Cell  @ τ = 10) lower than the initial, isotonic value. This is just an example of the complexity and 

irregularity of the system behaviour simulated by the SAR model in comparison with the two-parameter 

formalism. This irregularity of the SAR model outcomes is due to the non-linear interconnection among all 

the different phenomena accounted for, and increases significantly when varying the operating conditions 

(such as external osmolality and its composition, system temperature, and phase duration) instead of keeping 

them constant as in this work.  

Another example of the irregularity in the SAR model outcomes is obtained in the phase II shown in Figure 

10: when CPA permeability is decreased with respect to its base case value, the characteristic swell-shrink 

dynamics of phase II is still simulated by the two-parameter model whereas it is lost in the SAR model. 

According to the latter one, only swelling occurs and MS channels are never closed. As a consequence, while 

in the two-parameter model cells return back to the initial isotonic volume at the end of the osmotic cycle 

with a complete CPA removal and a constant ion content, in the SAR model cell volume levels up to a larger 

value, with CPA totally removed but with an increased content of intracellular ions in comparison with the 

initial, isotonic conditions. This peculiar osmotic response is due to a critically slow CPA removal rate: when 

𝜆CPA is reduced, during phase II CPA inside the cells is retained more than in the base case; even if water 

swelling has already started the cells remain hypertonic with respect to the suspending solution, the cell 

membrane remains stretched and MS channels open so that the extracellular ions continue to enter the cells 

until membrane relaxation is eventually completed.  

To conclude the parametric sweep analysis, when CPA permeability is increased one order of magnitude 

with respect to its base case value, the system response is generally faster for both models (cf. Figure S5 in 

supplementary material): as expected, in the SAR model the opening and closing of MS channels are 

anticipated in phase I and II, respectively, with preservation of shrink-swell dynamics followed by the swell-

shrink one. It is worth noting that, the order of magnitude for the water and CPA exchange rates considered 
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in this case are comparable (i.e. 𝜆CPA =  6.26 ∙ 10
−1), while ion exchange is much slower (𝜆Ions = 2.14 ∙

10−3 in Table 4). As a consequence, during phase I and II only water and CPA are actually exchanged, with 

ion content remaining nearly constant even in the SAR model, regardless of the opening of MS channels. 

Accordingly, a limited cell volume excursion is obtained, and a very similar system response is simulated by 

the two-parameter and SAR models: in other words, when CPA permeability increases towards water 

permeability the SAR model reduces to the two-parameter model due to a negligible ion exchange.  

 

Concluding remarks 

In this work, the recently proposed SAR model is addressed in contrast with the classic two-parameter model 

to describe the non-perfect osmotic behaviour of a cell suspension during cryopreservation. First, an 

appropriate non-dimensional version of the model equations is derived to identify the relevant non-

dimensional parameters. Then, a parametric sweep analysis is performed and discussed to highlight the 

features of the proposed model. It is shown that the SAR model progressively reduces to the two-parameter 

formalism when a negligible ion/salt exchange between intra- and extra-cellular compartments takes place, 

i.e. when ion/salt permeability is reduced below a critical value or CPA permeability is increased above a 

critical one. For the same reason, the SAR model with a cell membrane characterized by zero elasticity or 

infinite constant of relaxation rate is equivalent to the two-parameter model, given that at these extreme 

conditions MS channels cannot open.  

Generally speaking, in the SAR model cell volume and its composition at equilibrium are shown to depend 

on the position of the temporal window of MS channels opening, which is a complex function of model 

parameters and operating conditions: whereas at the end of any osmotic cycle a complete recovery of the 

initial, isotonic cell volume always results from the two-parameter model, in general a larger or lower cell 

volume is obtained with the new model, depending on the exact opening and closing time of MS channels 

during the osmotic excursions. This is not the case when the osmotic cycle with an impermeant solute like 

sucrose is used, where MS channels are open only during phase II when cells are suspended back in an 

isotonic solution. For this reason, with the SAR model only equilibrium equations after contact with 

impermeant sucrose may be analytically derived, albeit without the advantageous linearity of the Boyle 
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Van’t Hoff equation. This paper demonstrates that the validity of these osmotic equilibrium equations with 

impermeant sucrose may be extended to any realistic set of model parameters, provided that enough time is 

allowed to the cell membrane for a complete relaxation. On the other hand, when a permeant CPA comes 

into play, a numerical integration of system dynamics, prolonged until steady state is eventually reached, is 

required to determine cell volume at equilibrium.  

Finally, when determining the rate of water exchange a negligible hydrostatic pressure gradient across the 

cell membrane is obtained for any realistic set of the model parameter values. While representing a 

justification to simplify the dynamic version of the SAR model for future use, this confirms that animal cells 

are well-known to possess a very fragile membrane made only of a double layer of phospholipid molecules. 

Despite this simplification of the SAR model, this paper shows that the mechanics of the cell membrane 

coupled with surface area regulation may be considered responsible for ion/salt exchange and the control of 

cell volume during cryopreservation without resorting to the complex pump and leak physiological model.  
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Appendix 

The non-dimensionalization procedure used in this work starts from the set of dimensional equations of the 

SAR model reported in Tables A1 and A2 [5]. The name of the dimensional variables is defined with units in 

the notation section. 

First, the non-dimensional variables need to be defined. This is obtained by scaling all the variables 

appearing in Tables A1 and A2 with a proper, constant value used as a reference indicated by *, i.e. (non-

dim. var.) = (dim. var.) / (dim. var.*).  

In particular, by taking advantage of the spherical shape of the cell, all the variables related to cell size (i.e. 

volume, surface, and radius) may be referred to a single, representative quantity which is the isotonic cell 

volume 𝑉Cell
0 . Thus, for the variables representing volume contributions to the cell, the chosen reference 

value (dim. var.*) is 𝑉Cell
0 , so that the non-dimensional variables are defined as 𝜁Cell =

𝑉Cell

𝑉Cell
0 , 𝜁W =

𝑉W

𝑉Cell
0 , 

𝜁CPA =
𝑉CPA

𝑉Cell
0 , and 𝜁Ions =

𝑉Ions

𝑉Cell
0 .  

Accordingly, for the variables representing the areas of membrane surface, the chosen reference value (dim. 

var.*) is the spherical area 𝑆Sph
0  corresponding to 𝑉Cell

0  (i.e. 𝑆Sph
0 = (4𝜋)

1

3  (3 𝑉Cell
0 )

2

3), so that the non-

dimensional variables are defined as ΦRef =
𝑆Ref

𝑆Sph
0  and ΦSph =

𝑆Sph

𝑆Sph
0 . Along these lines, the radius of the 

spherical cell may be determined from 𝜁Cell as 𝑟 = (
3 𝑉Cell

0  𝜁Cell

4 𝜋
 )

1

3
.  

For the variables representing osmolality, the chosen reference value (dim. var.*) is the isotonic osmolality 

M0, both for the intra- as well as the extra-cellular compartments, so that the non-dimensional variables are 

defined as ω =
M

M0
, ωCPA =

MCPA

M0
, ωIons =

MIons

M0
, and ωSucrose =

MSucrose

M0
.  

Accordingly, on the basis of the Van’t Hoff Equation A.10 for the variables representing the hydrostatic 

pressure both for the intra- as well as the extra-cellular compartments, and membrane tension and its resting 

condition, the chosen reference value (dim. var.*) is 𝑅𝑇 M0 (with system temperature assumed constant 

during any simulation), so that the non-dimensional variables are defined as p =
P

𝑅𝑇 M0
, Ω =

σ

𝑅𝑇M0
, and ΩR =

σR

𝑅𝑇M0
, respectively.  
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Different from the previous non-dimensionalizations, for the non-dimensional time defined as 𝜏 =
𝑡

𝑡∗
 the 

reference value 𝑡∗ is left undetermined for now and will be defined only later.  

By replacing the dimensional variables with the non-dimensional ones in Tables A1 and A2, the equation 

system of the SAR model in the pre-non-dimensional form reported in Tables A3 and A4 is obtained. 

In particular, Equation A.18 is obtained by first combining Equations A.1 and A.10 to determine ∆Π before 

replacing the dimensional variables with the non-dimensional ones. Analogously, the initial condition for 

Equation A.18 is obtained by first combining the initial conditions of Equations A.1 and A.3 to determine 

𝑉Ions
0  before replacing the dimensional variables with the non-dimensional ones.  

From the pre-non-dimensional version, the final non-dimensional set of equations reported in Tables A5 and 

A6 may be derived. Now the time has come to determine the reference value 𝑡∗ for variable 𝑡 by setting 

equal to 1 the non-dimensional factor framed in Equation A.35, i.e. 𝑡∗ =
𝑉Cell
0

𝐿P𝑆Sph
0 𝑅𝑇M0

. The latter one is used in 

Equations A.36-A.38 for the definition of the non-dimensional CPA and Ion/salt permeability as well as 

membrane relaxation rate, namely 𝜆CPA, 𝜆Ions, and 𝜆S, respectively. This choice corresponds to scale all the 

kinetic parameters and time to water permeability 𝐿P. 
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Table A1: ODEs of the SAR model in dimensional form [5].  

Equation Initial Condition Number 

𝑑𝑉W
𝑑𝑡

=  −𝐿P𝑆Sph(∆P − ∆Π) 𝑉W(0) = 𝑉W
0 = ( 𝑉Cell

0 − 𝑉Ions
0 − 𝑉B)    @    𝑡 = 0 (A.1) 

𝑑𝑉CPA
𝑑𝑡

= −𝜐̃CPA 𝑃CPA𝑆Sph∆MCPA 𝑉CPA(0) = 𝑉CPA
0 = 0    @    𝑡 = 0 (A.2) 

𝑑𝑉Ions
𝑑𝑡

= −𝑃Ions𝑆Sph∆MIons 
𝑉Ions(0) = 𝑉Ions

0 =
( 𝑉Cell

0 − 𝑉B)

1 +
𝜑

𝜐̃IonsM
0

     @   𝑡 = 0 (A.3) 

𝑑𝑆Ref
𝑑𝑡

= 𝑘𝑆 𝑆Ref ∆σ 𝑆Ref(0) = 𝑆Ref
0 =

𝑆Sph
0

1 +
2σ𝑅
𝐾

     @   𝑡 = 0 (A.4) 
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Table A2: AEs of the SAR model in dimensional form [5].  

Equation Number 

𝑉Cell = 𝑉B + 𝑉Ions + 𝑉W + 𝑉CPA (A.5) 

ΔP = PINT − PEXT =
2 h ∆σ

r
 (A.6) 

Δσ =  σ − σR (A.7) 

σ =
𝐾

2
(
𝑆Sph

𝑆Ref
− 1) (A.8) 

𝑆Sph = 4𝜋 (
3𝑉Cell
4𝜋

)

2
3
 (A.9) 

𝛥Π = 𝑅𝑇 𝛥M = 𝑅𝑇(MINT −MEXT) (A.10) 

MINT = MIons
INT +MCPA

INT  (A.11) 

MIons
INT =

𝜑 𝑉Ions
𝜐̃Ions 𝑉W

 (A.12) 

MCPA
INT =

𝑉CPA
𝜐̃CPA 𝑉W

 (A.13) 

MEXT = (MIons
EXT +MSucrose

EXT +MCPA
EXT) (A.14) 

∆MCPA = MCPA
INT −MCPA

EXT (A.15) 

∆MIons = MIons
INT −MIons

EXT  (A.16) 

𝑃Ions = {
0         ∆σ ≤ 0
𝑃Ions  ∆σ > 0

 (A.17) 
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Table A3: ODEs of the SAR model in pre-non-dimensional form.  

Equation Initial Condition Number 

𝑑(𝑉Cell
0  𝜁W)

𝑑(𝑡∗ 𝜏)
=  −𝐿P(𝑆Sph

0 ΦSph)(𝑅𝑇M
0∆p − 𝑅𝑇M0𝛥ω) 𝑉Cell

0  𝜁W(0) = 𝑉Cell
0  𝜁W

0 =  𝑉Cell
0 (1 −

1 − 𝜐B

1 +
𝜑

𝜐̃IonsM
0

− 𝜐B)    @    (𝑡
∗ 𝜏) = 0 (A.18) 

𝑑(𝑉Cell
0  𝜁CPA)

𝑑(𝑡∗ 𝜏)
= −𝜐̃CPA 𝑃CPA(𝑆Sph

0 ΦSph)(M
0 ∆ωCPA) 𝑉Cell

0  𝜁CPA(0) = 𝑉Cell
0  𝜁CPA

0 = 0    @    (𝑡∗ 𝜏) = 0 (A.19) 

𝑑(𝑉Cell
0  𝜁Ions)

𝑑(𝑡∗ 𝜏)
= −𝑃Ions(𝑆Sph

0 ΦSph)(M
0∆ωIons) 

𝑉Cell
0  𝜁Ions(0) = 𝑉Cell

0  𝜁Ions
0 = 𝑉Cell

0
(1 − 𝜐B)

1 +
𝜑

𝜐̃IonsM
0

     @   (𝑡∗ 𝜏) = 0 (A.20) 

𝑑(𝑆Sph
0 ΦRef)

𝑑(𝑡∗ 𝜏)
= 𝑘𝑆 (𝑆Sph

0 ΦRef) (𝑅𝑇M
0∆Ω) 

𝑆Sph
0 ΦRef(0) = 𝑆Sph

0 ΦRef
0 = 𝑆Sph

0 1

1 + 2
𝑅𝑇 M0

𝐾
σ𝑅

𝑅𝑇 M0

     @   (𝑡∗ 𝜏) = 0 
(A.21) 
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Table A4: AEs of the SAR model in pre-non-dimensional form.  

Equation Number 

𝑉Cell
0  𝜁Cell = 𝑉Cell

0 𝜐B + 𝑉Cell
0  𝜁Ions + 𝑉Cell

0  𝜁W + 𝑉Cell
0  𝜁CPA (A.22) 

𝑅𝑇M0∆p = 𝑅𝑇 M0pINT − 𝑅𝑇 M0pEXT =
2 h 𝑅𝑇M0∆Ω

(
3 𝑉Cell

0  𝜁Cell
4 𝜋

 )

1
3

 
(A.23) 

𝑅𝑇M0∆Ω =  𝑅𝑇M0Ω− 𝑅𝑇M0ΩR (A.24) 

𝑅𝑇M0Ω =
𝐾

2
(
𝑆Sph
0 ΦSph

𝑆Sph
0 ΦRef

− 1) (A.25) 

𝑆Sph
0 ΦSph = 4𝜋 (

3𝑉Cell
0  𝜁Cell
4𝜋

)

2
3

 (A.26) 

𝑅𝑇M0∆ω = 𝑅𝑇(M0ωINT −M0ωEXT) (A.27) 

M0ωINT = M0ωIons
INT +M0ωCPA

INT  (A.28) 

M0ωIons
INT =

𝜑 𝑉Cell
0  𝜁Ions

𝜐̃Ions 𝑉Cell
0  𝜁W

 (A.29) 

M0ωCPA
INT =

𝑉Cell
0  𝜁CPA

𝜐̃CPA 𝑉Cell
0  𝜁W

 (A.30) 

M0ωEXT = (M0ωIons
EXT +M0ωSucrose

EXT +M0ωCPA
EXT) (A.31) 

M0∆ωCPA = M
0ωCPA

INT −M0ωCPA
EXT (A.32) 

M0∆ωIons = M
0ωIons

INT −M0ωIons
EXT  (A.33) 

𝑃Ions = {
0         𝑅𝑇M0∆Ω ≤ 0
𝑃Ions  𝑅𝑇M

0∆Ω > 0
 (A.34) 
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Table A5: ODEs of the SAR model in non-dimensional form.  

Equation Initial Condition Number 

𝑑𝜁W
𝑑𝜏

=  − (
𝑡∗

𝑉Cell
0 )𝐿P𝑆Sph

0 𝑅𝑇M0

⏟              
=1

 ΦSph(∆p − ∆ω) 
𝜁W(0) = 𝜁W

0 = (1 − 𝜐B)

(

 
 
 
 
 

1 −
1

1 +
𝜑

𝜐̃IonsM
0

⏟      
1

𝜇Ions )

 
 
 
 
 

   @    𝜏 = 0 

 

(A.35) 

𝑑𝜁CPA
𝑑𝜏

= −
𝜐̃CPA𝑃CPA𝑆Sph

0 M0

𝐿P𝑆Sph
0 𝑅𝑇M0

⏟            
𝜆CPA

 ΦSph ∆ωCPA 
𝜁CPA(0) =  𝜁CPA

0 = 0    @    𝜏 = 0 (A.36) 

𝑑𝜁Ions
𝑑𝜏

= −
𝑃Ions 𝑆Sph

0 M0

𝐿P𝑆Sph
0 𝑅𝑇M0

⏟        
𝜆Ions

ΦSph∆ωIons 
𝜁Ions(0) = 𝜁Ions

0 =
(1 − 𝜐B)

1 +
𝜑

𝜐̃IonsM
0

⏟      
1

𝜇Ions

     @   𝜏 = 0 

(A.37) 

𝑑ΦRef
𝑑𝜏

=
𝑘𝑆  𝑆Sph

0  𝑅𝑇 M0

𝐿P𝑆Sph
0 𝑅𝑇M0 

 
𝑉Cell
0

𝑆Sph
0

⏟              
𝜆S

ΦRef ∆Ω  
ΦRef(0) = ΦRef

0 =
1

1 + 2
𝑅𝑇 M0

𝐾⏟      
1
𝐾′

σ𝑅
𝑅𝑇 M0⏟    
ΩR

     @   𝜏 = 0 

(A.38) 



Table A6: AEs of the SAR model in non-dimensional form.  

Equation Number 

𝜁Cell = 𝜐B + 𝜁Ions + 𝜁W + 𝜁CPA (A.39) 

∆p = pINT − pEXT =
2 h

(
3 𝑉Cell

0

4 𝜋  )

1
3

⏟      
𝛽

 
 ∆Ω

(𝜁Cell )
1
3

 

(A.40) 

∆Ω =  Ω − ΩR (A.41) 

Ω =
𝐾

2𝑅𝑇M0⏟    
𝐾′

(
ΦSph

ΦRef
− 1) (A.42) 

ΦSph =
4𝜋

𝑆Sph
0 (

3𝑉Cell
0  

4𝜋
)

2
3

(𝜁Cell)
2
3 (A.43) 

∆ω = ωINT −ωEXT (A.44) 

ωINT = ωIons
INT +ωCPA

INT  (A.45) 

ωIons
INT =

𝜁Ions

𝜐̃Ions M
0

𝜑⏟      
𝜇Ions

 𝜁W

 

(A.46) 

ωCPA
INT =

𝜁CPA

𝜐̃CPAM
0

⏟      
𝜇CPA

𝜁W
 

(A.47) 

ωEXT = ωIons
EXT +ωSucrose

EXT +ωCPA
EXT (A.48) 

∆ωCPA = ωCPA
INT −ωCPA

EXT (A.49) 

∆ωIons = ωIons
INT −ωIons

EXT  (A.50) 

𝑃Ions

𝐿P 𝑅 𝑇⏟    
𝜆Ions

=

{
 

 
0             ∆Ω ≤ 0

𝑃Ions

𝐿P 𝑅 𝑇⏟    
𝜆Ions

  ∆Ω > 0 (A.51) 
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Notation 

h membrane thickness        [µm] 

𝐾 elastic modulus of the cell membrane      [Pa] 

𝐾′ non-dimensional elastic modulus of the cell membrane    [⎯] 

𝑘S constant of membrane relaxation rate      [Pa-1 s-1] 

𝐿P water permeability        [µm Pa-1 s-1] 

𝑀 osmolality         [mOsm L-1] 

p non-dimensional hydrostatic pressure      [⎯] 

P hydrostatic pressure        [Pa] 

𝑃CPA CPA permeability        [µm s-1] 

𝑃Ions ion permeability        [µm L s-1 mOsm-1] 

𝑟 radius of the spherical cell       [µm] 

𝑅 universal gas constant        [J mol-1 K-1] 

𝑆Ref membrane area of the cell used as reference to determine surface strain  [µm2] 

𝑆Sph membrane area of the spherical cell      [µm2] 

𝑡 time          [s] 

𝑇 absolute temperature        [K] 

𝑉B inactive volume         [µm3] 

𝑉Cell cell volume         [µm3] 

𝑉CPA intracellular CPA volume       [µm3] 

𝑉Ions intracellular ion volume        [µm3] 

𝑉W intracellular water volume       [µm3] 

 

Greek letters 

𝛽 non-dimensional cell membrane thickness     [⎯] 

∆ difference         [⎯] 

𝜁Cell non-dimensional cell volume       [⎯] 

𝜁CPA intracellular CPA volume fraction      [⎯] 

𝜁Ions intracellular ion volume fraction      [⎯] 

𝜁W intracellular water volume fraction      [⎯] 

𝜆CPA ratio between CPA and water permeabilities     [⎯] 

𝜆Ions ratio between ion and water permeabilities     [⎯] 

𝜆S ratio between the constant of membrane relaxation rate and water permeability [⎯] 

𝜇CPA ratio between CPA and water intracellular volumes at isotonic conditions [⎯] 

𝜇Ions ratio between ion and water intracellular volumes at isotonic conditions  [⎯] 
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Π osmotic pressure        [Pa] 

𝜎 membrane tension        [Pa] 

𝜎R membrane resting tension       [Pa] 

𝜏 non-dimensional time        [⎯] 

𝜐B inactive volume fraction       [⎯] 

𝜐̃CPA molar volume of CPA        [m3 mol-1] 

𝜐̃Ions molar volume of ions        [m3 mol-1] 

ΦRef  non-dimensional membrane area of the cell used as reference to determine surface strain [⎯] 

ΦSph non-dimensional membrane area of the spherical cell    [⎯] 

𝜑 dissociation constant for ions/salt in water     [Osm mol-1] 

ω non-dimensional osmolality       [⎯] 

Ω non-dimensional membrane tension      [⎯] 

ΩR non-dimensional membrane resting tension     [⎯] 

 

Superscript 

0 initial or isotonic condition 

I phase I (addition of permeant or impermeant solute) of the osmotic cycle 

II phase II (removal of permeant or impermeant solute) of the osmotic cycle 

INT intracellular  

EXT extracellular  

* reference value for non-dimensional variable 
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Figure S1: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of the SAR 

model in the parameter sweep analysis when decreasing ion permeability (𝜆Ions =

1.07 ∙ 10−3). The simulation of the two-parameter model is not reported because it does not 

change from Figure 2. 
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Figure S2: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of the SAR 

model in the parameter sweep analysis when increasing ion permeability (𝜆Ions =

1.07 ∙ 10−2). The simulation of the two-parameter model is not reported because it does not 

change from Figure 2. 

 

  

0.00

0.25

0.50

0.75

1.00


C

el
l o

r 


W
 

Water

Cell

  

0.706

2.0x10
-3

3.0x10
-3

4.0x10
-3


Io

n
s  

-1

0

1




 

0 5 10 15 20

0.8

1.0

1.2

1.4


S

p
h
/

R
ef

 



-5.0x10
-4

0.0

5.0x10
-4


p

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of the SAR 

model in terms of the cell volume at the end of phase II (𝜁Cell @ 𝜏 = 20) for the parameter 

sweep of 𝐾′ (total duration of osmotic cycle is 20, i.e. 10 for both phase I and II); base case 

in red.  
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Figure S4: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: comparisons 

between the results of the SAR model (black) and the two-parameter model (red) in the 

parameter sweep analysis with 𝛽 = 1.32∙104, five orders of magnitude increase with respect 

to its base case value The simulation of the two-parameter model is reported even though it 

does not change with respect to Figure 2. 
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Figure S5: Osmotic cycle with permeant DMSO in the absence of impermeant sucrose: comparisons 

between the results of the SAR model (black) and the two-parameter model (red) in 

parameter sweep analysis with 𝜆CPA = 6.26∙10-1, one order of magnitude increase with 

respect to its base case value. The vertical, green lines indicate opening and closing of MS 

channels. 
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Table 1: Ordinary Differential Equations (OEDs) of the SAR model in non-dimensional form.  

Equation Initial Condition Number 

𝑑𝜁W
𝑑𝜏

= −ΦSph(∆p − ∆ω) 𝜁W(0) = 𝜁W
0 = (

1 − 𝜐B

1 + 𝜇Ions
)      @    𝜏 = 0 (1) 

𝑑𝜁CPA
𝑑𝜏

= −𝜆CPA ΦSph ∆ωCPA 𝜁CPA(0) = 𝜁CPA
0 = 0    @    𝜏 = 0 (2) 

𝑑𝜁Ions
𝑑𝜏

= −𝜆Ions ΦSph ∆ωIons 𝜁Ions(0) = 𝜁Ions
0 = 𝜇Ions (

1 − 𝜐B

1 + 𝜇Ions
)     @    𝜏 = 0 (3) 

𝑑ΦRef
𝑑𝜏

= 𝜆S ΦRef  ∆Ω ΦRef(0) = ΦRef
0 = (

1

1 +
ΩR
𝐾′

)     @    𝜏 = 0 (4) 

 

  



 

 

 

Table 2: Auxiliary Algebraic Equations (AEs) of the SAR model in non-dimensional form.  

Equation Number 

𝜁Cell = 𝜐B + 𝜁Ions + 𝜁W + 𝜁CPA (5) 

Δp = pINT − pEXT = 
𝛽 ΔΩ

(𝜁Cell)
1
3

 (6) 

ΔΩ =  Ω − ΩR (7) 

Ω = 𝐾′  (
ΦSph

ΦRef
− 1) (8) 

ΦSph = (𝜁Cell)
2
3 (9) 

𝛥ω = ωINT −ωEXT (10) 

ωINT = ωIons
INT +ωCPA

INT  (11) 

ωIons
INT =

𝜁Ions
𝜇Ions 𝜁W

 (12) 

ωCPA
INT =

𝜁CPA
𝜇CPA 𝜁W

 (13) 

ωEXT = (ωIons
EXT +ωSucrose

EXT +ωCPA
EXT) (14) 

∆ωCPA = ωCPA
INT −ωCPA

EXT (15) 

∆ωIons = ωIons
INT −ωIons

EXT  (16) 

𝜆Ions = {
0         ∆Ω ≤ 0
𝜆Ions  ∆Ω > 0

 (17) 

  



Table 3: Equilibrium conditions of the SAR model in non-dimensional form after an osmotic cycle with impermeant sucrose in the absence of CPA with 

ωEXT, II ≤ ωEXT, I: phase I, contact with hypertonic solutions of sucrose and ions (ωEXT, I = ωSucrose
EXT, I +ωIons

EXT, I
); phase II, removing sucrose (ωEXT, II =

ωIons
EXT, II).  

Equation Number 

𝜁Cell
I = 𝜐B⏟

Inactive

+ (
1 − 𝜐B
1 + 𝜇Ions

)(
1

ωEXT, I
)

⏟            
Water

+ 𝜇Ions (
1 − 𝜐B
1 + 𝜇Ions

)
⏟          

Ions

 
(18) 

𝜁Cell
II = 𝜐B⏟

Inactive

+ (
1 − 𝜐B
1 + 𝜇Ions

) (
1

ωEXT, II
)(

𝜇Ions +
𝜆Ions
ωEXT, I

𝜇Ions + 
𝜆Ions
ωEXT, II

)

⏟                          
Water

+ 𝜇Ions (
1 − 𝜐B
1 + 𝜇Ions

)(
𝜇Ions +

𝜆Ions
ωEXT, I

𝜇Ions + 
𝜆Ions
ωEXT, II

)

⏟                        
Ions

 
(19) 

 

 



Table 4: Model parameters in non-dimensional form (base case) determined at a system temperature 

of 298 K, based on the parameter values reported in [5]. 

Parameter Expression Value 

𝛽 

2 ℎ

( 
3
4𝜋
𝑉Cell
0 )

1
3

 
1.32∙10-1 

𝜆CPA 
𝜐̃CPA 𝑃CPA(𝑇)

𝐿P(𝑇) 𝑅 𝑇
 6.26∙10-2 

𝜆Ions 
𝑃Ions(𝑇)

𝐿P(𝑇) 𝑅 𝑇
 2.14∙10-3 

𝜆S 𝑘S  ( 
3
4𝜋
𝑉Cell
0 )

1
3

3 𝐿P(𝑇) 
 

8.42∙101 

𝜇CPA 𝜐̃CPA M
0 2.13∙10-2 

𝜇Ions 
𝜐̃Ions M

0

𝜑
 4.05∙10-3 

𝐾′ 
𝐾

2 𝑅 𝑇 M0
 2.22 ∙10-2 

𝜐B 
𝑉B

𝑉Cell
0  0.2 

ΩR 
𝜎R

𝑅 𝑇 M0
 1.11∙10-3 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic representation of a cell according to the SAR model. 
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Figure 2: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: comparisons between the 

results of the SAR model (black) and the two-parameter model (red) using the parameter values 

reported in Table 4 (base case). 
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Figure 3: Equilibrium conditions (𝜁Cell
I  and 𝜁Cell

II ) of the SAR model for the osmotic cycle with sucrose in the 

parametric sweep analysis: variation of ion permeability (𝜆Ions = 1.07 ∙ 10
−3, 2.14 ∙ 10−3, 

1.07 ∙ 10−2), with base case in bold lines. Circles represent the corresponding numerical 

integration of the dynamic SAR model (𝜁Cell @ 𝜏 = 10 and 𝜁Cell @ 𝜏 = 20). 
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Figure 4: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of the SAR model 

in the parameter sweep analysis with an infinitely slow membrane relaxation rate (𝜆S = 0). The 

simulation of the two-parameter model is not reported because it does not change from Figure 2. 
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Figure 5: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of the SAR model 

in the parameter sweep analysis with a membrane relaxation rate slower than in the base case (𝜆S =

8.42). The vertical, green line represents the time of MS channels opening. The simulation of the 

two-parameter model is not reported because it does not change from Figure 2. 
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Figure 6: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of the SAR model 

in terms of the cell volume at the end of phase II (𝜁Cell @ 𝜏 = 20) for the sweep of parameter 𝜆S 

(total duration of osmotic cycle is 20, i.e. 10 for both phase I and II); base case in red.  
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Figure 7: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of the SAR model 

in terms of the cell volume at the end of phase II (𝜁Cell @ 𝜏 = 20) for the sweep of parameter 𝛽 

(total duration of osmotic cycle is 20, i.e. 10 for both phase I and II); base case in red.  
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Figure 8: Osmotic cycle with impermeant sucrose in the absence of permeant CPA: comparisons between the 

results of the SAR model (black) and the two-parameter model (red) in the parameter sweep 

analysis with 𝛽 =  1.32 ∙ 102, three orders of magnitude increase with respect to its base case 

value. The simulation of the two-parameter model is reported for convenience even though it does 

not change with respect to Figure 2. 
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Figure 9: Osmotic cycle with permeant DMSO in the absence of impermeant sucrose: comparisons between 

the results of the SAR model (black) and the two-parameter model (red) using the parameter values 

reported in Table 4 (base case). The vertical, green lines indicate opening and closing of MS 

channels. 
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Figure 10: Osmotic cycle with permeant DMSO in the absence of impermeant sucrose: comparisons 

between the results of the SAR model (black) and the two-parameter model (red) in the 

parameter sweep analysis with 𝜆CPA = 6.26 ∙ 10
−3, one order of magnitude decrease with 

respect to its base case value. The vertical, green line indicate opening of MS channels. 
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Captions for figures 

 

Figure 1 Schematic representation of a cell according to the SAR model. 

Figure 2 Osmotic cycle with impermeant sucrose in the absence of permeant CPA: 

comparisons between the results of the SAR model (black) and the two-parameter 

model (red) using the parameter values reported in Table 4 (base case). 

Figure 3 Equilibrium conditions (𝜁Cell
I  and 𝜁Cell

II ) of the SAR model for the osmotic cycle with 

sucrose in the parametric sweep analysis: variation of ion permeability (𝜆Ions =

1.07 ∙ 10−3, 2.14 ∙ 10−3, 1.07 ∙ 10−2), with base case in bold lines. Circles represent 

the corresponding numerical integration of the dynamic SAR model (𝜁Cell @ 𝜏 = 10 

and 𝜁Cell @ 𝜏 = 20). 

Figure 4 Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of 

the SAR model in the parameter sweep analysis with an infinitely slow membrane 

relaxation rate (𝜆S = 0). The simulation of the two-parameter model is not reported 

because it does not change from Figure 2. 

Figure 5 Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of 

the SAR model in the parameter sweep analysis with a membrane relaxation rate 

slower than in the base case (𝜆S = 8.42). The vertical, green line represents the time 

of MS channels opening. The simulation of the two-parameter model is not reported 

because it does not change from Figure 2. 

Figure 6 Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of 

the SAR model in terms of the cell volume at the end of phase II (𝜁Cell @ 𝜏 = 20) for 

the sweep of parameter 𝜆S (total duration of osmotic cycle is 20, i.e. 10 for both 

phase I and II); base case in red. 

Figure 7 Osmotic cycle with impermeant sucrose in the absence of permeant CPA: results of 

the SAR model in terms of the cell volume at the end of phase II (𝜁Cell @ 𝜏 = 20) for 



the sweep of parameter 𝛽 (total duration of osmotic cycle is 20, i.e. 10 for both phase 

I and II); base case in red. 

Figure 8 Osmotic cycle with impermeant sucrose in the absence of permeant CPA: 

comparisons between the results of the SAR model (black) and the two-parameter 

model (red) in the parameter sweep analysis with 𝛽 =  1.32 ∙ 102, three orders of 

magnitude increase with respect to its base case value. The simulation of the two-

parameter model is reported for convenience even though it does not change with 

respect to Figure 2. 

Figure 9 Osmotic cycle with permeant DMSO in the absence of impermeant sucrose: 

comparisons between the results of the SAR model (black) and the two-parameter 

model (red) using the parameter values reported in Table 4 (base case). The vertical, 

green lines indicate opening and closing of MS channels. 

Figure 10 Osmotic cycle with permeant DMSO in the absence of impermeant sucrose: 

comparisons between the results of the SAR model (black) and the two-parameter 

model (red) in the parameter sweep analysis with 𝜆CPA = 6.26 ∙ 10−3, one order of 

magnitude decrease with respect to its base case value. The vertical, green line 

indicate opening of MS channels. 

 

 


